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ABSTRACT

Useful formulations of dhc macroscopic conservation

relations for a ihree-component mixture composed of

ions, electrons, and neutral particles are developed

from the basic forms of tlu' equations for the individ-

ual species. the dcvelopmuent represents primarily

an orderly compilation of lhe work of previous inves-

tigators, although the equations developed are some-

what more general than those previously derived. In

particular, all inertial and viscous terms are retained,

and the temperatures of the individual species are not

required to be equal. In addition, treatment of the

energy equations is included.
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SECTION I

ONE-FLUID FORMULATION

The purpose of this study is to develop, in a systematic and generalx
way, useful formulations of the macroscopic conservation relations (i. e.,

mass, momentum, and erergy) applicable, in the absence of radiative effects,

to a gas mixture composed of ions, electrons, and neutral particles. 4 lO.c-r-

the material ic.tnir.-d in this rpr -- constitutes primarily an orderly com-

pilation of the work of previous investigatorsf, e for examvle. S,.hl,_ar

Cow'ling. Z neic-., 3 ,0.A T.ghnia,.t1 The p.eae.zalwork, -hwevet, strives

to maintain some degree of generality so that the various terms neglected in

other treatments are readily apparent. In particular, all inertial and viscous

terms are retained, and the temperatures of the species are not required to

be equal. In addition, the energy equations, not treated in previous works,

are included.

In Section II, the basic equations for each species are written, and

arguments are advanced for treating the momentum properties of the mixture

either as a single fluid or a two-fluid mixture and the energy properties as

a one-, two-, or three-temperature mixture. Forms of the individual species

equations convenient for developing the subsequent formulations are presented.

In Section III, the one-fluid formulation is developed, and in Section IV, the

two-fluid formulation is derived.
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SECTION II

BASIC MULTICOMPONENT EQUATIONS

A. Equations for Each Species

The governing equations for the flow of a multicomponent mixture com-
A

posed of species a (a = ..1 N) are derived by taking moments of the

Boltzmann equation appropriate to each species. In the absence of any ex-

ternal forces except those of electromagnetic origin, the Boltzmann equation

for species a is written as

Of ea+ V.Vf +- (E +V x B).V f = (Of(1
-t- -a - m - -aa - vaol

where (f/at)Col 1 represents the effects of interactions of members of species

a with all species present, inctuding other members of species a.

Following the usual procedure, we obtain the transport equations (i. e.,

continuity, momentum, energy) for each species by multiplying Eq. (1) suc-

cessively by m, m VL and 1/Z m V + m E and integrating over velocity
a a a- a a a

space, making liberal use of the definition of the mean value of any function
+00

of velocity, nQ = fff faQd VxdV ydVz. This procedure yields, after suit-

able rearrangement:-OD

pa + V.(p v ) , (2)at a-a a

Dav N
Dt + V-=Cp + Q (E + v x B) + X P . - w v (3)

a -t Va a - -a -- j=l -aJ a-a
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4.

P (Aa + C a) pa-V V.qt + (:Vv) U + C - L

N N
+ Z E. - P. (4a)

j=l aj -a -aj

Other useful forms of the energy equation are obtained in terms of the en-

thalpy and the total enthalpy

(*r h + E a) V.Ya-V Av2
PQ -t •L -- a€aILYy 2 a

N N 8 p
+1E v EP +-a (4b)

j= aj - j= P j +

and

Da VP+ + - _q.t~ + V - T. a + E. n)a-a v

(+ a+ ++ E. (4c)ha + a o t Eai

A
It is to be noted that u can also be expressed as 3kT /Zm . The physical
significance of the various terms in the above equations is well known and

will not be considered here.

To complete the formulation, Maxwell's equations are required:

8B
V x E=- (5)

BE
Vx B = ±J+ oo E

0- o o Ci (
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V.E Q  (7)
-E

0

V.B = 0 (8)

Also required are the equations of state for each of the species a:

A(9
u(i = f (P P (9)

fa = f (pal Pd (10)

It is worth remarking at this point that the basic unknowns of the prob-

lemare pa vI Pa E, B, uA, '-, P E *, and w , the entire seta# --a - -11aL apIt - P aCj' ajof which comprises considerably more unknowns than equations. We shall

therefore implicitly assume that solutions of the Boltzmann equation will

permit a' _qa, Paj' Eaj and w a to be expressed in terms of the other un-

knowns (as is the case for dilute neutral gases). The remaining set of un-

knowns number 7N + 6, two less than the number of equations available.

This is due to the well-known fact that Eq. (8) is merely an initial condition

when used with Eq. (5), and the fact that Eqs. (2), (6), and (7) are not inde-

pendent, since (6) and (7), or (2), can be used to obtain the conservation of

charge relation. Hence, either Eq. (5) or (8) and one of Eqs. (2), (6), or (7)

may be taken as superfluous equations.

Henceforth, we shall restrict out attention to three-component mixtures

composed of ions, electrons, and neutral particles.

B. Useful Formulations of the Three-Fluid Equations

The equations for the individual species listed in the previous section

(which we shall refer to as the three-fluid, three-temperature formulation)

are generally not the most convenient forms for dealing with specific three-

component flow problems, due primarily to certain simplifications which

'It is noted that the variables Q , Q, J, and n are defined in terms of
the unknowns listed here. a - a
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arise from consideration of the coupling between the three species. This

coupling, as can be seen from the equations listed, takes three distinct forms:

first, momentum coupling due to collisions between particles of different

species (the terms P a); second, energy coupling due to collisions between

particles of different species (the terms E ct); and third, electromagnetic

coupling due to collective interactions of the charged species [the terms

Q (E + v x B)J.

If the momentum and electromagnetic coupling between ions and electrons

is very strong, then the number density of each species tends to be the same

value, and the difference in mean velocities v. and v produced by mechani-

cal effects tends to be small compared to either C. or C . This suggests-1 -e
that it may be useful to describe the momentum properties of the ions and

electrons as a single fluid (the plasma) of mass density pp = Pi + p e and

mean velocity ppvp = Pivi + p v e . The mean velocities of the ions and elec-

trons are then described by the diffusional velocities wip and w ep where

Pw = 0.i, e a- ap

Similarly, if the momentum coupling between ions and neutrals and/or

electrons and neutrals is very strong, the differences in mean velocities

vi - v and v e - v n is small compared to C i., C e , or -n. This suggests

that it may be useful to describe the momentum properties of ions, electrons,

and neutrals as a single fluid of mass density p = pi + P e + pn and mean

velocity pv = pivi + peve + p nVn The mean velocities of the individual

species are then described by the diffusional velocities w., w , and wn

where . P w = 0. For this description it is desired to recast the in-

dividual momentum equations into the form of one momentum equation for the

total mixture, and two additional diffusion equations for determining the

diffusional velocities. This is the standard fluid mechanical treatment of

multicomponent mixtures (see Hirschfelder, Curtis, and Bird5 ).

If, however, the momentum coupling between the charged particles and

neutrals is not strong, it may be desirable to describe the momentum prop-

erties of the mixture, composed of (a) a plasma of mass density pp and mean

5



velocity vp, and (b) a neutral gas of mass density pn and mean velocity vn.
The mean velocities of ions and electrons are described by the diffusional

velocities w and w ep For this description it is desired to recast the

individual momentum equations for ions and electrons into one momentum

equation for the plasma, and one additional diffusion relation (a generalized

Ohm's law) for determining the diffusional velocities.

Similar considerations may be applied to the energy coupling, although

no exact reformulations appear useful. However, if the coupling between

species is sufficiently strong, the assumption T. = T = T n T may be
1 e n

permissible, and the energy properties of the mixture may be described by
a single temperature. It is then desirable to combine the individual energy

equations into one equation by eliminating the coupling terms. Likewise, if

the coupling between ions and neutrals is sufficiently strong to permit the

assumption T. = T n T while the electrons are weakly coupled, then the1 n g
energy properties of the mixture may be described by two temperatures, T

g
and T . In this case it is desirable to combine the energy equations for ionse

and neutrals by eliminating the mutual coupling term.

There exist, of course, other extremes in both momentum and energy

coupling between species which, in theory, would suggest different formula-

tions. These are not considered important here, as they are not physically

probable.

To summarize, the momentum and energy properties of a three-

component mixture may usefully be described as indicated below.

Momentum Energy

Three-fluid: Pi' Pe' Pn , v. , v Three-temperature: T i , T , T1e n -n-- e n
Two-fluid: p , v p, w e , Pn' Vn' Q Two-temperature: T , Tg

One-fluid: p, v, w e , w n , Q, f One-temperature: T

C. Useful Forms for the Individual Component Equations

As an aid in recasting the equations in the forms suitable for the descrip-

tions of the previous section, the individual component continuity, momentum,

6



and energy equations will be revised in the following ways: first, equations

for the ions and electrons will be written in terms of v and the diffusional-p
velocities wip and w ep, and, second, equations for all species will be written

in terms of v and the diffusional velocities w., wi , and wn'

In terms of the first variables, the equations become (where a i or e)

Pa + v(PW + V(PV) = (11)
at +V(a- ap ) -

D v

P DPV + DP(p w ) + Pw (V-v)+ w.~ V

Dt +  aP-ap a- ap -p a ap') Vp Pap

+V.a + Q (E + v x B) + Q w x B + . -o v
-ap- -p a ap aj a--p(12)

.p p + + p-- - ap - pap (V-_p

p ap EL a] -p lap-~

+ (L: ) + QWa (E + v x B)-V.P

ap-p -p - P -Cj

2v P.aA

.a a 2 p p (i +e) a Ea)

Additional forms of the energy equation are

r F + IE + P - V +VVp
~~p ap Ea)] Pa ap t -a -p ap

+ (-'ap:YXp ) + Qaap - -p x B) -p . aj

+pa v 2  a

j aj at a 2 P i e ap a Pa/

(14)

7



and

P A ap 2)] + Pp "DP (a'--
+ C + -- a (w vp.

+ P Op + . _o 2 F I . +P a.
- q--p - Tj+ Zi-=-+ V.(v (2*,*p a aP

pB

- 1 i + w v) + + h +

P~ ~~ 1Esp-Pa )] (15)

A A
It is to be noted that in the above equations the quantities p p' ua h T

ap a p apand %p are defined in terms of thie appropriate mean values of the difference

in particle velocity and mean plasma velocity (C ap), instead of the difference

in particle velocity and mean species velocity (C a.

In terms of the second variables, the equations become (where

a= i, e, or n)

atn + V-(PW ) + V.(Pav) 
(16)

Dv
P Q IN+ M (Paw-a) + Pc-wa (V.v) + Pa (w.'V)v

+Q (E + v x B) + Qw x B + 2Paj V
a t  -at a a a - a -- . a-

(17)

8



p [a (uat + E a] P W .DQ - -Pat (V.v) + (,at:VY)

2
+Qw.(E + v x B) + E .- v.7 P .+ w (18)

- a ajJ J a

Alternative forms of the energy equation are

D EiA 1Dv
p (ht + C)J + P w .- V.- + V.VpP L ]t (at +  a] aa- a 'Dt -v- at

+ (iat:V :) + Q wa"(E + v x B) + I E v' Paj
-- j - j

+ V + (19)

and

[LcL (h + +
a  + p D- wa.v + V. P vZw

- V- q + V'(v'T ) + E.Q v + E.Q w

+ Z E. + P a t  (20)

A A
Again it is to be noted that the quantities Pat' Uat' h Tat, and %t are

defined in terms of the appropriate mean values of the difference in particle

velocity and mean mixture velocity (Cat).

9



SECTION III

ONE-FLUID FORMULATION

A. Basic Fluid Mechanical Formulation

Considering the mixture as a single fluid with momentum ,properties

described by p and v, we obtain the equation of continuity by adding the three

Eqs. (16) and making use of the facts that Zp w a: 0 and Iw -- 0:

2p + V.(pv) 0 (21)
3t

The conservation of the individual species may be expressed directly by (16)

where, it is to be remembered, only one such equation is required in com-

bination with Eq. (21) and Maxwell's equations.

The momentum equation for the mixture is obtained by adding the

Eqs.(17):

Dv
p - Vp+V.T+Q(E+ v x B) 4 j_ x B (2Z)

A form for the diffusional relations useful for comparison with standard

fluid mechanical developments is obtained by eliminating the Dv/Dt term

from Eqs. (17) and (22). (Only two of these relations are independent.

Vp + Vp + ( Q - (E + v x B)-aj p Pt at P

+( - Q w x B + (A v + L (V' Tt) - I.P a a) Q- P1"_ .at )

D
+ a (p wa) + p wa(V'v) + pa(_Wa-V)v (23)

10



These equations merely represent the conservation of the difference in

momentum of a single species and the mixture; the left-hand side is the

friction force acting on a single species due to interaction with the other

species, and the right-hand side represents the summation of effects which

require this interaction for dynamical euilibrium. In addition, these equa-
5

tions are of the form obtained by Hirschfelder, Curtiss, and Bird by the

standard perturbation solution of the Boltzmann equations for the species,

in which it is assumed that:

1. All species are of equal temperature;

2. The velocity distribution function of each species is perturbed

slightly from the Maxwellian one corresponding to the mean

properties of the mixture;

3. The forces on the particles arising due to E and B do not

directly affect the distribution function;

4. There is no chemical reaction (w. = 0).

The precise equations obtained by Hirschfelder, Curtiss, and Bird,

when written in the form of Eqs.(23), are:

- Zp - VPt + p Vpat +  a) (E + v x B)

+ (24)

where

nn. nn. D T D.T)
P - -- C j (W. - _L) + a j Pa T (25)

n 2 D a(1) wj nD .j(l) pPj al

11



The usefulness of comparing Eqs. (24) and (25) with Eq. (23) is that it makes

evident the effect of the approximations made in obtaining (24) and (25) [the

last five terms on the right-hand side of (23) are neglected] , and it further

yields the form of the friction terms P. (subject, of course, to the previous

assumptions). It is pointed out that the terms neglected in Eq. (23) are a

direct consequence of the .assumption that the velocity distribution function of

each species suffers only small departures from the Maxwellian one corre-

sponding to the mean properties of the mixture. If the coupling between

species is strong, we may expect the mean properties of each species to

differ little from the mean mixture properties; this, of course, represents

the situation in which the one-fluid model is convenient.

For the one-temperature model, the energy equations are obtained by

adding the Eqs. (18), (19), or (20), respectively:

[Y !-a " ut + v, =-Vqt - Pt(V'V) + (it: Vy)

+ j_.(E + v x B) (26)

or

D r CL fA
S - h ha + + = + + (t :V )

+ :(E + v x B) + (27)

or

2) = qt + V-'(V-

Lt- \CtzZ~ !- h t+" at + a

+ pt (n8)
+ E.Qv + E.+- (8

12



Similarly, the appropriate energy equations for the two-temperature

model are obtained by adding Eqs. (18), (19), or (20) for ions and neutrals,
respectively:

r) .( Dv
.P t n (AU at + a - Pe-eD = - v'(qtt + qnt

(pit + Pnt) (V v) + [(it + nt):V]

+ Q iwi ( E + v x B) + Eie + Ene - -v.(Pie + -Pne)

2
+ (W. + ) ) .X.. (29)1 n 2

or

D a A Dv
P -p hat + ca PeWe' t - -(qit + qnt ) + v'V(pit + Pnt

+ - T +t):Vv] + QiW (E + v x B) + E. + Ene

( vP. + P ) + + +nt (30)ie -ne i n) - +  t(Pit + Pn

13



or D
p h a + + ) - p ( w .v -

P. ant a' _ 2, Dt p - 2 1]
- it + _nt + + Tt]

nt~i I itnt )

+ EQ v + EQ.w. + E. + E + it nt
- - i-i e ne at

(31)

The energy equation for the electrons is obtained directly from Eqs. (18),

(19), or (ZO).

For the three-temperature model, the appropriate energy equations

are obtained directly from Eqs. (18), (19), or (20).

B. Form of the Friction Forces, P.

It is not profitable to proceed with the one-fluid model without intro-

ducing the form of the momentum coupling terms P .. The form adopted

here, for reasons to be discussed, is as follows:

pie - -Pei = ie (we - wi) + Pie (32)

-pin = - -Pni: =in (-wn - -) + 'Pin (33)

Pne - Pen = "en'(-e - Wn) + e (34)

where the tensors 1i, and q=n are of the form

,j = T .)- (T aj j1 aj nn (35)

14



where I is the unit tensor and n is the unit vector in the direction of the

magnetic field.

The form of these relations suggested by comparison with the standard

fluid mechanical treatment is, from Eq. (25), P = a.(w. - w ) + a1 T "

It is recalled, however, that this form includes the assumption that electric

and magnetic fields do not: directly affect the velocity distribution function;

this has been shown by other investigators (e. g. , Chapman and Cowling, 6

Marshall, 7 and Braginski 8 ) to be imprecise. In particular, Braginski

obtains, for a mixture of ions and electrons, the following form:

-n W - w) q' .. - w ) x Bi

P.~ .(.w + [ Bi -

+ T.VT + Yy x (36)

where it has been assumed that the velocity distribution function is unaffected

by electric fields. The form of the tensors is

= r I - (n - n.) nn (37)

Clearly, if the electric fields were properly accounted for, a term propor-

tional to E is expected in Eq. (36).

Examination of Braginski's results reveals that over all ranges of

magnetic field strength, n, in (37) varies from n, to Zn,,; nj'. is always

less than 20 percent of the value of n,,. Furthermore, for moderate magnetic

field strengths [ (W T)ion s < < I], the ion velocity distribution function is

only slightly affected by the magnetic field. These considerations suggest

that the forms of P . in Eqs. (3Z) through (34) give proper emphasis to the

most important effects.

15



C. One- FIuid Iornmtition in Jerms of p, f, Q, v, j, and v A

1. Relationships Between Variables

It is found most convenient to cast the one-fluid formulation in

terms of the variables p, f, Q, v, j, and vA. We list here the other

important variables in terms of these:

Pi = cz (1 - f)p (38a)

Pn = a3 fp (38b)

* **mee i

pt = - O a (38c)Pe = 2 6 m.e
ee

, e i

Q. = - (I f)p (38d)
2

,e.

Q = Q - aC -- (1 - f)p (38e)e 2m.
1

a5 m (1 -f2)
-1 - -+- (38f)a- * e e 0* "(1 - f) -A

a2  e 2

a (1 - f*)

n 4 - * A ( 3 8g)

3
-- n a aff

5aa(1- fa)

-e * ** e. ** * --LA (38h)

a (1 - f)p a 6 (1 f) a 2

16



where

, m

1 -1 - Q e (39a)
pee

, a 1 11%
Ci? (39b)
2 m me.

1+ -e f e e (1- f)rn. m~.e
1 i e

, m n

m. (39c)

, *

a2 a l- / a5- ____1_-_ (39d)
a 4  1 + , 5 1-f

1- 2f (51 fa*)

a5 E 1 eemi) (39e)

m.Q
CL6  -- 1 - * (39f)

Furthermore, we may write

**
A. m.D

t ie 1 L (40a)
Wn -e a * e .( 1 - f)p a fT

17



rni  m D.
e -i V

- - -, e (I p - f -A 4 0f

whe re

5  (16 m e e iA. (1 1(4 1a)IV m iee

( (1 4  (1 fn 2D. (1 - C) (41b)
le

a C a al (I-fa)
4 4 2 5 4  2D . , +) (41c)

ne 0 f)~c( 4 c
3  3 2 6

4 4+2 5sG4 2
D. - .. f . + f , _ (41d)

in 0. 1 f)
3 3 2

For the sake of brevity, we shall now make the standard assumption of

charge neutrality (see Lehnert 4 ) and further assume that me/mi < < 1 and

m eei/mieel < < 1. In the absence of the assumption of charge neutrality,

there appears to be no advantage in the one-fluid formulation. With these

assumptions, the coefficients ct, A, and D in the above equations become

unity. We shall neglect the unspecified terms in the friction forces between

species (P aj).

tin order to obtain the correct limits, it is necessary to perform the
subsequent algebra by retaining the coefficients a, A, and D, and then
invoking the previous assumptions.

18



2. Generalized Ohm's Law and Ambipolar Diffusion Equation

In terms of the new variables, it is convenient first to extract an

Ohm's law for j and a diffusion equation for vA from the three dependent

relations (23), where Eqs. (32) through (34) with (40a-c) are used to eliminate

Pj. To obtain a diffusion equation for vAt Eq. (23) for neutrals is written

in terms of the new variables, with the result that

(tlen'If + +fl = - f + + f(j x B)

+ (1en,, + m ei 'nin) ei(1- f)P L1,1

+ W v + f(V '_t - (" T

n-I1, 1 .L nt

- {-j P(1 f)vA + p( - f)

~ + (Avx4(42)

To obtain a generalized Ohm's law, Eq. (Z3) for ions is subtracted from the

similar one for electrons, and Eq. (42) is employed to eliminate vA. The

result is

19



M.

- (E + v x B) --- Ie (I -2 l'YIkL ) Qj xB
0 11,ie- p~i - f)

+ (E )pIIj + (E)T1, + [(1 ''j ) e ' 1 1, J- i] e. p - f) ~~

+ e 1 + !(v V) + Q(jV)vI
e e~ - f)LD1J1,

'Y ---l~ f)Z A] + P~ - f) 1LA V + ( ~

B ) +± I'i i v-p v A

lin + in If' ~xB

+ p(l -f) [2LA vV) + (v AV)~~ x B!ii (43)

where

" T en 111  
(44)

li, 1 en 111 + 'n in

and

(ije)~~~ + 1 1-~)- 'i (4 5a)

x + (en),_ ii,± m Ii e

20



13 ). r,
-P , 11, i  ,(I -f) II . ( t)ll J. 'i, (YE t)llJ

e. me e

e. 1

+I e' m. (Y--'El) 1 (1 - l J.) (.-'.-et)"II (45b)

e 1 e T +,I V..L(5c

e m 1i=( e it (I .) (V. t) (4 5 c)

e 1 i .. U.L

I-f l.rpt - VP (45d)-p v t VPit fVe

F= (I f)(V. T I (V"T) + (Vr (45e)T- f = V' t) f =it )  f- '=et)

Schluter I has derived equations similar to Eq. (43), in which ?-en and

lie are scalars and the viscous stresses are neglected. Cowling has

employed Schluter's assumptions in deriving similar equations, assuming

in addition that the temperatures of all components are equal and that the

inertial terms involving _ and vA are neglected. Briefly, the terms in this

equation represent current-producing mechanisms due to: (a) electric field,

(b) Hall effect, (c) different motions of ions and electrons caused by pressure

gradients, (d) different motions of ions and electrons caused by viscous

stresses, (e) generation of ions and electrons of unequal velocities, (f) dif-

ferent inertial forces acting on ions and electrons, (g) different inertial

forces acting in the ion-electron mixture and the neutral particles and

(h) relative motion between ions and neutral particles. The form of this

equation for a fully ionized gas is readily obtained by setting

f = VA = w we = 0.
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In Eq. (42), the various terms represent motion of the plasma rela-

tive to the mixture due to: (a) action of pressure gradients (this includes

both mass diffusion and pressure diffusion), (b) the Lorentz force acting on

the plasma, (c) currents flowing in the plasma, (d) generation of neutral

species (i. e. , recombination of ions and electrons), (e) action of viscous

stresses, and (f) inertial effects. Schluter has also derived a similar

equation, and has pointed out that, if the last five effects are absent, the

temperatures of all components are equal, and the gas is slightly ionized

(f < < 1), then Eq. (42) reduces to the usual ambipolar diffusion equation:

v 1,1ZkT - n.-A \?en 1,_ + nin ) iI,.L

3. Continuity and Momentum Equations

Incorporation of the previous assumptions leaves the continuity

equation unchanged; hence, from Eq. (21)

ap + V'(pv) = 0 (46)
at

Recalling that only one species-conservation relation is necessary, we

obtain from Eq. (16), for the neutral species:

(fp) + V. [P(l - f)vA] = Wn - (V. fpv) (47)

The momentum equation is obtained from Eq. (22) with Q = 0

Dv
Pt- Vpt + V-t + (j xB) (48)
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4. Energy Equations

I'he energy equations for the three-temperature model are

obtained directly from Eqs. (18), (19), or (20) using the relations (38)

through (41). The form corresponding to Eq. (20) becomes, for ions:

P I f) hit + 4L + E + p - 1 A  eeP K

- P - +qit + V.(v-Tit)

e. e. m e
p(1 - f) v + . (

m- 1 - - e

3pit
+ E. + E. + t (49a)

for electrons:

De me e -Af2me_

[ : (1-f) (h + y + + P m2e [

PDt etm.e

m i _ 1 2 (meei m 1_;

- * .v + V . -1 pv • 'v
eip L]-j m ie e ) 1 - PYA eiP

e. e.
+ (V- T 1 (1 - f)p {FE'v)-1p

V'tt + " -=et) M. M.
1 1

x +E + +E Pet (49b)1 -f A  -e -  -le -

2-3



and, for neutrals:

D A v 2 D ] VA

Pt [ (nt + 4T + fn) - p  - fKA' - ' pv2 (1 -f =

'Ent(4c
-V'n t + V (v. Tnt - Een - Ein + at (49c)

Relations corresponding to Eqs. (18) and (19) can similarly be obtained.

The energy equations for the two-temperature model are obtained

from Eqs. (29), (30), or (31). For the mixture of ions and neutrals, the

form corresponding to Eq. (31) becomes

p - 1 f) (hit + Ei) + f ht + E) +

P _ m e e I m Il y .Z m e. e iv- -t i; mie e  f~A eip m ie e

x 1 - flyA - e-p jL - " it+ _n ) + V _ it + + nt)

+ m-' P(I _ f) (E.vX) + I P ( f)vAm m i  A Pe e

(P t+ Pnt)

+ E + E + - t (50)ie -ne a

The energy equation for electrons for this case is again (49b).
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The one-temperature formulation for the energy equation is obtained

from Eqs. (26), (27), or (28). The form corresponding to Eq. (28) becomes

D - ( I f) (hit + Ei )  m ee (1 I h t + e + f(hn En) +

aP t

- V~q + V. (V. T ) + E.j + apt (51)
-t V.(v..at

It is pointed out that the relationships of the energy flux vectors %t' -et

and ant to the corresponding vectors relative to the individual species qi,

ae' and qn are given by:

_ e +.P , ')L e h t +

it = ti YA - e(l O T i-j it + p(l -)A j(it

e)P~ eet e - AA eh(l - f)p E

e m

em) - +~ )

e 1e

-nt = qn + v--- -A' Int -( 1 - f)vA nt + En)

where the terms represent (a) energy flux due to transport within species,

(b) work performed by shear forces due to relative motions of species, and

(c) transport of energy due to relative motion of species. Of these, the

term

A kT
e (h) 5 ehe e

ee

is the most widely recognized.
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5. Concluding Remarks on the One-Fluid Formulation

In addition to the continuity, momentum, energy, and diffusion

equations presented previously, Maxwell's Eqs. (5) through (7)

[Eq. (7) is unnecessary if Q = 01 and the equations of state (9) through (10)
are required. In the latter connection, it should again be noted that the

quantities Pt' Pit' Pet' PntO et cetera, differ from the corresponding ones

P' Pip Pe' Pn' et cetera, by factors containing the diffusional velocities

squared hence these factors must be negligible compared to C 2 if
a

any confidence is to be placed in the equations of state.
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SECTION IV

TWO- PLUID FORMULATION

A. Basic Formulation

The two-fluid model (i.e., plasma and neutral gas) is best formulated

in terms of the variables -p, Pn Q, Vp, v , and j . For future reference,
p n-p n -p

the relations between the diffusional velocities and plasma current are

w - 1 (5 2a)
-ep Pe t, i

T11 m i

and

W( ) (52b)1p pi e e e

e ip

and the relations between ion and electron densities and the plasma density

and net charge density are

Q e.
Pe Pp m.

_e 
(52c)p p e e e.

Me mm m.
e 1

and

ee Q
Pi m pP

p e e.

m 77
e 1
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The continuity equation for the plasma is obtained by adding Fqs. (11)

for ions and electrons (noting that X pa w 0)

4t~ ~ i eP -- Wi+ p(op

The continuity equation for the neutral gas is obtained directly from Eq. (2)

+ V.(P Vn) = W (54)

Addition of Eqs. (12) for ions and for electrons yields the momentum

equation for the plasma

DPv

Pp +V-T +Q(E +v xB) +(LxB)
.+P (w

+-in -en (wi + e)-p (55)

The momentum equation for the neutral gas is obtained directly from Eq. (3)

Dnv
-n Vp + (VT) P. -P -W v (56)

-nDF n n -in -en n -n

The appropriate form of a generalized Ohm's law is obtained by

multiplying Eq. (12) for ions by ei/m i. multiplying Eq. (12) for electrons

by ee/mef adding the two results, eliminating the term in this result con-

taining DPv /Dt with Eq. (55), and introducing the relations (52). This

results in
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(jQ V p.VT
+_ (VV) + (j'V)v - i (Vpip - V. Tip)

(o e -P - -) P II
+ (Vpe - +T0 ) +( 2 + - (E + v x B)

e epC T en

As will be seen subsequently, this equation takes on a more recognizable

form upon substitution of appropriate forms of the coupling coefficients

P., P ,andP..P Pe p

-.in -een' and _P' e"

The energy equations for ions and for electrons for the three-

temperature model are obtained directly from Eqs. (13), (14), or (15). The

form corresponding to Eq. (15) is as follows for ions:

Dp i Pi D p  e -en

e (h 1 p

ee eip - V'qp + V'(Vp7)

_M) -fe +m i  + /

+ "- p. E'v -E +Ein+ .

eee

__i_____1 (p58a)As wil be y thip +a+tEi _ e e) n]
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For elect rons:

D P Pe fA ep e V ee e. Pp -p khe +

v[( eV M .v.

_q ~ -ep ,)

e

7-e ___C_ een__

rne -p ene
ee

+~7F 77 (i,

Pe (A
+ .5  e + 4 +Ce)j (58b)

For neutrals, the energy equation comes from Eqs. (4 a), (4b), or (4 c).

From (4 c), n( n=

n T - n V = nT) +a

- w + an+ n 4 E -E. (58c)
n hn nen in

Forms corresponding to Eqs. (13) and (14) for ions and electrons and

Eqs. (4 a) and (4b) for neutrals can similarly be obtained. Relations (52c-d)

may be used to express the factors p./p P p e/ p in terms of p Pand Q, if

'de sired.
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For the two-temperature model, the energy equation for the ion-neutral

mixture is obtained by merely adding Eqs. (58a) and (58c); the equation for

electrons remains (58b).

For the one-temperature model, the energy equation for the mixture

is obtained by adding Eqs. (58a). (58b), and (58c)

Dn(A^ r) DpFPiA ^e A^V
2) + P p DP [P ip i  -

Pn F (hnn + f Jn + rtLFhip + +7*(hep +e)+

- V'( +( ) + V.(vp- Tp) + V(v.r n ) + E. Qv + E.
pq + np- -n -P -EL

Op P+Pn (A P ^ Pe( A  2]l

+ + +F - (Wi + Wo)F2 (fhip + Ei ) + P (hep + ce ) +

A V

h + -- (59)

Similar equations written in terms of either enthalpy or internal energy can

also be obtained.

B. Approximate Two-Fluid Formulation

If, as in the case of the one-fluid formulation, we introduce the Eqs.

(32) through (35) for the form of the momentum coupling terms, and if,

further, we assume that me/mi << 1, 1 e i me/e e mil << 1, and

I m Q/ee pp I << 1 , the equations in the preceding section can be written

in the following form.

Continuity:

ap

- + V-p Vp) = x + n (60)

1it is to be noted that this assumption does not require macroscopic

charge neutrality.
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apn+ V. (Pn in) = ()n (61)

Momentum:

D~v
pp Vpp+ V.-T + Q(E +v x B)+ (L xB)

1 e-vp +in (-n -p =en -n -P

in e. 6I' . +P* (62
+ pe p m \ T)!)enLp+ -in -len 2

p e p 1

-pvn -Vp +v (vT_ -v -A V nV--

nn- in ev . ** (n (63

p e e -6 e.p Ilen. L.p -in -fen (3

whe re

* Qm.) (64)
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Orns law (;iftc r Soflc roa rratigc mci):

(jPl (E +v x B) j 1)Qx B
011,1 p - 11(e7 p)

e~ eep ~ '
e p

- , (~e~ I~ en (v -

D+ 6L (Vv)*

e_ (__ _e =p)I

I* e
+m e. p -e 11,1 (65)(vp 1,

(0I1±)~~~~~ -) -'"in ~n (n ) ell + 6v()2"eI
Pe p p 

. I(66)

e im . p [!)n* (vn33



Energy (thrc, -te Ii at u r, mode I):

,,P (. V2 (pp m) v m Lv2h + . + - -
p "] hip 1 - e -BE pp

+ e p e i M.

q. + V. (vp T.p) + (E- v : M. -L)

+ E. + E. +_ -_w. + h .+..

in le t 1 we)  ip I

( - m ip](67a)

P p I (me e) ( e

,;i. .e .

Im e

p

-- --en -e.

V- (w + Ve) V - (ep e

+ e (67b)
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,n(A2 S 8
Pn h + n + n V.q + V.(v *T n ) +

nl nJ.f nl n -n ~

+ - E. (6 7c)n (n n en in

Energy (one-temperature model):

Dn A 
v 2

Pn W hn 4 n +  + p " (hip +  )

+ ( :+ : e ) + v

- V.(p+%n) + V.(V.T) + V.(v. ) +E. Qv + E.
p =P -=n - - 4

Sp 8P n )[(A Me r e.ei\^e

+ -if + 7F- W i + We) (hip+Ei) + 6 - m i  (hep +."p)

Vp] - n  hn + e n + r)(68)

Equations (60) through (66), in the absence of viscous effects and chemical
change, assuming charge neutrality and assuming 1-en' In to be scalars,

have been thoroughly discussed by Lehnert. 4 In particular, Lehnert
assumes Ten = me neven' Nn = minivin, and ie = me ne vie, where

the v's are suitably defined collision frequencies.
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NOMkI,N(;IAIURE

B magnetic intensity

C peculiar velocity of a particle of species a; C = V - v-ac a-c -a -c

C peculiar velocity of a particle of species a relative to mass

velocity of plasma: C = V - v- ap - a -p

Cat peculiar velocity of a particle of species a relative to mass

velocity of mixture; Cat = V - v

D aj(l) binary diffusion coefficient of species a and j

D T  thermal diffusion coefficient of species a
a

Da/Dt substantial derivative operator relative to species a;

Da/Dt = (8/8t) + v .V

D/Dt substantial derivative operator relative to mixture:

D/Dt = (8/at) + v.V

E electric field

E i rate of energy transfer per unit volume from species j to

species a

e a charge of a particle of species a

f molar fraction of neutral particles; f = n n/(ni + n n )

f velocity distribution function of species a

A
h specific perfect gas enthalpy of species a relative to mass

a A Avelocity of species; h = ua + p a/Pa

A
h specific perfect gas enthalpy of species a relative to massap A A

velocity of plasma; hap  u + p /p
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NOMENCLATURE (Continued)

A
hat specific perfelct gas enthalpy of species a relative to mass

A A
velocity of mixture; hat U t + Pat/p a

N
total current density; J I I n e v

conduction current density relative to mixture,

I = n e w. + n e w

jp conduction current density relative to plasma,

j = ne.w. + new
p I I-lp e e-ep

k Boltzmann's constant

ma mass of particle of species a

N number of species present

n total number density of mixture

n number density of species a

P . rate of momentum transfer per unit volume from species j

to species a

pp total plasma pressure pp = Pip + Pep

N

Pt total pressure of mixture Pt -2: Pat
a~ 1

Pa partial pressure of species a relative to mass velocity of

species; p c 1/3 p C

Pap partial pressure of species a relative to mass velocity of

plasma; Pap E 1/3 p C p
3a ap
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NOMENCLATURE (Continued)

Pat partial pressure of species a relative to mass velocity of
mixture; Pat 1/3 P C

Q total charge density of mixture; Q : Q
a. a

a charge density of species a; Q = n e

_It energy flux vector of mixture; _qt - qat

_qa energy flux vector of species a relative to mass velocity of

species; = CC + p C
-a a-a -:a+P a-a

_q ap energy flux vector of species a relative to mass velocity of plasma;

_qap = pCpC + pa Iw =q - W .T
a 1-p p a-np -Q -0p =ap

+ (1(1[ (1 + (pc p) + (
n-nL p [Uap (Pap a + a

_qat energy flux vector of species a relative to mass velocity of

mixture;
_q(1t C t + PnC wa = q - w1.a !at

+ p a-,,a I U at + (Pap/P a) + . a ]

T temperature of mixture

T temperature of ion-neutral mixture
g

T temperature of species a; T = 2/3(m /k) C 2

a aL a3m/

t time

A
U a mean translational kinetic energy per unit mass of a particle of

species a relative to mass velocity of species;
A 2
u a = I/Z = 3/Z(k/ma )T
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NOMENCLATURE (Continued)

A
u mean translational kinetic energy per unit mass of a particle of

species a relative to mass velocity of plasma; u = I/2
ap

A
Auat mean translational kinetic energy per unit mass of a particle of

A -species a relative to mass velocity of mixture; uat I/2 C
at at

V velocity of a particle of species a
-a

v mass velocity of mixture; pv p v
a a-a

vA ambipolar diffusion velocity; vA v - vp

v mass velocity of plasma; ppVp= PiVi + P.e--p

v mass velocity of species a; v a (1/n.)ff dV

wa diffusion velocity of species a relative to mixture; w a v a v

w diffusion velocity of species a relative to plasma;

- ap
- ap -a -p

E a energy per unit mass of a particle of species a, excluding

translational energy

p mass density of mixture; p Pa
a

Pp mass density of plasma; pp = Pi + Pe

Pa mass density of species a; pa = nama
Ip shear tensor of plasma Tp Iip+ Iep

i t  shear tensor of mixture it r - at
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NOMENCLATURE (Continued)

T shear tensor of species a relative to mass velocity of species;=a

T Lp - P c-a pa- a- a- a

T shear tensor of species a relative to mass velocity of plasma;
ap ____ _ _

Tap I-pC C p = p pCC -pw wap a-ap-ap ap a-a-a a-ap--ap

Tt shear tensor of species a relative to mass velocity of mixture;

T p L - P CC p pI - P 7 - p w w=at at a-at-at at I  a- a- a a- a- a

a mass rate of production per unit volume of species a
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