NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
MTI-62TR16

TWO PHASE FLOW IN THRUST BEARINGS
PART II

ANALYSIS OF THE REGION
NEAR THE AXIS OF ROTATION

by

I. BERETSKY
TWO PHASE FLOW IN THRUST BEARINGS
PART II
ANALYSIS OF THE REGION NEAR THE AXIS OF ROTATION

I. Beretsky
Author

C. H. T. Pan
Approved by

B. Sternlicht
Approved by

Prepared under
Contract No. Nonr-3731(00)(FBM)
Task NR 391-438

Administered by
OFFICE OF NAVAL RESEARCH
Department of the Navy

Reproduction in Whole or in Part is Permitted
for any Purpose of the U. S. Government

MECHANICAL TECHNOLOGY INCORPORATED
LATHAM, NEW YORK
ABSTRACT

The report analyzes the two-phase thrust bearing near the axis of rotation where the radial pressure gradient is non-zero and the viscosity is negligible for the gaseous phase. The analysis agrees with the previous work by Sparrow and Gregg (2) for condensate thickness for the limiting case of zero pressure gradient. With radial pressure gradients, the condensate thickness is seen to have the chance of re-evaporation due to the change of vapor temperature in the radial direction. The sensitivity of the condensate thickness to temperature difference is noted. This work is part of the complete analysis of the two-phase thrust bearing being studied.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 ANALYSIS</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Formulation of the Equations of Motion, Continuity, and Energy</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Momentum Integral Equations for the General Case</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1.1 Velocity Profiles</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Special Case: Viscous Forces Predominant</td>
<td>14</td>
</tr>
<tr>
<td>3.0 DISCUSSION</td>
<td>20</td>
</tr>
<tr>
<td>4.0 CONCLUSIONS</td>
<td>23</td>
</tr>
<tr>
<td>5.0 RECOMMENDATIONS</td>
<td>23</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>24</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>26</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>27</td>
</tr>
<tr>
<td>FIGURES</td>
<td></td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The study presented in this report contains the analysis of the two phase, externally pressurized, thrust bearing in the area near the axis of rotation. This area of the thrust bearing is considered to be Regions II and III, as indicated previously in Reference 1. (See Figure 1.)

Sparrow and Gregg (2) solved the problem of condensation on a rotating disk with no radial pressure gradient by using the similarity substitutions which Von Karman previously introduced for the rotating disk problem, that is,

\[u = r f'(z), \quad \nu = r g(z), \quad \nu' = -2f(z) \]

This is possible because the temperature boundary conditions at the interface and disk surface are independent of the radius \(r \). The substitutions reduce equations (1) and (2) to differential equations in \(z \) only. The condensate rate dependent on \(w \) is then seen to satisfy the temperature boundary conditions, as well as the equations of motion.

Sparrow and Gregg solved the set of nonlinear differential equations by computer, and noted that, if in equations (1) and (2) after the similarity substitutions are made the inertial terms are neglected compared to the viscous forces, the solution is easily evaluated. The results of this formulation led to the results

\[h'(w) = \left(\frac{2}{3} \right)^{1/4} \left(\frac{C \Delta T}{\lambda P_c} \right)^{1/4} \]

(a)

The same problem can also be analyzed by using the approximate integral method. (See Appendix.) This method again leads exactly to equation (a) for the condition that \(\left(\frac{C \Delta T}{\lambda P_c} \right)^{1/4} \) is small. The range of interest of this parameter for the problem under study can thus be considered equivalent to neglecting the inertial terms. The results of this analysis are shown in Figures 2 and 3, and explained in the Appendix.
The corresponding problem of a thrust bearing does not generally permit the assumptions of zero radial pressure gradient. The acceleration of the vapor flow in the radial direction does, in fact, have a pressure gradient in the case of a bearing, thus requiring the consideration of the pressure gradient and its effect on the condensate thickness and temperature in the vapor.

2.0 ANALYSIS

The problem can be conveniently formulated in cylindrical coordinates, where the coordinate of \(z \) is taken as the axis of rotation. Angular symmetry is assumed, that is, \(\partial / \partial \theta = 0 \). The physical problem is represented by a rotating disk upon which condensate forms due to a temperature difference between the surface of the disk and vapor.

The analysis of the two regions, that is, II and III, is done simultaneously with the following assumptions:

1. Interface shear at \(h(r) \) between the vapor and liquid phases is assumed zero; hence, \(\frac{\partial u}{\partial z} = \frac{\partial v}{\partial z} = 0 \) at \(z = h \).

2. The radial pressure gradient, \(\frac{\partial p}{\partial r} \), is the same for the liquid and the vapor (that is, \(\frac{\partial p}{\partial z} = 0 \)) and for this problem will be an assumed known function determined solely by the vapor flow and geometry of the region.
2.1 Formulation of the Equations of Motion, Continuity, and Energy

The equations of motion for an incompressible fluid in cylindrical coordinates (3), with axial symmetry, can be written as

\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \left\{ \nabla^2 \mathbf{u} + \frac{1}{3} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \right\} \]

(1)

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \]

(2)

\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \left\{ \nabla^2 \mathbf{u} + \frac{1}{3} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right) \right\} \]

(3)

The equation of continuity if

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \]

(4)

The energy equation can be written as

\[\frac{\partial T}{\partial t} + \nabla \cdot (\mathbf{u} T) = 0 \]

(5)

which is the well known Nusselt approximation where dissipation is neglected and the predominate mode of heat transfer is by conduction axially across the condensate thickness.

At this point, it is well to consider a limiting condition of the equations of motion and its effect on the formulation of the method of solution.

This problem does not permit the similarity substitutions. However, it can be formulated by using the momentum integral technique. The assumptions that \[\frac{\partial \rho}{\partial z} > \frac{\partial \rho}{\partial r} \quad \text{and} \quad \frac{\partial \mathbf{u}}{\partial z} > \frac{\partial \mathbf{u}}{\partial r} \] are made in addition to the previous assumptions. Note that as \(\rho \to \infty \), due to symmetry, \(\frac{\partial \rho}{\partial r} \to 0 \) if no sources are present. Furthermore, if \(\frac{\partial \mathbf{u}}{\partial r} \to 0 \), the equations of motion will permit the similar solutions of Von Karman (that is, \(u = r \sqrt{\frac{\nu}{2}} \)) etc.

The special case of \(A = 0 \), is that which was solved by Sparrow and Gregg.
The problem of condensation with \(\frac{\partial P}{\partial z} \neq 0 \) will be formulated for the general case where the inertial terms are not neglected. The value of \(\frac{\partial P}{\partial z} \) is assumed a known function of \(r \). However, since it has been shown in the case for \(\frac{\partial P}{\partial z} = 0 \) that neglecting inertial terms in comparison to viscous terms was equivalent to the case of small film thickness or low heat transfer rates, this assumption will be made subsequently to simplify the problem where the pressure gradient is non-zero.

2.1.1 Momentum Integral Equations for the General Case

Equations (1) and (2), neglecting higher order viscous terms (that is, \(\frac{\partial^2 u}{\partial z^2} > \frac{\partial u}{\partial z} \), \(\frac{\partial^4 u}{\partial z^4} \), etc.) become

\[
\frac{u \frac{\partial u}{\partial r} + u \frac{\partial u}{\partial z} - u^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{1}{\rho} \frac{\partial^2 u}{\partial z^2} \tag{6}
\]

\[
\frac{u \frac{\partial u}{\partial r} + u \frac{\partial u}{\partial z} + \frac{u^2}{r}}{r} = \frac{\partial^2 u}{\partial z^2} \tag{7}
\]

From equation (4), \(w \) at \(z = h \), can be written as

\[
\dot{w} = -\frac{1}{h} \int_0^h \dot{u} (ru) dz \tag{8}
\]

Equation (6) can be integrated over the condensate layer thickness, resulting in

\[
\int_0^h \left(\frac{u \frac{\partial u}{\partial z} + h \frac{\partial}{\partial h} (ru) - \frac{u^2}{h} \right) - \frac{u \frac{\partial}{\partial \zeta} (ru)^2}{h} d\zeta = h F(h) - \dot{G}_u \tag{9}
\]

where

\[
F(h) = -\frac{1}{\rho} \frac{\partial P}{\partial r} \tag{10}
\]

and

\[
\dot{G}_u = \mu \frac{\partial u}{\partial \zeta} \bigg|_{\zeta = 0} \tag{11}
\]

\[
\dot{\nu} = u(h) \tag{12}
\]
The following identities,

\[\frac{\partial u}{\partial t} = \frac{1}{\kappa} \frac{\partial}{\partial \zeta} \left(\kappa u^2 \right) - \frac{1}{\kappa} \frac{\partial}{\partial \zeta} \left(k u \right) \tag{13} \]

and

\[\frac{\partial u}{\partial t} = \frac{1}{\kappa} \frac{\partial}{\partial \zeta} \left(\kappa u^2 \right) + u \frac{\partial u}{\partial \zeta} \tag{14} \]

are substituted into equation (9) resulting in

\[\frac{1}{\kappa} \int \limits_{0}^{h} u (V-u) d\zeta + \frac{1}{\kappa} \int \limits_{0}^{h} u (V-u) d\zeta + \frac{dV}{d\zeta} \int \limits_{0}^{h} (V-u) d\zeta \]

+ \frac{1}{\kappa} \int \frac{F(V)}{\kappa} \left[\frac{V}{\kappa} - \frac{dV}{d\zeta} \right] - \int \frac{\omega}{\kappa} \omega \omega \omega d\zeta \tag{15} \]

Similarly, equation 7, can be integrated, which results in

\[\frac{1}{\kappa} \int \limits_{0}^{h} u (V-u) d\zeta + \frac{1}{\kappa} \int \limits_{0}^{h} u (V-u) d\zeta + \left(\frac{dV}{d\zeta} + \frac{V}{\kappa} \right) \int \limits_{0}^{h} (V-u) d\zeta - \int \frac{\omega}{\kappa} \omega \omega \omega \]

\[= \frac{\kappa_{e}}{\rho} \tag{16} \]

where

\[\frac{\kappa_{e}}{\rho} = \left. \mu \frac{\partial V}{\partial \zeta} \right|_{\zeta=0} \tag{17} \]

The following identities can be made:

\[\Theta \: V^2 = \int \limits_{0}^{h} V^2 \left(1 - f \right) d\zeta \tag{18} \]

\[\Theta \: V^2 = \int \limits_{0}^{h} V^2 \left(1 - g^2 \right) d\zeta \tag{19} \]

\[\Theta \: \omega \: UV = \int \limits_{0}^{h} UV \omega \left(1 - g \right) d\zeta \tag{20} \]
\[h^4 U = \int_0^h U(1-x) \, dx \]

(21)

where \(f = \frac{u}{U} \) and \(g = \frac{v}{U} \)

(22a), (22b)

Using equations (18) -- (22b), equations (15) and (16) can be written as

\[\frac{\partial}{\partial r} (\Theta_u U^2) + \frac{1}{r} \left(\Theta_r U^2 \right) + U \frac{dU}{dr} (h^*-h) + V h \left(\frac{\partial \Theta_u}{\partial r} + \frac{V^2}{\lambda} \right) \]

\[- \frac{\Theta_r V^2}{\lambda} = \frac{\tau_{\text{in}}}{\rho} \]

and

\[\frac{\partial}{\partial r} (\Theta_v U V) + \frac{1}{r} \left(\Theta_r U V \right) + \left(U \frac{dU}{dr} + \frac{V^2}{\lambda} \right) (h^*-h) = \frac{\tau_{\text{ex}}}{\xi} \]

(23)

(24)

Equations (23) and (24) are thus the Momentum Integral Equations for the case of rotational symmetric flow.

In order to solve these equations, velocity profiles for both \(u \) and \(v \), (hence, \(f \) and \(g \)) are assumed to be polynomials in \(z \).

2.1.1.1 Velocity Profiles

Radial Velocity Profile

The radial velocity profile \(f_r \) is assumed to be a fourth order polynomial in \(\eta \), where \(\eta = z/h \).

Hence, \(f(\eta) = a \eta + b \eta^2 + c \eta^3 + d \eta^4 \)

(25)
The conditions imposed on the radial velocity profile are

\[z = 0, \ u = 0, \ \nu \frac{\partial U}{\partial z} = -\frac{k^2}{\rho} \left[\frac{F(z)}{U} + \omega^2 \right] \]

\[z = h, \ u = U, \ \frac{\partial U}{\partial z} = 0, \ \nu \frac{\partial U}{\partial z} = -\left[\frac{F(z)}{h} + \frac{V^2}{h} - \frac{U}{\rho} \frac{\partial U}{\partial z} \right] \]

In terms of \(f \) and \(\eta \)

\[\eta = 0, \ f = 0, \ f_{\eta} = -\frac{k^2}{\rho} \left[\frac{F(\eta)}{U} + \frac{\partial U}{U} \right] \]

\[\eta = 1, \ f = 1, \ f_{\eta} = 0, \ f_{\eta\eta} = -\frac{k^2}{\rho} \left[\frac{F(\eta)}{U} + \frac{V^2}{U} - \frac{\partial U}{\partial U} \right] \]

These boundary conditions are representative of the physical conditions imposed, as well as satisfying the original differential equations.

Using the boundary conditions, the constants \(a, b, c, d, \) are evaluated and are

\[a = 2 + \frac{\phi_1 - \phi_2}{\rho} \]

\[b = -\phi_1/\rho \]

\[c = -2 + \frac{1}{2} (\phi_1 + \phi_2) \]

\[d = 1 - \phi_1/\rho - \phi_2/\rho \]

where

\[\phi_1 = \frac{k^2}{\rho} \left(\frac{F(z)}{U} + \frac{\partial U}{U} \right) \]

and

\[\phi_2 = \frac{k^2}{\rho} \left(\frac{F(z)}{U} + \frac{V^2}{U} - \frac{\partial U}{\partial U} \right) \]

Finally, \(f \) becomes

\[f(\eta) = 1 - (1+\eta)^2 + \frac{\phi_1}{\rho} (1+\eta)^2 - \frac{\phi_2}{\rho} (1-\eta)^2 (1+2\eta) \]

\[\theta \]
Similarly, the tangential velocity profile can be written as
\[\frac{g}{V} = a + b \eta + c \eta^2 + d \eta^3 + e \eta^4 \] (30)

The boundary conditions are:
\[\eta = 0, \quad \frac{\partial g}{\partial \eta} = 0 \]
\[\eta = h, \quad \frac{\partial g}{\partial \eta} = 0, \quad \tilde{g}_\eta = \frac{UV}{k} + \frac{\partial}{\partial \eta} \]

or in terms of \(g \) and \(\eta \)
\[\eta = 0, \quad g = \frac{\gamma g}{\kappa} = 1-S, \quad g \eta = 0 \]
\[\eta = 1, \quad g = 1, \quad g \eta = 0, \quad g \eta \eta = \frac{k^2}{\gamma} \left(\frac{V}{k} + \frac{\partial}{\partial \eta} \right) \]

The constants evaluated are
\[a = 1-S \] (31a)
\[b = 2S + \phi_3/6 \] (31b)
\[c = 0 \] (31c)
\[d = -2S - \phi_3/2 \] (31d)
\[e = S + \phi_3/3 \] (31e)

where \(\phi_3 = \frac{k^2}{\gamma} \left(\frac{V}{k} + \frac{\partial}{\partial \eta} \right) \)

Finally, \(g \) becomes
\[g = 1-S (1-\eta)^3 (1+\eta) + \frac{\phi_5}{6} (1-\eta)^2 (\eta)^2 (1+2 \eta) \] (32)
Following the line of thinking similar to Bohlen-Holstein's method, shape parameters can be introduced as in the Karmen-Pohlausen technique. (3)

It will be apparent later that it was convenient to introduce the so-called "shape parameters", which in this case are defined as

\[
\begin{align*}
K_1 &= \frac{\Theta_0^2}{\lambda} \frac{F(\lambda)}{U} \\
K_2 &= \frac{\Theta_0^2}{\lambda} \frac{V^c}{h} \\
K_3 &= \frac{\Theta_0^2}{\lambda} \frac{V^s}{h} \\
K_4 &= \frac{\Theta_0^2}{\lambda} \omega \\
\end{align*}
\]

(33) (34) (35) (36)

Also, let \(\psi = \frac{\Theta_0^2}{\lambda} \)

(37)

Hence,

\[
\begin{align*}
K_1 &= \psi \frac{F(\lambda)}{U} \\
K_2 &= \psi \frac{V^c}{h} \\
K_3 &= \psi \frac{V^s}{h} \\
K_4 &= \psi \omega \\
\end{align*}
\]

(38) (39) (40) (41)
From the definitions of \(\phi_1, \phi_2, \phi_3, \) and \(S, \) which are

\[
\phi_1 = \frac{\hbar^2}{2} \frac{F(x)}{V} + \frac{\hbar^2}{2} r \omega^2
\]
(42)

\[
\phi_2 = \frac{\hbar^2}{2} \frac{F(x)}{V} + \frac{\hbar^2}{2} \frac{V^2}{r} - \frac{\hbar^2}{2} \frac{dV}{dr}
\]
(43)

\[
\phi_3 = \frac{\hbar^2}{2} \frac{V}{r} + \frac{\hbar^2}{2} \frac{V}{r} \frac{dV}{dr}
\]
(44)

and \(S = 1 - \frac{\rho_0}{\rho} \)
(45)

and defining \(\lambda_1 = \frac{\hbar^2}{2} \frac{F(x)}{V}, \lambda_2 = \frac{\hbar^2}{2} \frac{V}{r}, \lambda_3 = \frac{\hbar^2}{2} \frac{V}{r} \)

and \(\lambda_4 = \frac{\hbar^2}{2} \frac{V}{r}, \phi_1, \phi_2, \phi_3, \) and \(S \) can be written in terms of \(\lambda_1, \lambda_2, \lambda_3 \) and \(\lambda_4 \) alone.

hence:

\[
\phi_1 = \lambda_1 + \frac{\lambda_4^2}{\lambda_3}
\]
(46)

\[
\phi_2 = \lambda_1 + \frac{\lambda_4^2}{\lambda_3} + \frac{\lambda_3}{\lambda_4} \frac{d}{dr} \lambda_4 - \frac{d}{dr} (\lambda \lambda_3)
\]
(47)

\[
\phi_3 = \lambda_3 + \frac{\lambda_3}{\lambda_2} \frac{d}{dr} (\lambda \lambda_2) - \frac{\lambda_3}{\lambda_4} \frac{d}{dr} \lambda_4
\]
(48)

\[
S = 1 - \frac{\lambda_4}{\lambda_2}
\]
(49)

This is evident by the following relations:

\[
\frac{\hbar^2}{2} \frac{dV}{dr} = \frac{d}{dr} \left(\frac{\hbar^2}{2} \frac{V}{r} \right) - \frac{V}{r} \frac{d}{dr} \left(\frac{\hbar^2}{2} \right)
\]

\[
- \frac{d}{dr} (\lambda \lambda_3) - \frac{\lambda_3}{\lambda_4} \frac{d}{dr} \lambda_4 = \frac{d}{dr} (\lambda \lambda_3) - \lambda_3 \frac{\lambda_3}{\lambda_4} \frac{d}{dr} \lambda_4
\]
(50)
and similarly,

\[\frac{d^2 V}{dr^2} = \frac{d}{dr} \left(\lambda_2 \frac{d \lambda_2}{dr} \right) - \lambda_2 \frac{d^2 \lambda_2}{dr^2} \quad (51) \]

From the definitions, \(\Theta_1, \Theta_2, \Theta_3, \Theta_4 \), it is readily seen that after integration

\[\frac{h_k}{h} = f_1 = \frac{1}{2} \left(1 - \frac{\phi_1}{10} - \frac{\phi_2}{120} \right) \quad (52) \]

\[\frac{\Theta_2}{h} = f_2 = \int_0^1 (1 - \eta) d\eta = \frac{37}{15} \frac{\phi_1}{940} - \frac{\phi_2^2}{9072} + \frac{37 \phi_2}{22680} + \frac{5 \phi_1 \phi_2}{9072} \quad (53) \]

\[\frac{\Theta_3}{h} = f_3 = \int_0^1 (1 - \eta^2) d\eta = \frac{35}{630} \frac{\phi_1}{126} - \frac{23 \phi_2^2}{126} - \frac{19 \phi_2}{22680} + \frac{115 \phi_3}{756} \quad (54) \]

\[\frac{\Theta_4}{h} = f_4 = \int_0^1 (1 - \eta^3) d\eta = \frac{775}{630} \frac{\phi_1}{2024} - \frac{66 \phi_2}{3024} - \frac{23 \phi_2^2}{3024} - \frac{23 \phi_3}{40} + \frac{23 \phi_2^3}{18144} \]

Hence, it is seen that the shape factors satisfy the universal relationships, that is

\[K_1 = \frac{\Theta_1}{h} \frac{F(\lambda)}{U} = \frac{f_1}{2} \frac{h_2^2}{U} F(\lambda) = \frac{f_2}{2} \lambda_1 \quad (56) \]

\[K_2 = \frac{f_2}{2} \lambda_2 \quad (57) \]

\[K_3 = \frac{f_2}{2} \lambda_3 \quad (58) \]

\[K_4 = \frac{f_2}{2} \lambda_4 \quad (59) \]
Having defined the shape factors K_i, their expression can be introduced into the momentum integral equations.

Equation (23) can be written as

$$\frac{d}{dr} \left(r^2 \frac{d \Theta}{dr} \right) + 2 \Theta \frac{d \Theta}{dr} + \frac{\Theta}{r} \frac{d \Theta}{dr} + \frac{d}{dr} \left(r^2 \frac{d \Phi}{dr} \right) (K_i - \Phi)$$

$$+ \frac{h V}{V} \left(\frac{F_i}{V} + \frac{V^2}{V} \right) - \Theta \frac{V^2}{V} = \frac{\Phi}{V}$$

(60)

Multiplying equation (60) by Θ_i / V

and recalling the definitions of $f_i(K_i)$, $f_2(K_i)$, $f_3(K_i)$, and $f_4(K_i)$ given by equations (52), (53), (54), and (55), and the relation

$$\frac{\Theta_i}{\mu} = \left(2 + \frac{\phi_i - \phi_2}{2} \right) f_2(K_i) = F_i(K_i)$$

(61)

one obtains, using the definition of $\Psi = \Theta_i / \mu$

(hence, $d \Psi / dr = \frac{2}{\phi} \Theta_i \frac{d \Theta_i}{dr}$), the following equation

$$\frac{V}{2} \frac{d \Psi}{dr} + \left\{ K_3 + \frac{1}{f_2} \left(K_1 + \frac{K_2^2}{K_3} \right) - \frac{K_i}{f_2} \right\}$$

$$+ \Psi \frac{d}{dr} \left\{ 2 + f_1(K_i) - \frac{1}{f_2} \right\} = F_i(K_i)$$

(62)

Let

$$F_2(K_i) = F_i(K_i) - \left\{ K_3 + \frac{1}{f_2} \left(K_1 + \frac{K_2^2}{K_3} \right) - \frac{K_i}{f_2} \right\}$$

(63)

and

$$F_3(K_i) = 2 + f_1(K_i) - \frac{1}{f_2}$$

(64)

one obtains

$$\frac{V}{2} \frac{d \Psi}{dr} + \Psi \frac{d}{dr} F_3 = F_2$$

(65*)
In a similar manner, the second momentum integral equation can be written as

\[\frac{V}{2} \frac{dV}{dn} + F_4 \frac{V}{n} + \frac{K}{V} \frac{dV}{dn} = F_7 \]

(66)

where

\[F_7 = F_6 - F_5 \]

(67)

\[F_5 = K_3 \left(\frac{f_1}{f_4} - \frac{1}{f_2} \right) \]

(68)

\[F_4 = \frac{K_2}{K_1} \left(\frac{f_1}{f_4} - \frac{1}{f_2} \right) \]

(69)

\[F_6 = \frac{K_2}{K_3} \left[\frac{f_2}{f_4} (2S + \phi_3) \right] \]

(70)

from the definition \(K_2 = \psi V \)

one can obtain

\[\frac{d}{dn} \left(\frac{V}{K_2} \right) = \frac{V}{n} \frac{dV}{dn} + \frac{V}{n} \frac{dV}{dn} \]

(71)

Equation (65) and (66) subject to the conditions of equation (70) or (71) contain three unknowns; that is, \(U, V, \) and \(h. \)

Equation (71) is merely an identity introduced for convenience in performing the numerical solution. The third equation needed for the complete solution is one which is obtained by considering the energy equation which relates the value \(h \) to the value \(U \) under the temperature differentials imposed.

The final set of differential equations will appear as

\[\frac{dU}{dn} = U \left(U, F, V, \ldots \right) \]

(72a)

\[\frac{dV}{dn} = V \left(U, F, V, \ldots \right) \]

(72b)

\[\frac{dh}{dn} = h \left[U, F, \Delta T \right] \]

(72c)

where (72c) is obtained from energy considerations.
These equations generalized to include energy equations correspond to the Karmen-Pohlausen method, but in rotational symmetric coordinates.

2.2 Special Case: Viscous Forces Predominant

As mentioned before, the range of interest in the problem would be that corresponding to the equations with no inertial terms. If this is assumed, the following relationships are known:

\[\begin{align*}
V &= r\omega \\
S &= 0, \\
\phi_1 &= \phi_2 = \frac{h^2}{3} \left(\frac{\phi(\alpha)}{\alpha} + \frac{r\omega^2}{\alpha} \right) \\
\phi &= \frac{1}{2} \quad \therefore S = \frac{1}{2} \omega = f_+
\end{align*} \]

From equation (61)

\[\frac{2b}{\kappa} = \frac{\alpha}{\kappa} f_2 = \frac{2 \alpha}{\kappa} \frac{\alpha}{\kappa} \left(\frac{\phi}{\alpha} \right) = \frac{2 \alpha}{h} \frac{\alpha}{h} \]

But also from equation (60), neglecting the inertial terms,

\[\frac{\alpha}{h} = h \frac{\alpha}{h} \left(\frac{\phi(\alpha)}{\alpha} + \frac{r\omega^2}{\alpha} \right) \]

From (73), (74),\[\phi = 2 = \frac{h^2}{3} \left(\frac{\phi(\alpha)}{\alpha} + \frac{r\omega^2}{\alpha} \right) \]

Since \(\phi = 2 \), the function \(f \) becomes

\[f(\alpha) = 2\alpha - \alpha^2 \]

\[f_1(\kappa) = \frac{3}{\kappa} + \frac{\phi}{\kappa} = \frac{3}{\kappa} + \frac{\phi}{\kappa} = \int_0^\infty (\gamma - \gamma) d\gamma \]

Hence, \[\frac{\alpha}{h} = \frac{3}{\kappa} \]
Energy Equation

Using the Nusselt approximation, the energy equation is reduced to the Fourier conduction law across the condensate thickness.

Hence, in the annular region of area $2\pi r \, dr$, the heat flow dq is

$$dq = k \frac{(2\pi r \, dr)(T-T_w)}{h} \quad (79)$$

This exchange of heat is related to the amount of condensate formed by the relationship

$$dq = \lambda \, dQ \quad (80)$$

where dQ is the amount of condensate added in the differential area under consideration.

The flow of condensate in the radial direction is given by

$$Q = 2\pi r \, \rho \, \bar{u} \quad (81)$$

where \bar{u} is the average velocity, radially.

Using equations (78) and (75), one obtains

$$Q = 2\pi r \, \rho \, \frac{h^2}{3} \frac{U}{\beta} = 2\pi r \, \rho \, \frac{h^2}{3} \left[\frac{F(h)}{\beta} + \beta \omega^2 \right] \quad (82)$$

Defining $f(h) = \frac{F(h)}{\beta} \omega^2$ and $H = h \left(\frac{\omega}{\beta} \right)^\frac{1}{2}$

$$Q = 2\pi r \, \rho \, H^3 \left(\omega \right)^\frac{1}{2} \left(1 + f(h) \right) \quad (83)$$

Therefore, since $Q = Q(h, r)$

$$dQ = \frac{\partial Q}{\partial h} \, dh + \frac{\partial Q}{\partial r} \, dr \quad (84)$$

$$\frac{\partial Q}{\partial r} = 2\pi r \, \rho \, P(h) \left(\omega \right)^\frac{1}{2} H^2 \left(1 + f(h) \right) \quad (85)$$

$$\frac{\partial Q}{\partial h} = \frac{2\pi \rho \, P(h) \left(\omega \right)^\frac{1}{2} H^3}{3} \left[\frac{\beta}{\rho} \frac{d}{dh} (1+f) + 2n (1+f) \right] \quad (86)$$

-15-
Using equations (84), (85), (86), and (79)

\[
\frac{d}{dn} \left[\frac{R}{n^2} \right] = \frac{2\pi R^2}{\Lambda} \frac{\phi(\omega_0)}{n} \left(\frac{H^2}{2} \right) dH
\]

\[
+ \frac{2\pi R^2}{\Lambda} \frac{\phi(\omega_0)}{n} \left(\frac{H^2}{2} \right) \left[n^2 \frac{d}{dn} \left(\frac{1}{n} \right) + 2n(1+n) \right]
\]

Making the following substitutions

\[
F = \frac{T-T_0}{T_0}, \quad \Theta^2 = \frac{C(T_0-T_0)}{\Lambda R_0^2}
\]

reduces equation (87) into the following form.

\[
\Theta^2 F = \frac{\Phi}{\Lambda} \left(\frac{H^2}{2} \right) (1+n) + \frac{H^2}{3} \left(\frac{d}{dn} (1+n) + 2(1+n) \right)
\]

The Clausius-Clapeyron equation relates the pressure to the temperature, namely

\[
\frac{\partial P}{\partial T} = \frac{2\Lambda \mu}{RT^2}
\]

Integrating,

\[
\ln \frac{P_0}{P} = - \frac{\Lambda M}{RT_0} \left\{ \frac{T}{T_0} - 1 \right\}
\]

Hence,

\[
\frac{1}{P} = 1 + \frac{T_0 \ln \frac{P_0}{P}}{\Lambda M} \frac{\Lambda M}{RT_0} \frac{\ln \frac{P_0}{P}}{P_0}
\]

Finally, one can let \(Y = \frac{H^2}{3\Lambda \Theta^2} \)

and obtain

\[
\frac{dY}{dn} = \frac{\Theta}{3n} \frac{F}{1+n} - \frac{4}{3} Y \left\{ \frac{\frac{d}{dn} (1+n) + 2(1+n)}{(1+n)} \right\}
\]

All that is needed is to prescribe \(P(n) \), and solve equation (93) numerically. Note that at \(R = 0 \), \(\frac{dY}{dn} \to 0 \), and \(Y = 1/n+\varepsilon \)
Particular Case: \((P) r\) Is Assumed Parabolic

A parabolic pressure distribution is assumed where \(P = a + br^2\) \((94)\)

The boundary conditions are:
\[
P = P_0 \text{ at } r = R_0 \quad (95a)
\]
\[
P = P_0 \text{ at } r = R_0 \quad (95b)
\]

Hence, \(\frac{P}{P_s} = 1 + (\alpha - 1) \xi^2\) \((96)\)

where \(\xi = \frac{r}{R_0}, \alpha = \frac{P_0}{P_s}\) \((97)\)

From equation (96), \(\frac{\partial P}{\partial \xi} = P_s \frac{\partial}{\partial \xi} \left(\frac{P}{P_s} \right) \frac{\partial \xi}{\partial r}\)
\[
\frac{\partial P}{\partial \xi} = \frac{P_s}{R_0} 2 \xi (\alpha - 1)
\]

But, \(f(\xi) = -\frac{1}{P} \frac{\partial P}{\partial \xi}, \text{ and } f(\xi) = \frac{F(\xi)}{\rho \omega^2}\)

Hence, \(f(\xi) = \frac{2 \left(P_0 - P_s \right)}{\rho R_0 \omega^2} = \text{const.}\) \((98)\)

Using equation (96), (97) and (98) results in
\[
\frac{dY}{d\xi} = \frac{\bar{F}(\xi)}{\xi} \frac{1}{1 + \xi} - \frac{\bar{F}(\xi)}{\xi}
\]
\[
\text{where } \bar{F}(\xi) = \frac{1 + \frac{Tw}{\lambda M} \frac{R_T s}{\lambda M} \ln \left(1 + (\kappa - 1) \xi^2 \right)}{1 - \frac{R_T s}{\lambda M} \ln \left(1 + (\kappa - 1) \xi^2 \right)}
\]
\((100)\)
Equation (99) can be simplified further by letting \(U = \gamma(I_s) \) resulting in

\[
\frac{dU}{d\xi} = \frac{\eta}{3} F(\xi) - \frac{\eta}{3} \frac{U}{3\xi}
\]

subject to the initial condition \(U(0) = 1 \).

Equation (101) can be solved numerically by using a Runge-Kutta integration procedure.

APPROXIMATE SOLUTION

Equation (101) possesses a solution which by general theory of first order equations can be written as

\[
U(\xi)e^{P(\xi)} = \int G(\xi)e^{P(\xi)} d\xi + \text{const}
\]

where

\[
P(\xi) = \frac{\eta}{3\xi}
\]

\[
G(\xi) = \frac{\eta}{3\xi} F(\xi)
\]

The integration of \(G(\xi)e^{P(\xi)} \) is not possible analytically, due to \(G(\xi) \). However, under certain conditions \(G(\xi) \) may be simplified in the following manner:

The value of the function \(\ln (1-\eta) \) can be written as

\[
\ln (1-\eta) = -\eta - \frac{1}{2} \eta^2 - \frac{1}{3} \eta^3 - \cdots
\]

for \(\eta = 0.2 \), \(\ln (1-0.2) = -0.2 - \frac{1}{2} \cdot 0.04 = -0.22 \)

as compared to the exact value of 0.2225.
If $\eta = (1 - \omega) \frac{E}{\lambda}$, since the maximum value of $\frac{E}{\lambda} \approx 1$, the approximate polynomial expression will be good for the full range of $\frac{E}{\lambda}$ for $\omega \geq 0.8$. For values of $\omega < 0.8$, the accuracy, of course, decreases. However, for estimation purposes, it is desirable to formulate the solution to equation (101) analytically.

Using the approximation of equation (105), but omitting the cubic term, transform equation (101) to

$$\tilde{F}(\eta) = \frac{1 - K_2 \eta}{1 + K_1 \eta}$$

where

$$K_2 = \frac{I_w}{\Delta T} \quad K_1 = \frac{R \frac{E}{\lambda}}{M}$$

Since $K_1 < 1$, $\frac{\eta}{\Delta T} < 1$, the denominator of equation (106) can be written as $\frac{1}{1 + \frac{\eta}{\Delta T}}$ where $\epsilon \ll 1$

Hence,

$$\tilde{F}(\eta) = \left[1 - K_2 \eta \right] \left[1 - K_1 \eta \right]$$

$$\tilde{F}(\eta) = 1 - K_1 \eta \left(1 + \frac{\eta}{\Delta T} \right)$$

neglecting higher order terms.

Hence,

$$\tilde{F}(\tilde{E}) = 1 - \frac{R \frac{E}{\lambda}}{M \Delta T} \left[(1 - \omega) \frac{E^2}{\lambda} + \frac{1}{4} (1 - \omega)^2 \frac{E^4}{\lambda} \right]$$

Using the results of equation (109) in equation (102)

$$U \tilde{E} = \frac{3}{5} \int \frac{E^5}{\tilde{E}} \left[1 - \frac{R \frac{E}{\lambda}}{M \Delta T} \left((1 - \omega) \frac{E^2}{\lambda} + \frac{1}{4} (1 - \omega)^2 \frac{E^4}{\lambda} \right) \right] d\tilde{E} + \text{const}$$

Hence $U(\tilde{E})$ after integration becomes

$$\frac{U(\tilde{E}) - U(0)}{\frac{R \frac{E}{\lambda}}{M \Delta T} \left(\frac{I_w}{\Delta T} \right)} = - \left\{ \frac{4}{7} (1 - \omega) \frac{E^5}{\lambda} + \frac{1}{4} (1 - \omega)^2 \frac{E^4}{\lambda} \right\} = -K(\frac{E}{\lambda}, \omega)$$

Figure 17 shows a plot of $-K(\frac{E}{\lambda}, \omega)$ with $\frac{E}{\lambda}$ as the abscissa and ω as a parameter.
3.0 DISCUSSION

The dimensionless condensate thickness for the special case of zero pressure gradient is shown in Figure (3). The results agree extremely well with those of Sparrow and Gregg (2). The distributions of condensate thickness for various pressure gradients resulting from an assumed parabolic pressure distribution are shown in Figures 4 to 15.

The results are divided into four sets at a constant pressure ratio and varying source pressure. The abscissa of the curves is the dimensionless radius ratio ξ. The ordinate of the curves is essentially the ratio of dimensionless condensate thickness with pressure gradient to that of zero pressure gradient, that is,

$$U^{1/4} = \frac{H}{H_{iso}} \left[1 + \frac{2P_s(1-u)}{\rho u \omega^2} \right]^{1/4}$$

where

$$H = h \left(\frac{\omega^2}{j} \right)^{1/2}$$

and

$$H_{iso} = \left(\frac{2}{3} \frac{C}{\lambda P_s} \right)^{1/4}$$

The curves of $U^{1/4}$ versus the radius ratio ξ, show for a given value of source pressure and pressure ratio, $U^{1/4}$ increases with increasing temperature difference and decreasing radius. As the radius ratio approaches zero, the value of $U^{1/4}$ approaches 1, independent of the temperature difference ΔT.

As the value of the angular velocity ω, approaches zero, the value of $U^{1/4}$ becomes

$$U^{1/4} = \kappa = h \left[\frac{4P_s(1-u)\lambda}{3\sqrt{2} \Delta T \rho_o^2} \right]^{1/4}$$
where K is determined as a function of δ, and ΔT. For values of ΔT large, $K \approx 1$. Therefore,

$$\frac{\Delta T}{2P_0^2(1-\alpha)^2} \frac{3}{4} \alpha \approx 1$$

An interesting aspect of the condensation in the central region of the bearing can be seen by referring to Figure 18. Figure 18 shows a plot of the dimensionless condensate thickness δ' versus the temperature difference $T_s - T_w$ at $\xi = 1$ for various pressure ratios and at a constant source pressure of 200 psi. From this curve, it is readily seen that the height of the condensate layer at the outer radius of the central region is very sensitive to the temperature difference. For a given pressure ratio α, a narrow range of ΔT exists at the extremes of which the bearing will respectively be dry or attain a maximum thickness of condensate at the exit of this region. This effect of temperature difference on the condensate layer can thus cause extreme variation in the operating characteristics of a particular bearing.

Figures 4 through 19 also indicate that for a given source pressure and pressure ratio there exists a temperature difference such that the condensate layer becomes zero at $\xi = 1$. These points are plotted in Figure 16, where the ordinate is chosen at $\frac{T_s - T_w}{\Delta T}$ instead of $T_s - T_w$, the abscissa being α, the pressure ratio. At a constant source pressure, hence a constant source temperature, as $T_w \rightarrow T_s$, $\frac{T_s}{\Delta T} \rightarrow \infty$ and hence a dry condition is prevalent at $\xi = 1$. As $T_s - T_w$ gets larger, a fully wet bearing at $\xi = 1$ can result. Hence, for any constant source pressure P_s, Figure 16 shows that if $\frac{T_s}{\Delta T}$ is above the curve, a dry bearing will always exist at $\xi = 1$, the reverse being true, if the ordinate is below the curve, $P_s = \text{const}$.
The effect of $U \frac{1}{4}$ versus ξ in Figures 4 through 15 shows that for a given ΔT, especially where this ΔT leads to a dry bearing at ξ less than 1, that the values of $U \frac{1}{4}$ change very rapidly near the point where reevaporation occurs. An explanation of this fairly rapid change in condensate thickness can be attributed to the effect of condensate "thinning" caused by a temperature difference which is now negative (that is, the disk temperature is higher than the vapor at the particular radius) and the continuously applied centrifugal force. Before the temperature reversal, these two effects opposed each other, that is, thinning down of the condensate increases the condensation rate. When this point is reached, these two effects are additive in the sense that they both work in the same direction.

The condensation process as formulated in the report proceeds until the point is reached where the saturation temperature of the vapor is equal to the given wall temperature. Beyond this point the validity of the present analysis is in question. The present equations predict reevaporation over a small radial increment which also infers a negative temperature difference between the wall and interface. This situation that occurs where the liquid temperature at the wall is greater than the vapor temperature is in disagreement with the initial assumptions of thermodynamic equilibrium. A new self consistent physical model needs to be formulated for the evaporation process. Whereas the present analysis cannot be depended on to describe the evaporation process precisely, it does suggest that the evaporation takes place in a small radial distance. The existence of a superheated fluid at a temperature above the corresponding saturation temperature is a phenomenon which is attributed to a process which is not in thermodynamic equilibrium but rather one where a boiling process is prevalent.
4.0 CONCLUSIONS

1. For a given degree of subcooling, the condensate film thickness near the axis of rotation is strongly dependent on the magnitude of the radial pressure drop (See Fig. 18). Hence, the ratio of mass flow between the liquid and the vapor phases entering the bearing region is influenced by both these parameters.

2. The limiting case of zero radial pressure gradient is obtained from the present analysis which agrees with the work of Sparrow and Gregg (2).

3. The limiting case of zero angular velocity reduces to the case of condensation in axisymmetric flow. The results for this case can readily be obtained by using the same curve in this report as pointed out in the Discussion.

5.0 RECOMMENDATIONS

1. The results contained in this analysis can be used as the initial conditions for the two phase lubrication equations which are derived in reference 1.

2. The present analysis is applicable to the rotating condenser. Further study of the implications of the analysis to a condenser should be evaluated.
NOMENCLATURE

(All dimensional quantities are in consistent units)

C Specific Heat
h Condensate Thickness
h* Displacement Thickness of Condensate, Defined by Equation (52)
k Thermal Conductivity
q Heat Flow
r Radial Coordinate
u Radial Velocity
v Tangential Velocity
w Axial Velocity
z Axial Coordinate
H Dimensionless condensate thickness, \(h \left(\frac{z}{r} \right)^{1/2} \)
M Molecular Weight
P Pressure
P_s Source Pressure
P_f Final Pressure
Pr Prandtl Number
Q Mass Flow
R Gas Coolant
T Temperature
T_s Source Temperature
T_f Final Temperature
T_w Disk Temperature
\(\bar{T} \) Dimensionless Temperature
\(\alpha \) Pressure Ratio, \(\frac{P_o}{P_s} \)

Dimensionless Thickness, \(= \frac{\delta}{h} \)

Dimensionless Parameter, \(= \frac{c (r_s - r_w)}{\lambda Pr} \)

Density

Dimensionless Radius, \(= \frac{r_w}{r_o} \)

Kinematic Viscosity

Angular Velocity

Heat of Vaporization

Shearing Stress
BIBLIOGRAPHY

The case of condensation on a rotating isothermal surface can be analyzed using the approximate integral method, which leads to a solution which is in agreement with that by Sparrow and Gregg. (2)

Since the pressure gradient is zero, (that is, \(F(r) = 0 \)), equation (15) can be written as

\[
\frac{2}{3h} \int \left(h - u \right) du = \int \frac{4}{3} h \frac{d}{dh} du - \int \frac{1}{2} h \frac{d}{dh} du = -\frac{2}{3} \frac{2n}{5} \]

and equation (16) as

\[
\frac{2}{3h} \int \left(h - v \right) dv = \int \frac{4}{3} h \frac{d}{dh} dv + \int \frac{1}{2} h \frac{d}{dh} dv = -\frac{2}{3} \frac{2n}{5} \]

Defining \(\phi = 3h \), being the condensate height, (in this case, a constant), and letting

\[
u = r F'(5) = \frac{\partial F}{\partial s}
\]

\[
u = r G(5)
\]

\[
u = \rho u w
\]

\[
u = \alpha u w
\]

Equation (I-1) becomes

\[
\int_0^1 \left(3F'^2 ds - 2 \int_0^1 F' ds - \int_0^1 G^2 ds \right) = -\frac{2}{3} \frac{2n}{5} \]

and equation (I-2)

\[
\int_0^1 \left(2F'G - uF \right) ds = -\frac{2}{3} \frac{2n}{5} \]

-27-
The velocity profiles \(F(T) \) and \(G(S) \) are assumed to be polynomials, which satisfy the boundary conditions and the original differential equations.

Assume \(F(T) \) to be a fourth order polynomial, that is,

\[
F(T) = a + bT + cT^2 + dT^3 + eT^4
\]

The conditions which govern the constants \(a, b, c, d \) and \(e \) are:

\[
F(0) = 0 \quad (I-10a)
\]
\[
F'(0) = 0 \quad (I-10b)
\]
\[
F'(1) = \beta \omega \quad (I-10c)
\]
\[
F''(1) = 0 \quad (I-10d)
\]
\[
F'''(0) = -\omega^2 h^2 / \gamma \quad (I-10e)
\]

Thus,

\[
F(T) = \frac{\omega}{8} (6T^2 - T^4) + \frac{\omega^2 h^2}{8\gamma} (3T^2 - 8T^3 + 3T^4)
\]

The tangential velocity profile \(G(S) \) is determined by

\[
G(S) = a + bS + cS^2 + dS^3 \quad \text{subject to the conditions}
\]

\[
G(0) = \omega \quad (I-12a)
\]
\[
G'(1) = 0 \quad (I-12b)
\]
\[
G'(1) = \alpha \omega \quad (I-12c)
\]
\[
G'''(0) = 0 \quad (I-12d)
\]

thus

\[
G(S) = \omega \left[1 - \left(\frac{1 - \alpha}{2} \right) (3S^2 - 5S^3) \right]
\]

Substituting equations (I-11) and (I-13), and their corresponding derivatives into equations (I-7) and (I-8) and performing the corresponding intergrations, result in

\[
\frac{24}{25} \beta^2 + \beta \left[\frac{11}{105} H^2 + \frac{6}{H^2} \right] + \frac{H^4}{140} = 3 - (1 - \alpha) S + (1 - \alpha)^2 \frac{6S}{35}
\]

\[
\left[\frac{3}{H^2} - \frac{9H^4}{105} \right] - \alpha \left[\frac{H^2}{140} + \frac{3}{H^2} \right] = \frac{6\alpha}{70} \left[17S + 78 \right]
\]

where \(H^2 = \frac{c_3}{S} \).
The total mass flow in the radial direction is given by
\[G = 2\pi r h \int_0^\infty \omega(r,s) ds \]
but \[\omega(r,s) = \sigma F(s) \]
where \[F'(s) = \frac{e^2}{2} (s^3 - 3s^3) + \frac{2}{3} \left(s^2 - 2s^2 + 3s^3 \right) \]

Substituting equation \((I-17)\) into equation \((I-16)\)
\[G = 2\pi r h \omega \left[\gamma_0 \phi + \omega \frac{s^2}{4} \right] \]
Since \[dG = d\omega = \frac{\sigma}{2\pi r h} \frac{d^2 \omega}{ds^2} \frac{ds}{dt} \]
and \[G = \omega(n) \]
\[\therefore \frac{\sigma}{2\pi r h} \frac{d^2 \omega}{ds^2} \frac{ds}{dt} = 2\pi r h \omega \left[\frac{s^2}{8} \phi + \frac{\omega s^2}{18} \right] \]

Evaluating equation \((I-20)\) in terms of \(H\),
\[H^2 = \frac{1}{5\lambda} \left\{ \frac{1 + \frac{4\theta^2}{\lambda^2}}{\lambda^2} \right\} \]
where \[\theta^2 = \frac{e \lambda T}{\lambda} \]

The solution of \(H, \alpha, \beta\) as a function of \(\theta\) are sought which can be determined uniquely from equations \((I-14), (I-15), \) and \((I-21)\).

Simplified Solution
Equations \((I-14)\) and \((I-15)\) are considerably simplified if \(H\) is considered small, compared to unity.

Equation \((I-14)\) reduces to
\[\frac{d\alpha^2}{ds^2} + \frac{6\theta}{H^2} \alpha^2 = 3 - 5(1-\alpha) + (1-\alpha)^2 \frac{6\theta}{35} \]
and equation \((I-15)\) reduces to
\[\frac{3}{H^2} (1-\alpha) = \frac{\alpha}{20} (9\alpha + 18) \]
This results in
\[\rho \approx H^{3/2} \]
\[(1-\omega) \approx 5^{1/2} H^{4} \]

Substituting these results into equation (I-21)
\[H = (3/2)^{1/4} \theta^{1/2} \]
\[\beta = (3/6)^{1/4} \theta \]
\[\omega = 1 - 5/6 \theta^{2} \]

The results agree with the work of Sparrow and Gregg, as shown by equation (6) of this report.

A solution for large values of H was performed numerically by solving for ρ and θ from equations (I-14) and (I-15) for values of H. The value of ρ(H) from equations (I-14) and (I-15) were solved graphically with equation (I-20) which involved ρ versus H for various values of \(\theta \). This solution is shown in Figure 2. The intersection points were cross-plotted to obtain Figure 3, where \(\alpha \), \(\beta \), and H are shown as functions of \(\theta \).
FIGURES
FIG. 2 NUMERICAL SOLUTION OF EQUATIONS (I-14, I-15) FOR α, β VERSUS H AND EQUATION (I-21)
FIG. 3 DIMENSIONLESS RADIAL AND TANGENTIAL INTERFACE VELOCITIES AND CONDENSATE THICKNESS VERSUS HEAT TRANSFER PARAMETER θ

$$\theta = \frac{C \Delta T}{\lambda Pr}$$
FIG. 4 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO

\(\Delta T = 77^\circ \)

\(\Delta T = 7.7^\circ \)

\(\Delta T = 6.4^\circ \)

\(\Delta T = 5.5^\circ \)

Parameters:
- \(\alpha \), PRESSURE RATIO = 0.9
- \(P_s \), SOURCE PRESSURE = 200 PSIA
- \(T_s \), SOURCE TEMPERATURE = 842 °R
\[\Delta T = 82^\circ \]

\[\alpha, \text{PRESSURE RATIO} = 0.9 \]

\[P_s, \text{SOURCE PRESSURE} = 400 \text{ PSIA} \]

\[T_s, \text{SOURCE TEMPERATURE} = 904^\circ R \]

FIG. 5 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO
FIG. 6 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO
FIG. 7 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO

- a, PRESSURE RATIO = 0.8
- P_s, SOURCE PRESSURE = 200 PSIA
- T_s, SOURCE TEMPERATURE = 842° R

$\Delta T = 77°$, 16.2°, 4.7°, 12.3°
FIG. 8 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO

\[\alpha, \text{PRES \ RATIO} = 0.8 \]

\[P_s, \text{SOURCE PRESSURE} = 400 \text{ PSIA} \]

\[T_s, \text{SOURCE TEMPERATURE} = 904\,^\circ\text{R} \]
Fig. 9 Dimensionless Condensate Thickness vs Dimensionless Radius Ratio

- Pressure ratio = 0.8
- P_s, source pressure = 800 PSIA
- T_s, source temperature = 978° R

Delta $T = 89°$, 26°, 8°, 17.3°
FIG. 10 DIMENSIONLESS CONDENSATE THICKNESS VS DIMENSIONLESS RADIUS RATIO

$\Delta T = 77^\circ$

ξ, PRESSURE RATIO = 0.7
P_s, SOURCE PRESSURE = 200 PSIA
T_s, SOURCE TEMPERATURE = 842°F

DIMENSIONLESS CONDENSATE THICKNESS, γ

DIMENSIONLESS RADIUS RATIO, ξ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.2 0.4 0.6 0.8 1.0
FIG. 11 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO

α, PRESSURE RATIO = 0.7
Pₐ, SOURCE PRESSURE = 400 PSIA
Tₛ, SOURCE TEMPERATURE = 904° R
FIG. 12 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO

- α, PRESSURE RATIO = 0.7
- \(P_s \), SOURCE PRESSURE = 800 PSIA
- \(T_s \), SOURCE TEMPERATURE = 978° R

\(\Delta T = 89° \)
45°
5.4°
14.3°
26°
FIG. 13 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO
FIG. 14 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO

- α, PRESSURE RATIO = 0.546
- P_s, SOURCE PRESSURE = 400 PSIA
- T_s, SOURCE TEMPERATURE = 904 °R

- $\Delta T = 82^\circ$
- 56.5°
- 16°
- 34.5°
FIG. 15 DIMENSIONLESS CONDENSATE THICKNESS vs DIMENSIONLESS RADIUS RATIO
FIG. 17 - $K(\xi, \alpha)$ vs ξ FROM APPROXIMATE FORMULATION
FIG. 18 DIMENSIONLESS CONDENSATE THICKNESS vs TEMPERATURE DIFFERENCE FOR VARIOUS PRESSURE RATIOS AT A CONSTANT SOURCE PRESSURE OF 200 PSI AND $\xi = 1.0$
Research Laboratories
General Motors Corporation
General Motors Technical Center
20 Mound Road
Warren, Michigan
Attn: Mr. W. Roland Waki
Mechanical Development Dept.
1
A. C. Spark Plug Division
General Motors Corporation
Milwaukee, Wisconsin
Attn: Allen Kusmen
1
Mr. Walter Canow
Kearfott Division
General Precision Inc.
1150 North Avenue
Little Falls, New Jersey
1
Grumman Aircraft Engineering Corp.
Bethpage, Long Island, New York
Attn: Mr. David Craig, Jr.
Mechanical Design Section
Engineering Department
1
Hydromatic Incorporated
200 Monroe Street
Rockville, Maryland
1
International Business Machines Corp.
Research Laboratory
San Jose, California
Attn: Dr. W. E. Lambotis
2
Laar, Incorporated
110 Long Avenue
Grand Rapids, Michigan
1
Mr. L. H. Barr, V. P.
Lear, Incorporated
Elyria, Ohio
1
Dr. Calos G. Constant, D/30-30
Fibor, 201, Plant J. Pinto Aire
Rockford, Illinois & Space Ch.
P. O. Box 50H
Bunnyville, California
1

Mr. J. S. Amsden
Litton Systems, Inc.
1500 George Avenue
Woodland Hills, California
1
Mr. Don Moore
Litton Systems
1500 George Avenue
Woodland Hills, California
1
Mr. A. N. Thomas
Antron Division
The Marquardt Corporation
14355 North Avenue
Van Nuys, California
1
Mr. Kendall Perkins
Vice President (Engg.)
McDonnell Aircraft Corporation
Lambert Bldg. - St. Louis
Monopoly Airports
Box 516
St. Louis 3, Missouri
1
Dr. Beno Eternich
Mechanical Technology Incorporated
988 Albany-Shaker Road
Latham, New York
1
Mr. J. W.lower
Chief, Engineer-Inertial Components
Honeywell Aero Division
3600 Airway Road
Minneapolis, Minnesota
1
Mr. Carl H. Greeson, Jr.
Director of Research
Raytheon Ball Bearings, Inc.
Petersborough, New Hampshire
1
Mrs. Alice Ward, Librarian
Norden Division of United Aircraft Corp.
Halsey Street
Norwalk, Connecticut
1
Automation Division (Librarian)
North American Aviation Inc.
9150 East Imperial Highway
Downey, California
1
Northrop Corporation
Norair Division
1001 East Broadway
Hawthorne, California
Attn: Technical Information, 3123
1
Mr. W. L. Simons
Norconics
A Division of Northrop Corp.
300 East Orangeboro Avenue
Anahiem, California
1
Norconics
A Division of Northrop Corporation
100 Morse Street
Hornwood, Massachusetts
Attin: Mr. E. L. Swainson, Tech. Asst.
Precision Products Department
1
Pratt & Whitney Aircraft Division of UTC - CANEG
P. O. Box 611
Middletow, Connecticut
Attin: Librarian
1
Library, Bldg. 10-2-5
Radio Corporation of America
Candex 2, New Jersey
1
Mr. Robert S. Siegel
Rockvody
Mechanics Division
6653 Canoga Avenue
Canoga Park, California
2
Ryan Aeronautical Company
Attin: Engineering Library
Lindbergh Field
San Diego 12, California
1
Jack & Helen's, A Division of
The stadium corporation
1723 Eye Street, Suite 102
Washington, D. C.
1
Mr. Paul A. Pitt, Vice President
Engineering & Research
Solar Aircraft Company
1200 Pacific Highway
San Diego 12, California
1
Mr. W. G. Wing
Sperry Gyroscope Company
C-2
Great Neck, New York
1
R. A. Naber
Union Carbide Nuclear Company
Post Office Box 9
Oak Ridge, Tennessee
1

Mrs. Frances Turnbull
Engineering Librarian
Sperry Gyroscope Company
Great Neck, New York
1

Sunstrand Aviation-Dover
2400 West 70th Avenue
Denver 12, Colorado
1

Mr. James V. Balsati, President
Toshiba, Inc.
1946 E. Myrtle Avenue
Montrose, California
1

Universal Match Corporation
Avionics Department Technical Library
440 7th Avenue
St. Louis 13, Missouri
1

Washington Bearings Corporation
P. O. Box 366
Washington, Wisconsin
Attn: Mr. J. M. Groher, Ch. Engr.
1

Mr. John Boyd
Westinghouse Electric Corporation
Research Laboratories
East Pittsburg, Pennsylvania
1

Mr. W. H. Self
Director of Research
Worthington Corporation
Saratoga, New Jersey
1

Mr. W. A. Cross
Johnson Corporation
53 Charter Blvd.
Bedford City, California
1

Professor J. Judrey
Department of Mechanical Engineering
Union College
Schenectady, New York
1

Mr. J. S. Amsden
Litton Systems, Inc.
1500 George Avenue
Woodland Hills, California
1
Mr. Don Moore
Litton Systems
1500 George Avenue
Woodland Hills, California
1
Mr. A. N. Thomas
Avtron Division
The Marquardt Corporation
14355 North Avenue
Van Nuys, California
1
Mr. Kendall Perkins
Vice President (Engg.)
McDonnell Aircraft Corporation
Lambert Bldg. - St. Louis
Monopoly Airports
Box 516
St. Louis 3, Missouri
1
Dr. Beno Eternich
Mechanical Technology Incorporated
988 Albany-Shaker Road
Latham, New York
1
Mr. J. W. lower
Chief, Engineer-Inertial Components
Honeywell Aero Division
3600 Airway Road
Minneapolis, Minnesota
1
Mr. Carl H. Greeson, Jr.
Director of Research
Raytheon Ball Bearings, Inc.
Petersborough, New Hampshire
1
Mrs. Alice Ward, Librarian
Norden Division of United Aircraft Corp.
Halsey Street
Norwalk, Connecticut
1
Automation Division (Librarian)
North American Aviation Inc.
9150 East Imperial Highway
Downey, California
1
Northrop Corporation
Norair Division
1001 East Broadway
Hawthorne, California
Attn: Technical Information, 3123
1

TABLE 1

Daystrom Pacific
930 Lincoln Boulevard
Los Angeles 45, California
Attn: Robert E. Smith
Special Project Engineer
Ford Instrument Company
31-10 Thomson Avenue
Inland City 1, New York
Attn: Mr. Javins
1
Mr. Adolph Egl
Ford Motor Company
Engineering and Research Staff
P. O. Box 2052
Dearborn, Michigan
1
Dr. John E. Meyer, Jr.
Non-Metals Section
Applied Science Department
Scientific Laboratory
Ford Motor Company
P. O. Box 6253
Dearborn, Michigan
1
AIA Research Manufacturing Division
The Garrett Corporation
2821 E. Sepulveda Boulevard
Los Angeles, California
Attn: Jerry Glaser, Supervisor
Mechanical Lab.-Dept. 93-17
1
General Atomics Division
General Dynamics Corporation
P. O. Box 608
San Diego 11, California
Attn: Mr. F. R. Simpson
1
Bearing and Instrument Center
General Engineering Laboratory
General Electric Company
1 River Road
Schenectady, New York
Attn: G. S. Rose, Manager
1
Mr. L. R. Conely
General Electric Company
Aircraft Accessory Turbine Department
730 Western Avenue, Bldg. 3-74
Lynn, Massachusetts
1

TABLE 2

Mrs. Frances Turnbull
Engineering Librarian
Sperry Gyroscope Company
Great Neck, New York
1

Sunstrand Aviation-Dover
2400 West 70th Avenue
Denver 12, Colorado
1

Mr. James V. Balsati, President
Toshiba, Inc.
1946 E. Myrtle Avenue
Montrose, California
1

Universal Match Corporation
Avionics Department Technical Library
4407 Cook Avenue
St. Louis 13, Missouri
1

Washington Bearings Corporation
P. O. Box 366
Washington, Wisconsin
Attn: Mr. J. M. Groher, Ch. Engr.
1

Mr. John Boyd
Westinghouse Electric Corporation
Research Laboratories
East Pittsburg, Pennsylvania
1

Mr. W. H. Self
Director of Research
Worthington Corporation
Sarawamy, New Jersey
1

Mr. W. A. Cross
Johnson Corporation
53 Charter Blvd.
Bedford City, California
1

Professor J. Judrey
Department of Mechanical Engineering
Union College
Schenectady, New York
1

Mr. J. S. Amsden
Litton Systems, Inc.
1500 George Avenue
Woodland Hills, California
1
Mr. Don Moore
Litton Systems
1500 George Avenue
Woodland Hills, California
1
Mr. A. N. Thomas
Avtron Division
The Marquardt Corporation
14355 North Avenue
Van Nuys, California
1
Mr. Kendall Perkins
Vice President (Engg.)
McDonnell Aircraft Corporation
Lambert Bldg. - St. Louis
Monopoly Airports
Box 516
St. Louis 3, Missouri
1
Dr. Beno Eternich
Mechanical Technology Incorporated
988 Albany-Shaker Road
Latham, New York
1
Mr. J. W. lower
Chief, Engineer-Inertial Components
Honeywell Aero Division
3600 Airway Road
Minneapolis, Minnesota
1
Mr. Carl H. Greeson, Jr.
Director of Research
Raytheon Ball Bearings, Inc.
Petersborough, New Hampshire
1
Mrs. Alice Ward, Librarian
Norden Division of United Aircraft Corp.
Halsey Street
Norwalk, Connecticut
1
Automation Division (Librarian)
North American Aviation Inc.
9150 East Imperial Highway
Downey, California
1
Northrop Corporation
Norair Division
1001 East Broadway
Hawthorne, California
Attn: Technical Information, 3123
1

Mr. W. L. Simons
Norconics
A Division of Northrop Corp.
300 East Orangeboro Avenue
Anahiem, California
1
Norconics
A Division of Northrop Corporation
100 Morse Street
Hornwood, Massachusetts
Attin: Mr. E. L. Swainson, Tech. Asst.
Precision Products Department
1
Pratt & Whitney Aircraft Division of UTC - CANEG
P. O. Box 611
Middletow, Connecticut
Attin: Librarian
1
Library, Bldg. 10-2-5
Radio Corporation of America
Candex 2, New Jersey
1
Mr. Robert S. Siegel
Rockvody
Mechanics Division
6653 Canoga Avenue
Canoga Park, California
2
Ryan Aeronautical Company
Attin: Engineering Library
Lindbergh Field
San Diego 12, California
1
Jack & Helen's, A Division of
The stadium corporation
1723 Eye Street, Suite 102
Washington, D. C.
1
Mr. Paul A. Pitt, Vice President
Engineering & Research
Solar Aircraft Company
1200 Pacific Highway
San Diego 12, California
1
Mr. W. G. Wing
Sperry Gyroscope Company
C-2
Great Neck, New York
1
R. A. Naber
Union Carbide Nuclear Company
Post Office Box 9
Oak Ridge, Tennessee
1