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SUMM4ARY

Several important classes of problems in the theory of automatic

control--including time-optimal control--find a natural setting in

the field of graph theory. Various aspects of formulation, ana-

lytical and numerical treatment, and implementation are sketched.

The paper is intended to be quite self-contained.

1. Introduction

A problem of central importance in the theory of automatic con-

trol involves the transforming of a system from an initial state

into a desired terminal state in the most efficient fashion. If,

for example a gust of wind causes an aircraft to begin rolling, the

automatic pilot is supposed to send control signals to the control

surfaces in an effort to restore the craft, as rapidly as possible,

to the horizontal position with no angular velocity about its longi-

tudinal axis. Or consider a spacecraft which is about to re-enter

the earth's atmosphere. It is desired to fly along a trajectory

which will bring the craft to the surface of the earth while keeping

*Any views expressed in this paper are those of the author. They

should not be interpreted as reflecting the views of The RAND Cor-
poration or the official opinion or policy of any of its governmental
or private research sponsors. Papers are reproduced by The RAND
Corporation as a courtesy to members of its staff.
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E. F. Beckenbach, John Wiley and Sons, Inc., New York, N. Y., January 1964.
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the maximum temperature to which the surface of the craft is exposed

as low as possible. One might also wish to select a path which will

minimize the maximum deceleration during descent.

From the mathematical viewpoint it seems natural to consider

such problems as belonging to the calculus of variations. Toward

this end one introduces a state vector x(t), with x(O) - c, a

control vector y(t), and a dynamical equation

(1) x = f(x,y).

We wish to determine the control vector y(t) in such a manner that

the system is transformed from the initial state c to some desired

terminal state, say x = 0, as rapidly as possible. An extensive

literature now exists concerning such problems [1,2], especially for

the case in which the function f is linear in x and y and the

components of the control vector y are subject to certain con-

straints. Alternatively, we might wish to determine the control

vector y(t) so that we minimize the maximum value of some function

g(x(t),y(t)) during the course of transforming the system from the

initial state to the terminal state. There is a less extensive

literature associated with such problems [3,4).

If we keep in mind that the treatment of significant problems

in this area will ultimately involve the use of digital computers,

wherein all variables are rendered discrete, and that some control

systems operate in a discrete fashion by design, it becomes of in-

terest to consider a discrete formulation and treatment of automatic

control processes, as opposed to a continuous one. The aim of this
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paper is to give an indication of the current state of affairs in

this program.

2. Time-optimal Control and the Nature of Feedback

Let us consider a system S which may be found in any of a

finite number, N, of possible states. We represent these states

by the nodes of a graph [5,6] and number them 1,2,...,N. In the

course of time the system changes its state; i.e., it undergoes a

sequence of transformations which we call a process. When the system

is in state i, we assume that a control decision can be made, the

result of which is that the system is transformed into some new state.

In general, when the system is in state i, only certain new states

msV be attained as the result of making a control decision.

In the passage from state i to state j a certain amount of

a resource such as energy must be consumed during such a transforma-

tion. This assigns a number, tij, to the directed arc frm i to

J. Let us consider that we wish to control the system S in such

a vay that if the system is disturbed from its equilibrium (or most

desirable) state, say the state N, then we shall return it to the

equilibrium state in the least possible time.

At first glance it might seem that we wish merely to find a

shortest trajectory through phase space leading from the initial

state i to the desired terminal state N. Actually this is not

so. Frequently we shall have no prior knowledge of what the particu-

lar initial state i will be, so that we must be prepared to trans-

form the system from any initial state i into the desired terminal

state, and do so in minimum time. Now we may go one step further
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and note that if the system is in state i, it is not necessary to

specify the entire trajectory from i to N. Indeed, all we need

do is specify that if the system is in state i, then the next state

into which to transform the system is a particular state J.

These considerations enable us to distinguish between what is

called open-loop and feedback control. In an open-loop process the

entire sequence of transformations is specified ahead of time. This

type of control is useful when one has great confidence that the

system will perform as specified and that random external influences

are negligible. In practice this means that all control influences

will be exerted in a prescribed fashion as a function of time, i.e.,

according to the reading of a clock, no notice being taken of the

actual state of the system. A simple example of this is the control

of the temperature of a room by turning a furnace on and off at

certain fixed times. Open-loop control is usually economical to

provide, but in turn, may not provide satisfactory control due to

the neglect of external factors.

A more sophisticated type of control is achieved by carrying

out the following cycle of operation: (1) determine the state of

the system (measure the temperature of the room); (2) decide on a

control action (turn the furnace on or off); (3) return to (1).

A control system which operates on this principle is termed a feed-

back control system. There is an extensive theory of such processes

going back to Maxwell [7,8,9]. For the most part this is a theory

describing how a system would act if controlled in a certain way,

the notion of stability playing a major role [lO]. It is clew,
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though, that we wish to control in optimal fashion, so that emphasis

has turned from stability to optimality considerations, though, of

course, there is an intimate relation between the two.

3. Formulation .11]

We introduce the following nomenclature:

() tij = the time required to transform the system from state

i to state J over a direct link.

(2) u i = the time to transform the system from state i to

state N (the desired state) in optimal fashion,

i = 1,2,...,N.

To derive relations among these quantities we note that if the

system is in state i and the decision to transform it into state

j is made, j i, then the process will have to continue optimally

from state j to state N if the entire process is to be optimal.

Furthermore, the choice of the next state, state J, is made on the

basis of minimizing the sum

(3) tij +

for tij is the time to pass directly from state i to state j,

and uj is the minimal time required to pass from state j to the

terminal state N. These observations, manifestations of Bellman's

principle of optimality [l, lead to the nonlinear system of equations

(.) ui = min (t i + uj), i 1,2,...,N - 1,

J=i

UN=O.
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4. Uniqueness [11]

Since we contemplate solving the equations (3.4) via various

successive approximation techniques, it is important to establish

the uniqueness of the solution. Suppose that (ui ] and [Ui) re-

present two solutions of the system of equations (3.4), and that k

is an index where the difference

(1) U, - Ui

achieves its maximum. Let

(2) Uk-min Itk j + uI - t + Ur

and

(3) Uk = min t n + U j) - ts +u.

Since we are assuming that

(4) ti > 0,

it is clear that

(5) r#k, s k.

We have the inequalities

(6) uk =t + r % k,

(7) ea = te restn

which lead to the relation
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(8) uk - Uk "  Us - US.

Since k is an index for which the difference u - U is maxi-

mized, equality must hold in relation (8),

(9) uk - Uk = us Us,

which implies that equality also holds in relation (6)

(10) Uk = tks + us .

But now we may repeat the same reasoning for the state s and

establish that there is another state, state m, for which

(-1) u - U=us - Uk  .

Furthermore m s and m / k since

(12) Uk = tks + tsm +um

Continuing in this way we must eventually come upon the state N,

for which

(13) UN - UN = o,

which completes the proof.

3. Successive Approximations

We may use Picard's method of successive approximations to

establish the existence of a solution of the system of equations

(3.4) and to provide a practical computational scheme. As our initial

approximation, ui(O), we make the decision to transform the system
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directly from state i to state N. Of course, if no such direct

link exists we assume that the time that elapses is M, a suitably

large number,

(1) (0 t iN' i = 1,2,...,N.

The higher order approximations are obtained in the usual way,

ui (k+1) = mn [tij + uj(k) i - l,2,...,N - 1,

JA
(2)

u(k+l) = ,

for k = 0,1,2,.... The physics of the problem enables us to see

some of the properties of the successive approximations. For example,

since

(3) 1 m tij + tJN}, i = l,2,...,N - 1,

we see that

()(1) = the minimal time to transform the system from state

i to state N via at most one intermediate state,

i = 1,2,...,N.

And, in general,

u = the minimal time to transform the system from state

i to state N via at most k intermediate states.
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From this it follows that the approximations are monotone decreasing,

(6) u(k+1) ui(k), i = l,2,...,N,

which is easy to establish via induction. Since ui(k) is bounded

from below,

(7(k) 2 O, i = 1,2,,..,N,

the convergence of the approximating sequence is established. As a

matter of fact, though, an optimal trajectory from any state i to

state N has at most N - 2 intermediate states, since an optimal

trajectory does not cross itself to form a loop. Thus the conver-

gence of the process is assumed after at most N - 2 stages. That

the limiting values satisfy equations (3.4) is clear.

6. Observations on the Approximation Scheme

Use of the equations (5.2) involves only addition and comparison

of numbers, two operations for which a digital computer is well-

suited. Furthermore, in calculating the value of ui(k+l) only the

i-th row of the matrix (tij) and the vector (u(k),u2(k)...,u(k)

need be in high-speed storage. In this way problems for which N

is of the order of several thousand can be solved by an IB-7090 in

several minutes. Efficient programs will exploit special features

of a given problem. This is certainly true if each state is directly

connected to only several of its neighbors. In some instances the

values of the successive approximations are more important than the

solution of the original problem. If the optimal trajectory from

state i to state N has many intermediate states, then it might
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require a complex instrumentation to achieve, so that a knowledge of

both the successive approximations and the limiting values may be of

importance in designing a control system.

Finally, let us note that our solution consists not so much in

the production of the values ul,u 2 ,...,uN, as in the knowledge of

the value of j which minimizes the expression tij + u for each

value of i. This is precisely the knowledge that is required for

determining optimal feedback control.

7. Other Approaches

Many other approaches to this problem have been devised, in

particular by Dantzig [12] and Ford and Fulkerson [13). In particu-

lar it is possible to fan out from the destination and determine,

one after the other, the nearest, second nearest, and so on, states

to the terminal state.

A variety of analogue devices can be used. Sam of these are

described in the paper [14], where inoy references are provided.

8. Arbitrary Terminal States

In the event that we wish to determine optimal trajectories from

any initial state to any terminal state, we might apply the procedures

referred to above N times, in each case letting a different state

be the desired terminal state. Alternatively, we may let

(1) u1 i(k) = the time to transform a system in state i into

state j using a trajectory with at most k

intermediate states.
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Using the principle of optimality we see that

(2)( l) . min u im(k) + ut(k)), i J.

Since k will be at most N - 1, and since we can easily determine

the matrices (uij(0))(uij (1)), (uij (3), (uij (7)), (u ij ()).

the problem is readily handled, at least computationally.

9. Preferred Suboptimal Trajectories [15]

One of the key difficulties in applying these ideas to a con-

crete physical situation lies in deciding on the number and nature

of the physical states of the system to be considered. In particular

if the number of states chosen is too small, i.e., the grid in phase

space is too coarse, the time to traverse a second shortest path

may be considerably larger than the time to traverse an optimal

path. On the other hand, if these times are not too different, one's

confidence in the reasonableness of the mathematical model of the

physical process may be increased.

In addition, we must recognize that even if we determine an

exact solution to the mathematical solution, due to the neglect of

a variety of physical factors we have only an approximate solution

of the physical solution. If a mathematically optimal trajectory

which we have found is unsatisfactory from the physical viewpoint,

we may either find a near optimal trajectory for the mathematical

problem, in hopes that it will be better from the physical viewpoint,

or we may reformulate the mathematical problem. Let us show how we

may determine second best trajectories, once having determined

optimal trajectories to tho terminal state N.
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Under the assumption that there is at least one trajectory from

state i to state N that is not optimal, i = 1,2,...,N - 1, let

us define the variables vi, i = 1,2,...,N - 1,

(1) vi = the time that it takes to transform a system from

state i to state N using a second best trajectory,

VN=O.

Of course, we are assuming that there are no loops in the trajectory.

Next notice that if we make the decision to transform the system

from state i directly to state J, then the continuation must

be along a trajectory from state j to state N which is either

optimal or second best. This leads to the relations

(2) v i = min2 [ti, + u Jt i + vJ], i - l,2,...,N - 1,

jVi

VN= O,

where we have used the notation

(3) mn 2 (al,a2 ,...,aR) = the second smallest of al,a 2 ,...,aR

(under the assumption that they are

not all equal).

Generalizations are given in the paper 15], and are discussed at

length in [16].

Pollack [17] has also observed that we may find second best

paths bor first finding the optimal trajectory (assumed unique) from
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state i to state N. Then we eliminate the first link in the

optimal path from the network and determine an optimal trajectory

from state i to state N using only the remaining links in the

network. Then this is done for each of the remaining links in the

optimal trajectory being considered. Since there are at most N - 1

such links in the optimal trajectory, at most N - 1 such problems

need be solved. A trajectory which yields the smallest of the

numbers so found is a second shortest trajectory. The proof is

given by noting that a second shortest trajectory must differ from

an optimal trajectory in at least one link. With this method there

is no difficulty concerning the possible formation of trajectories

with loops.

10. A Stochastic Time-optimal Control Process [14]

Next let us assume that the physical situation is such that

the time involved in transforming the system from state i to state

j, tij, is not known precisely. Suppose, though, that we may

consider it to be a random variable with a known probability density

function Pij(t). This is a great assumption which may or may not

be justified in a given situation. Furthermore, we shall assume

that the time to traverse any link in a trajectory is independent

of the time to traverse any other link in the trajectory, another

severe restriction.

Under the assumptions just stated, our aim is to find the

optimal feedback control decision to make when the system is in

state i. Let us now explain carefully what we mean by this. We

shall assume that our objective is to maximize the probability of



transforming the system into the desired state N in a time t or

less, where

(1) t ! O.

The sequence of operations to be carried out is this: First the

current state of the system and the time are measured (by sensing

equipment). Secondly, a decision is made as to the next state that

the system is to occupy. Then a random time elapses until the

system reaches this state. Next a measurement is made of the new

time and state. On the basis of this knowledge of the new state

and the new time, a decision is made as to what the next state is to

be, and so on. Notice particularly that we do not attempt to ley

out the entire sequence of decisions leading from state i to state

N initially (as would be the case for open loop control); rather

we observe, decide, and act over and over again. We aim to determine

the optimal decision to make under given circumstances, i.e., for a

given state and given time remaining in the process. While for

deterministic processes open loop and closed loop (feedback) control

lead to identical results, for stochastic decision processes they

are conceptually quite different.

Let us now define the functions ui(t), i = 1,2,...,N, by

the equations

(2) u (t) = the probability of transforming a system from the

initial state i to the desired terminal state N

in time t or less using an optimal feedback

control policy.
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If we use the principle of optimality once again, we can write the

equations
tI ui(t) = max Fpij t-suj(sds, i = 112p,...,pN - 1,

jMi 6
(3)

UN(t) =1.

Equations (3) appear to be quite difficult to handle both

analytically and computationally. The appearance of the convolution

integrals suggests use of Laplace transforms, but the occurrence of

the maximum operator militates against this. The maximum transform

discussed by Bellman and Karush [18] and others might be useful.

Some other closely related stochastic control processes are

discussed in references [14] and [19].

U1. Minimax Control Processes

In some circumstances, such as we have discussed in Sec. 1, it

is desirable to transform a system from an initial state to a

terminal state in such a way as to minimize the maximum stress to

which the system is exposed during the course of the process. We

shall refer to such control processes as "minimax control processes."

Once again we shall consider a system which may be in any of a finite

number of states, N, the states being numbered from 1 to N.

We consider state N to be the desired terminal state. When the

system is transformed directly from state i to state J, a

maximum stress, si, is encountered. Thus the stress sij is

associated with the link (i,J). Our basic problem consists in
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finding a trajectory from state i to state N which is such that

the maximum stress along this trajectory is as small as possible.

12. Use of Functional Equations

Let us introduce the variables u,, i = l,2,...,N - l, by the

relations

(1) ui = the maximum stress along an optimal trajectory from

state i to the terminal state N, i o l,2,...,N - 1,

UN =O

Then use of the principle of optimality Immdiately leads to the

relations

(2) ui = min (msx(siJ,), i - l,2,...,N - ,
V i

UN =0.

These are, of course, the analogues of equations (3.4). The results

of the following sections could be obtained directly from these

equations. Rather than pursue this path, we shall keep the network

itself in the foreground.

13. A Special Case

A very important and interesting special case arises when we

stipulate the reversibility equality

(1) sij 0 sji.
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Thus one stress, sij, is connected with the arcs (i,j) and

(j,i). We can carry through the analysis in some detail and establish

a relationship with a seemingly unrelated problem Ln graph theory.

We first observe that the maximum stress encountered along

any trajectory is one of the numbers [sij]. Let us then arrange

the (positive) numbers (sij) in ascending order of magnitude and

denote this sequence by sl,S2,'...,sR (R ! (N/2)(N + 1)). Call the

corresponding arcs SlS 2,...,SR. For convenience, we assume that

the stresses associated with the arcs are all different frcm one

another, a condition which can be attained by adding suitably small

quantities to the stresses given, if necessary. Then we observe

that the states joined by the arc having the stress s1 cannot be

joined by any trajectory with a smaller maximum stress. This arc,

S1, constitutes an optimal trajectory for those states. Next we

observe that the states joined by the arc of stress s2 are also

joined optimally by this arc, S2 .

The situation becomes a little more complicated insofar as the

states joined by arc S3  are concerned. If the arcs SI, S2  and

S3 do not form a loop, then the states joined by arc S3 are joined

optimally by it. However, if arcs S1 , S, and S3  do form a loop,

then the arcs S1 and S2, and not S3 , connect these states

optimally.

Furthermore, we see that if we continue this process of se-

lecting arcs from the sequence of arcs SlS 2, ...,SR, making sure

that no arc selected forms a loop with any of the arcs already

selected, we shall eventually select N - 1 arcs containing no loops.



18

We shall thus have formed a particular spanning tree in the network,

and the unique trajectory in this tree which connects any two states

is the minimax trajectory between those states.

14. Minimal Spanning Trees

But the construction which we have just indicated is well known

to provide the solution to another seemingly unrelated problem:

Under the conditions stated in Sec. 13, find the tree for which the

sum of the stresses in its branches (arcs) is as small as possible.

This tree is called the minimal spanning tree. In 1956 Kruskal [20]

showed that the construction given solves this problem. Various

other algorithms are given in references [20,14].

The algorithm described is not satisfactory from the computa-

tional viewpoint, for testing to see whether or not an arc completes

a loop when added to another set of arcs can be quite time-consuming.

Prim [21] has given some very effective computational procedures.

15. Comments and Interconnections

Our result on minimax control processes, subject to the restric-

tions in Sec. 13, may be formulated thusly: optimal minimax tra-

jectories lie in the minimal spanning tree. Let us now illuminate

this result in several other ways.

First we give another proof. Consider an optimal minimax

trajectory from state i to state N. Suppose that is is not the

trajectory from state i to state N which lies in the minimal

spanning tree. Then there is at least one arc in this trajectory

which does not lie in the minimal spanning tree. Denote this as
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arc A. If we add this arc to the set of arcs in the minimal spanning

tree, then exactly one loop is formed, say the loop with arcs

(A,AI,...,AJ). But the following inequality must hold

(1) stress(A) 2 max(stress(A),stress(A2 ),...,stress(A )).

If it did not, then it would be possible to lower the sum of the

stresses in the branches of the minimal spanning tree by adding arc

A to the minimal spanning tree and deleting an arc A2  for which

(2) stress(A) < stress(A2 ).

Inequality (1) shows that the arc (A) in the supposed minimax

trajectory may be replaced by arcs in the minimal spanning tree

without increasing the maximal stress encountered. Since arc (A)

could be any arc in the minimax trajectory, the proof is complete.

In his paper [21], Prim observed that the minimal spanning tree

not only minimizes the sun of the stresses in its branches but also

minimizes, among all trees, any monotone increasing and symmetric

function of the stresses in the branches. In particular, we note,

it minimizes the function

(3) S- p 2p +. + 1/p

for p - 1,2,..., and the limit function

(4) mx(S1 S2 ,'..,s _1) - li S ,

which is easily proved.
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This suggests that we consider the problem of determining a

trajectory from state i to state N which minimizes the sum of

the p-th powers of the stresses in its arcs. Clearly for p = 1 this

is equivalent to the problem of determining a time-optimal trajectory,

which was considered earlier. On the other hand, in view of equation

(4), for p sufficiently large this is the problem of determining

a minimax trajectory. More precisely, we can show that for p suf-

ficiently large a trajectory which minimizes the sum of the p-th

powers of the stresses in its arcs lies in the minimal spanning tree.

For consider an arc S which is in the optimal trajectory but which

does not lie in the minimal spanning tree. Let its stress be s,

and let the stresses of the arcs in the minimal spanning tree with

which it forms a loop be Sl,'2,'.'r . Then, as we observed earlier,

(5) s > ma(slS2, ...,s r),

and for p sufficiently large,

(6) 1 > (all/)P + (2/)P + +(r/s)P

'or

(7) sP>Sp + sP + ... + Sr

This inequality shows that the arc S msy be replaced by arcs in

the minimal spanning tree and establishes the result.

In reference [22] M. Pollack posed the problem of determining

a maximum capacity path between two stations in a communications net-

work and provided several solutions. This problem is equivalent to
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ours. Furthermore, D. R. Fulkerson has pointed out to the author

that T. C. Hu [23), commenting on Pollack's paper, has obtained our

result on minimax trajectories.

16. 2Mtiple Stresses

It frequently happens that stresses arise during a process from

several different causes, i.e,, mechanical and thermal. While, in

general, a minimax trajectory for one is not a minimax trajectory

for the other, we can attempt to determine trajectories which are

optimal in the sense that no change in the trajectory can lower both

maximal stresses.

On link (i,j) let the maximal thermal stress be tij and

the maximal mechanical stress be mij. Then, if we introduce the

Legrange multipliers n1 and n2, we can associate the generalized

stress Sij,

(1) si = n1 t i + nei 3

with each arc. Pr letting, e.g.,

(2) - 1,

n2 = a,

and determining a minimax trajectory between two particular states,

for which the maximum mechanical stress is, for example, s, we can

guarantee, that among all trajectories for which the maximal mechani-

cal stress between the states is s, we will have found a trajectory

for which the thermal stress is minimal. Then a parameter study,
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involving the determination of many minimal spanning trees, might

yield useful design information concerning the trade-offs that are

possible.

17. Discussion

Our primary aim has been to show the close connection between

several important classes of automatic control problems and graph

theory. These considerations have raised many additional questions.

Let us conclude by stating some of these.

Formulation. How are we to decide how many states of a system

need be considered, what the stresses or times are, and what the

criterion is?

Analytical and Computational Treatment. What are the connections

between the solution to the discrete and continuous problems? )4riad

other problems, too varied to catalogue, arise.

Implementation. After the optimal feedback control decisions

have been determined, how can controllers be realized to carry out

the programs?

It is felt that the answers to these questions would provide

both automatic control and mathematics with additional interesting

chapters.
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