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ABSTRACT

This report presents calculations of power and spectral
distribution for a particular pseudo-random waveform. Signal-
to-noise ratios are derived, and it is shown that the amplifier
bandwidth2 which maximizes the output signal-to-noise ratio is
given by - , when T is the bit length in the pseudo-random sequence.
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POWER AND SIGNAL-TO-NOISE CALCULATIONS
OF A CERTAIN PSEUDO-RANDOM SIGNAL

I. INTRODUCTION

Recently in work with radar waveforms, it has been found
necessary to compute the amount of pseudo-random signal power
passing through an amplifier of a certain specified bandwidth. I
A quick solution to this problem would be to determine the percentage
of the power spectrum which falls within this specified bandwidth.
This report describes a quick, simple method of computing the power
spectrum.

There are several methods of calculating the spectrum of a signal 2
For nonperiodic pulse signals two distinct routes exist: One, through
the signal spectrum to its squared magnitude; the second, through the
auto-correlation function to its transform. Both routes yield the
energy density spectrum, 'IV (w). Similarly for periodic signals, the
same transformations exist, but to § (w), the power density spectrum.
However, for random signals 3, the Fourier Transform diverges so
that only one path exists from the signal to its power density spectrum -

by way of the auto-correlation function. Fortunately, for the signal
under consideration the auto-correlation is known and is shown in
Figure 1.

II. DISCUSSION

The purpose of this report is to present a simplified method of
calculating Fourier transforms of waveforms. 4 Essentially, this
method is based on the fact that differentiation in the time domain
corresponds to multiplication by j w in the frequency domain. The
procedure is thus: given u (t), we can write Ik (w) 1, differentiate
u (t), which multiplies 'k (w) by j w. Differentiate u (t) again, this

I Todd, W. H. Private Communication
2 See for example; Lee, Y. W., Statistical Theory of Communication,

John Wiley and Sons, New York, 1960
3 Mason, S. J. and Zimmermann, H. J., Electronic Circuits, Signals

and Systems, John Wiley and Sons, New York, 1960
4 The material in this and following paragraphs borrows heavily from

Footnote3, above.



yields impulses, and also gives (j W) 'fk (w). Translation of an
impulse a distance 6 corresponds to multiplying the impulse by
exp (6j w) (see Figure 2). Thus we can write, by inspection, the
relation:

( W w) k (W 2 ( )+ ( +e } (1)

This equation can be rearranged slightly to give:

(WJ)2 *k (W) =-2 ( B)+ 2 (K e)iw+iW (2)

Solving for k (w), after some simplifying and substituting, yields:

k (w=)(i -cosw) (3)

Equation 3 can further be written as:

Tk (w) 4 (8 B s inz (4)

Multiplying numerator and denominator of the right hand side by 8,
and manipulating, the following result is obtained:

k() 8 (K+ B) Sinz W (5)

18W

which in alternate form is:

sin 8
Sk(w)- 8(K+B) T (6)

Equation 6 is the expression for the power spectrum of the original
signal.

It is both interesting and instructive to examine the bounds on the
power spectrum. These bounds are obtained from the form constants
of the signal; namely, the content, variation, and wiggliness. These
terms are defined as follows:

2



Content + c Iu(t) dt_ i< u(t) I> (7)

Variation= +oo du(t) _ < du(t) 1 (8)
- d dtd t dt

Wiggliness - I +_ 
_d? dt < I dut > (9)

The content is the area under the curve (see Figure 3). Since the area
under the auto-correlation curve in question is infinite, some difficulty
may exist. However, this difficulty can be solved by breaking the
curve into two parts: A triangular pulse and a uniform band. From
the following discussion, it can be seen that Part b will effectively
contribute a delta spike at the origin. No other contribution will be
made by Part b.

For Part a, the content is obviously K6. The variation, which
is a change in the slope, is the total upward or downward excursion
of the signal. Both the upward and downward excursions are counted
as positive (see Figure 4). Thus, the variation is ZK. The
wiggliness is the total variation in the slope of the signal in which
all variations count as:Positive. This is 2K_. Two frequencies,
Wa and Wb, are defined by the following: 6

variation wiggliness
a content Wb variation

For this wave:

2K 2Wa - (10)

4K 8 2
wb - 2K =6 (11)

We are now in a position to sketch the bounds on Tk (w). These
bounds are the content, variation divided by 0, and wiggliness
divided by w2 . The calculation of w a and wb shows that both of these
frequencies are the same. The bounds on Lk(WMI are shown in
Figure 5, and a log-log plot of the same figure is presented in
Figure 6. In Figure 6, the actual curve will be 3 db below the
corner frequency wa since this is an asymptote plot.
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We can now determine the amount of signal power passed by an

amplifier 'as a function of the amplifier bandwidth. To do this, it
is most convenient to have the band limited power normalized. The

power passed by the amplifier is divided by the total signal power.

To determine the total signal power, Figure 6 is integrated from 0 to

and multiplied by 2. The equation for Figure 6 is given by:

C 0< t< Wa K and M are constants

( K V wa < 0)< Wb
a ))Wa (12)

MW w> Wb

(Where C stands for content, etc.)

w a:

At the two frequencies, wa and wb, the curves must agree. Thus at

C KV C
0 - or, K

W a V

at wb:

KV MW KV
Wb = -- Z or, M =

u)b b W

Thus, the equation describing T(u ) can be written as follows (performing

the above substitutions):

SO<D< W a

o(®) wa < w< wb (1Za)

W 
W 

>Wb

4



Integrating +(w) over all values of u from 0 to infinity,

Wao

F (w) do cd w+J'w ad + w Wa Wb d( (13)
0 0 Wa W b

or

'(w)d w= C Wq + C wa 1n w' +C wa - C Wa Wb

Wr = 0 if Wq t Wa 
(14)

Ws = 0 if Cr * wb

One-half the total power is given when Wq= Wa, Wr = wb, and w =o

Then:

If (w) dw= ZC Wa + C wa 1 n (15)

Since only one side of the curve has been considered, it is necessary
only to double Equation 15 to get the total power. This:

rw)d = 2C a [(+ In ] (16)

is the expression for the total power. For the particular waveform
under consideration, wa = wb so that the expression for total power
reduces to:

fY'(W d W 4 GC wa (17)

To find the power passed by an amplifier of specified bandwidth,
Equation 14 is used. Equation 14, rewritten, is (for the waveform
under consideration):

CU1 /CWq wq < Wa
*(w) dW = (18)
- C W a  -,w, Ws >  

W a

A plot of this curve is shown in Figure 7.
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The percentage of power received, as a function of bandwidth,
can now be written. Letting e (.) be the percentage of power received,
the expression for e (_v)is:

W

e =(W) at x 100 (19)

PIW ) do)

For the waveform under consideration,

2 x 00 wq < ®a
4C Wa

S( zWa (2 - ' a) x 100W s- (20)

4C Wa

which becomes.

50Owq wq <wa

e(a) Fa (21)

50 (2 - Wa ) ws > Wa

Finally, the expression for the signal-to-noise ratio as a function
of bandwidth can be calculated. This is simply the signal power
divided by the noise power, as a function of bandwidth. Thus,

W

=_ (22)en' (a))(2

Now, en 2 as a function of u is given by:
CO

en 2 (W)= JKTdw (23)

6



The signal-to-noise ratio, as a function of bandwidth, is then:

2C

~! s2~-. WS > Wa (24)

4KT

By considering the spike contributed by Part b of Figure 3, the
expression for the signal-to-noise ratio is:

2G+ BL wr < Wa

4KT 4 KTWr

2CC) aw(2 _ w) (25)
4s + B US > Wa

4KTws 4KTws

where B is defined in Figure 3 and L is the total word length. Figure 8

shows a composite plot of signal-to-noise ratio and e versus w.

I. SUMMARY AND CONCLUSIONS

The power spectrum of the given pseudo-random wave was derived
and is given by Equation 6. By treating the pseudo-random wave as a
random wave, expressions for the power received as a function of
bandwidth are given by Equation 21. The expression for the signal-to-
noise ratio is given by Equation 25. From Equation 25 it is seen
that the best signal-to-noise ratio occurs when the amplifier bandwidth
is zero, however, by Equations 20 and 24 it is seen that the signal-
to-noise iatio is not materially degraded when the amplifier bandwidth
is Wa orT

7
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v~t) -

4- Pk(w)

d(v)t

K+B

jw Pk()

-88
-K+B

d v(t)

dt2

K+B K+B

T # (jw) 2Pk(w)

-21K+. B
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Figure 2. GRAPHICAL FOURIER TRANSFORMATION
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K

contents total area K K(2 K

variation =total upward or downward
excursion of slope z2K

2K

wiggliness = total variation in the slope
of the signal =4K

K K

Figure 4. EXAMPLES OF CONTENT, VARIATION,
AND WIGGLINESS
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