NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
OFFICE OF NAVAL RESEARCH
Contract Nonr 404 (05)
Task No. NR 051-308

FINAL REPORT

POLYSOAPS
by
ULRICH P. STRAUSS

Rutgers, The State University
School of Chemistry
New Brunswick, New Jersey
January 31, 1963

Reproduction in whole or in part is permitted for any purpose of the United States Government
A. One of the main areas investigated was the transition from polyelectrolyte to polysoap. This work was carried out with series of poly-4-vinylpyridine derivatives prepared by quaternizing increasing percentages of the pyridine groups with n-dodecyl bromide and the remainder with ethyl bromide.


(2) The Transition from Typical Polyelectrolyte to Polysoap. II. Viscosity Studies of Poly-4-vinylpyridine Derivatives in Aqueous KBr Solutions. With N. L. Gershfeld and E. M. Crook, J. Phys. Chem. 60, 577 (1956)


(4) The Transition from Typical Polyelectrolyte to Polysoap. III. Light Scattering and Viscosity Studies of Poly-4-vinylpyridine Derivatives. With B. L. Williams, J. Phys. Chem. 65, 1390 (1961)

In papers (1) and (2) the high sensitivity of the molecular dimensions and interactions of polysoap molecules to solubilizates and simple electrolytes is reported. One of the most important findings is the existence of a critical dodecyl content of the
polyvinyl-pyridine derivative at which the transition from poly-
electrolyte to polysoap takes place.

The charge reversal, reported in paper (3), occurs with both
polyelectrolytes and polysoaps. However, its discovery was caused
by the observation of a region of insolubility found only with
polysoaps. Highly significant for an understanding of macro-ions
is the observation that the electrophoretic mobility is independ-
ent of the dodecyl content and of the extension of the polymer
coil and depends only on the solution environment.

In paper (4) the previous findings concerning molecular
dimensions and interactions in aqueous solution were confirmed
quantitatively. On the other hand, no significant differences be-
tween polyelectrolytes and polysoaps were observed in an organic
solvent.

B. Solubilization and its effect on polysoap behavior was further
treated in the following papers:

(5) A Comparison of the Effects of Several Solubilized C₆-
Hydrocarbons on the Viscosity of a Polysoap Solution. With

(6) A Comparison of the Solubilization of Several Paraffin
Hydrocarbons by a Polysoap. With L. M. Layton, J. Colloid
Sci. 2, 149 (1954)

(7) The Effect of Solubilization on the Equivalent Conductance
and Reduced Viscosity of a Polysoap Derived from

In these papers it is shown that as progressive amounts of solubilizates are added to a polysoap solution, the viscosity decreases with aliphatic hydrocarbons, goes through a maximum with aromatic hydrocarbon and goes through both a maximum and a minimum with polar-nonpolar compounds. The causes for these effects are discussed. Results of further investigations of these phenomena by light-scattering will be presented in a post-humous report to ONR.

C. Exploratory surface activity studies of polysoaps at water-air and water-hydrocarbon interfaces have been discussed in the following paper:


Subsequent work concerning temporary phase separation of polysoap molecules in surface layers will be reported to ONR post-humously.

D. Auxiliary studies on the properties of the parent polymers.


Similar work on poly-2-vinylpyridine revealed some unexpected anomalies. These results will be presented to ONR in a post-humous report.
I am grateful to ONR for providing the funds which made this research possible. I appreciated especially the thoughtful administration of this project which reflected a thorough understanding by the ONR staff of the problems facing the research scientist.

Respectfully submitted,

Ulrich P. Strauss
Professor of Physical Chemistry
<table>
<thead>
<tr>
<th>Contract</th>
<th>Nonr 40405</th>
<th>NR No. 051-308</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research Branch Office</td>
<td>The John Crerar Library Building</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research Branch Office</td>
<td>346 Broadway</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research Branch Office</td>
<td>1030 E. Green Street</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research Branch Office</td>
<td>Navy No. 100</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory</td>
<td>Washington 25, D. C.</td>
<td>Attn: Technical Information Officer Chemistry Division (6) (2)</td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>Department of the Navy</td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>Technical Library OASD (R and E)</td>
<td>Pentagon Room 3E1065</td>
<td>Washington 25, D. C. (1)</td>
</tr>
<tr>
<td>Technical Director Research and Engineering Division</td>
<td>Office of the Quartermaster General</td>
<td>Department of the Army</td>
</tr>
<tr>
<td>Research Director Chemical and Plastics Division</td>
<td>Quartermaster Research and Engineering Command</td>
<td>Natick, Massachusetts (1)</td>
</tr>
</tbody>
</table>
Commanding Officer
Diamond Ordnance Fuze Laboratories
Washington 25, D. C.
Attn: Technical Reference Section
(ORDTL 06.33) (1)

Office of Chief of Staff (R and D)
Department of the Army
Pentagon 3B516
Washington 25, D. C.
Attn: Chemical Adviser (1)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.
Attn: Code 340 (2)

Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.
Attn: Technical Library
Code RRMA-3 (1)

ASTIA
Document Service Center
Arlington Hall Station
Arlington 12, Virginia (10)

Director of Research
Signal Corps Engineering Laboratories
Fort Monmouth, New Jersey (1)

Naval Radiological Defense Laboratory
San Francisco 24, California
Attn: Technical Library (1)

Naval Ordnance Test Station
China Lake, California
Attn: Head, Chemistry Division (1)

Commanding Officer
Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina (1)

Brookhaven National Laboratory
Chemistry Division
Upton, New York (1)

Atomic Energy Commission
Research Division, Chemistry Branch
Washington 25, D. C. (1)

Atomic Energy Commission
Library Branch
Technical Information ORE
Post Office Box R
U. S. Army Chemical Warfare Laboratories
Technical Library
Army Chemical Center, Maryland (1)

Office of Technical Services
Department of Commerce
Washington 25, D. C. (1)

Dr. R. M. Fuoss
Department of Chemistry
Yale University
New Haven, Conn. (1)

Dr. Eric Hutchinson
Department of Chemistry
Stanford University
Stanford, California (1)

Dr. K. J. Mysels
Department of Chemistry
University of Southern California
Los Angeles 7, California (1)

Dr. S. H. Bauer
Department of Chemistry
Cornell University
Ithaca, New York (1)

Dr. S. Young Tyree, Jr.
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina (1)

Dr. L. F. Rahm
Plastics Laboratory
Princeton University
Princeton, New Jersey (1)

Dr. A. V. Tobolsky
Department of Chemistry
Princeton University
Princeton, New Jersey (1)

Dr. A. W. Nolle
Department of Physics
University of Texas
Austin, Texas (1)

Dr. W. Heller
Department of Chemistry
Wayne State University
Detroit, Michigan (1)

Dr. Ernest Grunwald
Department of Chemistry
Florida State University
Tallahassee, Florida (1)
Dr. R. S. Stein
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts (1)

Commanding Officer
ORN Branch Office
1000 Geary Street
San Francisco 9, California
Attn: Dr. P. A. Miller (1)

Dr. R. Ullman
Department of Chemistry
Polytechnic Institute of Brooklyn
Brooklyn, New York (1)

Dr. G. Barth-Wehrenalp
Pennsalt Chemicals Corporation
P. O. Box 4388
Philadelphia 18, Pa. (2)

Commanding Officer and Director
U. S. Naval Civil Engineering Laboratory
Port Hueneme, California
Attn: Chemistry Division (1)

Commanding Officer and Director
U. S. Naval Civil Engineering Laboratory
Port Hueneme, California
Attn: Chemistry Division (1)

Dr. M. S. Cohen, Chief
Propellant Synthesis Section
Reaction Motors Division
Denville, New Jersey (1)