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EDITORS' PREFACE

Spare parts demand prediction is a basic logistics problem, and

one that has many unresolved facets. The problem's various aspects

have been under study at RAND and elsewhere, in both military and in-

dustrial environments. But, until recently, researchers in this field

had never come together to discuss mutual problems and exchange ideas.

To facilitate this exchange, RAND sponsored a Demand Prediction Con-

ference at Stanford University on January 25 and 26, 1962. The main

purpose was to review the present state-of-the-art in demand prediction,

and delineate possible fruitful areas of research.

Eighteen people, representing nine military and civilian organi-

zations in all, attended the Conference. One participant from each

group presented some results of their work, centering the discussion

around the following topics and questions:

(1) Demand patterns -- what underlying statistical patterns seem
to be present in demand histories?

(2) Prediction techniques -- what methods or models seem to yield
the best predictions from historical data by any appropriate
criteria?

(3) Measures of prediction accuracy -- what criteria should be
used to compare techniques? What arguments should be ad-
vanced for and against the introduction of explicit models
of the costs of over- or underestimates?

(4) Data availability -- to what extent is the prediction problem
one of completeness and accuracy of data, as opposed, for
example, to choice of technique and measure of accuracy?

(5) Time period -- to what extent, if any, are the predictions
affected by the period of time used as the experience period
or as the prediction period? Alternatively, do we predict
better for those items which experience a large or a small
number of demands.

(6) System-wide versus base-level demand prediction -- are any of
the above affected by this distinction? If so, how?
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A general discussion of the areas in which further research might

be undertaken followed the presentations. To focus the discussion, the

following questions were advanced to the group: what data are readily

available for different classes of items? What data would we like to

have for prediction purposes? Can the data processing be improved?

Should demand patterns be investigated in greater detail applying, for

example, the techniques used in analyzing time series such as trend,

etc'.? Can we find better program elements on which to base predictions?

Which additional prediction techniques are likely to prove fruitful?

What is the best way of evaluating the accuracy of predictions? How

can we take account of dynamic factors such as changes in policy, item

design, T. 0., or effects of inspections, repair, replacement procedures,

transportation and environmental usage, etc.? What theoretical studies

should be undertaken? Have we reached the limits of prediction accuracy

with which logistics systems must be content and with which they must

live?

lthough the Conference represented many different customer and

commodity interests, there were similarities in the problems and find-

ings. All of the participants felt that open discussion was helpful,

and would do much to improve the quality of the conclusions and recommend-

ations research groups make to their customers. There was general feel-

ing that this Conference was valuable and that a similar one should be

held say in a year or two, with perhaps more representation from industry.

The RAND Corporation would like to thank Stanford University for

hosting the Conference. And our special thanks go to Dr. Harvey M. Wagner

of Stanford for handling the Conference details.
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SUMMARY

These Proceedings include all the papers presented at the Demand

Prediction Conference, together with a general Conference discussion

by Kenneth J. Arrow, and some comments on possible areas of future

research by Enil Hamilton. This sumary indicates briefly the contents

of each paper.

In his presentation, Albert Cahn discusses the value of having

better demand prediction methods in the following situation. When

planning for the stockage of a particular line item, all one can ever

do is predict that the expected demand will lie between certain limits.

If it is possible to narrow these limits, then on the basis of certain

asstnptions, it is also possible to determine the order of magnitude

of the potential savings that will result. He illustrates the procedure

with an example.

Based on historical data for the components of the Falcon missile,

and a sample of B-52 parts, Max Astrachan's paper reports on a long-

term evaluation of seven different techniques for predicting spare parts

demand. The object of the study was to determine which technique is

preferable in varying sets of circtmstances from both a performance and

a cost point of view. The techniques examined are based on constant

demand rates per weapon-system program element or service-life chara-

cteristics. One is the issue-rate technique widely used in the Air

Force and elsewhere, another is the actuarial procedure currently uced

for aircraft engines and other items.
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Among the conclusions that came out of the study were the following.

No one technique was consistently preferred for all parts and all time

periods. No matter what statistical technique is used, there will still

be prediction errors; some may be large. This suggests that the fore-

caster must use whatever knowledge and engineering information he has at

his disposal in an attempt to reduce these errors. Although many parts

seemed to have increasing demand rates over time, it was impossible to

identify any entire category for which the service-life techniques were

preferred. Finally, there was very little apparent improvement in

accuracy of the techniques as the experience period increased, i.e., as

the parts were exposed to more and more months of operation.*

Jules Silver's paper describes the use of the Gamma distribution to

predict demands. His group undertook this study to explore the possi-

bility of developing P relatively inexpensive technique, for parts having

service-life characteristics, that would yield results at least comparable

in accuracy to those obtained by the use of computationally more expensive

procedures such es the actuarial method.

The procedure was initially tested by means of a Monte C-arlo model,

generating demands from a "uniform" time-to-failure distribution, assum-

ing: (1) that 12 months of data were available on which to base fore-

casts, 'nd (2) that 18 months of data were available. For comparison,

predictions were also made using the issue-rate and actuarial methods.

*Max Astrachan, Bernice B. Brown, and J. W. Houghten, A Comparative
Study of Prediction Techniques, The RAND Corporation, RM-2811-PR, December,
1961 (Limited Distribution).
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In (1) the actuarial method did poorly; in (2) it did well. The

issue-rate technique did poorly in both cases, as might be expected

from the nature of the distribution generating the demands. The Gamma

method was best in both cases. It was subsequently applied to 134 items,

for which predictions had been made by the actuarial technique. Although

the distributions appeared to vary quite widely, the results obtained by

the two methods showed differences of the order of 15 per cent or less.

In his paper, Henry Solomon discusses a few of the major highlights

of demand behavior and prediction studies done for the Office of Naval

Research under the auspices of the George Washington University's

Logistic Research Project. An early study concerned the determination

of suitable operational variables. Lack of demand data for this and

other studies they were doing led to the initiation of a large-scale

usage data collection program representing usage by and on account of

65 ships. Although they learned a great deal about the problems of

data collection and processing, results of use of these data in the

search for operational variables were mostly negative.

Again, a study of mechanical and electrical parts usage by and on

account of 12 submarines over a four-year period showed no significant

relation between usage and the operational variables employed. This

study also showed that the demand for items was extremely low and sporadic,

that for any given ship the range of items demanded differed significantly

from year to year, and that there was very little co nality of items

demanded among the vessels. Most important, the study showed that

approximately 75 per cent of the items in the population (i.e., installed

and deemed wearable), were not demanded at all, by or on account of each

ship during the data collection period. Te iplication of these
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results for stockage policies was that greater emphasis should be given

to range rather than depth of items. This led to a major study pertain-

ing to the military essentiality of repair parts to help determine the

range of stockage.

The use of a function of population data -- the number of oppor-

tunities for usage of an item -- yielded promising results. In part-

icular, the square root of the population size in one of their studies

turned out to be as good an estimator as any other procedure used at

that time.

Recently, the Project has undertaken a research program pertaining

to the logistics system for the Polaris Weapon System. In studying the

nature of the distribution of demands for line items, it was found that

in the great majority of cases, the negative binomial distribution could

be used. This distribution has some interesting properties which are

currently under closer examination at the Project. One other important

point seems to be emerging from the data collection program. Based on

the relatively small amount of data received thus far, while demand for

line items is very low and sporadic, the bulk of the items used pertain

to a very small percentage of the total components installed.

The final study Solomon describes concerns spare parts demand for

Naval aircraft. An examination and analysis of the data yielded results

similar to those obtained for Air Force planes. The author concludes his

paper with some comnents on the relationship between demand prediction

and inventory models.

Robert Brown briefly summarizes the work done by Arthur D. Little,

Inc., for the Bureau of Supplies and Accounts, Navy Department. He

identifies and describes six major steps where systems design decisions
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must be made in developing a forecast system: (i) data, (2) model,

(3) smoothing techniques, (4) forecast, (5) error measurement, and (6)

safety factor. All of the material discussed is to be included as part

of his forthcoming book, Smoothing, Forecasting and Prediction of Dis-

crete Time Series.

John Muth's study illustrates with two examples the interaction

between forecasts and inventory control. The first deals with a steel

firm faced with warehousing decisions concerning inventories in regional

warehouses. The second concerns a manufacturer carrying a wide line of

storage batteries for automobiles, trucks, boats, etc. In the latter

case demands appear to be sensitive to weather conditions. In both

cases it was necessary to predict the range of the forecast error as

well as the forecast itself. Muth points out that analyzing the

decision-making process in inventory control is important in order to

(1) know what to forecast and (2) to understand the importance of fore-

cast errors. It is meaningless in itself to know that forecast accuracy

is within + 10 per cent. The relevant information is the quality of

the decisions based on the forecasting schemes.

Peter Winters reported on two exponentially weighted forecasting

models with respect to theory and practice. One of the models contains

a linear trend and ratio seasonals, with three constants, A, B, and C,

which are to be determined from past data.

He defines and discusses three criteria of prediction accuracy.

The first is a weighted sun of squared forecast errors; the second an

average fractional error which is the ratio of the average absolute

error for all forecasts made divided by the average "ales" (or whatever
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is being predicted) over the forecast period; and the third is the

standard deviation of the forecast errors together with the coefficient

of variation.

Experience has shown that approximately the same A, B, and C

weights are optimal for a wide range of products, so that it is reason-

able to use the same weights for groupings of products. Furthermore,

several studies have indicated that the coefficient of variation is

constant over a wide range of products and sales levels. For one part-

icular company it was possible to delineate two groups of products such

that within each, the coefficient of variation could be assumed constant.

Demand prediction from a commercial viewpoint is discussed by

Winston Dalleck. He describes three cases of forecasting which illu-

strate the nature of the problems encountered by McKinsey and Company,

and how they attempted to deal with each one.

The first concerns a division of a large pharmaceutical company

producing about 200 items, each of which has a high seasonal demand

pattern. An exponential smoothing model developed and used by Winters

and described in his paper proved effective.

The second example deals with a large wholesale and retail dis-

tributor of metal materials and metal products. They have an inventory

of approximately 10,000 items. Replenishment leadtime and demand are

highly variable. The problem involved providing a sound and systematic

way to review and, if necessary, recalculate the item reorder points.

Monte Carlo routines were used to develop a large number of distributions

for the probability of usage during leadtime. The distributions could

then be classified and applied directly in determining reorder points
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for most of the inventory items.

The third case involved a company which produces several hundred

items in a number of plants. Their distribution is nation-wide. The

initial trial showed that the exponential smoothing technique provided

a satisfactory approach to forecasting demands for at least the large

volume items, even in the absence of much usable historical data.

George Fishnan discusses briefly the theory behind the concept of

the power spectrum -- a procedure for determining the relative impor-

tance of cyclical and seasonal phenomena in monthly time series. The

procedure for estimating the spectrum comes under the heading of spectral

analysis.

He illustrates the simplification which can be achieved in the

theory of filtering (elimination of cyclical or seasonal components

from the time series) by working in the frequency domain rather than in

the time domain. He investigated the use of spectral analysis on hog

and cattle slaughter time series of 50 years duration. He discovered

by investigating other series that a minimum of 20 years of monthly

data were needed fer effective analysis.

Nowlan points out that when we are studying demand figures we are

really studying the reliability of parts and components through the

medium of demand data.

Emil Hamilton proposes some areas for further research in demand

prediction. Among these are: the application of Selective Management

principles, the sharpening of "qualitative/subjective" approaches for

low-demand itns, the development of a capability for associating
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technical knowledge of the item with the relative merits of various

prediction techniques, and a review of earlier studies such as flyaway

kit concepts in an attempt to update and re-slant them toward new modern

weapons and logistics applications. Finally, he points out that some

effort needs to be expended toward helping using agencies achieve a

better understanding and acceptance of the various studies and proposals

of research groups.

And finally, the Conference Remarks by Kenneth Arrow pull together

some of the discussion which took place during the presentation of the

papers and the formal discussion period.
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THE VALUE OF DEMAND PREDICTION

Albert S. Cahn

The RAND Corporation

Almost since the inception of the RAND Logistics Department,

there has been continuing work and study on the problem of demand

prediction. This interest in the subject on RAND's part reflects a

background interest by the Air Force that I am certain all branches

of the Armed Forces, as well as commercial organizations, share.

This concern is quite proper. I believe that no discipline

strikes at the heart of most logistics problems more vitally than

the demand prediction processes. Logistics problems of the more

interesting sort are usually concerned with choosing the proper

course of action in the face of demand uncertainty. Any technique

which reduces the uncertainty gives that much more hope of finding

the correct logistic action.

Let us see if we can gain some idea of how valuable better methods of

demand prediction might be to the Air Force. Quite obviously, we

cannot arrive at an exact estimate of this value. But by making

some assumptions, I believe the order of magnitude of potential

savings can be calculated.

At the present time, the worldwide stores inventory of the U. S.

Air Force consists of approximately 2,000,000 line items whose total

value exceeds $16,000,000,000. It is impossible to state just how

these items are categorized by price and annual demand, because no

available data show this relationship accurately. However, an early
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RAND Report* made such a classification for the worldwide inventory

of certain aircraft property classes. Figure 1 shows this price-

demand matrix.

100,000 0 -- -
0.34

10,000
W
H 1.93 0.57 0.191,000

5.74 3.65 1.51 0.48

0 i00

8.87 10.18 4.70 1.17 0.19

15.66 26.10 14.62 3.39 0.71

0 1 10 100 1,000 10,000

Unit Cost (dollars)

Fig. 1 -- Percentage of Total Line Items Classified by
Number of Units Issued and Unit Cost

Let us assume there is the same distribution of line items in the

present day inventory as that shown in Fig. 1. (Obviously not a true

assumption, but perhaps not too unreasonable!) Now, let us focus

attention on those items which have an issue rate of less than ten

units per year, and a unit cost between $10.00 and $10,000.00. These

*Bernice B. Brown, Characteristics of Demand for Aircraft Spare
Parts, The RAND Corporation, R-292 (AD 10742b), July 1956.
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are the items which normally cause much trouble -- the slow-moving,

erratically demanded, expensive items. In Fig. 1 we have underlined

the percentages which refer to the items we are discussing.

With this type of line item in mind, consider the effects of

different stockage policies when used to fill the demands for these

stochastically demanded items. We confine our attention to the

situation where we want to decide how many of a line item to stock

if we know its cost, the probability of demand, and the additional

cost caused by shortage of a requested item.

For this purpose, let us assume the demand is Poisson. (Again,

a poor assumption, but we believe it is not important for the argument

we intend makings) With these assumptions in mind we write in Table 1,

for the case of a spare part with an average demand of one unit per

time period considered, the supply effects of different quantities stocked.

Table 1

DDMAMD DISTRIBUTION OF SPARE PARTS WITH AN EXPECTED DEKAND OF
1 UNIT PER TIME PERIOD, AND EXPECTED SUPPLY RESULTS

UNDER SIX STOCKAGE POLICIES

Number of Probabil- No. of Units Expected Supply Results

Units ity of Stocked per (No. of Units per Line Item)
Demanded Demand Line Item Surplus Consumption Shortage

0 0.3679 0 - 0 - - 0 - 1.0000
1 0.3679 1 0.3679 0.6321 0.3679
2 0.1839 2 1.1036 0.8964 0.1036
3 0.0613 3 2.0233 0.9767 0.0233
4 0.0153 4 3.0043 0.9957 0.0043
5 0.0031 5 4.0006 0.9994 0.0006
6 0.0006
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If we adopt the point of view that surplus items have no salvage

value, and if we can determine a shortage cost in units, then we can

use Table 2 to calculate the un-utilized expense of the various stockage

policies. This expense consists of the sum of the cost of the surplus

items plus the shortage costs. This is set forth in Table 2 for cases

whose item cost is equal to one-tenth the shortage cost, equal to the

shortage cost, and equal to ten times the shortage cost.

Table 2

UN-UTILIZED EXPENSE OF VARIOUS STOCKAGE POLICIES
(In Terms of Units)

Unit Cost Unit Cost Unit Cost
Number One-Tenth Equal to Ten Times
of Units Shortage Shortage Shortage
Stocked Cost Cost Cost

0 10.0000 1.0000 0.1000
1 4.0469 0.7356 0.4046
2 2.1396 1.2072 1.114o
3 2.2563 2.0466 2.0256
4 3.0473 3.0086 3.0047
5 4.oo66 4.0012 4.0007

From Table 2 we see quite obviously that if the unit cost is

one-tenth the shortage cost, then the preferred policy is to stock

two units; if the unit cost and shortage cost are equal, the best

policy is to stock one unit; if the unit cost is ten times the shortage

cost, then the best policy would be to not stock the item at all.

However, when planning for the stockage of any particular line

item, one never knows just what the expected demand for an item will

be. All one can ever do is predict that the expected demand will lie
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between certain limits. The narrower the limits, the better the pre-

diction will be. We attempt to evaluate this ability to predict within

narrower limits in this paper.

If, on the basis of experience, the expected demand for an item

lies between zero and two, then with no further information it is

possible to assume that the probability of the expected demand is

distributed uniformly over that interval. Or perhaps one can imagine

the situation where we have a large number of items with expected

demand distributed uniformly over that interval so that the average

expected demand is one, but we are unable to forecast for any particu-

lar item just vhat the expected demand is. We mention parenthetically

that assming uniform distribution of expected demand, while helpful

inasmuch as it simplifies the computations, is not necessary to the

argument. One could make a similar calculation for any distribution.

In that case, the un-utilized cost of any stockage policy must be

integrated over the required interval. For the case where the interval

is from zero to two, Table 3 shows the average un-utilized expense.

Note that these values differ from Table 2 which is for an average

expected demand of one. Also, the figures imply a different optimal

stockage policy when the unit cost is one-tenth the shortage cost. In

that case, the optimal policy is to stock three units rather than two,

as implied by use of the average expected demand (Table 2).

Now, let us see if we can calculate the potential savings which

would result if we were able to predict the expected demand for any

line item ithin narrower limits then these. his is best shown
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Table 3

AVERAGE UN-UTILIZED EXPENSE OF VARIOUS STOCKAGE POLICIES WHEN
EXPECTED DEMAND VARIES UNIFORMLY BETWEEN ZERO AND TWO

(In Terms of Units)

Unit Cost Unit Cost Unit Cost
Number One-Tenth Equal to Ten Times

of Units Shortage Shortage Shortage
Stocked Cost Cost Cost

0 10.0000 1.0000 0.1000
1 4.7545 0.8645 0.4755
2 2.6952 1.3230 1.1776
3 2.5786 2.1052 2.0579
4 3.1653 3.0301 3.o165

5 4.o448 4.0075 4.oo42

graphically in Fig. 2 where un-utilized exp-.nse (in terms of units)

is plotted versus expected demand for the cases where: zero, one,

two, three, four, and five units are stocked, and when the shortage

cost is taken to be ten times the unit cost.* If one knows of a

certain line item only that its expected demand is between zero and

two, then the best policy is to stock three of the item (see Table 3)

and have an un-tilized expense equal to the average ordinate of the

curve for stocking three units, which, in this case is 2.5786 units.

On the other hand, if one possessed some means of predicting

within narrower limits what the expected demand is, then one could do

better than this. For example, again referring to Fig. 2, if one

The points on the various stockage policy curves for an expected
demand of 1.0 are the values listed in the second column of Table 2.
For other expected demands, the points on the various curves were
computed in a similar manner. The values presented in Table 4, which
are proportional to the areas under the various curves, were obtained
by numerical integration.



7T

9

8

7

60

C

n or \iO

0

0
0 .2 A .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

Expected demand

Fig. 2- Unutilized expense versus expected demand
(shortage cost ton times unit cost)
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were able to predict correctly whether the expected demand for a given

line item fell within one of the five demand intervals labeled from

zero to four in that Figure, then, by stocking the quantity indicated,

one would have an average expected cost (over the entire set of items)

found from the lower envelope of Fig. 2. * In this case, the cost

turns out to be 1.9878 units. The shaded portions of Fig. 2 represent

the savings, 0.5908 units here, that result from this added knowledge.

This amounts to a savings of 22.9% over the optimal stockage policy

indicated when we do not have the ability to predict accurately

within the narrower limits.

This potential saving in un-utilized expense that would result

from an ability to predict expected demand, naturally varies with the

ratio of unit cost to shortage cost. Table 4 shows this saving for

four values of the ratio. The saving for a ratio of 10 was computed

above. The other savings figures were obtained in a similar fashion.

Table 4

PERCENTAGE SAVINGS RESULTING FROM ABILITY TO PREDICT EXPECTED
DEMANDS WITHIN NARROWER LIMITS FOR VARIOUS RATIOS

OF SHORTAGE COST TO UNIT COST

Un-utilized Un-utilized
Ratio of Expense Without Expense With

Shortage Cost Prediction Prediction Savings as
To Unit Cost Ability Ability Percentage

0.1 0.1000 0.1000 0.00
1.0 o.8645 0.6963 19.46

10.0 2.5786 1.9878 22.91
100.0 4.3809 3.3198 24.22

*e.g., If the expected demand were less than 0.1, then no parts
should be stocked; for expected demand between 0.1 and 0.5, one part
should be stocked; for expected demand between 0.5 and 1.06, two
parts should be stocked; etc.
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In order to translate the potential savings exhibited in Table 5

into dollars, it is necessary to assume a value for the shortage cost.

This is difficult to do accurately. For the purposes of this paper

let us assume a shortage cost of $1,000. This is not an unreasonable

amount when one reflects on the efforts used by the Air Force to

obtain a needed part related to mission effectiveness. The assumption

of a shortage cost of $1,000 allows us to relate Table 4 to the

section of the Air Force inventory represented by the underlined

percentages in Fig. 1, namely, the low demand items varying in cost

from $10.00 to $10,000.00.

Figure 1 expresses the percentage of line items in the inventory

which satisfy the price-demand characteristics indicated. Assuming

that the yearly buy has the same composition as the inventory, then

we can calculate from Fig. 1 the dollar percentage of the annual buy

classified by number of units issued and unit cost. Fig. 3 shows this.

100,000 - - -

10,000

2.441 7.21
4 1,000

0.73 4.61 19.09
100

0.11 1.29 5.94 14.79 24.023 ~10 __ __ - - -

0.02 0.33 1.85 4.2 L

0 1 10 100 1,000 10,000

Unit Cost (dollars)

Fig. 3 -- Percentage of Cost of Annual Buy Classified
by Number of Units Issued and Unit Cost
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We are now in a position to estimate the dollar value of the

potential savings by multiplying the percentage of the cost of the

annual buy of a particular price-demand class by the average potential

saving percentage of that class. Table 5 sunarizes this as follows.

Table 5

AN ESTIMATE OF POTENTIAL SAVINGS

Percentage
Percentage Average

Unit Cost of Cost of Potential
Class Annual Buy Saving Product

From $1,000 8.98% 9.73% 0.874%
to $10,000

From $100 4.29% 21.19% 0.909%
to $1,000

From $10 1.85% 23.57% 0.436%
to $100 Total 2.219%

In effect, our assumptions indicate that the potential savings resulting

from narrower limits on the prediction of expected demands should amount

to approximately 2ij per cent of the annual buy cost.

Since the Air Force's annual buy of spare parts is in excess of

two billion dollars, this means that the potential savings would be

between forty and fifty million dollars per year. Annual savings of

this amount are more than enough to justify intensive work in order

to see whether or not we can find better ways to predict expected demands.



A COMPARATIVE STUDY OF PREDICTION TECHNIQUES

Max Astrachan

The RAND Corporation

Almost from its inception, the Air Force has had the problem of

predicting demands for spare parts. Reasonably accurate estimates of

how many units of a particular line item will be required in a future

time period are extremely important to their operations. The Air

Force needs such estimates for effective and economical procurement,

distribution, maintenance, and program-planning decisions. Numerous

studies of the Air Force supply system point out that improved demand

predictions could result in substantial savings.

Various aspects of demand prediction have been under study almost

continuously at RAND and elsewhere. Some RAND studies have primarily

attempted to describe characteristics of spare parts demands. Others

have developed methods for predicting demands or for evaluating pre-

diction techniques. See Astrachan, Brown, and Houghten* for a detailed

description of the first research performed at RAND using real data

to evaluate different prediction techniques. The present paper is a

precis of that study's procedures and results.

Forecasting demands always involves some uncertainty. In using

statistical techniques, such as those in this study, the forecaster

applies the concepts of population and random sampling to develop

procedures to deal with this uncertainty.

*Max Astrachan, Bernice B. Brown, and J. W. Houghten, A Comparative
Study of Prediction Techniques, The RAND Corporation, RM-2811-PR, December,
1961 (Limited Distribution).
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It is possible to think of the demands for a line item during

some future time period as a random drawing from a theoretical (unknown)

population, or distribution of possible demands for that time period.

If the forecaster can learn something about the properties of this

distribution, he my be able to reduce his total uncertainty about

the future. For example, he my learn something about the mean of

the distribution, or about the range of the numbers in it. This in-

formation will enable him to make better predictions of the actual

demnds, or determine limits within which they my lie. As he learns

more about this future population, his uncertainty will be less, and

his predictions better.

One vay the forecaster learns is by analyzing historical data to

acquire some knowledge of past populations of demands. He then assumes

a relationship between future and past populations. For example, he

my be able to determine a demand rate from collected data, then assume

that the future population will have the am demnd rate an the past.

Another way is by his practical knowledge and experience, i.e., his

knowledge about the parts in question or similar o.es, and his aer-

lenee n making past predictions.

The present study concerns ways of using data from unfolding

demand experience to make predictions with the help of statistical

procedures. It shows how the data can be used to obtain informtion

about the populations from which future demands will be drawn. This,

together with some assumptions and a known activity program, will

enable the forecaster to predict demands. The study examines seven

different prediction tocbniques; then e.oares the results.
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Tu SN'ID TMMIhIJE

Table 1 lists the seven prediction techniques which this study

discusses in detail later on. They are based on two essentially

different assumptions about the relationship between past and future

populations of demands for the sam item.

Table 1

THE SEVE TECHNIQUEN

I. Issue-rate
II. Upper Bound -- Poisson

III. Non-Parametric Poisson
IV. Upper Bound -- Norma

V. Service Life -- Norml
VI. Service Life -- Log Noral

VII. Actuarial

The first four techniques assume a constant demand rate over time,

so that the relationship between past and future demand populations is

a function only of the total program activity in each period. Table 2

smnrises the Important features of these four techniques.

Table 2

FZATUJM OF CONSTANT 4ED RAE TBOEMQ

o Relationship between populations affected only by
program activity

o Requires only gross data:
Tbtal number of desmnds
Total number of program elemets

o Inexpensive to use

They require data about the total number of denands that have occurred

in the past (i.e. , during the experience period), and the total program

activity in the past and future tim periods. As a result, they are

relatively econnoocal to use, a fact of importance to data collectors

and prooesors. The Issue-rate teanique Is now bein used in the Air
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Force. The other three are upper-bound techniques designed to give

sow assurance that under-prediction will not occur often if the con-

stant demand rate assumption is valid.

Table 3 shows the features of the three service-life techniques

(V, VI and VII). They assume that the relationship between past and

future demand populations is affected both by the total program activ-

ity in the various periods and by the age of the units contributing

to that activity. These techniques might be expected to predict better

Table 3

MMAW OF SERVICE-LIFE TECHNIQU

O Relationship between populations is affected
by program activity and age of installed units

o More accurate for items that war out because
of age

o Require detailed data about:
Number of demands
Age of failing units
Age of installed units

o Expensive to use

for items that tend to wear out because of age. The trouble is, how-

ever, that they require data not only on the number of past dmandsu

but also on the age of both the failing units and the surviving

installed units (age is measured by the activity element). Because

of the data requirements and the extensive computations that these

techniques involve. it would cost much more to use them than many

others based on different asswqtions. A rough estimate showed that

the computation costs only of the service-life techniques used in this

study were approximately sixty times that of the non-service-life

techniques. The cost of mkin one of y service-life predictions

is about forty cents, compared to less than one cent for the non-

service-life techniques.
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Although each technique is described verbally below, it is also

convenient to have formulas for sam of them. For this purpose ve

use the following notation:

d = actual number of deands in a given month;

D = number of demands in the experience period =d, where the
sum is taken over the months in the experience period;

= predicted number of demands for a given month;

F = activity of the weapon system during the experience period;
number of flying-hours for aircraft and number of checkouts
for missiles; and

f - activity of the veapon system during the rmth for vhIch the
prediction is made.

Technique I (Issue-Rate)

As previously mentioned, the Air Force now uses the issue-rate

technique to predict demands. The total number of demands for a given

part during an experience period is divided by the total activity of

the weapon system during this period to give an average demand rate.

Assumin demand for this part continues at the saw rate in the future

(oonstant-demand-rate assuption), we then obtain the forecast for a

particular month by multiplying this averae dmmand rate by the mth's

planed aotivity. In symbols:

Note we assue that every unit of activity gives the part the saw

expoeure to failure, and that the past demand rate is taken as an

estimate of the naw demand rate of the future population of demands.

No assumtions are made abomt the distribution of demads In the

future populations.
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Techniques II, III, and IV are upper-bound techniques. They

constitute a hedge aainst the possibility of an increasing demand

rate for parts for which there is not enough information to determine

the validity of the assumption of a constant or declining demnd rate

over time during the given experience period. Such parts may exhibit

service-life characteristics over longer experience periods.

Technique II (Upper-bound -- Poisson)

This technique protects against underpredictions by using an

upper bound on the mean of a Poisson distribution. We assue that

the number of demnds, D, in the experience period is drawn from a

Poisson distribution of unknown mean and that the demand rate is con-

stant over time. D is used to find the upper bound of the 90-per-cent

confidence interval for this mean.* The upper bound is then used in

the same manner as D in Technique I to obtain the prediction . We

divide the upper bound by the total activity of the weapon system in

the experience period, and then multiply by the planned activity for

the month for which the prediction is being made.

,ehnioue III (Non-paramtric Poisson)

This technique, developed in an unpublished paper by D. S. Stoller

of The RAND Corporation, can be thought of as a stockage policy. We

asume that demands follow a Poisson distribution and that the de ad

*Values of the upper bound for different values of D have been
tabulated. See, for examle, 3. 5. Pearson and 1. 0. rtlesy, B
Tables for State.tloi , Vol. I, The blvesty Prwse, OeWrd ,
3.951, p. W03, Table 40
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rate remins constant over tire, as in Technique II. Since it does

not require an estimte of the paraimeter (man) of the distribution

Technique III in called a non-parametric Poisson technique.

The predicted value, S., is obtained by solving the equation

2 2(p - qP) upqk(Ift +D)

where

Fpm y -, q lp,

and kois the number of standard deviations in the standard nomi

distribution corresponding to a lO= per cent tail. We used k- 1.65,

which corresponds to a 5 per cent tail. Other values my be used, of

course. The solution ft of the above equation then has the property

that the probability that actual deimend in sim future month will

exceed the predicted value, ft, is loe than 0.05, provided the assump-

tions are true. The predicted value an thus be regarded as an vner-

bovnd decision on the amoumt to be suppied to mst dernd.

tchnique IV (Upper-Bound -- Normal)

This technique provides sow protection against underpredictions

by using an xpper bound on the man of a noruil distribution. We

"awn that the numb~er of dennds D in the experience period is norml.y

distributed about saw unknown meian with variance (square of standard

deviation) equal to three times the observed demnd, and that the

dmrnd rate is constant over tim To Insure a non-zero estimte of

the mope bound when D is zero, one is added to the observed demand.

Tbe uper 90-eont, confidence Limit for the u~w= en is them
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(D + 1) + 1.65 -f3(1)) The forecast is this upper limit adjusted

for the activity of the weapon system in the eperienoe and prediction

periods; i.e.:

ft=(E~l)_+ 1.653( )(fF (f).

Techniques I-IV involve only the total number of demands and the

total activity of the weapon system during the experience period,

together with the anticipated activity for the prediction month, in

order to make the forecasts. They assue the demand rate is constant

over time. Techniques V-VII are more sophisticated, requiring an

estimate of the part's service-life characteristics derived from his-

torical data. , It is customary, in this context, to think in terms of

failures rather tbon demands; for our purpose the term are inter-

changeable.

Techniques V and VI (Service Life -- Normal, and Service Life --
1Mg Norma)

Both of these techniques are adaptations of the minw Normit

Chi-Square method developed by Berkson. Each c€prises two parts.

First we estimate the service-life characteristics of the line item;

second, we use these estimates to forecast demands in future months.

lbe methodolog assues a normal distribution of ages at failure.

Non-normal data can often be normalized by using a logarithmic

transformation. We do this in Technique VI using, however, the log-

rithm of one plus age instead of aWe. Except for this, the procedure

is the same as for Technique V. Mhe results are, of couse, then

transformed back into age.

*Joeeyh Berkson, "Tables for Use in Elatmting the Normal Distribu-
tiOn Ftunetion by orit Analysis," Dimetrika, Vl. 44,, l947, pp. 413..435.
Dkson describes the basic tebnique and die uses its efficien =ar
spec" oodlitiom.
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Tohni ue VII (Actuarial)

This is another service-life technique. It is known as the actuarial

method since it is caqarable to the methods life insurance coanies

use to construct mortality tables. The Air Force currently uses it to

predict engine failures .* As with Techniques V and VI, the procedure

has two steps. The first involves determining the part's service-life

characteristics that are set forth in a mortality table. The second

step uses this table, the weapon-system Inventory, and the activity

program to mke the actual forecasts.

T MLTA AND O AL PROCMDUR

In order to find out which of the seven techniques is likely to

give the most accurate predictions, we are coupsring their ability to

predict the demunds for a wide range of items Table 4 gives sois

relevant data.

Table 4

THE DATA

o B-52 Irving Report
33 months -- January 1956-Septeiber 1958
Data from two bases
Sawle of 272 parts

o Missile (Falcon)
26 months -- MW 1955-June 1957
System-wid data
27 coponents

We have 33 months of data on a sample of 272 B-52 Hi-Valu and Category

II recoverable items, and 26 months of data on 27 different components

*For a detailed discussion of the methodology, see T. 0. 00-25-128,

"Procedures for Determining Aircraft Engine (Propulsion Unit) Failure
Rates, Actuarial bngine Life, and Forecasting Monthly Bngie me
by the Actuarial Method," October 20, 1959.
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of the Falcon, an air-to-air missile. Using the same data every

time, we employ each technique in turn to make demand predictions.

The process of measuring the comparative accuracy of the results then

@on through a regular series of steps presented in Table 5.

Table 5

STEPS IN MRABURDG ACCURACY

o Predict future dmands
Each month predict demnds for each
of the subsequent 12 months

o Copute the average monthly error

o Compute the relative error

100 Zft-d

o Compute the root mean square error

12

With the addition of each month's accumlated demnd data, pre-

dictions of the demands are made for each item in each of the 12

subsequent months. A comarison of the predictions with the actual

recorded demands follow, to see how large the errors would have been

under real circumstances. Three statistics are computed from each

of the 12-month prediction sets: an average monthly error (AM), a

relative error (RE), and a root mean square error (36).

Since, as pointed out earlier, the data are constant, i.e.,, using

the same data for each of the seven techniques, we are in a position

to compare their accuracy in making predIctions using the three

measures we have introduced.
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In compring techniques, the average error allows us to coare

how mcb bias each technique has in predicting monthly demands, and

reflects the error in predicting the total demands for the year. The

relative error allow us to comare the relative importance of those

errors, and the root mean square error magnifies the importance of

the largest monthly errors so that a comparison will reveal which

technique is best able to predict when the demands will occur during

the prediction year. The root mean square indicates, therefore,

whether we can predict demands for phased-repair or procurement pur-

poses. The average monthly error my show, for instance, that a

technique has predicted demands accurately for the 12-month period.

When this accuracy has been obtained by greatly over-predicting for

some months and greatly under-predicting for others, however, the root

mean square error will show that the individual monthly errors were

large even though the average error was small. We would thus know

that we cannot safely phase deliveries or schedule repairs rigidly on

the basis of these monthly predictions.

Many different procedures can be followed in selecting the pre-

ferred technique for a given part. We proceeded as follow: In

general, a part has very few dmends during its early months on a

weapon, and hence some non-statistical prediction technique would

have to be used during this time. So ve rather arbitrarily began with

12 mths of experience for the B-52 parts and 8 months for the Falcon

couqonents. This left us with 10 prediction sets for the former and

7 for the latter. Since our primary objective was predicting demands

for a year in the future ratber than on a nonth-to-moth basis, we
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first examined the average monthly errors for the part based on a

given experience period, beginning at these points in time. The

technique vhich has the smallest AME is the preferred one; i.e., it

gives the best predictions for a year based on the given experience.

Next we examined the pattern of the AME's over time in accordance

with the criteria discussed above, to select a single technique if

possible which would have the smallest AME. For some parts, one

technique was better than the others for one experience period and

worse for the next. In order to avoid shifting back and forth among

techniques we selected as preferred the one which had the smallest

Ai for the largest number of prediction sets, if there was such a

one. When it was not possible to select a preferred technique on

this basis, we examined the root mean square errors in the sam manner

as the average mothly errors, seeking the technique with the smallest

mnmth-to-month variation for the largest nmber of prediction sets.

If this did not yield a preference, we examined all the AME's* for

the part, the number of over- and underpredictions, homing, number

of dmands, etc.,, to make our selection. This introduced some sub-

jectivity into the choice for those few Parts for Vhich this Vs

necessary.

Fbr some of the parts a service-life technique -- V, VI, or VII --

vas preferred during the latter part of the program. One reason vas

that not enough demends had accuulated during the early months to

enable us to use them. We then chose the best moig the first fom

techniques for the early part of the program.

*Tnt-ome for the B-52 parts and 14 for the Falon conemte.
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APPLICATION TO B-52 DILT

We turn now to the application and evaluation of the seven tech-

niques as applied to the B-52 Data.

We chose for study Hi-Valu and Category II recoverable items only,

in six major property classes. These six classes were Engine Compo-

nents, Airframe Structural Components, Gunnery Components, Bombing

Fire Control Components, Coummunications Equipment, and Aircraft

Accessories. There were 875 parts in these six classes with demands

of 5 or more during the 33-month data collection period. (All parts

in the original listing which had fewer than 5 demands were eliminated. )

We chose a sample of 300 from these six classes, 50 in each. Deletions

and combinations of parts reduced the sample number to 272.

About 40 per cent of the parts in the sample were Hi-Valu, while

60 per cent were Category II reparables; 144 of them had no demands

in the first year of the program and 70 had none during the first 21

months. During the entire 33-month period there were no demads for

about two-thirds of the part-months.

Table 6 shows the number of sample parts in each property class

to which each technique was applied.

Table 6

Techniques and
Number of Parts

Property Class I-IV I-VI I-VII

Engine components 47 9
Airframe structural components 45 35 1
Gunnery components 46 30
Bombing fire control components 38 24 4
Communications equipment 48 16 5
Aircraft accessories 8 31 --2

Total 272 145 12

Five was selected arbitrarily for the purpose of this study.
About 6500 parts had fewer than 5 demands during the entire data
collection period.
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The first four techniques were applied to all 272 parts. In order

to use Techniques V and VI, we required complete date on parts which

had at least four demands during the experience period. This limited

their applicability to 145 parts. The Air Force Technical Order des-

cribing the actuarial method (Technique VII) suggests that data on

about 100 failures should be available in order to use it. We required

data on 10 failures during the first nine months. Even then we were

able to use Technique VII on only 12 parts.

There were 165 different aircraft in the study. Beginning with

the 12th month, there were between 85 and 100 planes on the two bases

during any one month. About 68..0 flying-hours were accomplished

during the 33 months. There were 2500 aircraft-months of data, with

an average activity level of approximately 30 flying-hours per plane

per month. The number of flying-hours increased slowly: only 55

per cent of the total number was accomplished by the end of the 21st

month, at which time we made the last predictions for a year in the

future. About 42 per cent of the demands for the 272 sample parts

occurred during the first 21 manths, and 58 per cent during the last

year.

An examination of the cost of the parts in our sample is of some

Interest. There were 118 (43 per cent) which cost over $500. Of

these, 46 (39 per cent) had fewer than 20 demands, and 69 (58 per cent)

fewer than 35 demnds, or less than about one per month. There were

12 parts which cost more than $10,000. One part in this group, an

antenna assembly search radar, had 226 demands and cost $13,847. Only

11 out of the 272 parts had more deuands. The most expensive part, a

rveo-control assebl2y, cost $36,815. There were 10 demands for it.
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Following our routine, we made monthly predictions for a year in

the future with each of the techniques based on one, two, three, etc.,

up through 21 months of experience, using the recorded number of

flying-hours as the measure of activity for making the forecasts.

There were 21 sets of predictions for each part using Techniques -IV,

substantially fewer for V and VI, and only 4 for Technique VII because

of the large amount of calculation involved.

For each set of predictions, we conputed the three measures of

accuracy: the average, relative, and root man square errors. These

were then used to select the preferred techniques using the criteria

described in the preceding section.

Parts which had no Demands in the First 21 Months

There were 70 parts in the sample that had no demnds in the

first 21 months. Thirty-five were engine components. Demands ranged

from 1 to 113 during the last 12 months. The question arises: Can

we make satisfactory predictions for a year in the future for such

parts with our techniques? Each monthly prediction is sinply a con-

stant ultiplied by the ratio of that month's flying activity to the

activity in the experience period. For Technique I, zero demand

experience gives zero demand prediction, regardless of the amount of

activity. For Technique II, zero demand gives 3.00(f/F) as the pre-

dicted value; for Technique III, 2.72(f/F); and for Technique IV,

3.86(f/F). Techniques V, VI, and VII cannot be used for these parts,

of course.

At the end of the 21st month, the flying-hour ratio (f/F) for

predicting the ensuing year is about 0.82 for the 175 parts which were
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applicable to all series of B-521s. The flying-hour ratio is different

for parts with limited applicability but is less than one in all cases.

Hence Technique IV, which gives the greatest upper bound, yields a

predicted value of about 3 units.

We examined the average monthly errors for these 70 parts and

selected preferred techniques in accordance with the criteria discussed

above. Table 7 summarizes our results.

Table 7

NUMBER OF PARTS BY PREFERRED TECHNIQUE AND PROPERTY CLASS
(70 Parts with No Demands in First 21 Months)

Technique

Property Class I II III IV Total

Engine 1. 1 34 35
Airframe . -... 1 1
Gunnery - - 5 5
Fire Control 1 -- 1 5 7
Connunications 8 -- 1 7 16
Accessories 2 . -- 4 6

Total 11 - 3 56 1 70

Our previous discussion anticipated the large number of parts

for which Technique IV is preferred -- 56 out of 70, or 80 per cent.

For the remaining 14 parts, this same technique is preferred for the

last two or three prediction sets except for two of the communications

parts. One of these had only one demand; it occurred in the 29th month.

The other had only two demands; they occurred in the 33rd month.

To have zero demands for a part during a number of months while

it is exposed to many thousands of flying-hours is information that

should not be ignored. Such parts may be like the 6500 very-low-demand

items that were not eligible for inclusion in our sample, or they may

be like the 70 studied here, some of which ultimately had a large
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number of demands. If they are like the former, Technique I is pre-

ferred, but if they are like the latter, Technique IV is better, in

Sneral. We do not know what the future demnd pattern will be for

any given part experiencing a number of months of zero demand. If

we want to use Technique I, which always predicts zero for such parts,

a prediction period shorter than mne year -- any three or six mths --

should be used, so that we can shift to another teabnlq as soon as

soe demands occur, if this appears advisable.

Parts having Non-Zero Demand in First 21 Months

There were 202 parts in the sample which had scmo demand during

the first 21 moths. The preferred techniques were selected in accor-

dance with the procedure outlined earlier. We did not permit shifts

from one non-service-life technique to another, nor from one servie-

life technique to another, but only between the two groups. For

eample, even when it seemed best to shift from Technique IV to

Technique I at a certain point in time, we did not allow such a shift,

but selected that technique which had the sullest AM most of the

time, beginning with the 12th month. There are sow parts for which

ve would use a non-service-life technique util enough data had acomi-

lated, and then shift to a service-life technique. Generally, the

latter could not be used until about the 15th or 18th month. This

Imlies that if a part has service-life aharacteristics, It takes a

long tim for its demnd history to reflect this.

O$ary of Preferred Techniques for Samle Parts

Table 8A soarizes the results for the 202 parts which had at

least ne desma In the first 21 monthes. Table aS gives the reslts
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for all 272 parts in our sample. It is obtained by adding the corres-

ponding cell entries from Tables 7 and SA.

Table 8

NUMBER OF PARTS BY PREFERRED TECHNIQUE AND PROPERTY CLASS

A. 202 Parts with at Least One Demand in First 21 Months

Technique

Property Class I II III IV V VI VII Total

Engine 8 -- 4 -- 12
Airframe 23 6 3 7 1 4 - 4
Gunnery 10 3 5 16 4 3 -- 41
Fire Control 11 -- 6 7 2 3 2 31
Commnications 17 4 2 3 2 4 - 32
Accessories 16 4 5 10 j _2 42

Total 85 17 25 43 i. 16 2 202

B. All 272 Parts in the Sample

Engine 8 - 5 - - -- 47
Airframe 23 6 3 8 -- 45
Gunnery 10 3 5 21 4 3 -- 46
Fire Control 12 - 7 12 2 3 2 38
Communications 25 4 3 10 2 4 -- 48
Accessories 18 _4 _5 I _3 _Z = 8

Total 96 17 28 99 .1 16 2 1 272

Our analysis of the 202 parts showed that for several of them it

was preferable to use a non-service-life technique first and then

shift to a service-lift technique. In such cases we allocated the

part to the latter in Table 8A. The point in time at which the shift

should be made varied from part to part; but in general, the service-

lift technique was preferred as soon as enough demands had occurred

for it to be used.
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Table 8A shows us that no single technique is preferred for all

the parts. Technique I, the issue-rate technique the Air Force now

uses to predict demands, is best for 85 parts (42 per cent), more

than for any other single technique. The next largest is Technique IV

with 43 parts, or 21 per cent. Techniques I-IV account for 170 parts,

84 per cent of the total of 202. Taken together then, the constant-

demand-rate techniques, which are the cheapest to use, are preferred

for the vast majority of the parts in our sample of Hi-Valu and Cate-

gory II recoverable parts having some demand during the first 21 months.

Techniques V-VII, which assume that demand is related to age, were

best for 32 parts. The first two of these were preferred for about

the sam number of parts. Actuarial Technique VII was best for only

2 parts. This suggests that the Air Force should examine very care-

fully any items for which service-life prediction techniques are

being considered, in order to determine if the added improvement is

worth the cost of collecting the necessary data and -'kin the eoau-

tations.

Table 8B gives the nuber of parts by preferred technique and

property class for all 272 parts in the samle. Techniques I and IV

are preferred for about the sam number of parts, 96 (35 per cent)

and 99 (36 per cent) respectively. The parts having no demnd in

the first 21 months of the data-collection period account for the

lage increase in the preferences for Technique IV.

We selected our sample of 272 parts frm those in the original

population which bad 5 or more demnds during the 33-menth period.

About 650 part numbers bad fewer than 5 d ndms and were thus not

eligible for t.he sale.
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Since, at the beginning of a program, the Air Force predictor

does not always know whether there will be a large or small number of

demands for a particular line item, the best he can do is use engineer-

ing and class knowledge for the predictions. The continual maintenance

of an accuracy measure shoving how well his predictions are meeting

actual demand, however, might suggest points in time vhen he could

change to a statistical technique. Furthermore, predicting, say, for

three or six months instead of a year vould make the selection of

another tecbnique more sensitive to the ocurrene of dosnds.

APPLICATION TO MISSILE 3ATA

Our next point of discussion concerns the application of the pro-

cedures to the Falcon missile data. We had information on the recorded

failures of 27 relatively expensive components of the missile over a

26-month period from May, 1955 through June, 1957. The data cover

about 6,000 missiles.

The smallest number of recorded failures for any one component

during the 26-month period vas one and the largest, about 1,900. The

total number of failures on all 27 coopnments exceeded 8,700, with

92 per cent of them occurring during the last year, I.e., from mnths

15 through 26.

Fewer than 200 missiles vere in the system during the first ten

amths. The niber then built up rapidly to a peak of about 2,900

at the end of the 22nd mth; from that point on, it dropped each

month.

During the data-reporting period the missiles were subject to

appradmetely 30,000 cbeckouts. The checkout prorm bullt up much
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slower than the B-52 flying-hour program. Only 1,000 checkouts were

performed during the first six months, about 2,40o by the end of the

twelfth month, and 3,500 by the end of the fourteenth month, when the

last predictions for a year in the future were made. Of the total

checkout activity, 88 per cent occurred during the last year of the

data-collection program. By contrast, 45 per cent of the B-52 flying-

hour program took place during the last year.

A checkout was used as the program element in making predictions.

It is more meaningful than operational time, which is usually small --

only about ten minutes.

As with the B-52 parts, we used data cumulated to the end of

each month to zmnke monthly predictions for the ensuing year for each

component with each of the applicable techniques. We then comuted

the measures of accuracy and selected a preferred technique for each

comonent. Only 10 of the 27 ccponents had enough failures so that

all seven techniques could be applied to them. The first six techniques

were used on 7 components, and only the first four on the renining

10. This gave us 14 sets of predictions for each component using

Techniques I, II, III, and IV; f 2 to 14 sets using TeahnIques V

and VI, depending on the muiber of failures; nd four sets for Technique

VII. This last is due to the fact that we una predictions with the

actuarial technique at the end of the 9th, 12th, 13th, and 14th mmths

only. There was too mah computation involved to make predictions at

the end of each month. Table 9 shows the nusber of ecqiomnets by

preferred technique and general chezacteristics.
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Table 9

NUMBER OF COMPONENTS BY PREFERRED TECHNIQUE
AND GENERAL CHARACTERISTICS

General - iginigau.
Characteristics I IV VV Total

Electronic 2 6 1 -- 9
Electrical-mechanical 3 7 -- -- 10
Mechanical with no

moving parts 6 -- -- 1 7
Unknown -- -1 --

Total 3-U 14 1 1 27

Based on this table,. we can smurize our results for the Falcon

iss.ile as follows: Technique I is preferred for components which

wre chiefly mchanical with no moving parts; upper-bound Technique IV

is preferred for electronic, electrical, or mechaniical components.

These results should not be umderstoocjtb mn that upper-bound Tech-

nique IV offers a superior forecasting mthod for electronic parts

as such. There are indications that the good shoving of this method

in the present studyr resulted from the accelerated phase-in of the

Falcon missile during the period in question, which tended to turn a

declining demand rate per checkout into an increasing demd rate per

Mth.

We were able to manke a more detaled analyvsis of the Falcona cow-

pouients then the B-52 parts because of their smaller number.* We

eawined the constant -failure -rate assumption of Techniques I-IV and

found It valid for only 10 of the 27 components.- Technique I waLs

preferred for 7 of thes end IV for the ramann 3. - im of the
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other components shoved evidence of constant but different failure

rates during different portions of the data-collection period. We

found significant linear relationships between the monthlr numbers

of failures and checkouts for 22 or the 27 components. They were

only of limited value, however, for prediction purposes because of

the mny iumnovn involved.

FflINGS AND CONC MIONS

(1) No one technique was preferred for all parts and time

periods in our sample of B-52 parts., or for the Falcon components.

Technique I was preferred for 96 parts in the B-52 sample, IV for 99

parts. Technique I was also preferred for the Falcon components that

are mechanical with no moving parts. However, Technique I underesti-

ites onch of the time, especially in the early mnths of the program.

If an overestiate is more desirable than an underestlmate, Technique

I would not be preferred for as mny parts; we would then prefer to

use one of the upper-bound techniques.

For those parts for which a service-life technique wae preferred

during the later portion of the time period, there is no uniformity

as to which non-service-life technique should be used during the

early portion of the progam.

(2) A large number of parts will be exposed to mny months of

operation before any demands are observed. This fact of course does

not guarantee zero demands in future months. Thus, our sample of

B-52 parts included 70 which had no doends during the first 21 months.

DrIN the 2ast 12 mnths, dmands ranged fra 1 to 113. Of the 27
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Falcon coponents, 4 had no demands during the first 14 months. But

they had demnds of 1, 4, 4 and 60 during the last 12 months.

iecmhnique IV was preferred for 56 of the 70 B-52 parts and for

the Falcon component which had 60 demands in the last 12 months.

fechnique I was preferred for 1 of the B-52 parts and the remainin

3 Falicon ceonents. Technique III was preferred for 3 B-52 parts.

(3) The issue-rate technique has most general applicability.

Our B-52 samle was selected from those part numers which had at

least 5 deeunds during the 33 month data collection period. There

were about 6500 part numbers vith 4 or fever demnds. The demand

rates for these parts would be low and there would be a number of

mnths of zero demand experience. Issue rate Technique I alvays pre-

dicts zero when experience is zero, and would be preferred for such

parts according to our criteria. As soon as scme demands occur, how-

ever, it would underpredict and an upper-bound technique would be

better. If we want to use Technique I for very low demnd parts,

predictions should be made for less than a year, say for three or six

months, so that a shift to another technique can be made, if advisable,

as soon as sowe demands occur.

It should also be pointed out that the issue-rate technique is

the least expensive as well as the simplest technique to use. Any

added improvement in the predictions made by me of the other techniques

my not be worth the additional cost. This possibility would have to

be examined for each part. For the very low demand items, Techniques

II or IV, which are the most expensive, my overpredict. Nevertheless

their added cost my be worth it in terms of avoiding shortagies. ApLtn,

such deciioms would have to be vmAe on a part-by-part basis.
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(4) Despite the fact that many parts seemed to have increasing

demand rates, we were not able to identify any group for which the

service-life techniques were preferred during the time periods for

which we had data. For those parts where a service-life technique

vas preferred, the preference was V or VI. Technique VII, the actuarial

method, was preferred for only 2 of the 12 B-52 parts and for 1 of 10

Falcon components to which it was applicable. This implies that the

Air Force should examine very carefully those items being considered

for the application of service-life techniques. They are expensive

to use and the improvement in accuracy my not be worth the increased

cost.

(5) There will always be prediction errors regardless of the

technique used or the experience accumulated. In this study, even

when the preferred technique was used for each part or group of parts,

many errors were large.

(6) Regardless of which technique is used, a measure of its

accuracy should be maintained. The average monthly error, the rela-

tive error, the root mean square error, or some other measure could

be used, depending upon the desired objective. Continual examination

of this measure would give a better indication of how well the tech-

nique has been predicting and suggest points in time at which changes

to another teohinque "t be desirable.
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ON I US OF TO GAMIA FJUNCTON IN MM PICTION

Jules Silver

Air Force Logistics Comazi 4 a

I would like to describe some work done by the Operations Analysis

Division of the AF Logistics Command. It concerns the use of the

Goma distribution to predict demand. This work was undertaken to

explore the possibility of developing a relatively inexpensive pre-

diction technique for Hi-Valu items, which would yield results at

least comparable in accuracy to those obtained by computationally

expensive techniques such as the actuarial method.

In order to make sure that we have agrement on definitions, I

shall define:

(i) Survivor Distribution (Percent Surviving Table)--the proba-

bility that an item of age zero will not have failed by age t.

(2) Time-to-Failure Distribution (Percent Failing Table)--

the probability that an item will fail between age t and t + 1.

NMOTE: This distribution can be derived from the survivor distribution

by differencing the successive probabilities.

(3) Failure Rate--the (conditional) probability that an item of

age t will fail during the interval t to t + 1. This is derived by

dividing the time to failure probability at t + 1 by the probability

of surviving to time t.

(4) Removal Distribution--the probability of j removals in soe

interval of length T, when failed iteem ae replaced with it of

zero age.

- Wright-Patterson 
Air Force Bae
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(5) Expected Demand Curve--the expected number of removals occur-

ring in a specified interval of time.

The Gam distribution of order n is:

n+l nx -ft
f(t) = t n e

n!

and represents the tine-to-failure distribution. The Gna distri-

bution of order zero is equivalent to the exponential distribution.

It can be shown that the removal distribution equivalent to the

"Gamma-zero" is the Poisson and we shall call the removal distribution

for the higher order Gammas "the Hyper-Poisson."

The issue interval technique for predicting demand is one in

which future demands are estimated by multiplying the ratio of future

program to past program by the issues during the past program. This

technique yields results equivalent to that derived when the time-to-

failure distribution is exponential (constant failure rate) or where

the population is mature so that the age distribution is stable. How-

ever, the issue interval technique does not give "good" results where

the failures are age related, and the population is not mature.

The actuarial method predicts removals by:

(a) computing the failure rates and applying them to the &We of

items in the inventory or;

(b) deriving an average life from the failure rates and using it

in a similar way to the issue interval. We will call this the "single

factor" technique.

gM.Method - This method takes advanta. of a family of dis-

tributions which ae quite versatile, and easy to handte inthetialy.
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The Gamma function is translated by means of the removal distribution

into an expected demand curve and an iterative procedure is used to

find the best fit to the actual demand curve (cumulative demand vs.

cumulative program) by a least squares technique. In effect, this is

a method of finding the parameters &- and n that give the best fit.

As additional actual data is generated, the computer program adjusts

the prediction.

A Monte Carlo model initially tested the technique. An item with

300 hours average life and 600 hours maximum life (mandatory removal)

was synthesized. This item was used on aircraft in 12 squadrons of

25 aircraft each, with squadrons phasing-in during a period of 5

quarters. Flying hours for each aircraft were randomly generated

with an average of 20 hours per month per aircraft but varying between

o and 4o0.

The failures were generated from a "uniform" time-to-failure

distribution (i .e., constant probability of failure from age 0 to

mandatory removal). This gives failure rates which are low and uni-

form during the early ages but rise very rapidly during the older aVs.

The uniform time-to-failure distribution was selected becaume it

appeared so unlike any Gema distribution.

Two forecasts were made, each for 12 months in the future; one

after 12 months of "actual" data and one after 18 months of "actual"

data. Predictions were made, not only using Gemsa, but also "issue

interval," and actuarial (full table and single factor). Table 1

shors the results.
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Table 1

YOBCMTS USIN 12 AND 18 MOW OF "ACTUAL" DATA

12 Months 18 Months
Experience Experience

Item Demand Error Demand Error

Actual 176 242
Actuarial (Fall Table) 307 + 74% 205 - 15%
Actuarial (Single Factor) 344 + 95% 226 - 7%
Issue Interval 120 -2 144 -40%
Gamma 211 0+ 253 + 5%

With only 12 months of data, the actuarial methods made poor forecasts.

After 18 months, the demand predictions were good. The issue interval

technique was inadequate in both cases, since the population had not

matured.

The Gemma method worked well in both cases, and this provided

the impetus for additional work. Subsequently, a set of time-to-

failure distributions was attained for 134 items covered by the

actuarial method. The distributions appeared to vary quite widely.

The Gum method was used to predict demand, and a comparison made

with the predictions obtained by use of the actuarial technique. The

results showed the differences to be of the order of 15 per cent or

less.

The exploration of the Gamma technique described above has not

been completed for a variety of reasons. It should be pointed out

that the computational requirements for the gamna technique are not

inconsequential, although they appear to be less than those of the

actuarial technique. In addition, there ae many Hi-Valu items which

have a very long service life. 7his, In effect, would reslt in
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fitting a zero order function (which is equivalent to the issue inter-

val) during much of the early life, since the technique would not be

sensitive enough to detect the changing rates. On the other hand,

very short service life items mature quickly and the issue interval

approach would be satisfactory. However, it is felt that the technique

is useful for Hi-Valu item with mid-range service life; and additiomi

work in developing techniques is Indicated.
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A RRMAR! OF THE LOGISTITCS RESEARCH PWCT' S EXPEYMI
WM PROMMS OF DOMf P=DICTION

Henry Solomon

The George Washington University

The Logistics Research Project has been concerned with problem

of demand prediction for about 12 years. This is due to the signifi-

cance of demand behavior and prediction for the many logistics problems

which have been topics of research at the Project during this time.

To describe in about 30 minutes, the kinds and results of work done

on the subject of demand prediction requires that even some major

aspects and results must be ignored. It is also necessary to ignore

the particular context of logistics problems and model formulations

for which the various aspects of demand prediction were studied. The

following discussion consists of a few of the major highlights of

studies of demand behavior and prediction.

It should be noted that the comments to follow will be restricted

to problems of demand prediction for detailed line-items which are

particularly significant for many topics which may be placed under the

general label of military inventory problem. Also, while there are

differences between the problem of predicting failure vs. predicting

demand or usage, for the sake of brevity these will be ignored in

the following discussion.

One early major formlation of the demand problem was mostly

concerned with the determination of operational variables as program

*
Work performed in connection with the University's Logistics

Research Project, Contract Nr 761(05), Project NR 07 001.
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elements for usage. To quote ompkins, the usage problem is

about as follows: To determine a minimal number of independent

operational variables upon which the usage of a commodity depends

and to convert operational plans into the non-recurring quantities

of commodities required and into the time rate of recurring demands..(l

This did not mean that problems are limited to the identification

of these variables. Rather, once these were found, the problem was

to account for:

(1) Deviations from predicted operations,

(2) Deviations in average usage rates for maintenance and
overhaul, from station to station, and from time to
time (i.e., variations in procedures by technicians,
variations caused by aging, dev-elopment of better
materials, etc.), and

(3) Deviations of actual usagq rate around expected usage

rates during operations. (1,2-5)

During the years 1949-52, some attempts were made to study these

questions as well as some others, mostly as a consequence of the

formulation of inventory models.

Attempts to verify and, in fact, even in those early days, to

simulate these models, met a significant barrier; namely, the availa-

bility of demand data. As a result of extreme paucity of information

with which to investigate the many facets of demand behavior, a large

scale usage data collection program was initiated by the Project. (6) ( 7 )

Since this program generated what probably stands as the largest body

of demand data in existence, a few remrks eneernin the natare of

this program are in order.

See pae 14 of Ref. 1.
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The objective was to collect data representing usWe by and on

account of 65 ships. That is, to collect data on material used for

end-use by each ship, and material used for end-use by supporting

activities such as shipyards performing maintenance and overhaul on

these ships, tenders, etc. This 65 ship sample included various

classes and types of ships, e .g., carriers, destroyers, submarines,

etc. The data pertained to usage of all items other than categories

such as food and clothing. It included all mechanical and electrical

parts, all electronics parts, all ordnance parts, and all mneral

stores material.

While the number of ships included in the sample was reduced

over time, the program covered data extending over a 6 year period

beginning in June 1950. Fbr a very small number of ships, an addi-

tional time period is available resulting from a later research pro-

gram referred to as the "Allowance List Test Program."

A large amount of experience and insights were gained in the

problems of data collection and data processing. However, these

will not be discussed here. 8 ) ( 9  While this program was underway,

of course considerable thought was given to exactly how these data

should be used for analyses. Many such specifications were made prior

to availability of the data for such analyses (10)(n) These included

many of the topics mentioned on the agenda for this meeting, e.g.,

demand distribution studies of various kinds, types of activity

analyses essentially involving the behavior of usage related to oea- 0

tional variables, time series analyses, etc.

YWroAe, papers aearing in Ref. 9.
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In 1954, some small scale investigations were attempted, mostly

involving the search for meaningul operational variables. The

results of these were mostly negative. That is, the operational

variables employed (e.g., hours underway, engine miles steamed, war-

time operations vs. peace time, etc.) could not be significantly

related to usage. This was the first positive indication that the

demand prediction problem would be anything but straightfcrward.

However, again these were based on modest amounts of data. (12 )

In 1954 a working conference sponsored by the Project and the

Office of Naval Research was held on the subject of usage data.
(q)

From this, many proposals were offered in the areas of data collection,

data reduction, and the uses and analyses of usage data for logistics

problems. This is mentioned becaue many of the conclusions and

proposals probably still apply.

The first major study of demand behavior by the Project, and in

cooperation with the Bureau of Supplies and Accounts, was completed

in 1957. ( 1 3 ) This study employed a large amount of data and had a

significant influence on events to follow. The context of this study

was the Allowance List Problem or that of determining shipboard stock

levels. The data consisted of mechanical and electrical parts usage

by and on account of each of 12 submarines over a four year period.

The study also included the use of operational data plus a new and

vital piece of information, namely, population data. The sigaificane

of these population data will be explained shortly.

The important conclusions from this study were:

(1) No significant relations were observed between use
and the operationl variables evloyed.
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(2) The demand for items was extremely low and sporadic.
Over the entire four year period for each submarine
and its supply activities, 70 per cent of the items
demanded were demanded only once. Approximately 90
per cent of the items demanded were demanded at most
twice, etc. There was a surprising amount of con-
sistency among the 12 vessels as to frequency of events
of demand.

(3) However, for any ship the range of items demanded
differed significantly from year to year. That is,
almost all items which were demanded in one year were
not demanded in another year.

(4) While these 12 vessels included three sets of sister
ships there was extremely little commonality of items
demanded among the vessels. That is, the range of
items demanded for each ship was highly unique. This
indicated that broadening the base by including more
ships may have little effect on the results.

(5) Finally, and most important, approximately 75 per
cent of the items in the population, i.e., installed
and deemed wearable, were not demanded at all, by or
on account of each ship during the four year period.

This was the first piece of major evidence demonstrating the

very high degree of uncertainty of demand. The major problem being

the very large number of items deemed wearable but not used at all.

Still another way of looking at the problem was to conclude, that for

stocking policies, since the average quantity used of items which

were demanded was also very low, greater emphasis should be given to

range considerations than to depth.

While the results of the study were significant, they were also

negative. Given the observed high degree of uncertainty of demand,

in particular the highly sporadic nature of demand, how to handle or

control this condition for stocking policies was considered to be the

most iqgortant problem.

It was this condition which led to a major study pertaining to

nsasurmants of the military essentiality of repair parts. Since
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the range as well as the depth of item demanded was so uncertain, it

was then decided to determine whether or not it is possible to at least

select that range of items, which independent of any particular demand

characteristic, may be considered essential to the vessel's mission.

It is interesting to note that these observed demand characteristics

led to this particular military essentiality study rather than any

specific inventory model requiring measurements of essentiality.

This study proved to be highly successful and demonstrated the feasi-

bility of obtaining measures of relative military worth. It also

showed that most repair parts were of relatively low essentiality.

This military essentiality technique has recently been further improved

for the Polaris program and is in process of eentatioa for the

Polaris logistics system.

The demand study previously mentioned pertained only to mechanical

and electrical parts usage for submarines. There was still some con-

jecture that while these patterns may be true for these types of parts,

and for submarines, one would not observe the same behavior for elec-

tronics or ordnance parts in submarines, or for usage of other types

of repair parts for surface ships. Additional empirical studies were

conducted utilizing electronics and ordnance usage data for submarines

and other types of material usage for other type ships. (15-18) The

results of these studies confirmed the initial study for mechanical

and electrical parts. That is, again, for all types of material,

very low and sporadic usage was observed and the ma~aitudes were

almost identical with the initial study. These studies again emna-

sized the very large mnz of zero movers and, in the cae of thee
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items which were demanded, a very low amount of demands and quantities

demanded. Again while these results were significant and included

data of all types studied over very long periods of time, they were

negative. The term negative implies here that none of the more or

less straightforward techniques previously considered, would provide

acceptable results.

Earlier, population data was mentioned. Since this proved to be

a significant piece of information, a few remarks concerning these

data are necessary. Population data refer to the number of times a

part is installed in a component and the number of times that component

is installed in the vessel. If the interest is in terms of system

usage then, of course, the number of vessels which include the com-

ponent should be accounted for. In short, these data provide the

"number of opportunities for usage." These data are highly significant

but surprisingly difficult to collect. With the availability of this

information the number of items not used aa be observed, a statistic

too often unobtainable.

The second major aspect of population data is that one may wish

to assume that usage of an item is some function of its population.

In fact the explicit utilization of population data in this manner

resulted in one of the most promising procedures.

During the "Allowance List Test Program," a function of the

population was used as a usage estimator for some groups of item.(19)

In this program some very simple approachs were taken. One vas to

oensider the square root of the population as the usage estimator.

Ws Wined ut to be as pod an estimator as an other pretds
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used at that time. Since usage is low and sporadic, employing this

technique did tend towards overstocking, but for the sinulations used

during this program, this estimator was used only for the high worth

items for which some amount of overstocking is preferable to under-

stocking. Without going into details here, it should be stressed that

the first positive results occurred by considering usage explicitly

as some function of population for prediction of demand.

Also, with the Allowance List Test Program came some other

important positive indications about the possibility of improving

demand predictions. One of these was definite evidence that utilizing

usage data collected from some past period, even when used in the most

straightforward manner, provided better stock levels than no usage

data at all and relying solely on technician's estimate of require-

ments. In simulating future time periods and comparing amounts

actually stocked by technicians versus those stocked by simply extrapo-

lating usage and comparing both with actual usage in these future periods,

the result was that a great reduction in the range of item stocked was

incurred by stocking based solely on usage without incurring anywhere

near a proportional increase in the number of range shortages. Also,

in regard to meeting quantities demanded of any particular item, the

procedure of utilizing usage data provided less depth shortages than

those stock levels stipulated by technicians. The procedures where

solely usage data were used to predict future requirements were applied

only to item with "low essentiality." This procedure tended toward

understocking, however, the rationale employed was that these were low

essentiality items and in these cases, some amount of understocking

is preferred to overstocking. Another point worth notinS is that by
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including data from all sources the projections based solely on usage

were superior to those for which only ship's own use was employed.

That is, by broadening the historical base to include all activities

using material on account of each ship as well as by the ship itself,

the predictions for demand by the ship itself in the future were

improved.

A final point worth noting from the Allowance List Test Program

concerns the use of operational variables. It definitely appeared that

the operational variables typically used are too gross. That is, to

attempt, for example, to relate all mechanical and electrical parts to

"hours underway" or "engine miles steamed," etc., does not account for

the particular uses of the components in which the parts are installed.

That is, for example, several components in the case of the submarine

are used only when the ship is diving or surfacing. Hence, it might

be expected that this kind of operation is what would affect the usage

of parts in these components and not necessarily the number of hours

underway, etc. All that can be said at the moment is that the search

for operational variables cannot be said to be closed. Rather, some

more detailed types of analyses must be performed in the future.

Recently the Project has been undertaking a research program per-

taining to the logistics system for the Polaris Weapon System. Incident

to these studies, the problem of demand behavior is of paramount issue.

While the context of these problems cannot be described here, one impor-

tant requirement was to determine the demand distribution which may be

employed with a technician's estimate of average usage. Utilizing

demad data collected over a long period of time, same statistical
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investigations were made to determine the "goodness of fit" for the

negative binomial and Poisson distributions. The result of these tests

was that the line-item demand behavior over time could, in the great

majority of cases, be described by the negative binomial distribution.

Some caution must be exercised here by noting that the items used in

these tests consisted only of item which were used or the population

of damands and not the population of items which were installed and

deemed wearable.

In a recent set of large scale simulations for Polaris Allowance

Lists the negative binomial distribution was used with a particular

set of variance to mean ratios which were a function of the size of

the mean usage estimate.

The negative binomial distribution has some interesting properties

which are currently being examined more closely at the Project. This

pertains to the effects of different families of this distribution in

terms of sets of variance to mean ratios for particular average usage

estimates and the changes in stocking due to changes in protection

level. These different families of the negative binomial distribution

are also being studied in relation to other demand distributions.

The orientation of these studies is in terms of particular types of

Inventory problems. A great deal of attention is being paid to the

effects of the use of these distributions given such problems as deal-

ing often with extremely small mean demands, extremely high protection

levels, etc., and at the same time considering the resulting costs a

ains in the particular inventory system.

It might also be mentioned in regard to the Polaris Proram that

the Navy is activel collecting usage "ta. At the present tim ths
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is restricted to the collection of usage data from the Polaris Weapon

System. Based on the usage data received thus far, which does not

extend over a very long period of time, one again observes a very low

and sporadic demand situation. The total number of demands per Polaris

patrol are extremely small and the commonality of line-items used

between patrols is very low. Also, the commonality of items demanded

between different Polaris submarines is again very small. However,

based on the relatively small amount of demand data received thus far

there is one additional important observation. The usage data being

collected includes "application data," i.e., identification of the com-

ponent in which the part is replaced. Based on only a small amount of

evidence, one does observe here that independent of particular or unique

stock numbers, there is a fair amount of commonality in regard to the

components for which items are used. This is interesting in that it

begins to confirm a hypothesis which we have been seeking to test for

some time. That is, while demand for line-items is very low and very

sporadic, the bulk of the items which are used pertain to a very small

per cent of the total mmber of components installed. If this Is true

then some headway can be made in determining operational variables by

relating to the function of those components which are "item users."

Also, if this is true this sugests, together with what has been

learned in the area of military essentiality of repair parts, that

items should be classified in terms of particular characteristics of

the components in which they are installed. That is, possibly we should

not look at masses of individual line item or even attempt to group

these line item by dollar value, by comnonality of nomenclature, etc.,

but rather as particular functions relating to component applications.
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Recently a study has been completed concerning the demand for

spare parts for naval aircraft. (20)

At the present time the USN Aviation Supply Office (ASO) uses two

procedures for the determination of requirements for system stocking.

Items under the inventory management of ASO are split into two large

groups depending on which of the two procedures are to be applied to

the item. One procedure, termed "Replenishment Demand Issue System"

(RDIS) is to compute future requirements solely on the basis of past

demands. For the second procedure, termed "Program Usage Replenishment

Syste" (PUBS) usage is considered to be a function of flying hours

and future requirements are computed on the basis of an estimate of

future flying hours.

In PURS it is assumed that usage varies in a linear and proportional

manner with flying hours. The principal objective of the recent study

was to examine the validity of this assumption. The data employed repre-

sented usage for approximately two hundred aircraft of a partieular plane

type operating over a three-and-a-half-year period.

The results of this study may be summarized as follows:

(1) Usage patterns do not conform to the PUBS assumption
concerning the relationship of usage to flying hours.

(2) Of a total number of 1774 maintenance usage parts
observed, only about 60 item were correlated with
flying hours. This resulted in some interest in
exploring the relationship of usage to other possible
program elements, such as numbers of aircraft, numbers
of flights, umbers of landin, etc. Here again the
results do not support the assumption of proportional
linearity between usage and any of these program ele-
ments. It is also significant to note that of all the
program elements studied, flying hours ranked as the
least efficient estimator of aircraft parts demnd.
Whle no single progr. element shoed a sigmificant
correlation with item usage, projectiom based on
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number of "operating aircraft" provided better
results than any other program element.

(3) Demand for aircraft repair parts is extremely low
and sporadic. In fact, the demand patterns are about
the same as those observed for ship's repair parts.
This demand behavior alone indicates that usage would
be insensitive to variations in flying hours. An
additional similarity is an indication that usage
may be closely identified with the population (i.e.,
number of installations) of the part.

(4) One final point of interest concerns the estimates
of the activity level as represented by the program
element of flying hours. It was found that on the
average, the projections of flying hours for the
future period were overestimated by approximately
40 per cent. Hence, even if usage were related to
flying hours, the predicted demands would be in error
by this amount.

A first important conclusion from this work is that most connonly

proposed techniques for demand predictions have not produced results

which would be acceptable for use in any straightforward manner in

inventory problems. The principal underlying reason for this appears

to be that, with few exceptions, the demand for repair parts in mili-

tary systems is extremely low and sporadic. This high degree of uncer-

tainty of demand for line-items must be recognized in the development

of future inventory models.

Given the observed behavior of demand and the difficulty of demand

prediction, it is necessary to formulate models for inventory systems

which attempt to explicitly account for this behavior. That is, to

some significant degree, earlier inventory models which typically are

highly sensitive to the demand prediction problem, should be re-

formulated to minimize and/or control this condition. An example of

this is the development of inventory models where the "military value"

of repair parts is bl*1y i.±fiant for the determination of stock

levels.
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Although the problem of demand prediction may be reduced by

employing other variables in inventory models, this does not mean

that it can be completely ignored. While many past investigations

did not provide suitable results, there are some indications of

promising results in the future. This includes the relationship of

demands to operational variables not previously utilized; the dependence

of demands on population of installed parts; the classification of

parts in terms of their component applications; etc. Also, there is

much to be done in investigating the effects of different demand

distributions on the costs and benefits in terms of particular inventory

problems.
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SMOARY PRESENTATION ON DLAND FORECASTING

Robert G. Brown

Arthur D. Little, Inc.*

As a matter of terminology we distinguish between two approaches

to estimating future requirements. The word prediction is used to

refer to subjective estimates. Forecast refers to objective computa-

tions on historical data which may include past demand or past predic-

tions about demand. In this sense, our work has concentrated on

forecasting rather than prediction.

In designing a forecast system we identify six major steps where

systems design decisions must be made: (1) data; (2) model; (3)

smoothing techniques; (4) forecast; (5) error measurement, and (6)

safety factor.

Data. The data from which forecasts are made are most generally

periodic summaries of past demand. The summaries may be made monthly

or quarterly. The most serious problem we have encountered in our

work for the Navy is that consumption in the Fleet is very much

obscured by independent inventory management decisions at several

echelons between the consumer and the ICP forecasting future demand.

In some cases it has proved useful to consider inter-arrival

times rather than demand rates as the data. We have also considered

optional installation rates of attachments on prime equipment.

This paper presents a brief summary of the work we have done for
the Bureau of Supplies and Accounts, Navy Department, under Contract
No. Nonr-3406(00).
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Model. There are three basic types of models that we have con-

sidered in describing past demand. One is the time series in which

local segments of the pattern can be described by polynomials, trans-

cendental functions or even empirical functions of time. The second

is the renewal equation in which knowledge of the number of pieces of

equipment installed and the distributions of time to failure can be

used to evaluate the distribution of future demand. The third model

is an empirical probability distribution for the level of demand in

any period.

Smoothing Techniques. We have been primarily concerned with

methods suitable for high-speed internally programmed digital computers

processing a very large number of items each period. The criterion

for accuracy in a smoothing technique is a discounted least-squares

estimate of the parameters in the model. Since a great many items

must be processed, the calculations have been reduced to simple linear

arithmetic with files containing only one word of historical information

per degree of freedom in the model.

No economic time series can be represented over a long period of

time by a single model. Therefore, we have discounted past information.

The discount factor can be changed at any time to alter the balance

between stability in the fact of random fluctuations and rapid response

to transient changes of pattern.

The concept of exponential smoothing* has been extended to the

adaptive fitting of the coefficients in transcendental as veil as poly-

*Robert G. Brown, Statistical Forecastina for Inventory Control,
McGraw-Hill, 1959.
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nomial models so that seasonal and cyclic effects can be adequately

represented at very little effort.

Forecast. Generally a forecast is obtained as an evaluation

of the model at future time. We have developed two modifications.

The coefficient of higher order terms can be tested for statistical

significance. If there are no significant differences from zero,

they can be set equal to zero to minimize the various amplifications

in the forecast. The second notion is a progressive discounting of

higher order coefficients in future time.

Error Measurement. Any forecast or prediction must be compared

with the actual data later when it is available. These errors have a

distribution. The tracking signal is useful in deciding whether the

mean of the distribution is approximately zero. The mean absolute

deviation is simpler to compute than the standard device. We have

developed some of the statistical properties of the mean absolute

deviation. We have further shown that for a very wide class of dis-

tributions for the input data, decisions based on an assumption of

normally distributed errors are satisfactory.

Safety Factor. The order point in an inventory control system

can be expressed as the forecast ± k(MAD) where k is a safety factor

generally between 0 and 3. The value of the safety factor is selected

on the basis of current policy regarding routine service. We have

developed formulas and curves for the safety factor under three

philosophies: (1) for a specified chance of running out at the end

of a replenishment cycle; (2) for a specified chance of running out as

influenced by the frequency with which the item is replenished;
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(3) for minimum total cost under a variety of assumptions about

linear and quadratic cost of shortage and over-supply.

All of this material and more is to be published in book form,

"Smoothing, Forecasting, and Prediction of Discrete Time Series".

A complete draft of the manuscript will be available about 1 April

1962. Copies of the manuscript can be made available on loan to anyone

who will agree to provide critical conments on this draft.
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DEMAND PREDICTION AND INVENTORY CONTROL*

John F. Muth

Carnegie Institute of Technology"

It has been assumed -- perhaps too often -- that inventory con-

trol difficulties would magically disappear if better forecasts could

only be found. I would like to suggest that the relation between

forecasting and the uses to whth forecasts are put is not quite so

simple. It is important to analyze the decision-making process in

inventory control, in order (1) to know what to forecast and (2) to

understand the effects of forecast errors. Although this point is

hardly a new one, I have generally found it overlooked in industrial

operations research studies.

The interaction between forecasts and inventory control systems

can best be clarified by means of illustrations. I will describe two

cases in point. The first is a manufacturer of specialty steels; the

second, a battery manufacturer.

A STEEL MANUFACTURER

Steel firms, like many others, are faced with warehousing

decisions concerning inventories in regional warehouses. One company

maintains stocks of some 4000 items in about 35 warehouses throughout

*This paper is based on a talk given by the author at the
Conference.

**School of Industrial Administration.
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the country, in addition to stocks in several plant locations. Demands

for many of these items are extremely difficult to predict. For some

individual products no demands might be experienced at all for several

months. Then a very large order may come in. In fact the distribution

of demands is so extreme that Tchebysheff's inequality, taken as an

equality, appears to be a good approximation to the probability distri-

bution of sales, at least in the range relevant for inventory control.

The problem of inventory control at this firm is made somewhat

more difficult by the company policy that no demand for the product

is to be left unsatisfied at a warehouse if the item can be shipped

from some other warehouse or from a plant. From the standpoint of

operations analysis, however, this restriction suggests at least one

way in which the analysis might be simplified. It also allows us to

replace the ambiguous notion of "depletion penalty" by the much better

understood cost of shipping from one warehouse to another, the "trans-

shipment cost."

The economics of truckload rates do not apply to any particular

item stocked by the warehouse, but instead to all items. It is

therefore economical to have regular replenishment shipments from the

plant to each of the warehouses. The frequency of shipment would

depend on the total sales of the warehouse. The only problem is

determining the amount of each item to be included in the regular

replenishment shipment.

A reasonable way of approaching the problem is to assign for

each item in each warehouse, a "ceiling inventory" denoted by M. The

amount ordered would be such that the inventory after receipt of the
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order would be M units of the item. We identify two types of costs:

(1) inventory storage charges and (2) the extra costs of trans-shipping

an item from another warehouse when it is out of stock.

If R is the storage cost per pound within the replenishment

cycle and A is the average demand rate during the period, then the

storage cost would on the average be

(1) R(M -.m12)

Suppose the demands for the period D have a density function f(D)

and that the trans-shipment premium is P. Then the average trans-

shipment charge to be incurred with the item is represented by

(2) P f (D - M) f(D) dn.

Taking the sum of the two costs above and setting the derivative

with respect to M equal to zero, we obtain the following conditions

for a minimum cost:

(3) 1 - F(M) = R/P if 0 4_ R/P 4 1

M = 0 if 1 _ R/P

F(M) is the cumulative distribution function at M, so that 1 - F(M)

in Equation (3) is the probability of a runout.

The other ingredients of the inventory computations are three

forecasts: (I) the expected demand during the reorder cycle, (2)

the standard deviation of the forecast error, and (3) expected cost

of trans-shipment. The first two of these appear as parameters of

the distribution function F(D). The last is necessary because the
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cost of shipping varies from one cycle to the next depending on

demands for the item at the other warehouses.

The resulting inventory control system is quite simple. Many

"unwarranted" assumptions have been made in the course of the analysis.

Nevertheless, simulation tests indicate that such a system would

result in substantial cost savings. It would, in addition, allow

better managerial control of the inventory positions at the various

warehouses. By raising the parameter R, the cost of storage during

the reorder cycle, management could lower rather effectively the

inventory either in the entire system, or, more selectively, by

warehouses or product groups.

A BATTERY MANUFACTURER

This firm has a forecasting problem which resembles that of

military parts management in several ways. The firm is a manufacturer

of a wide line of storage batteries for automobiles, trucks, boats,

etc. An unusual feature of the forecasting problem is that demands

of the firm appear to be sensitive to weather conditions. It appears

that some "marginal" batteries in use may deteriorate if there is a

sudden drop in temperature or sustained low temperatures. The months

of December and January present special problems in forecasting demands.

The problem is particularly severe because these months come immediately

after the usual seasonal peak in sales. The inventory system may not

be in a position to have sufficient inventories to avoid the risk of

a lot of "panic" production if the so-called "weather surge" develops.

Two basic approaches to forecasting seem to be relevant. The

first is relatively elaborate and would probably not be justified
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unless byproducts could be obtained -- for example, product design

or long-run forecasts of sales. Quite a bit of information is

required in order to relate battery sales to weather characteristics.

It is necessary to: (1) make estimates based on experimental

evidence of the probability of battery failure as a function of its

age and the weather; (2) find some means af determining, perhaps by

survey sampling techniques, what the existing age distribution of

batteries is; (3) take account of the age distribution of the stock

of batteries in use, in order to predict failures of batteries for

given weather conditions, using the difference equations of renewal

theory; (4) try to find a good forecast of the weather, from which

replacement demand could then be estimated. Enormous strides have

been made since the day (1922) that L. F. Richardson proposed to

conduct an orchestra of 64,000 trained computors, just to keep ahead

of weather data from all over the world. It is still almost impos-

sible to predict with any perceptible accuracy the particular weather

characteristics required for forecasting battery demands (for example,

the severity of the temperature drops through a cold front, the

size of the "puddles" of polar air, etc.). The main conclusion about

this approach seems to be that it may be useful in understanding the

nature of replacement demands (we even have the best possible

exogenous variable for an economic equation system -- the weather) but

it has little merit as a forecasting device for inventory control.

The main reason is that the data requirements are much too large

and too remote.
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There is an alternative procedure that is considerably simpler.

It assumes that the most benefit can be obtained by keeping the fore-

casting procedure relatively simple, but taking into account the

fact that the forecasts will not be as accurate during the months

when weather surges are possible. We can realize this by including

seasonal adjustments in the standard deviation of forecast errors

used in the calculation of reorder points, lot sizes, and so forth.

This approach requires little modification of the inventory calculations,

except that a parameter changes from one month to the next.

Seasonal factors in the estimate of the standard deviation

may be found by adapting the exponential forecasting schemes, which

have already been discussed in this Conference by Robert G. Brown

and Peter R. Winters. Let St represent the demands for an item in a

period of time t and St_L represent the forecast of the demand for

the item during that time forecasted at time t-L. We start with some

measure of the forecast error:

(4) E-t = St-L,L - st

With p = 1, we are measuring the absolute deviations; with p = 2, we

are using the squared deviations, as is frequently done in statistics.

Whatever way we may define it, the variable Et is the one to be

estimated and revised each month. It will then be possible to derive

the standard deviation from a forecast of E.

We assume for purposes of illustration that there are twelve

seasonal factors associated with the months of the year. Let these

be denoted by F1, F2 , ... , F1 2 . Then the seasonally adjusted error
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for the last month would, from Equation (4), be Et/Fi where j is

the appropriate index for the month. The predicted value of the

seasonally adjusted error, denoted by Et, would then be given by

an exponential smoothing formula:

(5) Et = A (Et/Fj) + (1 - A) Et 1

where 0 4 A _ 1. Values of A close to unity correspond to substantial

revisions of the seasonally adjusted error by means of the recent

experience.

The seasonal factors themselves would then be revised. Let the

new seasonal factor for the month be denoted by Fj. Then since the

ratio Et/Et represents the last seasonal factor observed, exponential

smoothing of the seasonal factors would be given by an expession of

the form

(6) Fj' = B(Et/Et) + (1- B) F

where 0 4 B < 1.

A predictioa of the error T months from now, denoted by

would be the product of the last seasonally adjusted error and the

seasonal factor referring to the desired month. That is

(7) It,T = Et Fk'

where k is the appropriate monthly index.

The estimate of the standard deviation may be found from the

forecast 't,T" The nature of the conversion depends on the probability

distribution of the forecast errors. In the special case of the normal

distribution, the relation is given by
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I 2 It,2 if p = 1 (in Equation (W))
(8) d

Tifp=2

An inventory control system utilizing seasonal factors in the

error estimates in the determination of protective stocks is now in

the process of being installed. Although the system is not fully

developed yet, the prospects for better control and for cost savings

appear good. An important thing to keep in mind -- and this has

sometimes been overlooked during the discussions -- is that a great

deal of accuracy in demand forecasts is not always essential for

inventory control. Sometimes special forecasting problems, such as

the weather surge, may be accommodated in other ways.

CONCLUSIONS

I hope the cases cited show how close the interaction is between

demand prediction and development of inventory control systems.

First, the cost analysis indicates the properties of the system that

would in fact have to be predicted. In both cases it was necessary

to predict the range of forecast error as well as the forecast itself.

Costs of trans-shipment also had to be predicted for the steel manu-

facturer. Second, the theoretical analysis is also needed to show

what kinds of forecast errors can be tolerated by a proposed inven-

tory control system. It is meaningless in itself to know that fore-

cast accuracy is within + 10%. The relevant information is the

quali of the decisions based on the forecasting schemes.
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T EXPONMIALLY WEIGHTED FCRZCAST TG MOW:

THIORY AND PRACTICE*

Peter R. Winters

Carnegie Institute of Technology

My paper concerns two distinct things. First I relate some of

the experience we have had with the exponentially weighted moving

average forecasting scheme that was reported on in Management Science

in April, 1960.( 1 ) The second thing relates to a ueries of models

developed by R. J. Duffin of Carnegie Tech in work he has done for

the Office of Ordnance, United States Arm.(2)(3) The second report

will be published shortly and is, as of this time, available only in

reproduced form from the Mathematics Department of Carnegie Tech.*

A SET OF (ONMfTILY WEIGHTED MOVING AVERAGE MODELS

Let me begin by reviewing several models that were reported on In

Ref. 1. The simlest model assunes no trend and no seasonal.

(1) t " t + (1 - A)

t,T t

Research was undertaken for the project, Pl andControlof
Industrial Operations, under contract with the Offoe of N I! iamh.
Contract N-onr-760-(ol). Project AR 047o11.

School of Industrial Admlnistratlo

'See Appendix, p. 82.
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8 is the sales in the t-th period. S8 is the smoothed estimate of the

mean of the sales distribution during the tt period: -S is estimatedth

at the end of the t-th period when the information of actual sales has
become available; - is defined in the sam way as St . Finally, the

forecast, St,T, is made at the end of period t for T periods into

the future. St can be shown to be an unbiased, but not efficient,

estimate of the mean of the distribution of sales if, in fact, this

distribution is unchanging over time. If this assumption is met, of

course, a simple average would be a better estimte. This simple

model is recnnded for use when there are some systematic movements

of the mean of the distribution but yet movements which me does not

wish to capture explicitly in a model. The justification for using

this model is that it seems to work all right. This first model is

ezactl]y equivalent to Brown's model (4 ) which he calls "single smoothing"

and to Duffin's model(2) where the order of the polynomial is zero.

The second model is one which has a linear trend, but no seasonal

effect. It consists of two equations plus the forecast.

(2) St" ASt + (1- A) (-l + Rt-A),

Rt -Ct-l + (I- C) Rt-3,

StpT -St + Rt
In this model Rt is an estimate of the units per period that the mean

is increasing or decreasing, made at the end of the tt period. [All

of the other quantities have been defined above] This two-equation

model seem to be equivalent to the model that Brown calls "double

amoothng," and in it e is required to save two pieoes of infozuton,
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the jand the R, calculated lt period. Notice that in all of the

m aodels the cnstruction follows the sawe pattern. For each cme nt

~of the model there are two estimates: one @ae previously and a

current one. Thee two are eighted together to obtain a nev cu-rt

estimate.

The third model In this et is one vab ocuntaius a linar tren

and ratio seasonals.

(3) 'r AMt + (1 -A) __+Rtl(3) t Ft-

Pt - -t + (1-B)t.N ,

.t C( - T- ) + (1 - C) R~

8t,T " + •RO 1 t-N4T

N - No. of periods per cycle;

0 <A, B, C <1 •

This model is essentially the sam as the one above except that current

sles are deseasonalized by the seasonal factors F; and then these F's

are used in -akin forecasts. Notice here that the amount of informa-

tion which mst be saved from period to period, for each forecasted

series, goes up substantially. We must save Tand R as before, and

nov, in addition, twelve seasonal factors If, in fact, our cycle am-

sists of twelve periods. The seasonal factors were included beause

a number of interesting time series appear to have seasonals in them.

They seem to add substantially to the ability to forecast# partlcularly

iAmn one is forecasting som distance nto the future.
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GUERAL WCONENTIAL FORECASTING PROGRAM (GMTP)

This program( 5 ) is written in FORTRAN for the IBM 650; other

FORTRAN versions exist for 700 series machines. It is an extension

of the computer program illustrated in the Management Science article;

it allows more flexibility and gives more information. The GEFP Program

tries out the forecasting model on a time series, evaluating the accu-

racy of prediction by several different measures, and permits testing

of the exponential weights.

Figure I illustrates this effect.

Sales
S
t

I I
SI i___ _L I I II

Q N H Q D t
1 2

Fig. 1

The time series analyzed is assumed to be made up of D observa-

tions of sales (for "sales" the user can substitute the name of what-

ever series he is analyzing) in units per period, St, for t - 1, ...

D. The number of periods per cycle is N. For exanple, N would be

12 for the number of months per year. The program uses the early

part of the data (tul, ... , H) in a coinn sense way to determine

initial values of , , and the seasonal fators vhich are saved In
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permanent locations. The exponential model uses these values and a

set of weights (A, B, C) read in at Q to start at Ql, then simulates

the use of the exponential model through Q2 without forecasting. At

the model begins to make forecasts, continuing to do so until it

reaches the end of the data. At each period forecasts for P periods

into the future are made. These forecasts are compared with actual

sales, the forecast errors are computed, and the sum of squared

errors is collected for each forecasting period. For example, all

the one-period-ahead forecast errors are collected, then the two-

period-ahead forecast errors are collected, etc. These sums of squared

errors are used in two places: (1) in the calculation of ), one of

the measures of accuracy of prediction, and (2) in the calculation of

standard deviations of forecast errors and coefficients of variation.

The first criterion of prediction accuracy Is #, a wJhted sum

of squared forecast errors

f EP (E 32)k wk; zm 6-)
k.,l t

The w's are weights that indicate the relative importance of forecasts

for each k- period in the future. If the program user is interested

in simply a one-period-ahead forecast, then P - 1, vI = 1. If he wants

to make forecasts for three periods each time he forecasts, then P 3;

a possible set of weights would be wI - .5, v2 = .3, v3 - .i (the

weights need not add up to 1). If he wants to forecast only the

period into the future, then P = 4 and w1 = w2 = w3 - O, 4 = .

(Actually, all four forecasts will be made, but the first three wll

be inored In OCqiutIn $.)
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The second criterion is average fractional error. Although the

formula is ccmplicated, the idea in simple. This measure calculates

the average absolute error for all forecasts made and divides it by

the average sales over the forecast period. This allows the user to

iLke statents as "The average error was 15% (or 25%) of sale."

D-P P
E EP St,k -St~k

A. . . rtQ
2  kalt 1

P(D - Q2-P+ 1) t t J

It +1D -Q 2 _

The third criterion uses standard deviations of forecast errors and

coefficients of variation. The GO? also calculates the standard

deviation ' and the coefficient of variation CVk for each k, that

is, for the one-period-ahead forecsts, the two-period-ahead fore-

east, and so oM.

(y, L2) k

rkax j D-P- +
D - -Q24 1

cv,, a
Em k

t:%+i D - 2

A number of options are available to the user. For example, the pro-

gram my be used either with or without trend, or with or without

seanal fators. Vhriable output Informtion Is also available.
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HUIMS AND NOTE TO USERS

Evaluation of the forecasting ability of the third model, the one

with linear trend and ratio seasonals, depends upon several factors:

(1) the criterion function;* (2) the way in which the data in used to

generate starting values; and (3) the (ABC) weights that are used.

One reasonable absolute measure is the coefficient of variation (fore-

cast error standard deviation divided by average sales). For a fore-

cast of one-period-ahead and for the best set of weights for a par-

ticular piece of data based upon our rather limited experience with

the model, the coefficient of variation varies somevhere between .10

and .35. 1 would consider .10 rather successful. In general I would

say that my aspirations now are much lower than they were when I began

casting about for a forecasting method. It seem unlikely, if relative

costs of comuting and storage are about the same, that substantially

better methods will be found.

Finding the A, B, C weights which minimize the criterion function,

say , is a matter of trial and error. Several different schemes

have been tried out on this problem. These include enumeration of

the points of a three-dimensional grid, in the case of the third model;

second a gradiant method; and third, another method of direct search.

This forecasting method has been used extensively with an inven-

tory control model ( 6) ( 7 ) in which the ability to forecast is measured
by the variance of forecast errors, relative to average sales. The
lover this variance, the lower the cost of the inventory system will
be. For inventory models based on other characteristics of assumed
sales distributions, other criteria may be more relevant.

Best A, B, C weights for for one-period-ahead and three-
periods-ahead forecasts are the same.
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One advantage of the grid method is that it gives some notion about

the entire surface of the criterion function. This surface turns

out to be non-convex over its entire range. However, in the neighbor-

hood of the optimum, the surface is convex. The direct search technique

which we hooked up with the forecasting program was the one reported

by Hooke and Jeeves in the Journal of the ACM last year. (8) The

surface in the neighborhood of the optimum is quite suitable for

these methods.

There is one curious feature about the model in its ability to

forecast a number of periods into the future. If one examines the

standard deviation of forecast errors for one-period-ahead forecasts,

for two-period-ahead forecasts, and so on, one finds results which

typically look like Fig. 2. Counter to our expectations, rk actually

vent down (although not substantially) for the first few months out.

This suggests an auto-correlation in the data or the model that we

are not handling properly. At least it is intuitively appealing that

the nearer the period being forecast, the more accurate the forecast

should be.
I I
I I
I I
I I

~a k Ofa I

forecast - _
errors

I I
I I

I I I l I I I

0 6 12 k matb In future

Ift. 2
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SM BTIONS FOR APPLICATION

Because a full-fledged testing of the model and searching for

optimm weights for a particular series requires a substantial anount

of past history, and also a good bit of computing time, it seem

reasonable to analyze only a sample of the products. Our experience

shows that approximately the same A, B, C weights are optial for a

wide range of products; it is reasonable to use the same A, B, C

weights for groupings of products at any rate. In addition, several

studies indicate that the coefficient of variation is constant over

a wide range of products and sales levels. In one application for

the Wear-Ever division of the Aluminum Company of America we were

able to describe two groups of products, such that within each the

coefficient of variation could be assumed to be constant.

Some measure of control over the forecast seem advisable. One

device that is suggested is an exponentially weighted estimate of the

variance of forecast error which would require saving a couple of

extra pieces of information for each product (2 and the most recent

forecast). If the current estimate of the standard deviation becomes

either surprisingly high or low, caqpared with the initial estimate,

then something can be done both about the forecasting procedure, and

also about the forecast's use. For exam le, if the forecast is being

used for inventory control, then buffer levels or trigger levels an

be changed.

Chapter 15 of Ref. 7 gives an analysis of the distributions of

forecast errors. The work given in this chapter concludes that dis-

taibutloms of sale are quite eved; partioularly for low-sellIag
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Items, and that these distributions my be reasonably approximted by

the Gan and the log-normil, with the Poisson being a reasonable

approximtion, but not as good as the first two. Of course the choice

of approximation here depends moa the model in vhich the foreast

will be used.
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APPIX

Folloving are exoerpts from the two Duffin papers:

ELT1APOIATOR AND SCRATOR

The function to be minimized is a weighted sm of squared errors

(1) min z. Z enp~)
n-I

where n counts time into the past: n=1 is the current period, n-2

is last period, etc.; yn is observed value in period nt and

P(n) a0 + aln + ... + aMn

The extrapolated forecast for next period is given in general by the

"short formila":

(2) = ( 1 )'+l ( m ) (yj+k + ' +k)

For crumple, if m4

Yo a 3(Yl +e6l1 - 3(Y 2 
+ G262) + (Y3 + 9363)

with k = y y k' the error in prediction in period k. The short

formula appears to require saving 2 pieces of information for each of

(a-l) periods in the past. However, for m=3

o a 2(y, + o61) -(Y2+ 9262)

Same as proposed by D. A. D'Esopo in "A Note on Forecasting by the
Exponential Smoothing Operator," Journal of the Operation& Research Society
of RAertca, September-October, 19U1.
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which reduces to

* = 2(1 - G)y + 29 y - (1 - 92 )y- 0 2 y

where it is possible to save y and A = [(i- )y 1 + e2Y for

use next period, or only 2 pieces of data for a second-order polyno-

mial. I don't know if this generalizes for higher order polynomials,

but since the functional E is precisely the sam as Brown's, I voulL

guess that it would.

ECPNOMAL EXtRAPOIATOR

The data is fitted with generalized polynomials

m

(3) p(x) =EajJ

where thep 3  are fixed coplex numbers. The functional is simillar

to (1):

Duffin develops a parallel short formula

-1 k

gkke6+

with

M1
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1-

1 2 M

Duiffin then develops the variance of the estimate for several cases,

and indicates some assintions under which the extrapolation is a

minn likelihood estliate.

One uemple of the use of comlex numbers gives

P(Z) - % + (&k coPkx + bk sin.,k) .

If M a 1
M

P(x) a ao + E (k Cos k x + bk n k x) •

The short formulA is

y *a A (y + 9 6,) - A(y2 
+ 0 2 62)( 3 + 3 3 )

with A - 1 + 2 cos Pl. The construction here parallels the short

formua in Eq. 2. This work is essentially the s as the formalation

that E has edeveloped.
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DEMAND PREDICTION: A COMMERCIAL VIEWPOINT

Winston C. Dalleck

McKinsey & Company, Inc.

Spare parts demand prediction as it is being discussed at this

conference is a particular problem dealing with parts usage behavior

in aircraft, mostly military aircraft. However, the practical aspects

involved here -- the determination of demand patterns, development of

forecasting techniques, and measurement of forecast errors -- are akin

to many other problems involving item demand prediction. Thus it is

not altogether inappropriate at this meeting to comment on some of the

more general and commerical forecasting problems we encounter.

One statement of definition seems in order at the outset. In

dealing with forecasting problems we recognize, as was pointed out

earlier, that both a projection and prediction are usually involved --

the former being an examination and extrapolation of history and the

latter a provision to account for new or additional effects such as

promotional effort, price change, competition, a revision of the

distribution setup, and the like.

Our forecasting experience has been commercial rather than

military, and is of two types. The first, and the one encountered

most frequently, concerns corporate sales forecasting. The second

type involves item forecasting for such purposes as inventory manage-

ment and production planning.

Corporate sales forecasting as we see it is a key element in

total integrated planning and control. A sales forecast is the link
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between planning and control. First it provides a quantitative

statement of the revenue-generating potential of a corporate plan.

After the fact it becomes the basis for evaluating performance in

implementing these plans and achieving the sales objective.

This seems such an obvious requirement for doing business that

one might wonder why sales planning -- sales forecasting if you

please -- is a problem. The fact of the matter is that many companies

do very little such sales planning. Many others do some forecasting

but the result is ineffectual. It is not uncommon to find the

following situations existing in a company: forecasting responsibility

is not clearly designated; several forecasts are being made and not

properly coordinated; sales forecasts do not adequately reflect opera-

ting plans; budgets are not consistent with forecast; effective coordi-

nation of promotional programs and new product development is lacking.

An example or two might be of interest here. One company planned

a sales program and made a forecast which represented a substantial

increase in sales over the previous year. They failed to meet the

forecast and upon examination found that one of the large sales

districts had cut back their sales force for other reasons -- to cut

costs in compliance with another program -- and was unable to build

back the sales force in sufficient time to make their quota, their

share of the sales forecast.

Another instance involves a large distributing company with

several satellite warehouses. It was the policy of this company that

these field warehouses replenish their inventories directly from

vendors and draw on the main warehouse inventory only in cases of
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emergency. However, the monitoring of this procedure was not very

effective. Since each warehouse, including the central warehouse,

was treated as an independent profit center, the field warehouses

found it to their advantage to replenish frequently from the central

warehouse, thereby keeping their own inventories low, but at the same

time creating unrealistic demands and high inventories at the central

warehouse which were not optimal for the system.

The second type of problem encountered involves item analysis

and forecasting. Our concern is with such activities as production

planning and inventory management where it is necessary to set pro-

duction rates, determine economic lot-sizes, set reorder points, and

fix safety stock requirements. Here the problem is akin to that of

spare parts. Item demand data must be collected and analyzed. It is

necessary then to determine demand patterns, develop forecasting

techniques, and devise ways of measuring and evaluating forecast

errors.

This is not to say that the total corporate sales forecast and

item forecasts are unrelated. We believe, in fact, that it is imprac-

tical to consider them separately as is frequently done. This fairly

common difficulty can be characterized by an example involving a

large producer and distributor of consumer products. This company

periodically plans very detailed sales-call programs, indicating the

specific products and type of customers which should get the attention

of field sales people. In the case in question a significant shift

was made in product emphasis from the previous program without this

information being conveyed to the people responsible for making item
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forecasts for production planning purposes. As you might expect

the forecasts were incorrect and the result was an imbalance in

production scheduling and subsequently in item inventories.

In contributing to the general discussion of item demand fore-

casting, I would like now to review three of our forecasting experi-

ences to demonstrate the kind of problems which arise and how we have

attempted to deal with them. These are three very brief case studies.

The first concerns a division of a large pharmaceutical Company X

producing about 200 items, each of which has a high seasonal demand

pattern and, in many cases, a significant trend reflecting increasing

or decreasing demand in the market place. Item forecasts are made

quarterly for production planning purposes, each forecast being

monthly for eight months ahead. The method which had been used was

12 months moving average, the results of which were satisfactory.

The purpose in going to another, more quantitative and formal

method of item forecasting was to provide a good base projection

from which to evaluate the effect of subjective judgments being

introduced into the final forecast. In addition, the company's EDP

program was taking shape and it was timely to consider how data

processing equipment could be tied into the forecasting process.

An exponential smoothing model was used and proved to be very

effective. The model used is the one developed by Professor Winters

of the Carnegie Institute of Technology. * In this model *t' the

estimate of the sales rate in period t, is computed as an initializing

step,

.Peter R. Winters, "Forecasting Sales by Exponentially Weighted

Moving Averages," Manage..nt Science, April, 1960, p. 324.
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St A - + (1-A) (t1 + Rt1

where A is the smoothing constant and the weights B and C are used

in separate calculations to revise respectively F (the seasonal

factor) and R (the trend factor) until one is ready to begin making

forecasts. Then

St,T =[It + TRt] FtL+ T, for T = 1, 2, ..., L

is used to make these forecasts.

As you are aware, this model is designed to use historical sales

data as a way of evaluating different sets of weights -- the ABCs --

in order to determine which set is best. Since a four year history

of sales was available for each item we were able to initialize over

the first two years and forecast the last two years. This step is

portrayed in Fig. 1.

Item A

Forecast demand

Actual demand

15,000

% 
/o %

I

5,000 Initiaizing Simulated forecast
Period Period

1957 1958 1959 1960 1961

Fig.1-Item demand history for testing forecosting mthod
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Fig. 3 - Actual demand compared to
company forecast

(Forecasting 8 months ahead)
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exponential forecast

(Forecasting 8 months ahead)
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Using the model as indicated it was possible to try many sets

of ABC weights and evaluate each one in terms of the forecast error.

This is done in three ways: by computing an average fractional error,

the standard deviation, and the coefficient of variation. We found

the latter statistic to be the most useful.

The results achieved with the Winters model were very good. Co-

efficients of variation frequently were as low as 0.07 to 0.09 and

rarely were they larger than 0.15. A look at a typical item will

provide a graphical indication of the accurate forecast made using

the exponential smoothing model compared with a forecast made based

on a 12-month moving average. In Fig. 2 the actual sales for an

Item A are shown for, the last two years of the four-year period.

In Figs. 3 and 4 the actual sales are plotted and, in addition, the

forecasts have been simulated with each quarterly forecast (for 8

months ahead) being shown. Figure 3 compares the companyls 12-month

moving average forecast with actual; Fig. 4 compares the exponential

forecast with actual.

The division of this pharmaceutical company is proceeding as

of the beginning of 1962 to do their item forecasting using the

exponential smoothing model. It is basically Professor Winters'

model with a modification to eliminate an existing stop in the

program necessitated by the requirement to have an actual sales

figure in each period to be compared with the forecast in computing

a forecast error.

Company Y, a second case, is a large wholesale and retail

distributor of metal materials and metal products. Their inventory
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is comprised of approximately 10,000 items. Demand for these items

is highly variable with little trend or seasonal pattern present. In

addition, the replenishment leadtime is highly variable. The records

for about 70 per cent of the inventory -- in terms of value - are

maintained in a set of Kardex files. The records of the remainder of

the inventory, mostly tools and supplies materials, are being converted

to an IBM 305 system. The problem of concern here was to provide a

sound and systematic way to review and, if necessary, recalculate

the item reorder points.

The problem, of course, is not unique. There were two difficul-

ties, however, in dealing with this particular problem. The first

was one involving the considerable workload required to do the neces-

sary analysis and computational work for such a large number of items.

In the second case, there was some difficulty in establishing

statistical demand patterns. Taking a week as the useful demand

period, it was found that some demand patterns appeared to be normal,

others the Poisson type, and still others the gamma type. The analysis

work required to develop and select an appropriate demand pattern proved

too difficult -- for several practical reasons -- for the client

people to deal with. In lieu of this step a Monte Carlo routine was

developed to compute the cumulative probability distribution of usage

during leadtime for each item based on the actual demand and replenish-

ment leadtime data.

This routine is a Monte Carlo version of the following polynomial.

t

P(U) = P(t (x I )  p(x2 ) + •P(X n )  •
1 p 1~ P~x
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If one can assume that the actual individual distributions being used

are descriptive of the item depletion and replenishment behavior, then

the distribution resulting from the combination of these two will

indicate the probability of a stock shortage occurring at any given

point or replenishment level. Fig. 5 shows this distribution in the

form of a cumulative probability of usage during leadtime.

Since only the right-hand tail of this distribution is important

to us, it is necessary that the Monte Carlo sample size be large

enough to assure that the tail is stabilized. The computer routine

requires only a few seconds to make the calculation; thus we have

found it convenient to use sample sizes of one thousand. This is

not only adequate usually for statistical stability, but also provides

a frequency count expressed directly as percentages.

P (U)

P(U > R):.I5

10 20 U 30 40 50

R: 25: reorder point

Fig.5-Probability ot usage during leadtime
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At a relatively small cost this computing routine can be used

to develop a large number of distributions for the probability of

usage during leadtime which can then be classified and applied directly

in determining the reorder points for most of the items in the inven-

tory.

The third case involves Company Z which we mention primarily

because this situation typifies a problem occurring frequently amongst

our clients. This company produces several hundred items in a number

of plants for national distribution. A linear programming model was

developed to help in improving the production planning process. In

the development of a dynamic version of this model -- one that would

make monthly production allocations over a period of several months --

it was necessary to provide monthly item demand forecasts for each

market area. These item forecasts were not being made nor were there

any records of item demand history from which to develop such forecasts.

Only aggregate forecasts were being made with the total being allocated

or ratioed to each item. This is a relatively unsatisfactory way of

developing item forecasts, and it has been found on initial trial that

the exponential smoothing technique provides a satisfactory approach

to forecasting demands for at least the large volume items even in

the absence of much usable historical data.

These case examples typify the majority of item forecasting

problems we have encountered. As you can see, the resolution of these

problems depends on the availability of data, the capability of client

people to deal effectively with somewhat more sophisticated forecasting

techniques, and a careful economic evaluation of the degree of

sophistication warranted in any given problem situation.
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One of the objectives of this conference is to outline questions

in areas of future work. I would like to suggest a few which, from

our point of view, seem important. First, I believe more attention

should be given to a consideration of how good a forecast must be in

any given situation. Accuracy in forecasting costs money and one

should attempt to be only as accurate or detailed as his related

decision-making capabilities will justify.

Second, more work is needed in developing models and methods

for dealing with outside effects, that is, the projection phase of

forecasting. Finally, more recognition should be given to the problem

of appraising and developing specific technical competence in user-

organizations to assure that refinements in forecasting technique as

developed and implemented will be monitored and maintained effectively.

This has been a highly useful conference, and it is a privilege

to be able to attend and participate. I would strongly favor the

planning of similar conferences for the future, and in doing this,

would suggest that they be broadened to include more representation

from the business and industrial field.
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SOME REMARKS ON SPECTRAL ANALYSIS

George S. Fishman

Stanford University

For the past seven months, I have been assisting Professor

Marc Nerlove of Stanford University in a study of hog and cattle

slaughter in the United States. We have been interested in deter-

mining the relative importance of cyclical and seasonal phenomena

in the monthly time series of hog and cattle slaughter. This was

done by estimating the power spectrum associated with each of the

economic time series. The estimation procedures used come under the

heading of spectral analysis.

I would like to spend my time this afternoon giving a brief

description of the theory behind the concept of the power spectrum,

outlining the procedures used when estimating the power spectrum,

and giving an example of the simplification which can be achieved in

the theory of filtering by working in the frequency domain rather

than the time domain. By filtering we mean the elimination of cyclical

or seasonal components from the time series.

We know that a periodic function of tine, g(t) , with mean zero,

may be represented by a linear combination of sines and cosines,

a co

(1) g(t) = 2 + I (an cos nw 1 t + bn sin n 1 t) ,

n=l

subject to the condition that g(t) be absolutely integrable,

T1 /2

(2) Ig(t)dI t < CD
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The coefficients in (i) are given by

2 T/
(3a) an = T1 f-T1/2 g(t) cos n Ilt dt

and

(3b) b = ~2 1 g(t) sin n Wit dt(3) n  T _11T1/2

&l is the fundamental frequency of the period T1  and is defined

as follows:

(4i) 2W

Manipulation of relationships (I), (3a), and (3b) yields

(5) g(t) =" F(n)e isl

n=-OD

where

(6) F(n) = (an ibn) n = 0, 1, ± 2,...

and
1 (T 1 /2 "inbt

(7) F(n) = 1 J /2 g(t)e dt, n = 0, +1, +2,

F(n) is the Fourier transform of g(t). F(n) is complex and discrete

for periodic functions. It assumes non-zero values only at integer

values of n.

The autocovariance function for g(t) is
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(T 1/2

(8) ('T) i lT/ 2  g(t) g(t+t)dt=1- TI1T/2

Replacing g(t+t') by its Fourier transform, we have

T1I/2
0 .r T/2 0 inwi(t+-t

(9) T1 g(t) Y- F(n)e dt
() 1 /2 n=-co

OD - F(n)e i .,r ~/ g(t)e iodt,

= n=-co 1-TI/2

and by comparing the expression under the integral sign with (M), we

see that

1fT1/2 in~j
(i) Og(t)e dt = F(-n)(10) TI1-T1/2 te

It can be shown that F(-n) is the complex conjugate of F(n). Let

the complex conjugate of F(n) be denoted by F(n). Therefore, (9)

is equivalent to

S F(n) =inT co 2 in(11) Y() F(n) F;( : JF(n) J e .
n=-CD n=-CD

At r = O, we have

n=-CD

0(0) is the variance of the time series g(t) It is equal to the

sum of the squared absolute values of the spectral components of g(t)



102

Therefore, F(0) is the relative contribution to the variance of

g(t) made by the frequency ko1 .

IF(k)12 is the contribution of frequency kw to the power

spectrum of g(t) . Let us denote it by P(k) . The power spectrum

is real, symmetrical about k = 0 , and discrete for periodic functions.

We are interested in estimating these spectral components, P(k), for

all k , from our time series so that we may discern the relative

importance of different frequencies.

The case of aperiodic functions is analyzed by means of an

extension of the periodic case. We allow the fundamental frequency

to approach infinity. This defines the aperiodic function as an

infinite weighted sum of periodic functions. Then Wl becomes the

infinitesimal dri and no, becomes tl. Therefore, (5) and (7) become

(13) g(t) : F(CW)e iwt doi

(1.) F ) = r f(t)e- dt, respectively.

The autocovariance function of an aperiodic function g(t) is

given by

(15) 0(0) g(t) g(t+T)dt.

Replacing g(t+T) by its spectral representation, we have
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(16a) () = 00 g(t) f F(w)e iw(t+ C) dt

cor00

(16b) 0 0 F(W)eiC J. g(t)eitdt

00
2 21Jo IF(&))1 2 eiWC dw

Note that the integral,

f OD
g (t ) e i(O

dt

is the complex conjugate of F(W) multiplied by 21. This is a

consequence of (14).

Let

(17) P(w) = 2iIF(W) 12

At = 0, we have

(18) 0(0) f -ao P(W)dw

P(W) is the power density spectrum of the aperiodic time function

g(t) . Therefore, . P( 0)d measures the relative contribution to
rOD (Ad

the variance made by frequency (4o P(Go) is real, symmetrial

about w= 0, and is continuous for completely aperiodic functions.

The power spectrum for a function containing both periodic and

aperiodic components is shown in Fig. 1. The discrete impulses are

attributable to the periodic components of the time function, and the
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P(hp)

-(a1 0 .4L /  &P,% 2I (b

"3wo -2 to (00 2"0 3(00

Fig. 1

continuous part is attributable to the aperiodic component. Note

that

(19) (C = P(.)e-ih d-

That is, P(W) is the Fourier transform of the autocovariance

function C(r).

Many problems arise when we attempt to estimate the power

spectrum. The first difficulty to be considered is often referred

to as "aliasing." This problem is made apparent by the following

Strictly speaking, the discrete impulses shown in Fig. 1 are
quantities with a dimensionality different from that of P(o) itself.
These discrete components have the dimensionality of P(w)dw , and
they have been drawn in the same diagram with the continuous P(W)
merely for visual convenience.
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hypothetical example: Suppose that a Martin is interested in deter-

mining how often we have Congressional elections here in the United

States. Let us assume that he takes observations of political life

in the United States only in calendar years divisible by four. He

may conclude from his observations that we have Congressional elections

every four years. However, it is clear that this conclusion is

not quite adequate since his observations cannot discern whether or

not Congressional elections are held every two years or every year.

This results from the fact that his observations are being taken at

equal spaced intervals of four years. Analogously, we are unable,

in spectral analysis, to distinguish between the contributions to the

power spectrum made bywo, 2&0 , 4wo, etc. (see Fig. 2) since

observations are made at equally spaced intervals of length At.

SV \V V

Fig. 2

In the case of monthly data, the highest frequency for which we can

clearly determine the power is f, the frequency associated with a

period of two months.
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In general, we space our observations in such a way that we

would expect the power associated with the frequencies greater than 71

to be relatively negligible. We therefore do not treat aliasing as

a critical problem when estimating the power spectrum. Nevertheless,

we should be aware of its existence.

In estimating the spectrum, we are interested in deriving sample

estimates of the power spectrum associated with a time series Xt. We

assume that Xt has a zero mean and that E(Xt X t+) is independent

of t. From the aforementioned theoretical description, one would

expect the spectral estimates to be of the form

(2)p(n) (Wo

0) =1 [2 RQV) cos wV + R(O)]V=I

where n is the number of observations in the sample, R(V) is the

estimated autocovariance for a lag of V months, and is defined as

(21) R(n)(V) = E Xt Xt+V

Note that as it is written R(n)(V) is a biased estimator of the

autocovariance, R(v). It is preferred to an unbiased estimator

where the denominator is n-V rather than n , for two reasons:

(1) to achieve a minimum mean square error, and (2) to achieve a

positive definite estimate function. The necessity for this second

property derives from the fact that the true power spectrum is

everywhere greater than zero, and the unbiased estimate of R()

may yield negative values for the estimated power spectrum at some

frequencies.
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Unfortunately, estimates of the spectrum based on (20) lack the

desirable statistical property of consistency. That is, if a number

of samples, each with an infinite number of observations per sample,

were used to derive separate spectral estimates for frequency Wo

one would find that these sample estimates, based on this infinity

of observations, would not come out to be equal to the number P(4o),

but rather would form a random scatter around P(wo) and have an

exponential probability distribution.

In 1948, Bartlett pointed out that if one were to divide a

sample of n observations into p sets, each containing m obser-

vations, and then derive sample estirates of the spectrum for each

set and average the power estimates for the frequency 10o over all

sets, one would have a consistent estimate of the true spectral

average centered at wa . It can be shown that this procedure is

equivalent to introducing a weighting function in (20) such that

(22) P2()o) =i[2E-\ R(y) cos & + R(O)

V=I

where

(23) = (V i M)

= 0 elsewhere.

Since 1948, much work has been done on other types of weighting

functions which have come to be called windows in the technical

literature. It has been shown that
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(24) lim fP(n)w)A()dw= fjP(m) A(W) dw ,
n- aD 0

where A(w) is the window used to derive the estimates of the true

spectral averages. What (24) says is that the sample spectral

average is, indeed, a consistent estimate of the true spectral

average.

It can be shown that (24) leads to

p(n){) 1 [2 F k(Y) R(v) cos w V + R(O)]Av o - A V=l o

where k(Im) is the Fourier transform of A(&)).

One chooses a window A(w) which will weight the spectral esti-

mates close to o as heavily as possible. In this way, the estimated

spectral averages will be more representative of the true power at

&o" To gain th~s desirable property of resolution, one must

sacrifice another desirable property, namely, stability. That is,

the gre, the number of lagged contributions contained in the esti-

mate' ,ectral average, the better the resolution, but the poorer

t ean-square error of the estimate of the true spectral average.

one sees that we must so choose the number of lags in the window

to yield some compromise between resolution and stability.

The adjustment of economic time series to eliminate seasonal

phenomena has long been a topic of interest to economists. This

filtering process can be greatly simplified theoretically if one

analyzes the time series in the frequency domain rather than directly

in the time domain.
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Let g(t) be the input to a system whose response to a unit

impulse is h(t) Let f(t) be the output of this system. If g(t)

were a unit impulse, then

(25) f(t) = h(v) g(t-V)

would be the output response to a unit impulse which is applied to

the system at t = V , where h(v) is the time response characterizing

the system into which the signal is fed.

If one thinks of g(t) as a series of impulses forming a

continuous signal, (25) becomes

(26) f(t) = Sh(V) g(t-V)dv .
-OO0

It can be shown that the Fourier representation of (26) is

(27) F(W) = H(w) G(w) ,

where F(w), H(w), G(w) are the Fourier transforms of f(t), h(t),

and g(t), respectively. This leads to

(28) P(,) = JH()1 2 PG(w)

That is, the power density spectrum of the output signal is simply

the power density spectrum of the input multiplied by JH(w)12

To show the importance of (28) in problems of filtering economic

time series, we consider the spectrum of Xt , where Xt  is an

economic time series in which we suspect seasonal and cyclical

behavior to exist.
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Fig. 3

The discrete impulses at - - 6" '-3 are attributable to

the seasonal components of periods of 12 and 6 months in Xt . he

contributions of other seasonal frequencies have been omitted for

simplicity.

One often seeks to eliminate these impulses when attempting to

derive a seasonally adjusting economic time series. For many time

series, the contribution of the continuous spectrum for L&1 >to the

total power spectrumn is negligible. Therefore, a reasonable way to

eliminate the seasonal behavior is to define

(29)H() 1 IWI 'J1,

= 0 elsewhere.

Wois chosen arbitrarily close toW/6, the lowest seasonal frequency.

Such a filter will modify the spectrum as in Fig. 4.
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Py(,

Fig. 4

This eliminates the seasonal components, which is what we actually

want.

We know that the time representation of H(W) is

1 H()eiwtd
(30) h(t) - _ H(- )e dw

sin w t
0

Ift

Therefore, the output f(t) is

(31) f(t) =f 0i g(t-V)dV

An attempt has been made to use a close approximation of the

ideal filter in (30). However, 180 leads and 180 lags are needed in

the resulting weighted average in order to obtain a minimum level of

acceptability for the adjusted series. This is obviously impractical
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since, with such a filter, we could not adjust with confidence any

data in our time series beyond 1946.

My example of the ideal seasonal filter was meant to show the

greater simplicity in conceptualization when one works in the

frequency domain. Our discouraging results in approximating the

ideal filter ought not to be considered exhaustive of all possible

alternatives.

In my introductory statement I mentioned that we have been using

spectral analysis on hog slaughter and cattle slaughter time series.

One reason for concentrating on these series was the availability

of over 50 years of monthly data for each series. Long series are

preferred in spectral analysis in order to derive good estimates with

the desired statistical properties. We have made some preliminary

investigations into shorter series of 20 years. Our results have

been favorable and we feel that spectral analysis may be applied to

many economic time series of 20-year duration with success.

This presentation has certainly not been all-inclusive of the

problems of spectral estimation and filtering. Much remains to be

mentioned. However, I hope that the reader will derive some minimal

familiarity with spectral analysis and what it offers as a research

tool.
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THOUM!TS EXPRESSED AT THE CONFO E

Frederick S. Nowlan

United Air Lines*

My thoughts are somewhat biased since it seems to me that when

we are studying demand figures we are, in effect, studying reliability

characteristics through the medium of demand data.

The general findings that demands were not too closely correlated

with operational usage appears somewhat surprising to me since a

generally used reliability index is the ratio of unscheduled removals

(these give rise to demands) to the volume of operational usage.

This index may show large fluctuations from one calendar time

period to another but further technical analysis frequently can explain

much of this variation. Typical of such causes of major fluctuations

are:

(i) The definition of satisfactory performance. We frequently

are very demanding during the initial period of operation of new

equipment before we are familiar with its intrinsic characteristics.

In this case equipment is "squawked" and removed during initial

operations for reasons that will not lead to removal and demand

creation during later operation.

(2) Campaign inspections as a result of the first discovery of

unsatisfactory conditions as a result of the first inspection or

failure in a hidden area of an aircraft. After the first identification

of a source of trouble in an airplane, the resulting campaign inspection

can lead to a greatly increased replacement rate for a short period of time.

7MDintemance Base, San Francisco International Airport.
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(3) File mintenance procedures which fail to identify chronic

airplanes where the malfunction is not being corrected by unit replace-

ment and which do not lead to the more thorough trouble shooting

required to cure the problem.

(4) Component modification. Engineering action is directed at

improving the reliability of components with high replacement action.

Modification may be very successful and greatly reduce the replacement

rate. On the other hand there may be an unsuccessful modification.

There are of course many other factors which can lead to more

gradual changes in removal rate and the demand level. Such factors are:

(1) Overhaul specifications and procedures.

(2) Overhaul periodicity.

(3) Shop quality control procedures.

(4) Operating procedures.

(5) Age of units in service, etc.

It would seem that all these reliability considerations would make

correlation analysis of demand data rather difficult. The analysis of

demand data would seem to entail very close liaison with people con-

cerned with component reliability.

This might be difficult to achieve. It is known, however, that

very extensive reliability studies and replacement records are available

for the lockheed Georgia C-130 and some of the Boeing aircraft. It

might be possible to correlate these reliability data with demand data.

Again, large bodies of data exist within the air transport indus-

try and some of these data might be useful for general deman prediction

studies.
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SOME THOUGHTS ON THE DEMAND PREDICTION JOB AHEAn*

Emil W. Hamilton

San Bernardino Air Materiel Area"

THE APPLICATION OF SELECTIVE MANAGEMENT PRINCIPLES TO DEMAND

PREDICTION

One conclusion I'm sure we would all agree with is that there is

no "best way" to predict demand or forecast future needs. There are

only "preferred" ways -- and these will vary depending upon many

circumstances.

This calls for development Of Selective Management approaches

wherein suitable demand prediction techniques could be tailored for

application to groups of items having similar technical or management

characteristics. We have moved in this direction in the last few

years, but the groupings are largely cost-oriented. Within these

cost breakouts -- which have proved their merit for management and

control purposes -- there appears to be quite a potential for furthe-

"slicing" by demand or volume characteristics to give us a better

handle on the forecasting problem.

LOW DEMAND ITEMS

With low demand items predominating, this would be a good place

to start. Here we have unlimited opportunities for mass simplification

of data collection, program elements, factors development, computational

*This paper summarizes some remarks made by the author at the
Conference.

**Norton Air Force Base.
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techniques, etc. Looking ahead, the nature and size of future weapons

programs portends an even higher ratio of low demand items than in the

past.

Today there is much waste motion at provisionings and during

replenishment requirements computations as people (and machines)

wrestle with the development and application of microscopic factors

that frequently lead to unrealistic "sub-minimum" quantities. If we

fail to adjust the computed answers, we trigger a whole host of

unrealistic actions in the logistic cycle. If we do adjust the

answer to something more realistic, the question arises about whether

we couldn't have gotten this final more defensible answer much more

easily and directly.

Although we may have no real basis for a "computation" or a

"demand prediction" as such for these low demand items, we are not

free of the job of making, as best we can, a "determination" of some

reasonable range and depth of items that must, for a variety of

reasons, be readily available if ever called for. Even if we cannot

be as objective and as scientific in our approach here as some would

like, I believe we can improve on what we do today. At least we

should be able to sharpen up our "qualitative/subjective" approaches

and give them a measure of recognition and respectability that will

enhance their use as "tools of the trade."

What appears to be needed is some well chosen criterion for

categorizing items as low demand and then a delineation in check list

form of the various "thought processes" that need to be taken into

account in the decision of what and how much to bring into the system.



119

Thus with a few relatively simple approaches -- not so much mathematical-

ly or statistically oriented, but slanted more toward better delinea-

tion and application of the proper "thought processes" -- we should

be able to greatly simplify the requirements task for the mass of low

demand items in the various cost categories and at the same time

achieve more realism in the results.

Perhaps the spirit of what we are saying is embodied in the

observation of one of the Carnegie representatives when he said that

"...instead of trying to predict specific occurrences, maybe we ought

to try to prescribe the parameters that evaluate risks.. .then we are

not so much predicting demand as predicting risks..."

HIGHEM DEMAND ITEMS

For the few items with relatively high demand characteristics,

we would go "all out" in search of refined, scientific prediction

techniques. We could afford for this more manageable number of items,

the more expensive data collection systems, more meaningful program

elements, more sophisticated computational methodologies, etc. This

would be the area for exploiting further many of the types of formulae

discussed at the conference.

In analyzing such approaches with a view toward determining their

applicability, we should be less concerned with the numbers of items

the techniques could be applied to, and more concerned with their

potential pay-off in relation to the monetary worth and mission es-

sentiality of the specific item involved. The mere fact that a given

technique seems to work best for most of the items is not sufficient

reason for adopting it for use "across the board."
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Here the challenge should be to develop the capability for

associating technical knowledge of the item and knowledge of relative

merits of the various demand prediction techniques to permit some

fairly judicious choice of the optimum method for that item. This

choice might well range from the relatively simple traditional issue

interval techniques on through variations of service life, failure

pattern, distribution curve, probability, upper and lower limit,

actuarial and other approaches.

INITIAL VS. FOLLOW-ON PREDICTIONS

No discussion of this type would be complete without some mention

of the need for continuing the quest for improving the initial pro-

visioning decisions which, especially for the crucial peculiar items,

must be made without benefit of experience or statistics. Some of the

points discussed under the topic of "Low Demand Items" have application

here. This is becoming an increasingly important area, particularly

for "static" weapons like ballistic missiles whose numbers are few,

whose life spans are short, and whose operating time is limited. Thus

the initial buy, however small, frequently is the total buy. Though

we may set up an elaborate system for collecting a lot of data to

help us with the follow-on buy, we may never reach the point where

this information will be of much help to us.

PROGRAM ELEMENTS

As I mentioned at the conference, we here at SBAMA feel that one

fruitful area for further exploration is that of program elements,

particularly those appropriate for peculiar missile and spacecraft
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applications. The need for some look at this area became quite

apparent during the conference with discussions tending to gravitate

around traditional elements like aircraft flying hours. Today in

the ballistic missile business we use mostly missile months, equipment

months, squadron months, engine months, and the engine overhaul program.

But these have been somewhat arbitrary selections and perhaps a good

look is in order now before we find ourselves locked in on these for

no better reason than "we've always done it this way."

SEASONAL TYPE PEAKS

One thought triggered by Mr. Brown's presentation: For items that

tend to have certain types of predictable peaks, instead of trying to

develop average rates that reflect these peaks, we would get better

time-phased answers if we determined the average and peak require-

ments separately and then overlaid the results.

PAST STUDIES THAT MIGHT MRIT NEW LOOK

Perhaps some review and revitalizing of past findings, conclusions

and recommendations -- updating and reslanting them toward new modern

weapons and logistics applications -- might in itself be a fruitful

area for future effort on the part of research agencies. Two examples

of past RAND research come to mind as possibly being worthy of some

new look in light of current conditions and needs:

One is the study on "A Priori Demand Prediction" which

developed the hypothesis that physical and operational

characteristics were generally sufficient to permit

classifying parts as high-demand, low-demand, or intermediate-

demand items.
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The other is the "Flyaway Kit" study. Perhaps some of the

principles in this could be applied to the provisioning

and buy processes, with cost being considered the constraint

rather than the weight and cube criteria which were more

appropriate for Flyaway Kits.

THE GROWING NEED FOR UNDERSTANDING AND ACCEPTANCE

In retrospect, I find myself wondering about the "follow through"

aspects of research on demand prediction and how well we in the Air

Force (and perhaps other services) understand and are able to apply

some of the products of past research. With research and consulting

agencies being concerned about where and how they can make further

contributions at this time, I wonder if there isnt a considerable

potential in the area of achieving better understanding and acceptance

of their studies and proposals. At some future conference, an exchange

of ideas would no doubt be beneficial on (1) what media the various

groups employ to "spread the word" and gain acceptance, and (2) how

effectiveness in this field can be increased.

I was impressed with a remark Mr. Dalleck made in this connection --

that as a consulting firm, they try to assay a company's technical

competence to carry on after they leave. This would imply that they

either tailor their approaches and techniques accordingly, or put

forth some special effort to develop the capability of their customer

to follow through in the use of the new tools.

Quite often the principles and formulae offered by researchers

and consultants need considerable "translation" before they can be
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understood and applied by procedures writers and technicians. Whether

the researchers themselves or another body of folks perform this

"translating" and stimulating and educating is, I suppose, a matter

for debate -- but the gap must somehow be bridged if we are to

reap full benefit from the studies.

One company that, I am told, devotes considerable effort to

broadening understanding is the Planning Research Corporation of

Los Angeles which does work for the Navy. My understanding is that

they have been quite active in supplementing their research papers

with films, animated illustrations of various theories and concepts,

training syllabuses, and physical tools like tables, special slide

rules, hand calculators, and the like. Thus many of their products

are beamed directly to the user.

In the case of RAND, we can cite your Research Memoranda, the

Logistics Laboratory, your scheduled appearances at logistics

schools, presentations at conferences, briefings to AF people, etc.,

as excellent means of "spreading the word." But the audiences reached

are still no doubt relatively limited. Perhaps there is a challenge

in trying to reach a wider audience with more of the basics and

fundamentals, with more "why" and "how."
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COUNPECE RDN4ABS

Kenneth J. Arrow

Stanford University*

Since so much of the Conference program was devoted to discussion,

the following remarks are included to sunmrize some of the thoughts

that came out of the meeting as a whole. Our discussion was originally

oriented towards predicting or forecasting demands. As we proceeded,

however, our comments branched off into contiguous itters for reasons

which are useful to examine.

TE PREDICTION PROBLEM

There are two extreme approaches to the prediction problem. One

is a kind of structural analysis, in which we try to discover what

really causes demands, and base a predictive theory on our findings.

The other extreme is to take a historical approach to the process of

change. We may have no defensible theory to explain how or why

demands have changed, but we feel they do not change abruptly. We

can get some clues about the nature of this change by "watching" the

situation closely, either in person or through statistical techniques.

Essentially, we extrapolate backwards into the past, trying to iden-

tify relevant trends and discard the "noise" (as it is now called),

or random disturbances (as we used to know it before the communications

engineers entered the field). In real life, obviously, we employ

tpartment of Econoics
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both approaches simultaneously -- in the face of numerous people's

insistence that not even the most meticulous of scrutinies will

yield explanations or predictions any more reliable than those of a

weatherman.

Very little was said at this conference about tying in the work

of the reliability engineer with that of the demand forecaster,

possibly because we have talked mostly about the military environment.

Here we deal with so large a number of items that such integration

is difficult even though the reliability engineers may have all kinds

of useful knowledge about each item. This integration may or may not

be worth pursuing, but at least it might give us some additional

insights regarding structural possibilities.

DD4AD RATES

One interesting problem came out in the casual discussion of

structural possibilities. Demand rates, according to one report,

heavily depend on usage; according to another, apparently based on

similar data, they depend only on elapsed time. It seems to be true

that many parts are subject to an aging process, so that we have long

periods of low demand followed by rising demand as the equipment ages.

This is countered by another set of observations which show that there

is a "burn-in" phenomenon; i.e., demands are numerous when the equip-

ment is relatively new, and decrease as the bugs are ironed out.

There is also a point of view based on different data, which

suggests that the important items are those with a very small number

of demands, say one or two, over a long period of time. Here the

prediction problem differs from the one in which there Is a large
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number of demands. The RAND report affirms that there are both

kinds of items, and we may have to treat them separately. Obviously,

it is difficult to correlate a scattered handful of demands with some

program element even if there is a correlatiai; hence we would almost

never get good estimates using this type of analysis. It follows

that high-demand items offer greater possibilities for analysis. On

the other hand, the low-demand problem is easier to meet and solve

since the policies required to handle it are not dependent on any

program element.

STATISTICAL FORECASTING TECHNIQUES

It is not easy to form an a priori opinion about the fruitfulness

of statistical forecasting techniques. This needs to be done empirical-

ly. In one way or another, most of these methods, apart from spectral

amlysis, seem to be of the discounted least-squares type.

For what model of the world would this statistical method be

correct in any sense? When we consider that we are getting a set

of observations from virtually the same universe, why is every obser-

vation not as good as any other one? It is not clear why one should

weight them in any way.

The interpretation made by Winters was that we can think of the

parameters as shifting, but shifting in a random-walk manner, which

adds one more unknown. Looking ahead, things are getting more and

more uncertain, and discounting compensates for this growing unreli-

ability. By the same token, if we start from the present the past

data are more uncertain. Thus, if we arrived where we are now by
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a random-walk process, we can also go backwards by the same process.

This my be the rationalization for this kind of least-squares method.

We have a past arked by change; we think change will persist as we

go further into the future. The discounted least-squares methods

compensate for this process in some way.

Brown's arguments have shown the flexibility of this model. One

can build a great deal into it, apparently, much more than by straight

exponential smoothing. Furthermore, it is possible to bring in any

explanatory variables we like, such as program elements and age of

parts. A combination of smoothing techniques may produce better

results with different program elements.

Another point raised concerned the program elements themselves.

Assumirg that usage does have established relationships to some program

elements, then in order to forecast usage we also have to forecast

the program elements. Doing so introduces additional "noise." Brown's

argument is that it is better to use, as explanatory variables, mathe-

matical functions of time about whose extrapolation there is no question.

There is a counterargument which depends on the use you can make

of the forecast. A conditional forecast gives some information that

an unconditional forecast does not. It tells us what will happen if

we change our minds, so that we might say, after looking at it, "It's

really too expensive to fly those things around. I'd better not do it."

This would make our forecasting worse, but it would also answer a

question that could not be answered with an unconditional forecast.

One could think of other examples of this kind, such as the question

of checkouts. How often should we perfbrm checkouts if it becomes
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apparent they are a positive cause of failures? We might try to get

some idea of the optimum number of checkouts. Probably we will not

reduce the number to zero, since we value the extra confidence more

checkouts can give us. We will perform them, then, but wrnt to know

whvat they cost us in terms of additional failures.

RElATION TO INVENTORY CONTROL

Up to this point we have talked about ways of making forecasts.

Another interesting question is how they are to be used; and another --

perhaps amounting to the same thing -- is how one can measure the

accuracy of his forecasts. There are many measures one can use: the

average error, the mean absolute error, and the relative error - to

name a few. The best one to use in a particular situation depends

on the use to be made of the forecasts, and the costs of making

various kinds of forecasts must also be considered. Sometimes the

cost may be prohibitive.

Almost everyone agrees that if we can make forecasts we should

do so; but if it turns out that we cannot, we must find a way of doing

without them. There are many alternatives, one being the control of

inventory. Obviously, the more accurate our forecasts, the smaller

the inventories we have to hold (pipeline considerations aside).

Debavioristically, to say we are unable to forecast accurately is much

the same as saying we have a very diffuse demand distribution. There

is a peculiar difference, however: the demand distribution may not

actually be too diffuse, but if it changes from time to time it is

not even easy to say what is actually meant by the demand distribution.

What is really relevant is our subjective demand distribution -- one
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we can realiably think of. It is a blurred average of the band of

possible demand distributions -- even a pretty wide one. Anything

which is optimal against such a wide distribution is liable to be fairly

unresponsive to actual demand.

Ignorance costs something. It is an unavoidable cost and all

we can do is try to hedge against it. It occurs, for example, in

the sampling inspection of lots of material: if we do not know whether

these lots are produced by a controlled process, there are sampling

schemes which insure that the percentage of defectives will not

exceed a specified value regardless of the quality of the incoming

lots. We pay for this knowledge, of course, according to the amount

of inspection we institute.

There is an analogy here in inventory control. Presumably we

have better control over our reliability data, however poor some of

our discussion implies they are, but it does suggest the idea of strong

hedging. In practice, probably the simplest thing to do would be err

on the side of overstockage. For expensive items, it might pay to

subsidize the manufacturer to maintain some standby equipment or

capacity to meet additional demands on short notice. It is costly

to do so, but may be the price we must pay for lack of knowledge. The

knowledge-criterion also buttresses a point already mentioned: that

forecasting techniques should be evaluated according to their effect

on inventories.

Now suppose we know the underlying demand distribution. In such

a case, the mean is not the only characteristic we would be interested

in; we vould also be concermd with the variance. Our inventory



131

controls might be set at, say, two standard deviations or whatever

number we thought appropriate. As Dalleck pointed out, however, we

also have a close interest in the tails of the distribution and conse-

quently make things worse for ourselves since it is very tricky to

estimate high percentiles. Consider the problem of flood control.

Let us say we want to build a dam with only a 0.01 probability of

not holding a flood; that is, only once in a hundred years (the return

period as it is called) will the flood exceed the dam. We cannot

make a very accurate statistical estimate of the return period for

a hundred-year flood if we have only 50 or 60 years of data; the result

is very sensitive to the assumptions made about the distribution.

There is much less sensitivity in an estimate of the mean. In fact,

the variance of the mean is independent of the distribution. When

we consider the tails, however, the problem is more difficult. This

is probably why the use of Tchebycheff's inequality was suggested; it

can work in practice because all the distributions we know about are

well inside the upper bound it provides. Its only drawback may be

that the upper bound obtained by using it may be too expensive for

the protection it gives when we are dealing with very expensive items.

This discussion of tails bolsters the argument that it is as

important to look for protection as for the other objectives of the

policies we want to adopt. Further, it is for this reason that even

if we knew the distribution we would want to consider more than the

mean. It follows that if we do not know the distribution -- and

perhaps decide to act as if we had a widely diffused one -- it becomes

even more important to concern ourselves with the tails.
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Suppose we have a procedure for setting inventory levels based

on our forecasts. Through simulation we can determine what the inven-

tory would have been in each period, counting back orders as negtive

inventory. We can summarize the figures by finding the average amount

of inventory on hand for those periods for which there was a positive

inventory, and the average amount of back orders for those periods

in which there was not. These two numbers contain all the relevant

information. We can then compare two forecasting methods by looking at

these two numbers obtained from them. If both numbers are smaller

for one of the methods, then it is clearly the better. The real

problem arises when one method yields a smaller positive number, and

the other a smaller negative; we then face the difficult task of

assigning explicit values to each figure.

A simple and commonly used measure is the cost of the item. This

solution implies we would sooner take an aircraft out of commission

than overstock by one part. Further, it implies a different stockage

policy for each item. We are assuming here that the system is

rational in all other respects -- perhaps an extreme assumption, but

certainly a plausible one. Again, some items are very expensive and

others very cheap. If we vant to economize on our investment, it

would be wiser to stock an abundance of cheap item than to have an

aircraft out of coumission.

With comercial airlines, the loss in revenue when a scheduled

plane does not fly is often less important than the nuisance to the

customers. Again, there are some warehouse costs, interest on capital

invested in spare parts, and the like, which should be considered, but
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at least we would have some idea of the relative order of m nitude

~of the costs.

AGGREGATION

The question of aggregating across co uodities came up several

times in different contexts during the conference. When we have

something like two million items, we must aggregate because it takes

too long to set up an optimal inventory policy for each of them. We

would aggregate in wide classes according to the criterion of value,

although some very expensive items would have to be treated individually.

There is probably no particular advantage in being very precise about

these values.

The second kind of aggregation is through common limits. For

example, we my have a budget which limits the total holdings of

inventory, so that the more we have of one item the less we can hold

of another. This constraint creates a problem since we may not be

able to balance stockouts against holdings, item by item. Theoretical-

ly we would have to put a shadow price on the constraint; as a result,

the storage costs would be something different from the plain ealcu-

lated storage costs.

Another constraint might be cubage, as in a submarine. In such

a case we would have to make choices on a different basis. Again we

would need a shadow price for this constraint, but it wou~d be dif-

ficult to use. If we could get enough informtion we might handle

the problem as one of straightforward propmmJng, but getting the

input data would be a difficulty.
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A third aggregation procedure, which came up several times, might

be called aggregation through borrowed experience. This is one of the

forecasting techniques used in the RAND study; the variance was taken

to be three times the mean, the number three being derived from pooled

experience. Brown and Winters have related the standard deviation to

the mean, apparently to get some impressions of the variance. This

could also be done by working with a sample of the commodities and then

perhaps aggregating or pooling the results. Actually there is no reason

in the nature of things -- unless for example we know we have a Poisson

distribution -- why the standard deviation should be directly related

to the mean. Pooling presupposes a comonality that has not been demon-

strated.

A final coment, which perhaps should have been made earlier:

several people seemed to agree that the negative binomial is a good

description of demand, and yet nobody seems to have used it, perhaps

because it is hard to work with. The Poisson, normal or log normal

are more prevalent.
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