NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
FEASIBILITY STUDY ON
THE USE OF PLASTIC COMPONENTS FOR
THE 81 MM MORTAR BIPOD ASSEMBLY

MERRILL EIG

FEBRUARY 1963

PICATINNY ARSENAL
DOVER, NEW JERSEY
The findings in this report are not to be construed as
an official Department of the Army position.

DISPOSITION

Destroy this report when it is no longer needed.
Do not return.

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report
from ASTIA.
FEASIBILITY STUDY ON
THE USE OF PLASTIC COMPONENTS
FOR THE 81 MM MORTAR BIPOD ASSEMBLY

by

Merrill Eig

February 1963

Feltman Research Laboratories
Picatinny Arsenal
Dover, N. J.

Picatinny Arsenal Technical Report 3030

OMS 5610.11.842

Dept of the Army Project 592-32-037

Approved:

J. D. Matlock
Chief, Plastic and Packaging Laboratory
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
<td>1</td>
</tr>
<tr>
<td>Summary</td>
<td>1</td>
</tr>
<tr>
<td>Conclusions</td>
<td>1</td>
</tr>
<tr>
<td>Recommendations</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Discussion</td>
<td>2</td>
</tr>
<tr>
<td>Appendices</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>21</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>Distribution List</td>
<td>32</td>
</tr>
</tbody>
</table>

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Composition of component parts</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Natural design strength values</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Strain data submitted by Watertight Arsenal</td>
<td>14</td>
</tr>
</tbody>
</table>

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bipod assembly (a) and yoke assembly (b)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Schematic of elevating mechanism</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Connector</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>81 mm mortar</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Schematic of force system</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Moment diagram and edge view of bipod assembly</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Force diagram</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>Bipod assembly</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>Assumed geometry of bipod assembly during firing</td>
<td>22</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Cover</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Tube</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Housing tube connector</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Bracket</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>Body</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Case</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Nut screw</td>
<td>31</td>
</tr>
</tbody>
</table>
OBJECT

To analyze strain gage data on the bipod assembly leg the 81 mm mortar and to determine the feasibility of replacing heavy metal parts with lighter weight plastics.

SUMMARY

Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Technical Staff. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 180° elevation was used, with the bipod traversing assembly located in the central position.

The calculated maximum stresses were as follows: a bending stress of 20,100 psi on the case, and a 2,726 psi stress due to bending and a compressive stress of 22,900 psi for the tube housing. The center body and yoke ring were not significantly stressed. The connector showed a bending stress of 17,200 psi and a shear stress of 15,000 psi.

Rolled reinforced plastic tubing was suggested for fabrication of prototype components, as it can be easily machined to the desired shape and has the required strength. It should be noted that the design strength of the tubing is marginal.

For cast items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.

CONCLUSIONS

It may be concluded from this analysis that it is feasible to fabricate the desired components of the 81 mm mortar bipod assembly from plastic materials.
RECOMMENDATIONS

It is recommended that prototype components be fabricated and tested under actual firing conditions to determine suitability of design. It is recommended that, upon acceptance of design, molds be fabricated and a glass filled epoxy-molding material such as Scotchply 1100 be used for production of end items requiring high strength.

INTRODUCTION

The Plastics and Packaging Laboratory at Picatinny was requested by Watervliet Arsenal to analyze strain gage data obtained by Watervliet Arsenal on the bipod assembly for the 81 mm mortar and from such data, to determine the feasibility of replacing existing metal components of the mortar assembly with lightweight plastic parts. The use of high strength, lightweight plastics for this application was considered desirable as a means of lightening and making more portable an assembly designed for use and handling by infantry soldiers.

DISCUSSION

The strain gage data received from Watervliet Arsenal was obtained during actual firings of the mortar. Rectangular strain rosettes consisting of three gages laid out at 45° and 90° angles to each other were used to measure strain on the bipod legs.

Two G-7 type strain gages in series 180° apart were used to measure strain on the back of the base plate.

It was apparent from data of the first 10 rounds, that the forces acting on the bipod legs are almost solely axial; hence, tend to expand or compress the legs. In such a situation, the strain gage is not needed. Therefore, on the remaining fifteen rounds, only the strain recorded by the axial gage was used. Maximum positive and negative deflections were 0.005 and the stress values were computed as the product of strain and Young's Modulus (See Table 3, p 10).
Review of this reported strain gage data by Picatinny Arsenal indicated that the number of gages placed around the bipod legs was not sufficient for determining the actual maximum stress. Therefore, an engineering approach utilizing an iteration process was tried and successfully used (see Appendix A) to determine the maximum stress.

Determination of Tensile Bending (σ_{TB}) and Compressive Stresses (σ_{C}) in Right Leg

From the firing data reported to Picatinny Arsenal by Watervliet Arsenal, it was observed that the right leg of the bipod experienced a compressive load of 6670 psi after 11.4 milliseconds after firing (see Table 3). After 40.4 milliseconds, a stress reversal occurred in which this compressive stress changed to a tensile stress of 17,980 psi. It is important to note that the stresses reported in the data and substantiated by Watervliet Arsenal are the sums or resultants of the tensile bending stress (σ_{TB}) and the compressive stress (σ_{C}). It must therefore be assumed that there exists a tensile stress (due to bending) such that, when a compressive stress of 6,670 psi is added to it, the resultant is a tensile stress of 17,980 psi. The reason is that both tensile and compressive stresses can conceivably be applied simultaneously. Thus, by numerically adding the compressive and tensile stresses reported in the data, values for σ_{TB} and σ_{C} are determined (see Appendix A). For this particular example, σ_{TB} is determined to be 24,650 psi and σ_{C} is 6,770 psi. This procedure is continued for each of the six test rounds to determine σ_{TB} and σ_{C} for each case. Use of the maximum values of σ_{TB} and σ_{C} will represent the maximum possible loading condition which can be sensed by the right bipod leg. The values thus determined are:

\[
σ_{TB} = 24,650 \text{ psi}
\]

\[
σ_{C} = 6,770 \text{ psi}
\]

It is important to emphasize that these stress values are resultant stresses; each being the sum of a tensile bending stress and a compressive stress. Also, that it is possible to obtain these values from an infinite number of tensile and compressive stresses. For example, suppose the leg assembly is subjected simultaneously to a tensile bending stress of 27,980 psi and a compressive stress of 20,000 psi. The resultant stress would be 17,980 psi. It is seen that this is exactly the value of stress reported by the strain gage data, and it is by definition the maximum stress.
as demonstrated, since the maximum recorded stress is a function of the
time lag in applied loads. Similarly, a reverse procedure can be made to
yield a negative value of stress, i.e., 6,770 psi.

In order to limit the many possible choices of bending and compressive
stresses, it will be assumed, and reasonably so, that approximately 15% of
the reactive force (or 12,000 lb) is transmitted to the bipod in the form of
friction (F_f, see Fig 5). Having established this criterion, an iteration pro-
cess will now be used to converge upon the final design stress values. This
is accomplished by substituting various combinations of stresses the sum of
which is a plus 17,980 psi into Equation 6 (Appendix A) until the desired
value of F_f is obtained. When this condition is satisfied, the maximum
design value for \(\sigma_{TB} \) is obtained. This same procedure is repeated for
various values of stresses yielding a resultant stress of a minus 6,770 psi.
Similarly, when these values are substituted into Equation 6 until the
desired value of F_f is obtained, a maximum value of \(\sigma_C \) is also obtained.

It can be shown by this iteration process that there are two sets of
values that will yield F_f equal to 12,000 pounds

\[(a) \quad \sigma_{TB} = 33,000 \text{ psi} \]
\[\quad \sigma_C = 16,000 \text{ psi} \]
\[(b) \quad \sigma_{TB} = 3,000 \text{ psi} \]
\[\quad \sigma_C = 15,900 \text{ psi} \]

Since the values in (a) represent the more extreme case, these values
will be used for design purposes. It is interesting to note that they are in
reasonably good agreement with the maximum values determined from the
data; i.e., \(\sigma_{TB} = 24,650 \) psi and \(\sigma_C = 12,960 \) psi.

From Equation 6, it is obvious that \(\sigma_C \) is the major contributing factor
since the coefficient of \(\sigma_{TB} \) is very small compared to that of \(\sigma_C \). For all
practical purposes, F_f is a function of \(\sigma_C \) only. This fact also agrees with
the comments reported on the data to the effect that strain rosettes are
not needed since most of the stress is compressive.
Determination of σ_{TB} and σ_C in Left Leg

The process for determining σ_{TB} and σ_C for the left leg is identical to that described for the right leg. The only difference is in the physical dimensions. The applicable parameters are listed below.

- Moment of inertia (I): 0.0328 in. 4
- Length of leg (l): 27 in.
- Distance from neutral axis of leg to extreme fiber (c): 0.476 in.
- Area (A): 0.404 in.2

Substitution of these values into Equation 5 (see Appendix A) yields the following equation for frictional force:

$$F_f = \sqrt{(26.2 \times 10^{-6}) \sigma_{TB}^2 + (0.652) \sigma_C^2}$$ \hspace{1cm} (1)

Using the iteration method, the maximum design stresses are determined to be

- $\sigma_{TB} = 44,000$ psi
- $\sigma_C = 17,000$ psi

Here again the stresses are in reasonably good agreement with those determined from the data

- $\sigma_{TB} = 27,260$ psi
- $\sigma_C = 11,890$ psi

Substituting the calculated values for σ_{TB} and σ_C into Equation 5 (in Appendix A) yields a frictional force for the right and left leg respectively,

- $F_{fR} = 12,540$ lb
- $F_{fL} = 13,560$ lb
\(F_{avg} = 13,050 \) pounds. Note that this value does not depart significantly from the 15% (or 12,000 pounds) originally assumed. If the calculated value for \(a_C \) for left and right leg is substituted into Equation 2d and 4b respectively (Appendix A) an \(F_{avg} \) of 15,140 pounds is obtained.

At this point, all the forces acting on the system are known and a detailed stress analysis can be made of the various components.

Stresses Induced in Plastic Components

Hub Connection

It is contemplated that the yoke and the tube housing will be fastened to each other by bonding with an epoxy adhesive rather than by the use of screws. The applied load \(F'' \) will thus induce an interfacial shear stress (see Fig 1, pg 8).

\[
\sigma_{sh} = \frac{F'' \text{avg}}{A} = \frac{15,140}{\pi \text{Dh} \left(\frac{1.6875}{1.75} \right)} = 1,635 \text{ psi}
\]

Which is well below the design value of 3000 psi for epoxy resins.

Case

Upon firing, shaft A (Fig 2, p 9) imparts a bearing load to the case, with a resulting bearing stress of

\[
\sigma_{BR} = \frac{F'' \text{avg}}{A} = \frac{15,140}{\pi \left(\frac{1.6895^2 - 1.375^2}{4} \right)} = 20,100 \text{ psi}
\]

Tube Housing

The force acting on the left leg, for a calculated stress of 44,000 psi is

\[
R_{L}^t = \left(F_{TB} \right)_L = \frac{\sigma_B \cdot 21}{c_l} = \frac{44,000 \cdot (2) \cdot (0.0328)}{(0.476) \cdot (27)} = 224 \text{ lb}
\]
Similarly, a stress of 33,000 psi will induce a force in the right leg of

\[R_f' = (F_{TB})_R = \frac{33,000(2)(.0498)}{(5.63)(2)} = 216 \text{ lb.} \]

the average force being

\[(F_{TB})_{avg} = \frac{(F_{TB})_L + (F_{TB})_R}{2} = 220 \text{ lb.} \]

The tube housing shaft B (Fig 1) will act as a solid shaft during firing since shafts A and B are coaxial. The moment of inertia is

\[I_H = \frac{\pi}{64} (D)^4 = \frac{\pi}{64} (1.6895)^4 = .402 \text{ in.}^4 \]

The stress due to bending in the tube housing is

\[\sigma_B = \frac{Mc}{I} = (F_{TB})_{avg} \frac{1}{I} = \frac{(220) 6}{.402} \left(\frac{1.6895}{2} \right) \]

\[\sigma_B = 2,780 \text{ psi} \]

The bearing stress of 20,100 psi imparted to the case is the same compressive stress as exists in the housing. Thus the total stress in the tube housing is the sum of the bending and compressive stresses,

\[\sigma_T = \sigma_B + \sigma_C = 2,780 + 20,100 = 22,880 \text{ psi.} \]

It is to be noted that the cover and body and the yoke ring components do not sense any significant stresses since the only applied load is the inertia of their own weight. However, the yoke ring must withstand a sustained shear load at temperatures of 400°- 500°F for periods of 15-30 minutes.
Fig 1 Bipod assembly (a) and yoke assembly (b)
Fig 2 Schematic of elevating mechanism
The maximum moment occurs at section AA (see Fig 3), with a moment of inertia equal to

\[I_{AA} = \frac{1}{12} h b^4 = \frac{1}{12} \left(\frac{1}{16} \right) \left(\frac{5}{16} \right)^4 = 0.297 \text{ in.}^4 \]

and section BB has a smaller moment of inertia

\[I_{BB} = \frac{1}{12} \left(\frac{.312}{16} \right) \left(\frac{5}{16} \right)^4 = 0.174 \text{ in.}^4 \]

The corresponding bending moments are

\[M_{AA} = \left(\frac{F_{max}}{2} \right) I_{1} = \frac{15,140}{2} \left(1.25 \right) = 9,460 \text{ in.-lb} \]

\[M_{BB} = \frac{15,140}{2} \left(.72 \right) = 5,440 \text{ in.-lb} \]

and the bending stresses are

\[\sigma_{AA} = \frac{M_{AA}}{I_{1} \cdot 0.297} = \frac{9,460}{0.297} = 17,900 \text{ psi} \]

\[\sigma_{BB} = \frac{5,440}{0.174} = 17,650 \text{ psi} \]

The shear stress at section CC is,

\[\sigma_{sh} = \frac{F_{max} / 2}{A} = \frac{15,140}{\frac{2}{3(2(.312)(.3))}} = 13,500 \text{ psi} \]

The schematic diagram of the elevating mechanism (Fig 2, p 9) indicates the required dimensions of various mating parts. These dimensions were determined in order to preclude binding within the military specifications temperature range of -65°F through 160°F.
Fig 3 Connector

11
In terms of stress requirements mentioned above, the bipod assembly components in question can be fabricated from plastics. A molding material such as a fiberglass-filled epoxy should readily fulfill all of the requirements for such plastic parts.

If fabrication of prototype parts is desired this may be accomplished by machining components from rolled tubing. The particular materials suggested for each prototype component are listed below in order of preference (1, 2, 3) on the basis of strength and thermal properties.

Comparison of design stress with the calculated stress values indicates that some of the strength requirements on the rolled tubing materials are marginal. During the analysis, however, the worst possible conditions were used in each case and it is recommended that materials with lower design stress values be test evaluated.

TABLE 1

<table>
<thead>
<tr>
<th>Composition of component parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tube</td>
</tr>
<tr>
<td>Case</td>
</tr>
<tr>
<td>Bracket</td>
</tr>
<tr>
<td>Body</td>
</tr>
<tr>
<td>Cover</td>
</tr>
<tr>
<td>Connector</td>
</tr>
<tr>
<td>Yoke ring</td>
</tr>
</tbody>
</table>

*The silicone glass rolled tubing has the following physical properties:

- Thermal coefficient of expansion = 1.1×10^{-4} cm/cm °C
- Maximum operating temperature, continuous = 400°F
- Maximum operating temperature, short time = 475°F
The reported tensile and compressive strengths for the materials listed in Table 1 are as follows:

TABLE 2

<table>
<thead>
<tr>
<th>Material</th>
<th>Reinforcement</th>
<th>Resin</th>
<th>Tensile strength, psi</th>
<th>Compressive strength, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>Phenolic</td>
<td></td>
<td>10,500</td>
<td>17,500</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Phenolic</td>
<td></td>
<td>8,500</td>
<td>19,000</td>
</tr>
<tr>
<td>Cotton</td>
<td>Phenolic</td>
<td></td>
<td>7,500</td>
<td>21,000</td>
</tr>
<tr>
<td>Glass</td>
<td>Silicone</td>
<td></td>
<td>30,000</td>
<td>15,000</td>
</tr>
</tbody>
</table>

The existing parts were redesigned for plastics (see Figs 10-16 in Appendix B, pp 25-31) taking into account the thermal coefficients of expansion of the recommended plastic materials.

Watervliet Arsenal did not request fabrication and testing of the proposed plastic parts. This report, therefore, is a feasibility and design criteria study only.
TABLE 8

Strain data submitted by Watervliet Arsenal

<table>
<thead>
<tr>
<th>Round Number</th>
<th>Bipod Traverse Position</th>
<th>Angle of Elevation, degrees</th>
<th>Gage Mounted Vertically on Right Bipod Leg</th>
<th>Gage Mounted Vertically on Left Bipod Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time, ms</td>
<td>Stress, μ in/in.</td>
<td>Stress, psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strain, μ in/in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time, ms</td>
<td>Strain, μ in/in.</td>
<td>Stress, psi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strain, μ in/in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>323 Center</td>
<td>45</td>
<td>11.4</td>
<td>-230</td>
<td>-6,670</td>
</tr>
<tr>
<td>323 Center</td>
<td>45</td>
<td>40.4</td>
<td>620</td>
<td>17,980</td>
</tr>
<tr>
<td>324 Center</td>
<td>45</td>
<td>12.0</td>
<td>-210</td>
<td>-6,090</td>
</tr>
<tr>
<td>324 Center</td>
<td>45</td>
<td>40.2</td>
<td>270</td>
<td>7,830</td>
</tr>
<tr>
<td>325 Max left</td>
<td>45</td>
<td>8.4</td>
<td>-340</td>
<td>-9,860</td>
</tr>
<tr>
<td>325 Max left</td>
<td>45</td>
<td>43.9</td>
<td>380</td>
<td>11,020</td>
</tr>
<tr>
<td>326 Max left</td>
<td>45</td>
<td>8.1</td>
<td>-310</td>
<td>-6,990</td>
</tr>
<tr>
<td>326 Max left</td>
<td>45</td>
<td>40.6</td>
<td>600</td>
<td>17,400</td>
</tr>
<tr>
<td>327 Max right</td>
<td>45</td>
<td>9.2</td>
<td>-400</td>
<td>-11,600</td>
</tr>
<tr>
<td>327 Max right</td>
<td>45</td>
<td>36.4</td>
<td>350</td>
<td>10,150</td>
</tr>
<tr>
<td>328 Max right</td>
<td>45</td>
<td>14.2</td>
<td>-440</td>
<td>-12,760</td>
</tr>
<tr>
<td>328 Max right</td>
<td>45</td>
<td>38.5</td>
<td>320</td>
<td>9,280</td>
</tr>
<tr>
<td>329 Center</td>
<td>65</td>
<td>16.9</td>
<td>-410</td>
<td>-11,890</td>
</tr>
<tr>
<td>329 Center</td>
<td>65</td>
<td>43.9</td>
<td>330</td>
<td>9,570</td>
</tr>
<tr>
<td>330 Center</td>
<td>65</td>
<td>8.4</td>
<td>-370</td>
<td>-10,730</td>
</tr>
<tr>
<td>330 Center</td>
<td>65</td>
<td>39.5</td>
<td>370</td>
<td>10,730</td>
</tr>
<tr>
<td>331 Max left</td>
<td>65</td>
<td>15.5</td>
<td>-370</td>
<td>-10,730</td>
</tr>
<tr>
<td>331 Max left</td>
<td>65</td>
<td>40.4</td>
<td>320</td>
<td>9,280</td>
</tr>
<tr>
<td>332 Max left</td>
<td>65</td>
<td>8.5</td>
<td>-350</td>
<td>-10,150</td>
</tr>
<tr>
<td>332 Max left</td>
<td>65</td>
<td>44.8</td>
<td>360</td>
<td>10,440</td>
</tr>
<tr>
<td>333 Max right</td>
<td>65</td>
<td>8.9</td>
<td>-390</td>
<td>-11,310</td>
</tr>
<tr>
<td>333 Max right</td>
<td>65</td>
<td>39.5</td>
<td>250</td>
<td>7,250</td>
</tr>
<tr>
<td>334 Max right</td>
<td>65</td>
<td>7.2</td>
<td>-250</td>
<td>-7,250</td>
</tr>
<tr>
<td>334 Max right</td>
<td>65</td>
<td>39.0</td>
<td>240</td>
<td>6,960</td>
</tr>
<tr>
<td>335 Center</td>
<td>73</td>
<td>13.8</td>
<td>-180</td>
<td>-5,220</td>
</tr>
<tr>
<td>335 Center</td>
<td>73</td>
<td>56.4</td>
<td>150</td>
<td>4,350</td>
</tr>
</tbody>
</table>

*Time from zero time (zero time = time when first deflection is recorded on right leg).

**Stress = strain Y, where Y equals the stretch modulus of elasticity (29 million for gun steel).

The reaction force reported at the base of the mortar barrel was 79,200 pounds.
APPENDIX A

Development of Equation for Frictional Force (Ff)

Fig 4 81 mm mortar
Fig 5 Schematic of force system

\(F_R \) = force of recoil

\(F_f \) = friction force

\(F'_{f} \) = bending component of friction force

\(F''_{f} \) = compressive component of friction force along center line of bipod assembly, in plane of bipod
Fig 6 Moment diagram and edge view of bipod assembly

M_1 moment about plane of bipod assembly (x-z plane)

M_2 moment in plane of bipod assembly (y-z plane)

\vec{M}_1 & \vec{M}_2 moment vectors

\vec{M}_1 resultant moment vector = $\vec{M}_1 + \vec{M}_2$
Fig 7 Force diagram

$F_{TB} =$ resultant bending force

$R_f =$ force acting along center line of bipod in the plane of the bipod assembly

R_f' = component of R_f or F_f'' tending to bend bipod leg

$R_f'' =$ component of R_f compressing bipod leg
Considering one leg of the bipod assembly to act as a cantilever, thus bearing half of the applied load, we have

Each leg will bear a load of \(\frac{F_f}{2} \)

Fig 8 Bipod assembly
From Figures 8a, b, and c the following relations are readily determined

\[
\left(\frac{F_f}{2}\right)^2 = \left(\frac{F_f}{2}\right)^2 + \left(\frac{F''}{2}\right)^2
\]
\tag{2a}

\[
\left(\frac{F''}{2}\right)^2 = (R'_f)^2 + (R''_f)^2
\]
\tag{2b}

\[
(F_{TB})^2 = \left(\frac{F_f}{2}\right)^2 + (R'_f)^2
\]
\tag{2c}

Adding the orthogonal equations (2a), (2b) and (2c) and making the following substitutions:

\[
\frac{F''}{2} = F_{TB} \sin \psi
\]
\[
R'_f = \left[\begin{array}{c}
\frac{F_{TB} \cos \psi}{2} \\
\frac{F''}{2} \sin \theta
\end{array} \right]
\]
\[
R''_f = \frac{F''}{2} \cos \theta
\]
\tag{2d}

we have after simplifying

\[
\left(\frac{F_f}{2}\right)^2 = \frac{F_{TB}^2}{2} + (R'_f)^2
\]
\tag{3}

The equations for bending and compressive stress for a cantilever are respectively,

\[
\sigma_{TB} = \frac{M_T}{c} \cdot \frac{F_{TB}lc}{1} = \frac{\sigma_{TB}lc}{1}
\]
\tag{4a}

solving for \(F_{TB}\)

\[
F_{TB} = \frac{\sigma_{TB}lc}{1}
\]
\[\sigma_c = \frac{R''}{A} \quad \text{(compressive)} \quad (4b) \]

Solving for \(R'' \)

\[R'' = \sigma_c A \]

\begin{align*}
1 & \quad \text{length of bipod leg, in.} \\
c & \quad \text{distance from neutral axis to extreme fiber, in.} \\
I & \quad \text{moment of inertia of bipod leg, in.}^2 \\
A & \quad \text{cross sectional area, in.}^2 \\
F_{TB} & \quad \text{resultant force causing bending, lb} \\
R'' & \quad \text{compressive force applied to bipod leg, lb} \\
F_f & \quad \text{frictional force, lb} \\
\sigma_{TB} & \quad \text{tensile stress due to bending, psi} \\
\sigma_c & \quad \text{stress due to compression, psi} \\
\sigma_T & \quad \text{total stress } \sigma_{TB} + \sigma_c, \text{ psi.} \\
\end{align*}

Substituting equations 4a and 4b into equation 3, we have,

\[F_f = 2 \sqrt{\left(\frac{\sigma_{TB}}{lc} \right)^2 + (\sigma_c A)^2} \quad (5) \]
Fig 9 Assumed geometry of bipod assembly during firing
Using the following values, F_f is determined as a function of σ_{TB} & σ_c.

\[
I = \frac{\pi}{64} (D_o^4 - D_i^4) = \frac{\pi}{64} [(1.125)^4 - (.875)^4] = .0498 \text{ in.}^4
\]

\[
l = 27 \text{ in.}
\]

\[
c = \frac{D_o}{2} = 0.563 \text{ in.}
\]

\[
A = \frac{\pi}{4} (D_o^2 - D_i^2) = 0.392 \text{ in.}^3
\]

Substituting these values into equation (4), the result for the right bipod leg is,

\[
F_f = \sqrt{(42.96 \times 10^{-3}) \sigma_{TB}^2 + (.616) \sigma_c^2}
\]

(6)

Since the geometry and dimensions of the left and right legs differ, Equation 6 is applicable to the right bipod leg only. A similar expression for the left leg is presented in the discussion (Equation 1). Equations 1 and 6 differ only in the coefficients of σ_{TB} and σ_c.

23
APPENDIX B

The seven drawings contained in this appendix (Figs 10-16, pp 25-31) show how the components of the 81 mm mortar bipod would have to be changed, in design and dimensions, if they were to be manufactured from plastics. The principal changes shown are:

a. Relaxation of certain dimensional tolerances from .002 to .003 inch.

b. Deletion of instructions regarding surface finish.

c. If grease cups are to be used on bracket, allowance of sufficient clearance for bonding of cups.

d. A dimensional change of .0055 inch to leave sufficient clearance for bonding between case and housing tube connector.

e. Elimination of four drill holes in bottom of cylindrical portion of case, because plastic parts would be bonded.

f. Replacement of a .0615 + .005 inch hole in the case with a $\frac{1}{4}$ inch ream.

g. A dimensional change in the yoke ring to permit a clearance of at least .005 inch for bonding of the yoke ring.

All of the drawings included are modifications of the standard metal parts drawings, to incorporate the above-listed changes.
Fig 10 Cover (Modification of Dwg 7236575)
Fig 11 Tube (Modification of Dwg 7305150)
Fig 14 Body (Modification of Dwg 7236576)

Unless otherwise specified break corners approx. .02 max, fillets .01
Commanding Officer
Detroit Arsenal
ATTN: ORDMC-RMN, Mr. John Reynar
ORDMC-RRS, Mr. D. R. Lem
Center Line, Michigan

Commanding General
Aberdeen Proving Ground
ATTN: Coating and Chemical Laboratory
Technical Library, ORDBG-LM, Bldg 313
Maryland

Commanding General
White Sands Missile Range
ATTN: ORDES-TS-TIB
OM-WSWL, Director WSWL
ORDBS, Technical Library
New Mexico

Commanding Officer
Frankford Arsenal
ATTN: Pitman-Dunn Lab, Dr. H. Gisser
Library Branch, 0270
Philadelphia 37, Pa.

Commanding Officer
Rock Island Arsenal
ATTN: Laboratory, Mr. R. F. Shaw
Rock Island, Illinois

Commanding Officer
U. S. Army Materials Research Agency
ATTN: RPD
Watertown Arsenal
Watertown 72, Mass.

Commanding Officer
Springfield Armory
ATTN: Res Chem Lab, Mr. Zavarella
Springfield 1, Mass.
Commanding Officer
Watervliet Arsenal
ATTN: ORDBF-RR
Watervliet, N. Y.

Commanding General
U. S. Army Ordnance Guided Missile School
Redstone Arsenal, Alabama

Commanding Officer
Ammunition Procurement & Supply Agency
ATTN: SMUAP
Joliet, Illinois

Commanding General
Ordnance Tank-Automotive Command
ATTN: ORDMG-11-60
Detroit Arsenal
Center Line, Michigan

Commanding Officer
Watertown Arsenal
ATTN: Technical Information Section
Watertown 72, Mass.

Commanding Officer
Harry Diamond Ordnance Fuze Laboratories
ATTN: Technical Reference Section
A. A. Benderly
Connecticut Ave and Van Ness St, NW
Washington 25, D. C.

Commanding General
U. S. Army Signal Research and Development Laboratories
ATTN: SIG-FM/EL-PFM-1-d
Mr. E. Beekman
Fort Monmouth, N. J.
Chemical Corps
Chemical Research and Development Labs
ATTN: Mr. T. A. Treglia
Army Chemical Center, Maryland

Commanding Officer
Engineer Research and Development Laboratories
Materials Branch
ATTN: Mr. Philip Mitton
Mr. S. Goldfein
Fort Belvoir, Virginia

Commanding General
Quartermaster Research and Engineering Center
ATTN: Clothing and Organic Materials Div
Natick, Mass.

Office, Chief of Transportation
Dept of the Army
ATTN: Mr. John Stolarick, TCARO-R
Washington 25, D. C.

U. S. Army Transportation Research Command
Fort Eustis
ATTN: Mr. J. E. Forehand, Aviation Directorate
Mr. H. I. Krellen, Surface Mobility Directorate
Virginia

Dept of the Navy
Office of Naval Research
ATTN: Code 423
Washington 25, D. C.
Dept of the Navy
Bureau of Ships
Hull Division
Materials Development and Applications Branch
ATTN: Mr. J. B. Alfers, Code 634C
Washington 25, D. C.

U. S. Naval Ordnance Laboratory
ATTN: Mr. H. A. Perry
Mr. F. R. Barnet, Chief, Nonmetallic
Materials Division
White Oak
Silver Spring, Maryland

Commander
Naval Research Laboratory
ATTN: Technical Information Officer
Anacostia Station
Washington 25, D. C.

Commander
New York Naval Shipyard
ATTN: R. R. Winans
Material Laboratory (Code 948)
Brooklyn 1, N. Y.

Dept of the Navy
Bureau of Naval Weapons
ATTN: RRMA
Airborne Equipment Division
Washington 25, D. C.

Dept of the Navy
Bureau of Supplies and Accounts
ATTN: Mr. H. Lapidus
Code S-82
Washington 25, D. C.
Naval Weapons Station
Research and Development Division
ATTN: Mr. U. Cormier
Yorktown, Virginia

Aeronautical Materials Laboratory
Naval Air Materials Center
ATTN: Mr. E. K. Rishel, Head, Plastics Branch
Philadelphia 12, Pa.

Naval Weapons Laboratory
ATTN: Mr. R. Tom (Code WCD)
Dahlgren, Virginia

Dept of the Navy
Bureau of Naval Weapons Research,
Development Test, and Development
ATTN: Mr. P. M. Goodwin, Head, Nonmetals
Branch (RRMA-3)
Washington 25, D. C.

Naval Air Development Center
Aeronautical, Electronic, and Electrical Laboratory
ATTN: Dr. H. R. Moore, Head, Materials and
Process Branch
Johnsville, Pa.

Commander (Code 5557)
U. S. Naval Ordnance Test Station
Inyokern
China Lake, California

David Taylor Model Basin
ATTN: Mr. A. R. Willner, Head, Materials
Research Branch
Washington 7, D. C.
David Taylor Model Basin
Structural Mechanics Laboratory
ATTN: Mr. J. Buhl (Code 732)
Washington 7, D.C.

Commanding General
Manufacturing Techniques Laboratory
Aeronautical System Division
Chemical Engineering Branch
Wright-Patterson Air Force Base
ATTN: Mr. Charles Tanis
Dayton, Ohio
FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY
Merrill Eig

Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.

(over)
The calculated maximum stresses were as follows: a bearing stress of 20,100 psi on the case; and a 2780 psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress of 13,500 psi.

Rolled reinforced plastic tubing was suggested for fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties. The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.

The calculated maximum stresses were as follows: a bearing stress of 20,100 psi on the case; and a 2780 psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress of 13,500 psi.

Rolled reinforced plastic tubing was suggested for fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties. The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.
FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY
Merrill Eig

Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.

(over)
The calculated maximum stresses were as follows: a bearing stress of 20,000 psi on the case, and a 27,800 psi stress due to bending, and a compressive stress of 22,800 psi for the tube housing. The cover, body, and yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress of 13,500 psi.

Rolled reinforced plastic tubing was suggested for fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.

The calculated maximum stresses were as follows: a bearing stress of 20,000 psi on the case, and a 27,800 psi stress due to bending, and a compressive stress of 22,800 psi for the tube housing. The cover, body, and yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress of 13,500 psi.

Rolled reinforced plastic tubing was suggested for fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.
FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY

Merrill Eig

11.842, Unclassified Report

Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.
The calculated maximum stresses were as follows: a bending stress of 20,103 psi on the case, and a 2780 psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress of 33,500 psi.

Rolled reinforced plastic tubing was suggested for fabrication of prototype components, as it can be easily machined to the desired shapes and have the required strength. It should be noted that the design strength of the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.