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ON THE DETERMINATION OF THE SHAPE OF THE GEOID
AND THE SHAPE OF THE EARTH FROM AN ELLIPSOIDAL
SURFACE OF REFERENCE.

ABSTRACT:

By introducing gravity data into geodesy it has been possible to solve some of the
geodetic problems not only in a purely geometrical way but also with full considera-
tion of the dynamic parts of the problem. The first approach for the determination of the
shape of the earth by the aid of gravimetric data is based on the famous formula of Stokes.

According to this formula it is possible to determine the shape of an equipotential
surface if the gravity is defined in all parts of the surface. The method has been extensively
used up to pow for a determination of the so-called geoid of the earth, in spite of the
fact that the formula is only correct for a spherical surface and not for a spheroid such as
our own earth, Another objection to using this formula is the fact that one has to know
the gravity values on the so-called geoid and not on the surface of the earth. However,
this is in practice an important limitation because measurements can normally not be made
at the surface of the geoid in other places than on the Oceans.

Evidently we have in total two fundamental objections against using the method of
Stokes for our geodetic problems. During the last 15 years there has been extensive
work in this field in order to improve the present technique, The most important contribu-
tions have been made by Russian scientists as for example Molodensky and Sagrebin. Moloden-
sky showed in his coatribution that it was possible to solve the integral equation which defines
the shape of the earth ditectly from gravity measuremeats at the physical surface of the earth.
Sagrebin made a similar solution of the integral equation when there is a change of the
teference susface from a sphere 1w an ellipsoid.

Although the two methods have pot hitherto been used to any wider extent for practical
applications, it is still evident that they have given a new view of some of the fundamental
problems in geodesy, For a special sudy of the ellipsoidal surface of reference, the method
of Sagrebin' has been chosen as the theoretical background, However, a study of the deduction
of the sum of ceain Legendre polynomials used by Sagrebin shows that most of Sagrebins
final formulas are incorrect, Therefore ft was considesed important to resolve the problem by
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the aid of new derivations, This study is based on the same formulas as Sagrebin used
for the conversion of the Lam¢ functions to Legendre polynomisls,

For a final computation of the resolvent equation, all functions have been recomputed
in order to get a correct resolvent. The new expressions are somewhat more complicated
than those of Sagrebin and an electronic computer was required for the final study,

According to the method used by Sagrebin, it is necessary to make not less than
nine complete integrations over the earth in order to obtain the final value of the geoidal
height of one point. This means that the method is too tedious for practical use. Another
way to approach the problem is to make use of an iterative method such as Molodensky
has suggested. There is no objection to such a method, except that in most cases it is
desired to obtain the final answer after just one integration. It is evident from a purely
abstract point of view that repeated integrations will increase the accuracy of the computa-
tions.

Preliminary studies made it clear, however, that little increase of the final accuracy
is obtained by using such a high number of integrations. In the method used here for com-
puting the resolvent, all intcgration steps are taken into consideration, but all this informa-

tion is compiled in such a way that two integrations arc suiticient.

Collaborators have been
Mr. Lars-Eric Ericsson
Mr. Per Karlsson
Mr. Michel Creuscn

Mr. Sven-Ake Gustafson

Stockhoim, 28th November, 1962.
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Arne Bjerhammar.



THE FIGURE OF A SURFACE DETERMINED
BY THE AID OF GRAVITY DATA,

There are a few fundamental relations which are of utmost importance for any geodetic

use of gravity data, The Newtonian potential of a body is determined by the function

woe 9L av
where
W = the potential
p = the density of mass

V = the volume

(ol
n

the distance between the volume-element and the actual point,
The potentional W is said to be harmonic if it satisfies the Laplace cquation:

62\~ a2w 0 W .
AW = 2+ + = 0

ox 0)'2 dz

The potential, due to the gravitation effect of mass, is harmonic in all points
not occupied by this mass. In a continuous massdistribution the potential satisfies the so-

called equation of Poisson:

AW = - 41p
For a rotating body the potential is no longer harmonic as the total potential is de-

fined by the function

o
w o= 5% —f-dv + 0.5 w'p2

where p is the distance of the point to the axis of rotation.

The gradicat is now given by
grad wW = ISSS—% co;-(r,xﬂ dv + “,2‘, rcos(p,x)
r

cos(r,y) cos(p.y)

cos(r, z) cos(p.,z)



For a simple solution of geodetic problems it is necessary to work with an harinonic
potential-function. Therefore the geodétic potential is normally replaced by an harmonic
parameter which is defined as the difference between the geodetic potential and the po-
tential of a theoretical earth. If these two potentials are identical with respect to the centri-
fugal part, then our new parameter, the so-called disturbance potential, is harmonic, and

the well-known Green theorem is valid

a——
] r 1 ow aU
Wt Up =Ty = 59) [‘W'U) 30t ¢ an  on ’] as
where
wP = the true potential at the actual point
UP = the potential of the theoretical earth at the actual point
n = the normal of the surface

r = the distancc between the actual point and the running point

§ = the surface,

In order to obtain an harmonic disturbance potential it is required
that the theoretical earth (the reference-surface) and the actual earth

coincide with respect to their axes of rotation.

This is the first important condition for a solution of conventional type.In order to fa-
cilitate the solution, another important condition will be added later. For a full understanding
of this approach we note that in case we have a given surface, it is possible to compute the
potentials directly by aid of Greens theorem. This problem is the so-called Neumann problem.

If the surface is not known, then there is no simple straight-forward solution. The solution
according to Stokes has, however, been a useful approximation.(See equation 28 “The Earth
Form from Potentials and Gravity".) It has however to be remembered that any solution of this
type is based on the approximation of performing the integration over a sphere instead of over
the true surface of the earth, Of much greater importance is another limitation which is caused
by using Stokes’ formula. From our formula 26 we find that the Legendre polynoinial of order
one is omitted from our solution. This means that the gravity ceaters of our
theoretical earth and the actual earth have to coincide. This is the second

important condition for a solution of conventional type.



We have to note that the solution from the Stokes formula is only valid for an equi-
potential surface. It can be proved that for a number of applications the solution gives a
useful approximation but when it becomes necessary to make a detailed study of the shape
of the earth, then Stokes' formula is insufficient.

The following study is made in order to obtain a resolvent which can replace Stokes'

formula for an ellipsoidal reference surface.



STATEMENT OF THE PROBLEM.

The following quantities are assutned to be given at the outset:
a) Some reference surface: In the general case this may be an ellipsoid with three
umequal axes, but because of the very small eccentricity of the equat~r this will

later be taken as an ellipsoid of revolution.

b) Gravity anomalies Ag = g - y where g is the acceleration of gravity on the geoid

and y is the acceleration of ‘the theoretical gravity on the reference surface.

The quantities scught are the height-differences N between the geoid and the reference sur-
face, measured along the normal of the reference surface. The height-differences N are related

to the disturbance potential T according to the following formula:

X
Y

N = (1.1)

The geoid can be determined as soon as an equation is obtained to solve the T. If the
reference surface is a sphere, the required relation is given by the so-called “fundamental

equation of gravimetry™:

2T 9T
R ' on - A8 (.2

which is satisfied by Stokes’ solution:

T = { ag s(n ds (1.3)

A

43R

Where n is the outer normal of the reference surface and dS is the surface element of a sphere
with radius R. The goal is now to obtain a similar boundary condition, valid for an

ellipsoidal reference surface.
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THE FUNDAMENTAL EQUATION.

In dealing with problems concerning ellipsoids, it is advantageous to use the so-called
"ellipsoidal coordinates”. The orthogonal system of surfaces is a set of confocal qua-

drics, represented by the equation

LIS Sl (2.1)

Considering (2.1) as an equation in A one can distinguish three sets of roots, depending
on the sign of the denominators in equation (2.1). Calling these sets p,u, v we have the,
relation

2 .2 2 2 2
ph> pi>kT > (2.2)

From (2.7) and (2.2) it follows that the p defines a set of ellipsoids, It must be no-
ticed that the three axes of these ellipsoids, in order of increasing magnitude, are located
respectively along the x, y and z-axe:. u und v define two sets of hyperboloids,
orthogonal to the ellipsoids and to each other.

Equation (2.1) must be transforined in order to make the quantity h equal to unity.

2 2
2
) (L ()
2 + 2 + = 1 (2.3)
A A k.2 A2
( h) 1 ( h) (h) (—h-)
This can be rewritten as follows:
x 2 y2 z2
+ + = 1 (2.4)
kz -1 Xz- 02 A‘z
Therefore relation (2.2) becomes
2 2 2 2
P>V>p > > (2.5)

Every point in space is determined by giving the ellipsoidal coordinates Pop . V.
If . 3, and b are the half-axes of the reference ellipsoid in question, in order of
decreasing magnitude, this ellipsoid can be characterized by the relations

p = po = .‘ (2'6)



a2 - a2
n - 2 (2.6)
32 - b2
1
Let U be the gravity potential of the reference ellipsoid which at the surface
p =P, has the value Uo
4] = U (2.7
( )p= by o
The acceleration of gravity on this surface is determined by the equation
3 U 3U_dp
= - = - eom— 2. 8
Y on (-3 ? dn) - ( )
P=EpP,

The gravity potential of the geoid is denoted by W. W is considered to be composed of
the potential of the reference ellipsoid U, and an additional part, the disturbance potential T.

On the surface of the geoid

W=U+Ts=W, (2.9)

The accelerationof gravity, g, is obtained by the formula:

.oz (2.10)

n n

oW ouU T au
dn on on 0p

n.'_g.
(-]

If Ap is the increment in the ellipsoidal coordinate p, corresponding to an increment N
along the normal of the reference surface, the following relation is valid
dp

N £ 2,11
Ap = 30 ¢ )

In (2.10) we replace U by the first two terms of Taylor’s expansion:

qU
Uus= (U Ap (—— 2.12
(W), + A (2.12)

(] L P=pg

or

U= (U = Zb 2.13
(V) op * N ) (2.13)



The next term can be shown to be of the order of a® (a is the flattening of the earth).
2 . -5
Terms of this order will be neglected in all subsequent formulas, (a =210 ).

(2.18) is reduced with the aid of (2.7) and (2.8) to

U=U_ - Ny : (2.14)

Substituting (2. 14) into (2.9) gives

- = 2,15
U - Ny+ T =W, ( )

or

= - 3 2.1
T=W_ - U +Nj ( 6)

If we assume Wo = Uo we have found equation (1.1). This relation is sometimes called
“the lemma of Bruns", We now proceed to derive the fundamental equation for T. By Taylor's

expansion of (2. 10) we obtain

2

oU 9 U d d d T
g =-—)  * de( ) ) v s =) B
dp p=pg ap p=po dn p=po dp dnp=po can
As in (2.12) we neglect here the terms with Ap2 50
oU d 2%y JU d 4d T
o= =8 - apqe— =)« (= S (5H) -
9p dn ap dn dp dp dn _ dn
P=pPo PP P=Po
using (2.8) and (2.11) we get
coye N 22 AT 11
g Y N dn on (2.07)
and taking (1.1) into account
T o7y T )
. S A 2,18
8 Y Y on n ( )

In expression (2.18) the derivatives of y and T are both taken along the normal to the
ellipsoid. This is not exact in as much as T must be differentiated along the normal to the
geoid. In neglecting the angle ¢ between the two normals (called plumbline deflection) we
introduce only a small error, namely the difference between cos € and ). Since € is always
smaller than one minute of arc the error is of the order of 43. We can safcly use formula

(2.18) or in its final form:
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1 dy 3T
- L — o 2.19
7 =T o+ 37 og ( )

This important formula can be derived from simple geometic reasoning.

/’1

N Ellipsoid of reference,

Fig. (2.1) .

2
Omitting terms of the order of N, we obtain for the theoretical gravity at the

point Q:
= Ly
y (@) y(P) + N 3 n
or
T d
Yy (Q) = v (P) + Y on (2.20)
On the other hand
__6W=_£_EJ__6T= _OT
g(Q) = o0 (an)Q 3n Yy (Q) an

which with the aid of (2.20) results in equation (2. 19).
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DETEXMINATION OF THE UNDULATIONS OF THE GEOID
WITH RESPECT TO THE ELLIPSOIDAL REFERENCE SURFACE.

We now turn to the solution of the boundary value problem, defined by (2.19). In
this solution we are going to use a rotational ellipsoid as the reference surface, although
some of the intermediate formulas are referred to the more general case of a tri-axial

ellipsoid. Hence

Loy L, , 2
Y an ( + ) + (3.1)

Here w is the angular velocity of the earth, p,, and Py e the principal radii

of curvature at the point of the cllipsoid.

N
2 2 2
a (1 +e|sin 8)
= 3.9
Pm 2 (3.2)
b+ ¢
1
1
: e 7
Py a (V4 cpsin 8 (3.3)
)
c2 _ 32 - b”
L=
b2

where ¢, is called the second ercentricity of the ellipsoid. 8 is the reduced latitude of
the point in question.

The boundary relation for T can be written in the fonn

-L 'O—IT’%:-;--As* (3-4)

y 9p

(1) Bruns, H, Die Figur der Erde. Publik. Preusz. Geodit. Inst. Berlin 1878,
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Here
Ag*= 9—':; Ag = 1+ ef slnza-Ag (3.5)
4 a - b
Neglecting terms of the order of e, andsince a = A or
b = (1 - a)a, we have
e?= 2 2'; = 2a + 9(42)
-9
and
1 u 2 2
- — = -— (1 + + a cos B 3.6)
Y %% " s ( q ) (
where 2
q = 24
Y
Hence the final boundary condition is
(1+q+¢cos25)—%;1+aa—:=-Ag* ' (3.7)

This formula is an extension of the fundamental formula of gravimetry for the case
of a slightly flattened ellipsoid of revolution. As is easily seen, the relation (3.7) reduces
to (1.2) for the case of a sphere (q=o;a=o;%%-"; p = R;).

Since the quantities of the order of a® are neglected, we can write for q the value

it has at the equator

writing C for (1 + q) and 6(8) for cosza. which is a function of the position on the
ellipsoid, the coefficient between parentheses in (3.7) becomes C + 6(8) . T i expanded in

a series according to powers of a, for which, as previously explained, only the first two terms

are used
T =1, ort" (3.8)

Combining (3.8) and (3.7), and comparing the ccefficients of equal powen of a,
we get the two equations

2r(°” at'® *

C s - A .
Py 2p 8 (3.9)
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and

o1 5V gr(0)

c =-0 () —— 3.
+ 8) — (

P o

If the quantity T(o)

is found from (3.9) the right hand expression in (3.10) is
known and (3.10) can be solved in the same manner as (3.9). The complete disturbance’
potential is then obtained from (3.8).

The height-differences N are, according to the lemma of Bruns, also split up into
two terms.

N = N9

+ aN
In all series developments in the preceding formulas, as well as in the following
ones, the terms of the order of magnitude of a® and higher orders are neglected. The
error in the height-differences N may thus be of the order of a®N, or of the order of
1 cm. Errors of this order can always be neglected. In Stokes' solution the flattening of

the earth is entirely neglected.

(1) (3.

10)

1)

The solution resulting from the following method shows an improvement by a factor of

a over the classical Stokes' approach.



-14-

EVALUATION OF THE DISTURBANCE POTENTIAL.

In the following derivations, use is made of the previously mentioned ellipsoidal
coordinates p,» sand v, and of some special harmonic functions of p, # and v, denoted
by R(p). M (1) and N (v). the so-called Lamé functions or ellipsoidal harmonics. (The
reader who is unfamiliar with Lané’s functions may consult any convenient treatise about
this topic.)

The problem is to find a function T(o)
p = p, and which on the ellipsoid still satisfies the boundary condition (3.9). A bar is

which is harmonic outside of the ellipsoid,

added to the quantities onthe ellipsoid to distinguish them from those in space. The right
hand member of (3.9) must be regarded as a predeterinined function, -f (&, v ), of the
two ellipsoidal coordinatespand v.

f (pv) = agh= —::—Ag ' (4.1)
but LT can be written
dn
gp _ 2 2. 2 .
an - Yo \/("o nXNpy - V) =1 Ri(p ) Rylp)) (4.2)
where, according to Liouville
l2 - ]

2_ 2 2 2
(o - p)ip - v)

R, and R, are the first two functions of Lamé (see Poincaré “Figures d’équilibre d’une

masse fluide” 1902),
The boundary condition (3.9) becomes

o) =(0)
2T 9T
C > + 5y - f (g v) (4.3)
where
1

1R (o ) Rolp )

f(mv) = ag (4.4)

The fuaction f (4 , v) can be expressed as a sum of products of the form M (s: N (v)

]
as—— is a limited and continuous function on the surface. The Lamé functions S, R, M and

N, ° will be given two indices, n and m, the first one to denote
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the order of the function and the second for the number .within the order., For the func-
1 2
R R

;+ R+ e keep the notation used by Poincaré: Ry Ry

tions of the first order R?.
and R 3°
Although the starting formula (3.9) has been obtained for an ellipsoid of revolution,

in this section the general notation defining Lamé’s functions for a tri-axial ellipsoid

will be used. It can be noticed that for an ellipsoid of revolution R 9 = R 3

Since T satisfies the equation of Laplace outside the ellipsoid, we can express T(o)
as follows:
o0 2n
(o) _ m _m m m m
T = £ B AR (p)S (p) M_ () N_(v) (4.5)
n=2 m=o

The disturbance potential T is not uniquely defined without knowledge about the
position of the reference ellipsoid and its relation to the earth. Therefore we add the
assumption Uo = wo. which implies that the term of order n; o is equal to zero,
and the assumption that the centers of gravity of the earth and the reference ellipsoid
coincide, which implies that also the term of order n = 1 is equal to zero. As can be
seen in (4.5) the summation over n is taken from two to infinity. The function fi., v)
is thought to be cxpressed in the form

° 20 g3 m
n

fQuv) =E T BOMD (u) NI (v) '(4.8)
n=2 m=o

For the sake of brevity the following notation is used.

m _m m _ oin
AUM (@) N () = P

m _.m m o KM
B My (8 N ) LI

Expressions (4.5) and (4.68) become now

(0) ©o 2n

=252 £ RT () sT (" (4.17)
. n (] n n
n=2 m=o

and
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® 2n m
agt=t ¢ g* (4.8)
n=2 m=o

At the surface of the ellipsoid p = P, We have

©o 2n
2C 30 _p g 2 M,y M (p) " (4.9)
p p n o n o n
o n=2 m=o [
m
=(0) oo 2n 95, (p)
LIChR z Rr:(po) (——;—— . P‘: (4.10)
P n=2 m=o P P po
From (4.3), (4.8), (4.9) and (4.10) we obtain
m
© 2n s (p)
2C 1
DD ey sep . o () L
n=2 m=o Po s™(p ) ap o]
n'"o
6o 2n )
=-g¢ ¢ #n (4.11)
n
n=2 m=o
Thus,
m
m 8‘)(-n
Pn = - = ) (4.12)
m m 2C 1 9s
R (p ) sT(p ) diz e n(p)
n'o n'"o Py s™(p ) 2p
n'Po p=p

o

Substituting (4. 12) into (4.7) we get for the disturbance potential the following ex-

pression

o m %m
Zn sh(e) En
= £ £ -
n=2 m=o
2C
5‘:(00) -p—+ -
' ° sn(Po) d

°) (4.13)

rl

-
P e
o
»n
© s E
—~
©
A
S

Replaciug R (po) and § (po) by R and § we get for P=o,

o 2 Y
n n
. ¢ —
n=2
m=o _ } .osn -2C
sm
n op p
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or oo 2n gm
™ ., & x "m
n-2 m=o dins$
“dlnp 2c

In the special case of.a non-rotating sphere this yields Stokes' solution.

(4.14)
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THE HEIGHT-DIFFERENCE N EXPRESSED AS AN INTEGRAL.

We try to get now an expression for the height difference N analogous to the
expression of Stokes. Taking into account the orthogonality of the Lam! functions,

we can write:

*n _ 1 m m m " m '
& - " lmS L agt [Mn (w) N (v) M) N ):| dw (5.1)
where
m _ m m?2 ' 2
1 - { 1M NTH dw (5.2)

dw represents here the surface element of the ellipsoid. The series (4.14) is written

in a shorter form as

c=<3 2n .
). p g g 17 (5.3)
n=2 m=o
m 8o
T = 5.
n gm (5.4)
n
m d 1n s
E, = ° - 2C (5.5)
dlnp
Thus,
= ) #*. .M m m_ . m , ,
Tn @ Em S lc: Ag'M_(p) N _(v) Mq(l) Nn(V) dw (5.6)
n )

Using (5.3) we have

0o 2n m m m m, .,
M_(p) N_(V)M (&) N _(V)
. Z%S 1,88% ¢ ¢ - —2 2—|dw .1
n=2 m=0 lm Em
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By (4.4) we obtain

Noting that R3 = p, we have

o~

(o). _"3
™ 7= S Ag G (g, v, 4. V) dw
41 R1R2
where
() 2n m m m, .,  m, .
M (#)N (v)M _(4) N (V)
) n n n n
Gip,v.u,v) = T Z
n=2 m=o ) Lol e
n

For the case of an ellipsoidal reference surface we have a formula analogous

to that of Stokes:

R
N L 3

4 R1R2 b
or

N . £ 4 Ag*G (0.4 V) dw
4y o

Wwe have the relation lodu = do, where do is the suface element of thc

unit sphere, and dw is the element of surface on the ellipsoid.

S AgG (u,v.u' V) dw

(5.8)

(5.9)

(5.10)

(5.11)
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THE CASE OF AN ELLIPSOID OF REVOLUTION,

In the course of deriving the expression for the height differencas N, the deviations
of the geoid from ellipsoidal shape, we have not required the ellipsoid to possess .any
rotational symmetry. As pointed out before, the eccentricity of the equator of the earth
is not very pronounced. As a reference figure, which docs not necessarily claim to be
the final solution, an ellipsoid of revolution serves excellently.

In this case, the products M N degenerate into ordinary spherical harmonics, and
the functions R and S are transformed into Legendre polynomials of the first and second
kind respectively and of imaginary argument.

Thus we have for the case of rotational symmetry:

R, = R,: = sin ©

M™ () = x:‘ (cos 8)

“Ycos m A

.m _Jsin m A
N () {

6 = 90°- B, where B is the reduced latitude.

l-p2=is; p=Vl+52; s = p2-l;

m m m _ am .
Rn(i:)= xn(is) sn(is)-on(ls)
4 dw fiela
dp ds dp s ds

Thus we get

sin m X " (éu-rl)(n-m')!_cTn

2
17 = —’—5[9': (cos 19){“’s m )‘}] o= ——toeml

(6.1)

(cm= 1 far m=o; cms 2 for m#o)
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m U d
- —_— £ i - .2
En . ™ In Q (is) 2C (6.2)
C=14+4q
That is
G (g, v, V) = 2 (6,0 2,6, 1) (6.3)

where 90. A, mow denote the fixed point and 9, A the running point, and

et ! (2n+1)(n-m)! ¢ Pr:;(cos 0) cos m(.\-xo)
Z(6_. A, 6.0 = £ T =
n=2 m=o (n+m)! Er:

(6.4)

Note: we sum over from 0 to n (not 2n) because the rotational symmetry introduces
a degeneration. For a given n, there now exist only(n+) lincarly independent functions,

Quite naturally, the product M N must difter from the elementary spherical harmonic

m co> m . . . .
P (cos 8)< . ° )‘L by a constani factor, but this factor is cancelled, a. its squarc
n sin  m AJ

occurs both in the numerator and the denominator of the formula ( 53.9) for
G (., v. M, V) since I:l" is in the denominator,
Thus (5. 11) takes the form

N .

) AgZ (6 .\, 0. 1) dw (6.5)

E
o

)
4IR‘y

where Z is given by (6.4).
Now we transform the domain of integration from that of the ellipsoidal surface to

that of the unit sphere. Remembering that lo dw = do and taking (5.11) into account,
we obtain the formula:
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(o) - P %
Ny § ag*z (8, A . 6.1,)do (6.6)

‘ o : I/ 2 2
When finally we introduce the facts that Ag*a t+e, sin 8 Ag and p=a

we obtain for the ellipsoidal surface of reference:

(0)_ _a | 2 2
N = ren § Vn«.) $1n"8 88 2 (6 .1 . 6,1) do (6.17)

where Z is given by (6.4), E': is determined by (6.2). It can be shown that (6.6)

contains Stokes’ formula as a special case, and thus (6.6) can be regarded as an extension
of this formula.
The function Z given by (6.4) must now be studied more closely. Doing this in

accordance with Sagrebin, we find the following expression after a series expansion:

= 2 .
Z(0 WA 0 0.0) = S(¥)+ e D(V¥i0 .\ .0, M)+ 2q9(¥) (6.8)

where @ and yr stand for the following expréssions :

(- -] 2
D(¥:0 A 0. = - g n(2n+1)

P (cos ¥) +
a=2 (n-1)2%(2n+3)

o ) 2

w2 £ 2 i wm - 204} 0 _p (cos ¥
n=2 (n-1)2(20+3) ° 0=2 (n-1)%(2n+3) A2
(8.9)
o0
Yy = g .20 P cos(¥) . (6.10)

|1=2(u-l)2
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INVESTIGATIONS OF THE FUNCTIONS $ AND .

We begin studying the function
$u¥io . x . 0.0) = - @ (14 2¢-?(v) T@vie N 00 (1)

The first two terms of (7. l)‘are functions of the angular distance ¥ between the
two points (60. )\o) and @, A\) where & is the complement of the reduced latitude.

.'l'hese functions are expressed by the equations (cf 6.9)

o n2(2n+1)

$ (v = ————— P, (cos ¥) (1.2)
u=2 (n-1)°(2n+3)
¢, (v = ¢ 2% P (cos ¥) (7.3)

n=2 (n-1 )2(2n+3)

The third term in (7.1) depends not only upon the relative position of the two points
but also upon their absolute position on the ellipsoid. Thus the third term is a function of

all four coordinates 60h 8N,
If we change the order of summation and differentiation in the last term of (6.9)

we have the formula

9 .
2
éa(v;eo.xo.e.x) = ﬁ fl2 (¥) (1.4)
[«]

02¢2(v) av 2 0Q2(v) o2y

$ (vie .\ 6,0 = R — (1.5)
3 o o 22 YW o¢ 184
[§] [+]
v 021
It i clear that the derivatives 6—)‘ and — must be functions of both sets of
coordinates eo’ko' 0, A. axo



The derivatives can be obtained from the formula (the spherical cosine thcorem):

cos ¥ = cos 90 cos 0 + sin 90 sin 6 cos (x-xo) (17.6)

Thus for the evaluation of the function @ it is sufficient to obtain the functions
@I ( ¥) and ¢2 (¥) whereupon @ 3 can be found by ordinary differentiation. To obtain
)] and ¢2. we decompose the fractions preceding Pn( cos ¥) in (7.2) and

1
(1.3) into partial fractions, We obtain

n2(2n+1) = 34_ l_ . _3_ 1 . 18 ]
(n-1)2(2n+3) 25 n-1 5 (n-1)2 25 2n+3
and
2n4] L4 1 .8 8 !
(n-1)%(2n+3) 25 n-1 5 (n-1)2 25 2n+3
Thus
- 0‘ (¥) + 2¢2(*) = - T Pn (cos ¥) = — L Pn(COS ¥)
n=2 25 n=2 n-1
® ®
3 i
+— L Pn(cos ¥) +—2—- z ! P (cos ¥)
5 n=2 (n-1)>2 25 n=2 2n+3
The function D (¥) (cf 6.10) takes the form
® 1 ® 1
o(¥) = 2 ¢ Pn(cos ¥) + 3 ¢ Pn(cos ¥)
"n=2 n-1 n=2 (a-1)

Writing the above expressions in a shorter form, we have
28 3 2
@, (¥) + 20,(¥) = - o (V) - 5 ¢, () +— 9, (") 455 9,(¥)

(7.6)

4 3 8
O, (1) = 2= ¢, (M) + 50, (V) -5F ¢, (V) (1.1
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Yy) =

2 @, (¥) + 3 "2(”

where for convenience we have introduced the expressions:

¢°(*)=an
)

"1 () = En-l Pn
o (V) =L AT Py
¥) = F —— P
ey (N =T P

(7.8)

(7.9)

(7.10)

(17.11)

(7.12)

All summations are taken from n=2 tw0 n=°2, and Pn stands for Pn (cos ¥).

The sums (7.9 - 12) can be obtained by utilizing the generating function for the Legendre

polynoinials:
) .
£ P (cos ¥) x" =

) VI-2xcosv+x2

n
o oo |
. n _ .
022 fo ¥ T Vl -2x cos ¢ ~b‘xJ!r howeed
Putting x =

1 4n (17.13), we have

i 1
¢ ()= -1 - cos ¥ =—cosec

° Vz-z cos ¥ 2 2

The sums ? (¥) and ?q (¥) are of the general form: £

We introduce the expression

n-k

Pn X & 'sl( L€, l)'

J
n-k
By differentiation we find the relation

n-k-1
sk('.x)stan

—_—-1

(7.13)
- cos ¥ (7.14)
1
-k Pn '
(7.18)



That is
n-k-1
= 7.18
s, (. x) =§ (zp x ) dx (1.18)
But we have, by (7.13)
n-k-1 1 c ’
LP x = -1-x cos ¥ (7.17)
" xlw1 [Vl-mg cos V + xf :l
Thus
X
s, (¥,x) = § — [ ! -l-xw] dx (1.18)
k k+1
o X r (x) .

where K(x) = VI -2x w + x2 and w = cos ¥ to achieve shortness of notation

To obtain @, we put k=1

X
1 ]
S, (¥, x) = { — ( - 1 - xw) dx (1.19)
X r(x)
[+}
and then
?, () = s, (v.1) (7.20)
.s1 (¥, x) is evaluated as follows:
X x . x
5,(4.%) =§ (= —'2— 2y ax =§ dx +(—- @ In x)
x r(x) x X x r(x) - X o

[\]

(Singularities which arise when x-»0 must cancel in the end result.)

de

= (substituting y -—l-) = -S y dy
x r(x) 1(y)

but



Thus
- ydy=_s(0r(y)+ w)dy=-r(y)-w1n
1(y) oy ry)
r(x)

- wn Il-xw + r(x)’ + w ln x
X .

It follows then that:

_J-r(x)
S1 (¥, x) —{—x w ln

) -
As x approaches zero, ;(x) approaches the constant
Thus
V-r(x) !
= —2 — 1 - +
Sl(*.x) ” w In ) i wX r(x)

Putting x =1 we obtain

1 -
¢‘(~lﬂ) =,S](W,l) =1 - |2-2w - w-w lnT(l-w+\’2 - 2w)

But w= cos ¥, thus

which yields

%

To obtain ¢2(*). we must study the more general sum

] -1
H(¥.x)=¢ —s P, x"
(n-1)
Differentiating, we obtain
[ . 1 n-2 _ 1
ox H (¥.x; =Z po an = 5,(%.x)

by the use of (7.15).

) X
1 - wx + r(x)l}
o

w.

(¥) = 1-2 sinlz- cos ¥ - cos ¥ ln(sinz-"—+ sini)

w4+ r(y)

(7.22)

(7.23)

(17.24)
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Thus
X . 1)
H (¥, x) =S-x—31 (¥, x) dx
o
That is
X
H(vx) =§ (2580 9 on L liux + o -2 ax (7.28)
2 X 2 X
0
Putting x =1,
]
H (V1) = ¢, (V) S (LX) v v, _'..ll-wx + (xi[)dx
° x2 X X 2
(7.26)
We consider the expression
' (M (2)
= = - .2
ch(n-s:s1 (V,x) dx= I, "+ wln e - w I (7.21)
where € is a small positive quantity which approaches zero , and
l-
AR QL (.3 S (7.28)
le 2
€ X
1
(2) ¢ 1, L | ; I o
5. = —n = |1 - wx o+ wx) | dx (1.29)
€
We now proceed to the evaluation of 1(1") and Jf 3) .

] )]
AL INLLILY R [ ——"'(”.] S XY g =
2

le x ¢ €% Hx)

1 1/

- . i i dx dz
= 1 0‘,2 2w + w + 0 (¢) _—r(x)’ w_sl Ty

1) Sagrebin did not include the, “x" in the denominator of the integrand.
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]
where we have used partial integration, the substitution y =~——, and the fact that
X

1=~
__l’(__ﬁ_)___ w + 0(6)
€
. S dx
Remembering that ) = ln lx - w + r(x)| + a constant and

disregarding terms’ O (€) (of the order of €), we have

J(l)=-l+w+\’2-2w-ln 1-w+|2-2w+

Te 1 - w
+ 1 2 - wln € = -l+cos ¥ + 2 si *-
win o LT "2
. ¥
- (1 + cos \V)ln(l+sm?)+(l-cos V)lnsin-2--wlue
Thus letting € approach zero:
N .
¢2(V)=- 1+cost+2sm—2+(l-cos ¥) In sin — -

(2)

= (1 ¢ cos ¥) ln (1 + sin —;—) - cos ¥ J, (17.30)

It remains 10 evaluate 1(12) . It is not possible to express this function in terms of

¢lementary functions, but it can be transformed by the substitution x = ;— and by

partial integration:

1
J(‘z) =s -L—ln '?(1 - wx ¢+ r(x))l dx =
)
-1 ax_ . 49, .
( x y Py y )
ml L}
=s—(ln ?(y-w-tr(y)'-lny)dys
,Y

1

n
-8
[ ]
—
=
-]
-~
+*
—
-
~
—
-]
|-
-
~
L]
€
<+
-y
_—
~-
A
e
s
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Thus

21w (1.31)

where L (¥) is given by the equation:

o
L =1§¢
1

] B
r(x)- —x—) In x dx

(7.32)

The term —3— is included to make the integral converge at the upper limit. Thus the

expression for ¢y (¥) now reads:

¢ (¥) = - 1 + cos *+2sini+(1-cos \l')lnsin-‘-'--
2 2 2
¥
- (1 + cos ¥) In (1 + sin ?) + cos ¥ L (¥) (7.33)
We now make a closer study of the function L (¥). In the limits for w = + 1, that

o .
is, ¥ = o or 1800. we may compute the exact values of L (¥) as follows:

) ¥ = 0 ; w = 1
)
2 1-

L(o):-](‘)(o)z-SE_x(__xl dx

]

By scries expansion we have
]
n-1 oo n-)
e x ) X
boy =% ¢z & dax = £ | dx =
o n=i n=) 0
oo 2
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2, v = 180°; w = -1
y
1
L (180°%) = l_'%_fﬁ dx
1 2
- .
L(o) + L (]800) = - S _l_n_(__x__.)_dx
o X

Making the substitution x2= t; wehave 2 ln x = Iln t and

dx 1 4
X 2 1t

Thus
L (o) + L(18079) = '17 L(o)
or
L(180°%) = - — L(o) = -
2 2

The derivatives of L(¥) can be obtained explicitly by differentiating the terins

under the integral sign with respect to ¥ (see 7.32):

dL(¥) _ dL('l')_ dw ek ’ .
v - P v sin v L (7.34)
o>
U4k ¢ xInx oo (sce 17.32) (7.13)
dw 3
1 ro(x)
But
2 L Lx
0x r(x) r(x)"‘ l'(x)3
thus,
X w 9 1

r(x)a r(x)3 dx r(x)

) N r(x)z’ 2wx - x2= 1 . X +x(w-x)
t(x)3 r(x)3 t(x)a 8 3
r(x) 1(x) (x)
et xS0

(x) x(x)a dx r(x)
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This gives
[ o - [-%Y 1
L:=wslnx dx+w“sx—ﬂ-f:-dx+w3'xlnx—a————dx
1 r(x) ] r(x) 1 dx r(x)
o
- 5 lnx_o ! dx
1 ox r(x)
] oo , o 0
L'=w5‘"x dx+w2L+w[x lnx:, _wslnx. dx
1 or(x) r(x) ~ boor(x)
- w

on ~00
S dx [ln X J R s dx
1 1(x) r(x) < 1 r(x)x

= w2 L' + w[_xu - lnlx-wﬂ(x)l]“ - l:ln I—]-- w+—]— r(x)ﬂa
i b1 X 1

1(x)
Thus

1 - Yo- 1 - Ve - ¢
(l-wz)L'-wln w +Y2 2w+ln w + 2 w

2 T - w

=wln(s+s2)+ln(s+s2)-lns2=(l+w)ln(1+s)

- (1 - w) ln s

where
¥
s = sin -
We have now
] b
L = In (1 + s) - In s
1 - w 1 ¢+ w
and
d
a .. 2scL’=—s—lns--c—ln (1 + s)
dv c s
where
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Thus the formula for .d"(v)
dy
&‘i”: — 1n sin-:- - cot—\yln (1 + sin_i)
dv 2 2 2 2

This formula is differcntiated once again:

2
i 1 2
a4uy 1 - ]—-cosec l-&—]cosecz—tln (l+sin—‘|—)+—scc
dv? 2 2 2 2 2

¥
«ln sin —

D)
r

We now turn to the evaluation of the function q:a (¥) given by (7.12).

¢, (¥) =L P=—]E - P
3 2

2n+3 " b+ ¥ 0

Putting k = - -32- and x = 1 in the general formula (7.18) we have

)
’3(')-ls-3(*")=—‘s_] ('— - wx - 1) dx
2 0

i
2 7 xz r(x)
That is, \
1 d 1 ]
oq(®) == § ex .1, L
2, 1 - 2xw + X $ 3
Thus it is necessary to compute the integral
(¢ Vx d
X
Jgn = =4 :
) 2, VI - 2xw + X
Substituting Vx =g .—‘,’ wu obtain
LA
2 -2
1 g 5 do
I =< §
2 o 2 2

(7.36)

(7.38)



from which we have

e lgzg de
I = =
L Vl - k2sin2¢
where
2 : 1 _ ¥
k -?(1 +w)—?(l + cos ¥) ork-cos2 (7.40)
However this last integral can be expressed as follows:
]
LR 2 -
g g 2 de 2
1. 2 " .
—S —_— = | tg—|[) - k sin ¢ +
2 " 2 . 2 2
o 1 - ksin ¢
n
n —_
T o 2
" 4 [}
— S —e s - S \/l - kzsinzv de
: [ \/l-kzsinch °
which can he expressed in snorter notation as
J (¥) = sin-ld-—]-K (¥) - E(¥) (7.41)
2 2 2 )
A
where K (¥) and E (¥) are complete elliptic integrals of modulus k = cos -
Thus, finally
e (¥) = sinl+lx(v) - E(¥) - Locos v -+ (1.42)
3 2 2 § 3

As we are going to require the first and second derivatives of pa(x) in the following,
we state here the corresponding derivatives of K (¥) aand E(¥):

dE _ I
—k-'T(E - K) | (7.43)
KT B k) (1.44)

dk k l-k2

Formulay( 7.43) and (7.44) can be found in many standard tables ( see Dwight:
"Tables of Integrals and other Mathemacical Data”. 4th Ed,’ 1961, Macmillan Company,
New York.)
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Now
dE _ dk dE 1 ¥ dE
dv v dk 2 2 d
Thus,
dE A4
L2t —tg—(K - 7.45
d¥ tg 5 ¢ E) ( )
and similarly
dK ] ¥
v -2 thK - cosec V¥-E ‘ (7.46)
Differentiating once more, we obtain in the same way:
d2E } 2 ¥ \ 2 ¥
—— = — sec —K - —(1 + sec” —) E (7.47)
dv 4 2 4 2
and
d2K 1 2 v os ¥
— = — 18 -—K+—‘i——2__5 (7.48)

d 4 2 sin” ¥



EXPLICIT EXPRESSION FOR THE FUNCTION Z (OO.XO.O.X).

The dominant function in the expression for Z is the well-known function of Stokes:

. 4
S(¥) = cosec-:—-o 1 - 6 sin—;-- 5§ cos ¥ - acosvln(sin?-r

2 ¥ ‘
+ sin 3/ (8.1)
Considering the equations (6.8) and (7.1) we can express Z as follows:

2 2 g
Z (8.1 8,0) = S(¥) + ef (V) - e, @, (vie_x 0.0 4

+ 2qW (V) . (8.2)
where we have
f(v)=-_¢,(n+ 2¢2(v) , (8.3)
The explicit expressions for f(¥) and ¥ (¥) can be found immediately by the

aid of formulas: 7.6, 7.8, 7.14, 1.22, 1.33, 1.42.

2 1 ] 84 \ ] 328 '
f(v) = - 5 - 5 cosec Tt g Ma gt g cos v

1) 3 \d
5 cos ¥ -—5—) ln () + sin ?)&
1
+ (!2-5 cos f-t-:—-) 1n sin -;L+—:-cos ¥ L(Y) +

1 2
+ g K(N - 3 E(N) (8.4)

(Y = -1+ 2 lln-;—f cos ¥ - (8 + 5 cos ¥)Iln() + sln-;-)

+ (3 - 5 cos ¥) Iln sin -%+ 3 cos YL (V) (8.5)

To obtain the function ’3. we need ¢2 (¥), which can also be found easily
with the aid of the formulas 7.7, 7.22, 7.33 and 7.42.



¢2(1ﬂ) = - -:—'? — sin —;—-r —— cos ¥ -

-
©

3 N
- (?1- cos ¥) In (1 + sm—z—) +

[+

6

3 19 , ¥ 3
+_(-5-- ﬁcos ¥) In sin 2+—5-cos ¥ L (¥)

4 8
- ?5- K (V) + —2—5—‘E (v) . (8.6)

The derivatives of @ 2(V) can now be obtained from the formulas 8.6, 1.36,

7.37,.7.45 - T.48.

¥
K P T 12 v 2 ‘'3
—_= sin ¥ ~ ~—c¢cos — - — ———— ¢
dv 125 25 2 25 1+sm§

4 v
4 (?5'3111 ¥ -—s—cot ?) In ( V + sin —)

3,
+(,,—;-sln ¥ - —1tg o) In sin?

RIS 2 ¥ 4
- 5osin ¥ L(¥) + 23 tg ) K(V)-c»25 cot ¥ E (V) (8.17)
2
R A 202 1 2
-— =—sm-—2-+ — CcO0$ ¥ + — cOseC — -

av? 5 125 25 2
- cosec AL ! +

)

0 ¢ 25 1 + sinl

2

49 3 3 2 ¥
+[Eg-c051-?-ﬁsec 72-] lnllnT

4
+[n—5 cos ¥ +-§-+ -'eo-cosecz—;-]ln (1 + stn—;-)

3 1 2 ¢ 2 2
AN ¥ —_— —_— - —

5 o8 L (¥) +25 (sec 3 + 1) K (¥) 25 2 cosec ¥ + l] E(Y)

(8.8)
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We still have to cvaluate the derivatives of the angular distance ¥ with respect

to )‘o' These derivatives can in principle be obtained from the spherical cosine theorem

but are more easily found from three fundamental formulas of spherical trigonometry.

Fist, we make the change of variables 8 = 90° - 0, B = 90° - g,
vhere 8 is the reduced latitude of the point in question. The three fundamental formulas
are (cf, fig. 8.1).

sin ¥ sin A°|= cos B sin (A - Xo) (8.9)

in ¥ ¢ A = i - - .

sin cos ko sin B cos eo cos B sin Bo cos (A Ao) . (8.10)

cos ¥ = sin Bo sin 8 + co§ Bo cos 8 cos (A = xo) (8.11)
Fig. 8.1

P = the north pole .
M = the fixed point
M = the running point
A = the azimuth

The angle MOPM is equal to A-xo.

Fig. 8.1

Differentiating (8.11) with respect to Ao and taking (8.9) into account we obtain

o»

—— 3 - -
- sin A cos 8 (8.12)

Diffcrentiating once more:

2

-4
*

= - cos B cos A 840 (8.13)
o - °

|

ox

ow
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0A
The derivative -b_x? can be obtained from (8.9) and (8, 10) after differentiation:
0
cos ¥ sin A LA + cos A sian=-cosBcos(x-)\)
o dx o [N 0
(] o
ov aAo
cos ¥ cos Ao a—;; - sin Ao sin ¥ -a—x—o = - cos Bsin Bosm(x-xo)

From this we have

oA
[+]

sin ¥ 3)‘_5 = cos B [sm Bosm Aosln (e xo)- cos Aocos (x - xo)]

But we also have:

cos (360°-A) = - cos A cos(X -A_) + sinA _cos (A - A_) sin B
[} [+] [+] [+ [+
Thus
OAO cos 8 cos A
aIn_ sin ¥
[+]

When we substitute this expression into' (8.13), we obtain:

¥ cos Bocos 8 cos Ao cos A

= - 8.14
3 (8.14)
[

sin ¥
Regarding the function .3 as a function of the four variables 8, B Ao' A we obtain

2 2
9’3('; B, B.A L A)= f (V) sin" A cos B -

- fz(i) cos Ao cos A cos ‘o cos B (8.15)
h 2
where d ,2”)
f(9) = (8.16)
av
' af,(v) .
folM = —Tn v av (8.17)
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The expressions for f] and f2 are determined further by the formulas (8.7) and

(8.8). Thus we can write for the function Z:

zZ (Y; BO.B.AO.A) = S (¥) + 2 a f(¥) + 2qP(V)
- 2a | f_(V¥) si 2A co 25 - f (¥) cos A cosA B cosB 8.18)
2 ) sin o s o 2( ) s o osAcos o H (8.

where S(¥) is Stoked function and the functions Y'(¥), f(¥), f](*). f2( ¥) are given

by (8.4), (8.5), (8.16), (8.17). The quantity e'z is replaced by the approximation 2 «.

The function Z, as given by (8.18), is still apparently a function of the variables A and
8 of the running point. In reality, Z is a function of the angles ¥ and Ao only if
we assume B to be given,

From the spherical triangle PMOM we have:

cos B cos A = sin ¥ sin Bo - cos Bo cos ¥ cos Ao (8.19)

Introducing (8.19) into (8.18) we obtain

Z( By Y. A ) =5 (¥) + 2a f(¥) + 2qP(¥) -

- 2a f(*)inzAc2B-f1)coB 0s A
[' H o os o 2( H o cos

2 - . . 0
( sin ¥ sin 8 _ - cos 8 cos ¥ cos Ao)] (8.20)

o '
Thus we can write the expression for the height difference N ac the fixed

point, determined by (Bo. )«o). in the form:

LI |
N - 2 ? agz (8 i ¥. A ) sinvdvaa, (8.21)
Y o o

Using the variables ¥, Ao the surface element do = sin¥dV¥ dAo.

The quantity & g* is connected to the gravity anomaly Ag by the equation

2
e
Ag*= Vl + e? sln26 Ag = Ag (1 + T'unza t...) =

= Ag (1 + aslnzs) (8.22)
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where sinzﬁ is given in terms of the coordinates of the fixed point and the angles

¥ and Ao by the relation

2
sin B8 = sinzﬂ cosz'l' + 2 sin B cos B sin ¥ cos ¥ cos A
[¢] 0 [¢) o

(8.23)
The integration in (8.21) is performed on the circumscribed sphere with the

greater half-axis as radius. Our problem is now solved.
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CONCLUSIONS.

We may now write equation (8.v2l) in the form

5 2
NGO = 2 S Ag%¥2(% (v, 8 A B.A d¥dA ) (9. 1)
[+] [o] [+
27y o o
o) .

The function Z' ™ is given by the expression

(o) _ ) 2 2
Z (BO,V,AO) = F(¥) + 2a I:Fo(v) F'(V) sin Ao cos Bo

+ A i - ¢
F2¢ cos Bocos o(sin ¥ sin Bo cos Bo cos V¥ cos Ao):l

+2q Fy(¥) (9.2)

There we have

F(¥) = -12—sin ¥ S(¥) (9.3)
) .

F (¥) = 5 sin¥ f(¥) (9.4)
1

F (%) = —=sin ¥ { (¥) (9.5)

= L

Fol¥) = —sin ¥1(¥) (9.6)
1 y

Fa(¥) = —sin ¥ §i(¥) (9.7)

F(¥) is sometimes called Helmert's function. Thus we have as our final

formula for léo) :

n 2a
N - 2§ ag [v + aslnza] E‘(V) + 2¢{Fo(') -
22y o0 o .

2 2 .
F,(v) sin Aocos Bo + Fz(t) cos Aocosao(sin ¥ sin Bo

- cos Aocos Bo cos v)}+ 2q l-'a(V)] d¥dA (9.8)
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or with the same degree of approximation:

21
(o) _ a (o) )
N S e— S s Ag 2 (Bo. v, Ao) d"dAo (9.9)

where

(0),, . e 2 )
2 (Bo.\l',Ao) = F(V¥) [1 + a sin B] + 2a [FO(V)

2 .2
-F‘(V) cos Bosm A°+

1 2 2
; . - A
+ ry sz(v) sin 2B°s1n ¥ cos Ao F2(\i') cos Bo cos ¥cos °

+ 2q Fs(!')] : (9.10)

Here sinzﬂ is given by (8.23) as a function of Bo. ¥, A. The quantities in

(9.9) and (9.10) are defined as follcws:

N(o) = the height difference between the geoid and the ellipsoid

a = the greatai half-axis of the ellipsoid

= the quoticnt between centrifugal force and gravitational force at the equator
= the gravity of the theorctical earth

q
Y
Bo = reduced latitude of the fixed point
v

angular distance between fixed point and running points.

The anomaly Ag in (9.9) is regarded as a function of the reduced latitude and the
longitude. The functions F, Fo. F‘. F2. l-'3 occurring in the expression for

2(°) (8 _: ¥ A_) are given by the formulas (cf. 9.3 - 9.7, 8.4, 8.5, 8.16 and
8.11).

v 5
- i == - — v -
3 sin ) 2cos

1
F(¥) = sin v{-2— cosec -%-t -%-

3 ¥ PR
. - in — i — 9.1
2 cos ¥ In (sin ; + sin 3 } ( )



FW-'\VI,oc*+421r*+164 v
ol¥) = sin 3 g ©0%€C g * 55 slr 5ot qgg cos

11 3 . ¥ 11 3 N
— - o— -_) + — + o— —
(50 cos ¥ ]0) In (1 + sin 2) (50 cos ¥ IO) In sin )

3 } 1
+ ) cos ¥ L(il)...s—ox(v)-z—s E(V)] . (9.12)
. 4 v 101 1 1
Fl(v)—sm*[(—s-sin7+ 1—2—5005 ¥ 50 v *
T4sin—
9 3 3 1 ¥ 3
+(ﬁc0s *"'ﬁ*'%' .2*)oLn (1+ slnT)-ﬁcos*L(*)-
sin 3

1

cos y
2

1 3 L4 1 ¥ ¥
"33 E(*)] "o M.H 7 + ﬁ[.\in?l((\')(cos ?4- ) +

49 A4 3 ¥ 3 ]
+(2—cos—cos ¥ - —cos — -

nv 5 2 5 2 0 v
COS ==
2
. N 4
sin —~lIn sin == (9.13)
_ 16 . 6 ¥ 1 1 ¥
F2(W) * 728 sin ¥ 25" cos—2- 35 ) cot 2 +
l+sin=—
2
11 3 ¥ ¥ 11
+(25 sinl’-ﬁcotT) ln(l+sln?)+(-2—5un ¥ -
3 ¥ ¥ 3 . 1 ¥ 2
-,-B-tg?) In sin?-'—osanL(*)+25tg2K(V)+,5cot# E(Y)

(9.14)
1

4
Fa(t) =? in Vlg-l + 2sin-2l+ cos ¥+ (3-5cos ¥) In sin?

=(3+4 5 cos ¥) ln (1 + fin-;—) + 3 cos ¥ L(!)] (9.18§)
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In the last four formulas K(¥) and E(¥) are complete elliptic integrals of the

first and second kind and of modulus cos -;— .
Thus ,
n
2 do
K(¥) = 9 (9.16)
[¢] 2 ¥ 2
1 - cos —sin ¢
2
n
T
E(¥) = S Vl - cos2%sin2¢ de (9.117)
0
L (¥) is a new function, given by the formula:
1 1
L(¥) = S ( - --x—)dx (9.18)
° 1 - 2x cos ¥+ x2
(cf. formulas  7.34 et scq.)
This function can be tabulated (see table below) for some values by the use of its
derivative
dL(¥) ¥ . ¥ N
= —_ —_— - _ - .1
q tg 2ln s1n2 cotzln (1 + sin 2) (9.19)

’ 2
and the fact that L (o) = _’6_

After evaluating N(o) according to formula (9.9) (in principle fo‘r every point of the
earth) we must compute the correction N(n. This can be done by replacing A g*

(o)
(= &g + Ag sin°8) in (9.8) or (9.9) by -2-’i;—1 cos?8 (cf. eq. 3.9 -

3.11 and 1.1).

It will be sufficient to take into conmsideration just the term K¥) from (9.8) or

(9.9). As we neglect terms of order a? we do not need more than this term of our expression
for aN(I) .

Thus, 2 2n
N 22 66 ag") E(w) avaa (9.20)
22y o o
where
(o)
Ag(l) = -2—N——Z coOs a

(9.21)
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We have now solved our main problem, and it remains only to test the results

on a suitable model. The solution is given by the formulas (9.9) and (9.20).

N= N9 s g Y (9.22)

The new functions are compared to Sagrebin's functions in a diagram below.
A special test of the function 2 has been performed, by directly summing the series

on an electronic computer

R
¢, = % P (cos ¥)
LR R

for different values of ¥. The results obtained agree completely with those found from

the explicit formula (7.33) for ¢2(W).
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THE TEST MODEL.

For a simple test of the resolvent function Z, the following "model earth” is
designed (Fig. 10.1),
The theoretical gravity y is obtained from the requisite massdistribution to make the

ellipsoid an equipotential surface. The "formula of Bruns” then holds for y:

LI A AL I L (10.1)
y 9n Ve pg Y

To obtain a disturbance potential T with the gravity centres of the theoretical
earth and the actual earth coinciding we put four unit masses into the ellipsoid in the
plane A = 0, 1800. Furthermore, we€ put a negative mass of -4 units in the centre.

The radius of the circumscribed sphere and the gravitational constant are taken to be

the unity.
Thus 4
T =§ 2. A (10.2)
. I, r .
i=) ij 0j
_ T 1 2y
ag = on + Y on T (10.3)

We know the disturbance potential a priori, and therefore we can simplify the

computations to one single step. This means we have to use the boundary condition

(v a)—=r == - ag¥* (10.4)
where
T = the total disturbance potential

Ag”= the gravity anomaly for our resolvent.

Furthermore we have the relation

1

ag = ag® + 2a sin’s) 2 (10.5)



Substituting this a g into the resoivent formula we obtain

s 2n
1
T=§TS ( agzdvda _ (10.8)
o o

This value should coincide with the value from the Newtonian computation.
The computation of & g.
Starting from (10.2) we have:

4 4 (o°T,) (o)

K L R A L oL o
on on 1« . dn r 8

i=1 ij 0o is1 r r.

ij 0)
Symbols

Toj = the vector from the origin to a point on the ellipsoid
Toi = the vector from the origin to a disturbing mass
I = the length of a vector
i T "Te Y o
T = the outer normal of the ellfpsoid (unit vector).
4 *=  unit vector

Thus we have 1o investigate the quantities (T - ?o i) and. (0 + T_))

0j’"
The normal of the ellipsoid is given by the formula

= =
n=r°j+ asln2a’ rj (10.8)

where Fj is the unitvector of the tangent (towards the north pole) of the sphere at the
reduced point corresponding to j.
Thus

- = .= 2 \
. = . = ,0.9
(AT ) = ro; ¢ asin 28,(B "t ) = £ +0(a") ( )

= = - e .7
(n 'ot) (r°j+ nln!a,i’) Toi ('oj ro‘) +
ing2s, (8, T 10.10
e, sin ‘j(‘j 1) - (10.10)
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= ==
. = 10.11
(roj roi) roi cos v” ( )

where v, is the angle between the vectors T . and T ..
ij oi oj

The quantity (Ej : ?oi) remains to be found. In Cartesian coordinates

(x,y,2z) we have

= = = .
v C 'R'i cosisl + z sin Bi + O(a) (10.12)
B = -R.sinB. + z cosB_+ O(a 10.13
j j j z j (a) ( )
Here
§=fcosx+=y'sin . (10.14)
(aj . roi) = -cos aism Bjcos (xj-xi) + sinBi cos B’,-bO(a)

We do not want the quantities 8, and xj to enter into the final result, since we

and Bi' xl are given beforehand

i

lntegut.e over ¥ and A (=Ajk). Here Bk. xk

and may enter explicitly into the formulas for' Ag and T.

We have the formulas

k

sin 'j K

sin Aj = cos Bj(sinx cos A\, - sin xk cos Aj) (10.15)

§ k

cos ¥ = sinsjsin6k+cosa

ik cos Bk(cos )\j cos A\, +

i k

sin xjsln kk)' (10.186)

(cf. eq. (0.9) and (0.11)).
From the equations (10.15) and (10.16) we can solve for the quantities

cos B, cos A, (= ¢

i j ) and cos B

sin xj (83,).

i i

cos ¥ - sin B8, sin 8

“jk . k i
§ cos Bk

cos xk- sin 'jksln A“‘un xk (10.17)
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cos vjk - sin Bksln 61 :
= . i ., CO 10.18
sj cossk sin xk+sin \Irjksm A’k sxk ( )
A.jk = A and v ik = ¥ are the integration variables,
Furthermore
cos ¥ - slnak sinBj _ sin ¥ cos A - sinﬂjcosﬂk
cos Bk sin ak

(cf. (8.10) and (8.11))

This expression can be used when cos Bk approaches zero.

By permutating the angles

90° - 8.+ v—290° - 8
i k

A A A A in (10.16) we obtain

sinej = sin Bk cos ¥ + cos Bksin*cos A (10.19)

Since

-90° < Bj < 90° we have simply

cos Bj = Vl - xinzaj (always positive) (10.20)

The Teduced” angle Y between the vectors ?o , and Toj is given by

cos Vv, = sinBisinBj+cosBl(cj cos Xt'l's

i sta ) . (10.21)

i

To obtain the physical angle \v“i in (10,11). we have to replace Bi by

a
( 31 - -2—sln %i) and analogously for Bj'

Thus by series expansion

cos v,. ®= coOs vu(l + a(sinzai-t unzﬁj)) - 2asin aislne

ij J

(10.22)
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Expression (10.15) reduces to

. - cos Bisi.n B.i
(Bj roi) = - —c;?ij— (cjcos xi-t-sjsin xi) + sin Blcos aj
Thus
, s = . ' 2
asin 251_(3j roi) = 2a slnaj(lln Blcos Bj cosBlsin Bj
10,28
(cjcos )\i+sjsin A ( )
We have also
r2 = r2, + 12, - 2r . r . cosv, (10.24)
y oi 0j oi 0j ij
From the equation of the ellipsoid we have.
2 2
r . =1 - 2asin 10.25
oj Bi ( )
2 2 22
X +y =+ =1
2
I-e
(z axis along the axis of rotation)
where e is the first eccentricity of the ellipsoid.
x2+y2+ 22= 1 - 2a z2+0(a2) z=sin8,+0(¢)

Now we can write (cf. 10.7)

4 T T 4

T = n(r “3 - 4 o) ) =.i -z
=1 . 3 2 i=1

dn i r“ r°j 'oj i

: 2 y
24 sin Bj(stu B; cos"8, - cos B sin 8, d“))

where

djl = cj cos xi + 'j sin x‘

—( _-1_ cos v .-
oj ol

1

3 ij

ij

(10.26)

The formulas given here contain all the information necessary to test the modified ¢

Sagrebin resolvent by the aid of an electronic computer,
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THE PRINCIPAL VECTORS USED IN THE TEST MODEL,

The points i=1, 2, 3, 4 are placed in the comers of a square in the plane

k = The fixed point.
j = The running point.

A= 0% 180°, and carry a mass of one unit each. The central point O carries

mass equal to -4,



Test N:

Test N:

Test N:

Test N:
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RESULTS FROM THE TEST MODEL.

o 1

Compartient:
Newtonian T =
Resolvent T =

Error

a = 0
Compartment:
Newtonian T =

Resolvent T =

Error

a = 0,001

Coriipartment:

Newtonian T =

Resolvent T

Error

o 4

a = 0,001

Compartmen’:

Newtonian T

Resolvent T

Errot

B

8

= 60°

ag = 15°
0.81870

0,84866

+0,02996

= 60°

a8 = 5°

0.818170

0,81790

0,85102

-0,00080

g = 60°

dg = 15

0.8196¢2

+0,03140

0.81962

o]

0,81998

+0.00036

A= 15°
ar =15°
( Stokes)
A = 15°
dA = 5°
( Stokes )
A= 15°
dr = 15
r=15°
dA= ao
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Conclusions from numerical tests,

It has been possible to verify the principal forinula <p2(x) by the aid of a
numerical series expansion on an cleetronic computer. This caleulation has proofed
that the new derivation is correct. The final resolvents includes a nwnber of functions
which all are derived from this principal formula, The whole asscmbly of formulas is
verified by the aid of the test model., The study of this model has shown that error in
the computations is decreasing with approximately forth power of size of the integra-
tion compartments. Already with a compartment vt 1°x 1° the resolvent solution will
fit better than 10°° of T. The new resolvent tor the ellipsoid has given an error which
was only half of that corresponding 1o the same solution according to Stokes for 4 rval
sphere  ( 5% x 5° ). One can expect both formulas to have approxitnately the same

accuracy.



COMPARISON BETWEEN SAGREBIN’S FUNCTIONS AND THE
NEW FUNCTIONS.

Sagrebin:
o 4 ] N 4 12 . ¥ 253
FO(W) = sin V¥ ( S " cos¢ece 2 + 53 sin ) + 550 cos ¥ +
3 v 2 11 L 2
+ 70 In (sin ) + sin ) ) + 50 cos ‘l’ln(sll’l?'l' sin 2 )
+ ! K (¥ ! E (¥
50 (Y - 33 (¥)
Corrected FO(V) function:
1 1 ¥ 42 ¥
¥) = i - m—- —— ] — — S —
Fo( ) sin ¥ ( 3 2 cosec 5 + 25 sin ) +
164 11 3 . ¥
+-]—2—5cos|’ (%cos#-ﬁ)ln(l+s1n-2)+

11 3 N 3 1 1
+(—5—o cos \lv+T-b-) In sin 2 + 7o cos ¥ L(V¥) + 5C.K(V) 255(*)

In a similar way the three remaining tunctions F,(I’) F2 (¥) and F3 (¥) are

changed.
Sagrebin:
¥ 2 ¥ ¥ 2 ¥
= ) - in = i — — —
¢2(H 2 sin 2 + 2 sin 2 In (sin 2 + sin 2)

Correct function:

¢2(v) s <1 4+ cos ¥+ 2 sln-;-+ (1-cos ¥) In sln-;—-

= (1 4+ cos ¥) In (1 #sln-;—)- costJ‘,m

where ! ®
(2)_ 1 ] - LI
J' 1 = In ) (1 wx + t(x))]dx 2 (;(-—x) -;») In x dx

etc.
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From a theoretical point of view the new results seem to be of the greatest
importance since hitherto modern geodesy is based on the fact that the errors in the
generally used Stokes approach could be determined according to Pizetti and then
finally according to Sagrebin, However, Sagrebin has shown that Pizeuti’s method is
insu.fﬂcient to give any real information, Sagrebin’> own theoretical study is probably
one of the most important in modern geodesy, in spite of the fact that it is incorrect
in all new functions.

It is supposed that some of the fundamental questions in geodesy can be solved by

the aid of this new study.



TABLE OF FUNCTIONS (159

X F(X) FO(X) F1(X) F2(x) F3(Xx)

0 1,0000 =.5000 .0000 ~.5000 .0000
15 1,1121 -.3618 -.1031 -.7901 .8928
30 4736 -.0683 .1625 -. 7924 . 7923
45 =.3070 1793 <5495 -.6429 .1359
60 -.8957 .3103 .8677 -.4053 -.6297
75 =1,1049 «3137 .9841 -.1365 -1,1127
90 -.9162 .2197 .8598 .1128  -1,1150

105 =.4500 .0808 5531 . 3025 -.6825
120 0773 -.0487 .1872 4066 -.0528
135 4578 -.1281 -.1034 4152 4705
150 «5590 -.1391 -.2275 <3347 6590
165 .3702 ~.0879 -.1713 .1859 4574
180 .0000 .0000 .0000 .0000 .0000

1 1 1P 2ped
F(¥) =5 sin ¥s(¥) =5sin ¥ youl no1 Pplcos ¥
n=2 ‘

L 1
%H)=?nn0ﬂn=7ﬂnquu)+2¢2un=

[« ] 2 @
%sln\P[-): M+U—P(cos*)+22 %P(cos#{l
n=2 (n-1)°(2n+3) ° n=2 (n- 1)“(2n+ 3)
] 1 dzmz‘*)
Fi(¥) == sin ¥ (¥) = —sin¥
[ 2 )

48
d¥

1 1
Fal¥) = 5 sin ¥ 1,(¥) =

©
Fa(¥) = % sin ¥ P(¥) =) yn ¢ ¢ (204))

P (cos ¥),
2 n=2 (n-l)2 s



TABLE OF FUNCTIONS (5’)
X F(x) FO(X) F1(X) Fe(x) F3(X)

0 1.0000 =-,5000  .0000 -.5000  .0000
5 1.2165 ~.505¢. ~-,1071  -,6567 4613
10  1.2146  -.4b56 ~,1288 -, 7409 7364
15  1.1121  =,3618 =~.1031  =.7901 .8928
20 9410  ~-,2663 ~-,0407 -.8123 9460
25 7224 -,1666 - ,0504  -,8120 .9080
30 4736  -,0683 1625  -.7924 .7923
35 .2100 ,0242 .2881  -,7561 .6140
40  -,0543 .1076 4185 -,7055 .389%
45  «,3070 .1793 5495 - 6429 .1359
50 -.5371 .2375 6715  =.5706  ~,1292
55  =.7357 .26813 7792  -,4907  ~-.3895
60 ~-.8957 .3103 .8677  -.4053  -.6297
65 -1,0121 3248 9330 ~-,3165 ~-.8369
70 -1.0820  ,39255 9723  -,2262 =1,0004
75 =1.1049 .3137 9841  -,1365 -1,1127
80 -1.0821 .2908 9688  -.0490 ~1,1696
85 -1.0169 .2588 .9262 0346 -1,1696
90  -,9142 .2197 .8598 .1128  =1,1150
95  -,7804 1756 7726 .1843 -1,0103
100 -,6230 .1286 .6688 2478  -,8630
105  ~,4500 .0808 5531 3025  -,6825
110 =-,2700 L0342 4307 475 ~A4T9%
115 =-,0916 ~,009% .3070 .3823  -,2656
120 0773  -,0487 .1872 4066  -,0528
125 2292  -,0820 0761 4201 1475
130 3577 -.1088 ~-.0219 L4228 3249
135 4578 -,1281  -,103 4152 4705
140 5258  ~,1396 ~-,1657 3975 5713
145 5596 -.1432 ~,2073 3704 6409
150 5590 =-.1391  ~,227% c3347 .6590
155 5251  =-,1281 =-,22T1 .2913 .6320
160 4608 -,1106 ~-,207% .2413 .5631
165 3702 -,0879 ~-.1713 .1859 5Tk
170 .2589 ~,0610 ~,1219 .1263 .3220
175 1331 -,0312 -,0633 .0638 1664
180 .0000 0000 0000 .0000 .0000
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APPENDIX.

TABLE FOR THE RESOLVENT OF AN ELLIPSOIDAL
SURFACE OF REFERENCE.

The table can be used for determining the height over the geoid in the following
manner,

We start with formula

2n 2
i 2 2
N(o) = 2 S S ag |1 ++(sin B cos ¥+ 2sinB coB sin ¥cos ¥
2ny o o 2 o ° o

2 2 P
cos A + cos2B°sln ¥ cosgA)] (F(¥) +1i Fo(\lf)-12[-'1(0)sin2A cos25°+

2 2 2 2
+ i F2(\P) cos A cos Bosin ¥sin Bo - i F2(V) cos A cos Bo cos ¥+

+ 2q Fy(¥)) dvdA Es.o]

This formula is transcribed

3
N(°) = C S S Ag [l + corr‘] (L avl-'v(\')) ds Ea.l]

z-1
where v

o
corr, = o(i”)
F_‘ (¥) = F (¥) def.

0(12) v

0,1,2,3
1 v = -1

Every 3, is a function of

8_ = reduced latitude for the fixed point,
=  angle between the fixed and the rynning point

A = azimuth for the running point (measured in the orthonormal
system determined by the fixed point),
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We substitute now for Eaﬂ the equivalent:

(",) z avFv .
N = C S S Ag F(V¥) l:——l'(-v—)—]\ L con]) ds [13.2]
where .

F (¥) = F_ 1(1') is independant of the position of the fixed point. The
factor (1 + corr])z(avFv);F(*) = 1 ¢ G(BO; ¥, A) - O (i2) is near to 1
for any point on the ellipsoid and equals 1 for every point on a spherical surface, This

fact enables us to use the following approximation formula for N )

N (©)

A ) A Y, AA . [13.3]
i) i ij

where the magnitude of K in accordance with our considerations above is near to 1.

= CTE agy; F(¥) KB ¥

i j t

Now an appropriate network for 'i and Aij is defined and we have in our

example chosen:

1]
-
.
o

*i i=0,1, ,...36
A”

As reduced latitude for the fixed point we have taken Bo- = + 30°. Now we have

= j -0 j= 0,7, ....36 for cvery i

computed the values of K(30; *i' A “.) headed under vi , furthetmore the reduced
latitude, a“. for “i’ A ij ) in the orthonormal system determined by the axis of the
ellipsoid and the difference in azimuth, 1 - lo. between the fixed and the running points in

ij
the same system.

The system of equations for the coordinate transformation is:

cos B” cos (lij - lJa cos t‘ cos B°+s1n '1 cos A”sin Bo
cos B” sin (ltj - lJ: sin 11 sin A“
sin B“ = cos 'l sin “o - sin 1'1 cos A” cos ’o

The table is constructed so that for any point where Ag is giveu one can get
an approximate value of the K-function . We have then to multiply K with its -eone-
sponding value of KR¥) and with that element of surface, that the actual point is in-
tended to represent, to get the actual partial sum of Es,a] . (Note that F( ¢) = -;—
sin ¥ S(¥), where § (¥) Is Stokes’ function, and that thetefore “the element of

surface” lacks the sin vl- factor).
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Example of tabulated resolvent values according to (13.3).

BETA = Reduced latitude. L-L(O) = Longitude difference.

PSI= 5,0 BETA  L=L(D) 2(0)/F(C) = K(Bg, ¥, AL)
25,00 ° .00° 1,0035
25.07 90 1,0035
£5.29 1.89 1.0032
25,64 2.77 1,0029
26,19 3.58 1.0025
26,72 L2 1,0C21
27.41 4,88 1.0017
28,18 5.33 1.0014
29,01 5.563 1,0012
29.87 5.77 1.0011
30,74 5.73 1,0C12
31,60 5,52 1.0013
32,40 5,13 1.0C18
33,14 4,57 1,0020
33.77 2.86 1.,0024
34,30 2,02 1.0027
34,48 2,08 1.0030
34,92 1,04 £.0G32
35,06 340,00 1,0033
34,97 358,94 1,0C32
34,458 357.9¢ 1,0020
34,30 3556.98 1,0027
33,77 354,14 1,0024
23,14 355,43 1,0020
32,40 354,87 1,0016
31,50 354,48 1,0013
30,74 354,27 1,0012
29,87 354,23 1,0011
26.01 354,37 1.0012
28,18 354,37 1,001
27.41 355,12 1,0017
26,72 355,71 1,0021
24,12 356,42 1,0025
25,64 357,23 1.0029
25,29 358,11 1,0032
25.07 359.04 1.0035

25.00 .00 1,0035



PSt=

16,0

RETA

26,00
Gl
20,55
21,23
02,14
n3.31
24 A5
26,17
27.79
29,50
31.23
37,95
34,58
36.09
37.42
38.51
39.22
29.83
40,00
39.83
39.32
38,51
37.42
35.09
34,58
32,95

21,23

29,50
27.79
26,17
24,66
23,31
22,16
21,23
20,55
20,14
20,00

L=L(0)

L4 L]
oo O
& O

D
—
o~

DO D NS 0 -
- - -
WU w0 W
P W N &=

[e 4]

11.15
11,51
11,54
11.21
10,52

9.47
8.08
6,37
b,40
2,2

360,00

357.75

355.60

353.83

351,92

350,53

349,48

348,79

348,46

348,49

348,85

349,52

350,48

351.67

353,08

354,66

356.36

358,16

.00

-89- -

z(0)/F(o0)

1,0059
1.0058
1,0056
1,0082
1.0047
1.,0043
1.0038
1.0035
1,0032
1.0031
1,0031
1.00233
1.0G35
1.0C40
1.0045
1.0049
1,0052
1,0C54
1,0C055
1,0054
1.0052
1,0049
1,0045
1,0040
1.0636
1.0033
1,0031
1.0031
1,0032
1,0035
1,0038
1.,0043
1,0047
1,0052
1.0056
1.0058
1.0059



p

S

15.0

BETA

15,00

15,20
15,80
16.79
18,14
19,81
21.77
23.97
26 .36
28,88
31,46
34,03
36,52
38.83
40,89
42,62
43,91
Lk, 72
45,00
bh 72
43,91
42,62
40,89
38,83
36,52
34,03
31,46
28,88

26,36

23,97
21.17
19.81
18,14

16,79

15.80
15.20
15,06

L=L(0)

.00
2.67
5.28
7.77

10.08
12,17
13.97
15.44
15,53
17.19
17.39
17.07
15,19
14,75
12.71
10,13
7.C6
3.63
360,00
356,37
352,94
349,87
347,29
345,25
343,81
342,93
342,81
342,81
343,47
344,56
346,03
347.83
349,92
352,23
354,72
357.33
.00

=70

z(0)/F(0)

1,0080
1,0079
1.0076
1.0072
1.0066
1,0061
1.,0055
11,0051
1.0048
1,0046
1,0047
1.0049
1,0053
1.0058
1.0063
1.0068
1,0073
'1,0075
1,0076
1,0075
1.0073
1,0068
1,0063
1,0058
1.0053
1,0049
1,0047
1,00L6
1,0048
1,0051
1,0055
1,0061
1.0066
1.0072
1,0076
1.0079
1.,0080



GRAVITATION

Historical

The study of gravitation has attracted an exceptional amount of interest in recent
years. The foremost reason for this is found in the rapid development which is occuring
at present in the disciplines connected with geophysics, The problems connected with
satellites and robot weapons have accented this interest further. The general manner of
development is briefly as follows.

In Sweden and the other "western countries” developments have previously followed
the classical representation of STOKES. In the application of this theor); one has sought to
obtain gravity material by direct measurément of gravity in various places over the whole
earth which then was applied to determine the so called geoid. The auxilliary surface
can be said to constitute the gravitations model earth. If the continents were cut through
by a network of canals, the mean water surface thus obtained would define the geoid. One
difficulty with the application of STOKES' formula for the determination of the geoid is
that no masses can lie outside the actual geoid. In the practical application of STOKES'
theories one is therefore forced to eliminate by some artifice the masses which lie ouuide
the geoid. Western scientists have not been successful in solving this problem. At the
same time, many of the works which have been carried out toward this goal will certainly
be significant in various other connections even if they do not succeed in the solution of the
main problem. To correctly understand ’the older manner of consideration it can be useful.
to give the historical development. In the trianéle measurements in India, J.H. PRATT in
1855 found large wriangle misclosures which were measured on the surface of the earth in
the vicinity of the Himalaya mountains. From this he drew the conclusion that the large
masses of mountains had deep "roots” with less demity than the surrou'nding area so that
the visible outer masses were completely compensated at a lower level. In sucﬁ a manner
he could assume that two equally large land areas always contain masses of equal size.  The
assumption for this is only that the two volumes compared include all the masses down to
the earths inner surface of compensation. The hypotheses presented by PRATT have led to
a special uiscipline which is called "isostasy". Of great significance for the application of
isostatic hypotheses was the determination of the "depth of compensation” which is required

to obtain equilibrium among the masses. On this point views differ. In his own theorfes



—- —_ —r

PRATT assumed that the depth of compensation was everywhere constant and many writers

said that this depth should be measured from the unknown surface of the geoid. The Ame-
rican JOHN F. HAYFORD was the first to apply ' PRATT's theories to a large project and he
chose to measure the depth of cbmpensation from the physical surface of the earth which in-
woduced the complication that the surface thus determined was not in hydrostatic equilibrium.
Since, however, many scientists considered it to be a necessary condition that the surface of

" compensation should be in hydrostatic equilibrium, they chose to reckon the depth of com-
pensation from the geoid. It is interesting, however, that to a large degree the schools ob-
tained the same result: namely that the depth of compensation is approximately 120 km. At
the same time as PRATT G,B, AIRY presented a somewhat more detailed hypothesis concer-
ning the interior of the earth. AIRY also accepts in principle the isostatic concept, but makes
it more precise by giving the outer body of the earth (sial), a density of 2.67, which floats
on the inner layer (sima) which has a density of 3.30. The continents should then more or
less float like icebergs on the interior masses of the earth. If these theories were correct one
could find in them a good basis for the ideas which were later presented by the German, A.L.
WEGENER, According to him the South American and African continents were at one time a
single continent, but have since then separated. This hypothesis of the movements of conti-
nents has been much discussed, but no successful geodetic measurements have yet been carried
out which could prove or disprove the hypothesis. We do not know the distance at the present
time than to approximately several hundred meters and the movements which are supposed to
occur probably are essentially less. Therefore it will be some time before this theory can be
checked, if in fact this will ever be possible. The actual significance of isostasy is that it
offers the ,ossibility of reduction of the disturbance effects of masses lying outside the geoid.
A disadvantage of the isostatic reduction method is that it is very tedious, but in spite of this
isotatic methods have come into wide use. For example, in Sweden, Rikets Allmdnna Kart-
verk has performed a computation of a suitable geoid for Sweden with the aid of isostatic
reduction methods.

Among other theories for the elimination of masses outside the geoid one put forward
by the Russian scientist M.P. RUDZKY in 1905 can be cited. He sought to eliminate the
disturbing masses by an imaginary transportation of masses of ali the material outside the
geoid. In this original manner RUDZKY obtained a model earth which he considered to be
ftee of disturbing effects. A number of other theories followed and the siate had almost
been reached in 1950 where each éeodesist had his own' theory for the computation of the

geoid.



The cause for this dilemma can perhaps be sought for alorg various lines. First and
foremost the situation was such that the various theories were often so complicated that it
could be difficult for any critics to find the correct points of attack. Furthermore all the
theories contained fundamental hypotheses concerning the structure of the interior of the
earth which were impossible to check completely.

It was therefore a scientific sensation of the first order when at the General Assembly
for Geodesy and Geophysics in Toronto in 1957, a paper written-*by the Russian scientist
M. MOLODENSKY was presented in which it was shown that the classical geoid is not re-
quired and that a mathematically correct method, free of hypotheses, developed in the
Russian language, had already been available for several years. Furthermore, this was gene=-
rally applied in the Soviet Union. The situation is such that for a flat lowland the previous
theories can be applied when the effects there are negligible. MOLODENSKY had computed
the effect of disturbance masses on the plumb line for a mountain 4000 metres in height.

A correct computation showed a plumb line deflection of 50", while a computation according
to classical method gives a result of 15,4". It is seen that the older method does not even
give the correct order of magnitude.

The greatest significance of MOLODENSKY's work certainly does nct lie in the purely
practical field. Above all, it is through the mathematical concepts themselves developed
correctly and elegantly that assumptions are afforded for reasonable analyses of all the prob-

lems which are connected with the gravitationai field of our earth.
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The mass M according to (i also defines a so-calied gravitational potential

W according to the relation

w = fgssfr-dv . 4

]

distance of the volume eiement

-
"

from the actual point

Quantities: gal.cm. and kilogal-meters,

The gravitational potential is considered, unless otherwise stated, as a purely

mathematical definition. According to (4) the gradient to the gravitational potential is

2
gad W= UW= | W |= "”5'2 cos (r, x)| dv (5)
w, cos (1, y)
wz cos (r, 2)

As is seen from equations (2) - (5), grad W constitutes the acceieutlon which is
causcd by the actual mass. From this it also follows that the potential difference between
two points represents the work which is required 10 move a unit mass from one point to
the other. Generally, one can say that the potential according to equation (4) trepresents
the work required fo move a unit mass from the actual point to infinity. This "absolute
potential” is often comparatively difficult to obtain and in general one must accept a cer-

tain constant error in the determination of W .



GRAVITY

A body at rest is not influenced by any gravitation other than that defined by NEWTON.
A moving body Is also affected by the so-called motional gravitation. For the earth
this additional gravitation is generated on the first hand by the earth’s rotation about its own

axis. This centrifugal force (g) is computed as follows

- axis of
= o2 rotation
q = wp P
where
w = angular velocity in radians - "
p = distance between the actual point

to the axis of rotation.

The work (Q) required to take the unit mass from the actual point to the rotational

axis thus is

P
Q = s Wi dx = 0.5 w2p2
o

If the rotating body has a mass, the total potential is

w o= f$S$§dv+ 0.5 wp

This composed potential is generally called the gravity potential, The gradfent

to this potential evidently constitutes the acceleration caused by gravity.

2
yw = 'fSSS‘;‘ cos (r, x) | dv + w p Jcos (py X)
r cos (1, y) cos (p, ¥)

cos (1, 2) cos (p 2)
where

cos (p, z) = 0 for the co-ordinate system in which the z-axis coincides with the

axis of rotation.

At each point the gradient is normal to the equfpotential surface which includes the
point. Furthermore the gradient is tangent to the "plumb line”. It is also evident that
from a rigorously mathematical point of view the "plumb line” cannot be considered as a

straight line. However in most practical applications this should be justified.



THE CONCEPT OF THE GRAVIMETRIC POTENTIAL

The concupt of potential has been extensively applied in electrical theory for a long
time. In modern geodesy the concept of potential also plays a significant role. To explain
the geodetic concept of potential in greater detail it may be useful to begin Qith the better
known definition of work. If two points A and B are given, it is possible to define
uniquely the work required to transport the mass m from the lower point A to the
higher point B,

B
Work A - B =Smgdh
A

where

g = the acceleration of gravity along the chosen path
dh = height differences

Here the potential difference is identical with the work required to transport
a unit mass along the same path. Consequenitly we get the potential difference

B
A-B = Sgdh-igdh-g‘dh'+gzdh2¢gsdh3+g‘dh‘+gsdhsog‘dh°+g,ldh,'

The potential difference is the only mathematical expression free of objections for

"height differences” between two points. For practical purposes one of the following height
concepts is often used.



Unreduced height

In levelling a direct measurement of the quantities dh is made. For simpler
measurements the variations in gravity can be disregarded and the height differeuces be

between two points be given as

Z dh
A

It is to be noted however, that such a computation does not give a unique result

since the result is directly dependent on the path chosen between the two given points.

Orthometric height

The international. gravity formula reads

y = 978,049 (1 + 0,0052884 sin2 ¢ = 0.0000059 sin2 2¢) cmsel(.2

From a comparison of the gravity values at the equator and pole we get

yp = Y (1.005288)

Consequently, if two potential differences of equal magnitude are. compared we obtain

Y
b, = =2 b = 10053 hp
Tg P

In a corresponding manner a theoretical correction can be applied to poiats situated
at arbitrary latitudes. The correction is called the orthometric correction. The

correction assumes that the actual gravity agrees with the theoretical gravity,

Dynamic height

The potential difference between two points A and B is defined as

B
£ g db
A‘t {

To decide "in which way the water will run” orthometric heights cannot be used.
After division of the potential difference by a suitable mean value of gravity we get a
height difference

z g‘hl
Y

m
This height diffetence is called “the dynamic height difference”. Only the dynamic
height difference give the so-called "work heights”.



THE THEORETICAL MODEL EARTH

For the geometric definition of the theoretical model earth an ellipsoid (1924) with

the following data is used.

Semi-major axis:
Semi-minor axis:
Flattening:

Angular velocity:

6 378 388,000 m.

[
"

o
"

6 356 911,946 m.

]
[}
o

w = 0,729 211 513 - 10 */sec. (radiams)

For the geophysical definition of the model earth the following data is used,

Gravity on the.
ellipsoid’'s surface:

where

Gravity at the elevation 2z

outside the ellipsoid:

Y, *© 978049 (1 + 0.0052884 sln2 @

- 0.0000059 sm2 2 9) (milligal)

¢ = latitude.
\

2
3y J 3y 2
7z-y°+azz+2 5 2 *...00
dz
2 2
y = 70-(308.78-0.45 sin” 9)z+ 0.0727 2

Z
(milligal and km)

2 Vo2
Y, = 70-—R— + ... (for the sphere)
Theoretical height 2
from the potential
difference (Wo - W)
Wo"w WO-W2 g w-w3l
z = Y + y (0,000 157 854 - 0,000 001 034 sin” o) + 0, 000000025
° o )



THE EARTH’S FORM FROM POTENTIALS AND GRAVITY

For the computation of the shape of the earth by men-m of gravity measurements, it is

assumed that the acceleration of gravity is known at all points of the earth’s surface. It is

" further assumed that the latitudes and longitudes of all points of measurement are known, while
the elevation of the points above the international reference ellipsoid are unknown and sought
quantities. The solution to the problem offers various difficulties and therefore, in general, a
direct determination has not been carried out, but instead the choice has been to determine the
potential of a theoretical auxilliary model which is assumed to have the same surface as the
actual earth, Such a solution also assumes a knowledge of the pote:'mal dlfferenceslbetween all
the measured points concerned. ‘In this case one can obtain from GREEN's second theorem two
integral equations which define the relationship between the potentials and gravity of the two
models. ‘ '

For the actual earth we obtain

1

1 ) r 1 W
Wo s m W T O

where
wp = potential at the actual point
W = potential at the running point
r = distance between the actual point and the
running point

n = npormal to the surface (outer)

s = surface.

For the theoretical model earth we obtain

PR

1 T 1 0U
U, =5 Wy T o) )

whete
Up = theoretical potential at the actual point
U = theoretical potential at the running point.
Neither of the two integral equations are correct for the case represented here since
GREEN's theorem requires that the potentials be harmonic functions, e. g. that the following

LAPLACE equations should be satisfied



AW = —F ¢+ =2 4+ =0 = 0 ' (8

and
AU = 0 )
These LAPLACE equations are only satisfied for a body which does not rotate.
However, in the further computations the differences between the two integral equations
are considered and the potential differences are certainly harmonic functions.

Consequently we obtain
1

-
] I 1 W dU
wp. Up = Tp = o SS [TK T (On On):lds )

where
Tp = disturbance potential at the actual point
T = disturbance potential at the running point.
We now want to solve this integral equation with respect to T . We obtain
oW _ 3w g - . - '
—_— g e s =k m cos (g, D, = gW 6
dn g an g g8 ) g )

Su _ oy,

ps - = VU .M
on 3y on

~

-y cos (y, B)

where n = unit vector of the normal.

For an approximately spherical surface we consider the following permissible approxi-

mations
.-y ®
L.y ®

Here g is the gravity on the surface of the earth while y is the corresponding
quantity for the model earth. For the computation of the theoretical gravity values we
require first a knowledge of the gravity field of the model earth. From the geometric point
of view the model earth is assumed to be a rotational ellipsoid with the semi-major axis of
6 378 388 m and a flattening of 1:207. Gravity on the surface of the ellipsoid is assumed
to be defined according to the International Gravity Formula as follows

L 978049 (1 + 0,0052884 lln2 ¢ - 0.0000069 llll2 2¢) mgal (10)

where

¢ = latitude,



Gravity at the elevation 2z above th: ellipsoid can be expressed by means of a series

development of the following type

2 3
or,,1 23 ,2,1 3y 3
yz = y°+a z+2 5222 -l»6 azaz + .o 1)

For the theoretical model earth we get

Y, = 7, - (808.78 - 0.45 dn’ ¢) z 4 0.0727 2" + ... 02

(Units: milligal and km.)
or for the sphere
2y 2

. .
T, = Yo TRt (R = radfus of sphere) .(“2 a)

Since the height of the physical surface of the earth above the ellipsoid is an unknown
quantity it is not possible to perform a direct computation of the theoretical gravity according
o (10). However, it is assumed here that the actual potentials W are known for every point
on the surface of the earth, Furthermore it is assumed that the theoretical model earth is an
equipotential surface with a known potential Uo . The potential differences W - Uo define

a height difference in the potential field of the model earth as follows
2 3

U U U
1 0 2 1 o 3
W=U‘,~|-az z+2 22*3 az+... (13)
9z dz

A known potential difference W - Uo can be evaluated as a "theoretical height”
according to the formula

U - W uc-w2 t'J‘,-ws
= + + K, + ... 14,
z Y y )k Y 3 (4

For the model earth, we obtain the comresponding”theoretical hefghit”

3
0.000000025 + ...

(35)

u-w fu-w 0 U -W
+ (0.000 157 854 ~ 0.000 001 034 sin o) +
(] [] [+

Units: Uolndw in kilogal and meters; 7°hgal; z in k.
~ Here ft is asumed that the z-axis at each point is orthogonal to the ellipsoid.
Computation of the corresponding gravity (71) can now be performed simply according
to equation (12)

Comequently the n~rmal derivative % can be denoted by

= ca(;.ﬂ)[y 021 I#...] (16)



For the sphere the corresponding expression can be denoted as

QU _ 27
RIS I

R = radius of the earth.

From equations (5) and (18) we obtain

1 T - -1 - - 3y T - -
Tp=2—n$§ -r—2cos(r. n)+-r-|:gcos(g. n)-(rz+5-§'-y)cos(7. n)] as (N

Here we have an integral equation with T as the unknown quantity. After T is
" computed_the corresponding height difference (Az) can be determined according to equation
(15). The final height above the ellipsoid is (z + Az).

For a spherical surface

1

a-

T 1 - - 1

n=-2cos(vr.n)=-2‘R (18)

r

Consequently the integral equation for an approximately spherical surface is

g-7v)
T, * ,f; ) I:ﬁ + —-—r—z:| ds 19)
and '
g-7
'rp-%”fds . 5';-”——‘ % as (19 a)

This integral equations can be solved by means of spherical functions. The following
parameter is introduced

[+ +]
T = L L a Y (esA) = ET a Y (20)
p=0 |m|g1 ™ o®

Thus we get

3 4 - 1 B v Ve
£EaY —“R33(:1::?::2“,Yv)ds-zlgszzzn”YY(s v ds (@Y

A further parameter is introduced.

1 4y
b = o SS 2ne1 (8- 7,)dS (22)

and from integral equation (21) we obtain

aYA
EZaY-Sttmstth (23)



or

or

where

The relationship between a and b can now be determined

(2n - 2)a

mal oD
2n + 1
- O
Finally we obtain
_ 2n + 1 - (2n+ H Y
T-E):——z(n_”bY Ez2(n-l)

1

0§ 2 - v e

2n + 1

1 -
T = {fe2——= Y¥(g-y)ds

In terms of LEGENDRE polynomials we obtain

_ 2 2n + 1 .
T = (§ & == P (cos w) (g - y,) dS

-4; (n-1)

Consequently the disturbance potential can now be computed from

T = (fk(g-y)as

] 7] w
e (cosecz-eslnz*l-cocw

This is the well known STOKES' formula.

[5 +31In (lln2

g+sln—

“’)] )

2

2

(24)

* (25)

(26)

@n

(28)



EQUIPOTENTIAL SURFACES

A surface on which the potential is everywhere the same is called an equipotential

surfaze.. According to GREEN's formula the following is valid on the surface of a body

POLA
1 T 1 W
wp T oon SS w an .1 on’ ds

Thus for an quipotential surface we obtain

1 1 - - 1 1 AW
WP [l-r;”‘?cos(r. n)ds] -;SST-OT‘-dS

or

v, [1 ‘o SS% cos (1, m) ds] = 2-'7 S&% cos (g, n) dS

cos (f, m) = ;% and we get
1
Wt 05 & as

Finally, if g fs also constant we obtain

W = gR
P 8

From the geodetic point of view the most interesting equipotential surface is that
equilibrium surface which coincides with the oceams of the world. In geodesy this equi-
potential surface is called the geoid.



MATHEMATICAL PROPERTIES OF AN EQUIPOTENTIAL SURFACE

A level surface is characterized by the fact that at each point on the surface the potential
is of the same magnitude. '

If we denote W as the scalar expression for the potential we have
W = constant.
In an arbitrary point Po the potential is Wo .

If P0 is made the origin in a coordinate system we get the following expression for

the potential in an arbitrary point after a TAYLOR series development

Wix, y, 2) = w°+ XW_ ¢ ywy+ zwz-u»

1 [ 2 2 2 ' W
+-2-{xwxx+ywyy+zwzz+2xywxy+2xzwu+2y4 yz}

+ terms of higher order

where w‘ = partial derivative with respect to  x
w = - " .
y y
etc,

Whh the aid of matrices this exprussion becomes

Wx oy 2) = W e[k y 2] LA %[x y z] w Yo Yxz| [*

w W W W
y yx yy yz| |?

w w w w z
z == zy z2
+ terms of higher order.

Here the potentfal is expressed by mvans of the following paranicters

1:0 Potential scalar =

-

2:0 Potential vector

W
o
[w W W
x 'y oz
W W W]
XX Xy Xz
WoOwW W
Xy yy y:
W W W
Xz yz 22

3:0 Potential matrix




POTENTIAL VECTORS AND PLUMB LINES

The potential vector is also denoted by the gradient to the level surface. For this the

following symbols are used

- 1 .. .
vw'gmw--%%=w,:'s
AW
p-aAy w
dy y
oW
oz Y,
e - - -

From this we obtain the relation
g-g = wx+wy+wz = g- 1 =g

It is evident that the gradient is tangent to the plumb line at the actual point. We orient

the coordinate axes so that the z-axis coincides with the normal to the level surface and obtain

w = 0, W = 0 and W = s
X y 2z

The radius of curvature of the plumb line is computed from the principal normals as
follows

n A T SN . cw e -
g- w, wx * 2 wz w wu wx wu e
z

: w W "W -W W
y y: y 2z

w W "W W W
z z zz s sz



and

o -
"

or l:- +2=l-
R g |&T8 Tk

where g = the derivative of the acceleration for the direction ¢ where tg ¢ = ﬁ



POTENTIAL MATRICES AND THE LEVEL SURFACE

We have already oriented the coordinate system so that the z-axis coincides with the
normal to the level surface. We complemeat this with a reorientation of the xy-plane so
that the rectangular xy-terms are eliminated.

For this we determine the latent roots to the system

" which gives

W, tW . 2 n
k‘..——ﬂ2 +3 V(w“-w”) v

Wn«fw 1 2 2"
A, = -‘—'—-ﬂz "2 (sz'W”) QGny

2

e

- The potential equation can now be written

1.2 2 2
W(xyz = W°+sz+2(x ).‘-tY x2+zwu)+...+

+ terms of higher order



The quadratic potential term can now be easily evaluted in terms of height differences

after division by. g .

xle ‘ sz2
a2y = 5 az, = 5=
where A = & N, T i

R, and R2 are here the two principal radii of curvature to the level surface.

(The X- and Y-axes are necessarily orthogonal in this system.)
The trace of the complete potential matrix is known as LAPLACE's equation
SPW = W _+W +W = AW
XX . yy 22
where Sp W = trace of W,
For NEWTON’s gravitation in empty space
SpW = 0 fsvalid.

A potential which satisfies this condition is said to be harmonic.
When the actual body rotates we get

W = 2w2 w = angular velocity

and where the demsity of the mass = ¢
2
SpW = 2w -4nfgo

f = NEWTON's gravitational comstant.



SIMPLE LAYER POTENTIAL

The potential is a unique and continuous scalar quantity. Ignoring the choice of units,

the potential according to NEWTON can be denoted as follows

dv
wo= (4=
A
¢ = density of mass (kg/ma); V = volume

r = distance between volume element and the actual point
In the interior of the mass with continuous mass distribution
V2 W = -4n9 (POISSON's equatfon)
is valid and in empty space
* v’ W =0 (LAPLACE's equation)

In the latter case the function is said to be Barmonic.
While the above "volume potential” is connected directly to known physical rela-
tions, parallel to this we use, for example, the potential from a hypothetical layer of mass on

the surface.
w=$$§ds W= -smo

layer density (kg/mz); S = surface

Q
"

r distance between the surface element and the actual point.

In this case we employ a so called si.ngle layer potential. The procedure lacks
physical background in geodesy but nevertheless constitutes a valuable mathematical auxilliary
tool.

While the gradients to the volume potential are both unique and continuous, the single
layer potential derivatives exhibit a "pimp” (discontinuity) at the surface. This can be shown

in the following manner.



Consider an infinitesimal cylinder which cuts through the surface S and is parallel to

the surface normal

---e- dS

LREY LETPR

...... surface density:

If we start from POISSON's equation we obtain, after integration

gvzww = -S4nodv
LV v

From GAUSS’ theorem and GAUSS' law we further obtain

( Fwav = (ovds = -4x{oas
v s s

If the gradients are computed at right angles to the surface, they are parallel to the

vector dS and we get

QY 2,
on on
y i
From this we get
(A d
o0 = 9 - 40



To deduce an expression for the continuous part of the derivatives we differen:iate in

the direction of the tangent

Iw g or
Ny
st

2|2

ds

When the continuous part is known we obtain the derivatives in the direction of the

normal after addition of the discontinuities above

AW g. Or

an -SS 2 3n ds 21|o°
y s ’

AW (( 0 Or

a- = -Ss?EdSi-mloo
i st

For the computation of ‘the derivative in an arbitrary direction we perform a vectorial

addition according to the figure below

gl = o—! ¢ﬂm(m l)
dm dn cos (n, m) at ’

ow
20 .2.‘2’-[3{] cos (n, m“—:-: cos (m, z)] ¢S - 210 cos (n, m)

-



where

or  _
an cos (r, n)‘
El;t = cos (r, t)

from these we finally obtain

oW

- _S_c’_ cos (r, m) dS - 21 0 cos (n, m)
et 2 o

where
(r, m) = angle between the vector m and the vector from Po to the
running point
(n, m) = angle between the surface normal and the vector m
a =

o layer density at the point P
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