NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
INFLUENCE OF A D.C. AND A.C. MAGNETIC FIELD
UPON A GAS DISCHARGE LASER

Rudolf G. Buser
Johann J. Kainz
John J. Sullivan

December 1962

UNITED STATES ARMY
ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY
FORT MONMOUTH, N.J.
Technical Report 2322 has been prepared under the supervision of the Institute for Exploratory Research, and is published for the information and guidance of all concerned. Suggestions or criticisms relative to the form, contents, purpose, or use of this publication should be referred to the U. S. Army Electronics Research and Development Laboratory, Fort Monmouth, New Jersey, Attn: Director, Exploratory Research Division "S".

J. M. KIMBROUGH, JR.
Colonel, Signal Corps
Commanding

OFFICIAL:
HOWARD W. KILLAM
Major, SigC
Adjutant

DISTRIBUTION:
Special

Qualified requestors may obtain copies of this report from ASTIA.

This report has been released to the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., for sale to the general public.
INFLUENCE OF A D.C. AND A.C. MAGNETIC FIELD
UPON A GAS DISCHARGE LASER

Rudolf G. Buser
Johann J. Kainz
John J. Sullivan

DA TASK 3A99-25-003-05-01

ABSTRACT

The influence of a magnetic field upon a gas discharge laser has been investigated. The magnetic field changes the spatial and energy distribution of the electrons and therefore influences the light output of the laser. Experiments show that this effect may be useful for adjustment and modulation of the laser emission.

U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT LABORATORY
FORT MONMOUTH, NEW JERSEY
CONTENTS

Abstract 1
INTRODUCTION 1
EXPERIMENTAL SETUP 1
SOME THEORETICAL CONSIDERATIONS 1
RESULTS 5
CONCLUSION 6
ACKNOWLEDGMENTS 6
REFERENCES 7

FIGURES

1. Gas discharge laser with electrodes for capacitive coupling 8
2. Gas discharge laser with inductive coupling (2 times 74 turns, 9-1/4" long, 2" wide) in operation 9
3. Faraday rotation in a resonator arrangement 10
4. Laser intensity versus magnetic field strength 11
   Parameters: $\lambda = 11530\mu m$
   $n_1(a) > n_1(b)$
   field homogeneous
   capacitive coupling
5. Laser intensity versus magnetic field strength $H$ 12
   Parameters: $\lambda = 11530\mu m$
   inhomogeneous field
   a. field configuration parallel
   b. field configuration antiparallel
6. Laser intensity versus magnetic field strength 13
   Parameters: $\lambda = 11530\mu m$
   homogeneous field
   inductive-coupling
   $n_1(a) > n_1(b)$
7. Laser intensity versus magnetic field strength 14
   Parameter $\lambda = 6328\mu m$
   inhomogeneous field
   $n_1(a) > n_1(b)$
   $n_1(a)$ for $H = 0$ is set to 100
   $n_1(b)$ for $H = 0$ is set to 100
   capacitive coupling
CONTENTS

8. Light intensity as a function of a changing magnetic field 15
9. Laser intensity in pulsed magnetic fields 16
10. Light variation at constant h.f. input as a function of t and H 17
INFLUENCE OF A D.C. AND A.C. MAGNETIC FIELD
UPON A GAS DISCHARGE LASER

1. INTRODUCTION

The recent development of continuous wave gaseous lasers1,2,3 opens up a number of interesting applications for laboratory experiments. Here as well as in the communications aspect, the problems of modulation, intensity adjustment and intensity control are important. In the following we present some experiments in which we studied the influence of a magnetic field upon the light output of a gas laser. The results indicate that a magnetic field can be used to adjust and modulate the light output of the laser.

2. EXPERIMENTAL SETUP

In all experiments we used a Perkin-Elmer Spectra-Physics gas phase laser. Its specifications are:

Resonator: 60 cm fused silica plasma tube with Brewster angle windows and multilayer dielectric coated confocal reflectors of high optical quality fused silica. Active medium is a mixture of He and Ne.

Output: Wavelength 11530 or 6328Å, linearly polarized. Laser radiates a spherical wavefront at each end. Beam divergence is less than five minutes of an arc when collimated. Beam diameter is 4 mm at the end of the tube. Output energy is approximately 1 mW.

For excitation we used an rf oscillator (Mc range) capacitively or inductively coupled. No effort has been made to measure the high frequency coupling and to correct for the change in coupling produced by the changing impedance in the presence of a magnetic field. In general the latter effect was small.

For detection we used either an RCA 6914 image converter 1P21 photomultiplier recorder system, or an RCA 7102 photomultiplier together with an oscilloscope with the proper filters (at 11530 Å) or a monochromator (at 6328 Å). Fig. 1 and 2 show the details.

3. SOME THEORETICAL CONSIDERATIONS

A magnetic field will affect the emission of a gas discharge laser in three ways: influence upon the line emission (Zeeman splitting), upon the light propagation (Faraday rotation) and upon the discharge mechanism (energy and particle balance).

3.1

Even at low magnetic fields (order of 1 gauss) there is a measurable Zeeman splitting which gives rise to amplitude modulated light, the frequency of which depends on the field strength.4 This effect provides a method for frequency modulation. It disappears when the rf magnetic field becomes of the
same order of magnitude as the d.c. field. Measurement of this effect is not considered here.

3.2

The electric vector of an electromagnetic wave propagating along the magnetic field lines in a medium will be rotated according to Verdet's law:

$$\chi = V \cdot \ell \cdot H$$

where

- $\chi$ = angle of rotation
- $V$ = Verdet's constant [ang. min/gauss cm]
- $\ell$ = geometrical path
- $H$ = magnetic field strength.

For He at 1 mm Hg and 5730 Å

$$V = 5 \times 10^{-10}$$

(Ref. 5)

He at 0.1 mm Hg and 5730 Å

$$V = 1 \times 10^{-10}$$

(Ref. 5)

Plasma $V = \frac{2\pi}{\lambda} \cdot \frac{n(+)-n(-)}{2H} \approx \frac{e\mu}{mc} \left(\frac{\omega_p}{\omega}\right)^2 = 10^{-13}$

(Ref. 6)

where $\lambda$ = wavelength

$$n(\pm) = \text{index of refraction for right and left polarized wave}$$

$$= \left[1 - \omega^2 / \omega_c^2 \right]^{1/2} \cdot \frac{1}{1 + \omega / \omega_c / \lambda}$$

$$\omega / \omega_c = \text{plasma frequency} / \Omega mc / \lambda$$

$$\omega_c = \text{electron cyclotron frequency}$$

$$n_- = \text{electron density (order } 10^{11} \text{ electrons/cm}^3)$$

$$\lambda = 11530 \text{ Å}.$$}

Other constants in the usual nomenclature.

The Faraday rotation will be modified because of the multiple reflection by the mirrors. Using a simplified model and neglecting any mode considerations we count the energy which leaks through the mirror (Fig. 3).
If \( r \) is coefficient of reflection \( t \) is coefficient of transmission

\( r_{\parallel}, r_{\perp} \) coefficient of reflection \( t_{\parallel}, t_{\perp} \) coefficient of transmission

\( I_{\parallel}, I_{\perp} \) intensity of wave parallel and perpendicular to plane of incidence on the Brewster angle window

\( \phi \) angle of rotation after one passage

The contribution from \( I_{\parallel} \) is

\[
I_{\parallel} t_{\parallel} t + I_{\parallel} t_{\parallel} 3r(cos^2 \phi)t + I_{\parallel} t_{\parallel} 5r^2(cos^2 \phi)t + \ldots = \\
\sum_{n=0}^{\infty} \frac{(r^2)(cos^2 \phi)^n}{1-rt_{\parallel}^2cos^2 \phi}.
\]

In addition we have a perpendicular component which will be rotated and thereby produces a parallel component.

After the first passage it is:

\[
I_{\perp} t_{\perp} 2r(sin^2 \phi)t + I_{\perp} t_{\perp} 3r(sin^2 \phi)t + \ldots = \\
I_{\perp} t_{\perp} 2(sin^2 \phi)t \cdot \frac{1}{1-rt_{\parallel}^2cos^2 \phi}.
\]

After the second passage:

\[
I_{\perp} t_{\perp} 4r^2(cos^2 \phi sin^2 \phi)t + I_{\perp} t_{\perp} 4r^2(cos^2 \phi sin^2 \phi)t + \ldots = \\
I_{\perp} t_{\perp} 4r^2(cos^2 \phi sin^2 \phi)t \cdot \frac{1}{1-rt_{\parallel}^2cos^2 \phi}
\]

and so on.

Summing up one obtains

\[
\overline{I}_{\parallel} = \frac{t_{\parallel} t}{1-rt_{\parallel}^2cos^2 \phi} \cdot \{ I_{\parallel} + \frac{1}{1-rt_{\parallel}^2cos^2 \phi} \cdot I_{\perp} t_{\perp} 2r sin^2 \phi \}.
\]

Similarly,

\[
\overline{I}_{\perp} = \frac{t_{\perp} t}{1-rt_{\perp}^2cos^2 \phi} \cdot \{ I_{\perp} + \frac{1}{1-rt_{\perp}^2cos^2 \phi} \cdot I_{\parallel} t_{\parallel} 2r sin^2 \phi \}.
\]
The overall change in intensity
\[
\overline{I}(H) = \frac{\overline{I}_\parallel(H) + \overline{I}_\perp(H)}{\overline{I}_\parallel(H = 0) + \overline{I}_\perp(H = 0)}
\]
equals
\[
\overline{I}(H) = \frac{(1-r)(1-rt^2)(1-rt^2\cos^2\varphi) + t(1-r\cos^2\varphi) + (1 + t)rt\sin^2\varphi}{(1 + t)(1-r(1-\cos^2\varphi)(1-rt^2\cos^2\varphi))}.
\]

The result of this consideration is that in the arrangement used, the Faraday rotation yields a decrease in light intensity. Numerical evaluation shows that our results in Section 4 cannot be explained by Faraday rotation. (In a solid-state laser this might be a very interesting effect).

3.3

No work has been done as far as the authors know studying the light emission of a high frequency discharge and its change in the presence of a magnetic field. However, it is interesting to compare the results of similar measurements in a d.c. discharge.8,9,10. The magnetic field will retard the outward flow of the electrons by diffusion (in the pressure range 0.1 to 10 mm Hg the loss of electrons and ions is due mainly to ambipolar diffusion). The electron concentration in the center therefore increases and their energy decreases. This is properly reflected in the intensity of the light emission. Further on, as the current density is increased the influence of the magnetic field decreases. This overall behavior is connected with the relations given below.

3.31

A magnetic field reduces the diffusion to the wall and increases the concentration of the electrons in the center:
\[
D^H_A = D^H_\parallel_0 \cdot \frac{\omega_\perp \cdot \omega_\parallel}{(1 + \frac{\nu_\perp \cdot \nu_\parallel}{\nu_\perp \cdot \nu_\parallel})}
\]
where \(D^H_A\) = ambipolar diffusion coefficient with a magnetic field
\(\omega_\parallel = eB/m_\parallel\) cyclotron frequency of ions or electrons
\(\nu_\parallel = N\nu Q(\nu)\) = collision frequency of ions or electrons
\(N = \text{number of collision partners/cm}^3\)
\(\nu = \text{relative velocity between colliding particles}\)
\(Q = \text{collision cross section}\).
3.32

Application of a magnetic field reduces the total fractional loss $\kappa$ for an electron in a collision. This reduction in $\kappa$ reduces the electron temperature $T_e$.

$$\kappa(T_e) = \kappa_{elastic} + \kappa_{inelastic} + \kappa_{wall}$$

$\kappa_{wall} \to 0$ as $H$ increases.

3.33

At higher current densities the influence of the magnetic field decreases. One possible explanation is that at higher current density electron-ion collisions come into play and influence $\kappa_H$.

In consequence the change in the light emission as a function of the magnetic field will show a rather complex behavior. A quantitative calculation of the effect has to include all processes of excitation and destruction of atomic levels and is not possible due to the lack of sufficient information. A similar complex behavior is expected in the case of a gas discharge laser.

4. RESULTS

In Fig. 4 we show the relative laser intensity as a function of a longitudinal magnetic field. Parameters: $\lambda = 11530\AA$; capacitive coupling; homogeneous field. At low electron densities $n$ the emission drops to zero at $\approx 160\text{cm}$ (the remaining intensity is fluorescent light passing through the imperfect filter). At a higher electron concentration at higher energy input a larger magnetic field is necessary to reduce the light intensity towards zero.

In Fig. 5 we study the dependence of this effect on the polarity of the magnetic field. Here we use two magnetic coils ($81$ turns, $\ell = 21\text{ cm}$, diameter $20\text{ cm}$) placed $17\text{ cm}$ apart, and measure the light emission in a parallel and antiparallel field. Parameters: $\lambda = 11530\AA$, capacitive coupling. No essential change compared to Fig. 4 can be found.

Fig. 6 indicates that the effect is independent of the type of coupling. Parameter: $\lambda = 11530\AA$; inductive coupling; homogeneous field.

Fig. 7 shows the same measurement at a different laser frequency: $\lambda = 6328\AA$, inhomogeneous field, capacitive coupling. The light intensity does not go up first - in contrast to the other measurements - and shows a more complex relationship. Part of it is probably due to the magnetization of the mounting used in this case.

In conclusion, the laser emission depends on electron concentration $n_e$ (which is a function of power input) and the magnitude of the magnetic field. At low electron concentration the entire laser radiation can be easily suppressed. The influence of the magnetic field is reduced if the electron concentration is increased. The general behavior is independent of the direction of the magnetic field (no Faraday rotation) and the type of high frequency excitation (TE-Mode or TM-Mode).
In Fig. 8 we show the change in light emission for a slowly varying magnetic field (60 cycle) and indicate how this can be derived from the knowledge of the d.c. case. There is almost no difference between d.c. and a.c. case.

If the frequency and the intensity of the magnetic field are sufficiently high, high frequency excitation and magnetic field effects will overlap. In Fig. 9 the effect of a current pulse on the laser (inductive coupling) is shown. In the observed range light intensity versus current amplitude is roughly quadratic. Placing the laser in a static magnetic field influences the shape of the light pulse as shown in Fig. 10; the time integrated result of which we have seen in Fig. 6.

5. CONCLUSION

If we assume that the general picture of the influence of a magnetic field upon a d.c. discharge as described in 3.3 applies similarly to a laser discharge we find the behavior of the laser emission as a function of a magnetic field plausible. However, a great amount of additional information is necessary to derive a quantitative description of the phenomena involved and pertinent measurements are planned. From a practical point of view the effect can be useful in a number of applications.

6. ACKNOWLEDGEMENTS

We are indebted to J. H. Beardsley and R. E. Mortinson of the Perkin-Elmer Corporation in supplying the laser and to Harry Gauch, USAEIRDL, for technical assistance.
7. REFERENCES

Gas discharge laser with electrodes for capacitive coupling
PARAMETERS: $\lambda = 11530 \text{Å}$

ELECTRON CONCENTRATION $n_-(a) > n_-(b)$

CHANGE IN ELECTRON CONCENTRATION IS PRODUCED BY CHANGE IN HIGH FREQUENCY INPUT.

FIELD HOMOGENEOUS.

CAPACITIVE COUPLING.
PARAMETERS: $\lambda = 11530 \AA$

a. FIELD CONFIGURATION PARALLEL
b. FIELD INHOMOGENEOUS
   CAPACITIVE COUPLING.

FLUORESCENT LIGHT

RELATIVE INTENSITY

I (A)

FIG. 5
PARAMETERS: $\lambda = 11530\AA$

Electron concentration $n_-(a) > n_-(b)$

Change in electron concentration is produced by change in high frequency input. Field homogeneous. Inductive coupling.

**FIG. 6**
PARAMETERS: $\lambda = 6328 \text{ Å}$

Electron concentration $n_-(a) > n_-(b)$

$n_-(a) = 100$ FOR $H = 0$
$n_-(b) = 100$ FOR $H = 0$

Change in electron concentration is produced by change in high frequency input.
Field inhomogeneous.
Capacitive coupling.

FIG. 7
FIG. 9
$H(1) < H(2) < H(3) < H(4) < H(5)$

MAGNETIC FIELD STRENGTH

FIG. 10
<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
<th>COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of the Assistant Secretary of Defense</td>
<td></td>
</tr>
<tr>
<td>(Research and Engineering)</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>Room 3E1065, The Pentagon</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding General</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Command</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMSEL-AD</td>
<td></td>
</tr>
<tr>
<td>Fort Monmouth, New Jersey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chief of Research and Development</td>
<td></td>
</tr>
<tr>
<td>Department of the Army</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chief, United States Army Security Agency</td>
<td></td>
</tr>
<tr>
<td>ATTN: ACoS, G4 (Technical Library)</td>
<td></td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td></td>
</tr>
<tr>
<td>Arlington 12, Virginia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Research &amp; Development Activity</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library</td>
<td></td>
</tr>
<tr>
<td>Fort Huachuca, Arizona</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Research &amp; Development Activity</td>
<td></td>
</tr>
<tr>
<td>ATTN: SELMS-AJ</td>
<td></td>
</tr>
<tr>
<td>White Sands, New Mexico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Research Unit</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 205</td>
<td></td>
</tr>
<tr>
<td>Mountain View, California</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Electronics Materiel Support Agency</td>
<td></td>
</tr>
<tr>
<td>ATTN: SELMS-ADJ</td>
<td></td>
</tr>
<tr>
<td>Fort Monmouth, New Jersey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Headquarters, United States Air Force</td>
<td></td>
</tr>
<tr>
<td>ATTN: AFCIN</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Rome Air Development Center
ATTN: RAALD
Griffiss Air Force Base, New York

Ground Electronics Engineering Installation Agency
ATTN: ROZMEL
Griffiss Air Force Base, New York

Aeronautical Systems Division
ATTN: ASAPRL
Wright-Patterson Air Force Base, Ohio

U. S. Air Force Security Service
ATTN: ESD
San Antonio, Texas

Strategic Air Command
ATTN: DOCE
Offutt Air Force Base
Nebraska

Air Proving Ground Center
ATTN: PGAPI
Eglin Air Force Base, Florida

Air Force Cambridge Research Laboratories
ATTN: CRXL-R
Laurence G. Hanscom Field
Bedford, Massachusetts

AFSC Scientific/Technical Liaison Office
U. S. Naval Air Development Center
Johnsville, Pa.

Chief of Naval Research
ATTN: Code 427
Department of the Navy
Washington 25, D.C.

Bureau of Ships Technical Library
ATTN: Code 312
Main Navy Building, Room 1528
Washington 25, D.C.

Chief, Bureau of Ships
ATTN: Code 454
Department of the Navy
Washington 25, D.C.
<table>
<thead>
<tr>
<th>DISTRIBUTION (Cont)</th>
<th>COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hq, Electronic Systems Division</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: ESAT</td>
<td></td>
</tr>
<tr>
<td>Laurence G. Hanscom Field</td>
<td></td>
</tr>
<tr>
<td>Bedford, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 686B</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 2027</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer &amp; Director</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Navy Electronics Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>San Diego 52, California</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Naval Ordnance Laboratory</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>White Oak</td>
<td></td>
</tr>
<tr>
<td>Silver Spring 19, Maryland</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Army Engineer Research &amp; Development Laboratories</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Documents Center</td>
<td></td>
</tr>
<tr>
<td>Fort Belvoir, Virginia</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Army Chemical Warfare Laboratories</td>
<td></td>
</tr>
<tr>
<td>ATTN: Technical Library, Building 330</td>
<td></td>
</tr>
<tr>
<td>Army Chemical Center, Maryland</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>20</td>
</tr>
<tr>
<td>Armed Services Technical Information Agency</td>
<td></td>
</tr>
<tr>
<td>ATTN: TISIA</td>
<td></td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td></td>
</tr>
<tr>
<td>Arlington 12, Virginia</td>
<td></td>
</tr>
<tr>
<td>USAEIRDL Liaison Officer</td>
<td>1</td>
</tr>
<tr>
<td>Ordnance Tank Automotive Command</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Ordnance Arsenal</td>
<td></td>
</tr>
<tr>
<td>Detroit, Center Line, Michigan</td>
<td></td>
</tr>
</tbody>
</table>
Commanding Officer

**Harry Diamond Laboratories**

ATTN: Library, Bldg. 92, Room 211
Washington 25, D.C.

USAEIRDL Liaison Officer
Naval Research Laboratory
ATTN: Code 1071
Washington 25, D.C.

USAEIRDL Liaison Officer
Massachusetts Institute of Technology
Building 26, Room 131
77 Massachusetts Avenue
Cambridge 39, Massachusetts

USAEIRDL Liaison Officer
Aeronautical Systems Division
ATTN: ASDL-9
Wright-Patterson Air Force Base
Ohio

U. S. Army Research Liaison Office
Lincoln Laboratory
P. O. Box 73
Lexington, Massachusetts

USAEIRDL Liaison Officer
Rome Air Development Center
ATTN: RAOL
Griffiss Air Force Base
New York

Chief, West Coast Office
U. S. Army Electronics Research & Development Laboratory
75 South Grand Avenue, Building 13
Pasadena, California

USAEIRDL Liaison Engineer
USASCAL
A.P.O. 343
San Francisco, California

Chief Scientist, SELRA/CS, Hq, USAEIRDL

USAEIRDL -White Sands Liaison Office, SELRA/LAW, USAEIRDL

Corps of Engineers Liaison Officer, SELRA/INE, USAEIRDL

Marine Corps Liaison Officer, SELRA/INE, USAEIRDL
DISTRIBUTION (cont)

U. S. Army Combat Developments Command Liaison Office, SELRA/LNF
USAELRDL

Commanding Officer, U. S. Army Signal Research Activity,
Evans Area

Chief, Technical Information Division, Hq, USAELRDL

USAELRDL Technical Documents Center, Evans Area

Commanding General
Army Materiel Command
ATTN: R&D Directorate
Washington 25, D. C.

Director, Institute for Exploratory Research, USAELRDL

File Unit (XS) Evans Area

Technical Staff, IER

Commanding General, U. S. Army Satellite Communications Agency
ATTN: Technical Documents Center, Fort Monmouth, N. J.

Air Force Systems Command Scientific/Technical Liaison Office,
SELRA/LNA, USAELRDL

F. Research and Technology Division
ATTN: RTH
Belling AF Base
Washington 25, D. C.

USAELRDL Liaison Office
USA Combat Developments Command
ATTN: CDC-LNEL
Fort Belvoir, Virginia

James H. Seardley
Perkin-Elmer Corporation
Norwalk, Connecticut

Dr. R. Rempel
Spectra-Physics, Incorporated
Mountain View, California

COPYIES

3
1
6
1
2
1
50
1
1
1
2
2
The influence of a magnetic field upon a gas discharge laser has been investigated. The magnetic field changes the spatial and energy distribution of the electrons and therefore influences the light III. output of the laser. Experiments show that this effect may be useful for adjustment and modulation of the laser emission.