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ABSTRACT

Useful formulations of the macroscopic conservation
relations for a thrce-component mixture composed of
ions, electrons, and neutral particles are developed
from the basic forms of the equations for the individ-
ual species. 'The development represents primarily
an orderly commpilation of the work of previous inves-
tigators, although the equations developed are some-
what more general than those previously derived. In
particular, all inertial andviscous terms are retained,
and the temperatures of the individual species are not
required to be equal. In addition, treatment of the

energy equations is included.
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SECTION 1

3

\ ONE-FLUID FORMULATION

\The purpose of this study is to develop, in a systematic and general

X
way, useful formulations'\of the macroscopic conservation relations (i.e.,
mass, momentum, and energy) applicable, in the absence of radiative effects,

to a2 gas mixture composed of ions, electrons, and neutral particles. Hences

the material;&éﬂi&i—neé—i—n—%hi-s—-r-e-poy constitutes primarily an orderly com-
=
pilation of the work of previous investigator%,jfﬁe’-hwa_fnﬂlﬁ‘—ml

WM The presentwork,—however, strives

to maintain some degree of generality so that the various terms neglected in
other treatments are readily apparent. In particular, all inertial and viscous
terms are retained, and the temperatures of the species are not required to
be equal. In addition, the energy equations, not treated in previous works,

are included.

In Section II, the basic equations for each species are written, and
arguments are advanced for treating the momentum properties of the mixture
either as a single fluid or a two-fluid mixture and the energy properties as
a one-, two-, or three-temperature mixture. Forms of the individual species
equations convenient for developing the subsequent formulations are presented.
In Section III, the one-fluid formulation is developed, and in Section IV, the

two-fluid formulation is derived.

~



SECTION 11

BASIC MULTICOMPONENT EQUATIONS

A. Equations for Each Species

The governing equations for the flow of a multicomponent mix‘ture com-
posed of species a {(a = 1, ..., N) are derived by taking moments of the
Boltzmann equation appropriate to each species. In the absence of any ex-
ternal forces except those of electromagnetic origin, the Boltzmann equation

for species a is written as

—_— m —

o1 €a (6f
a

i -
SE tV VE+ S (E+ V x B)V = 5{) coll W

where (&)f/at)c011 represents the effects of interactions of members of species

a with all species present, including other members of species a.

Following the usual procedure, we obtain the transport equations (i. e.,
continuity, momentum, energy) for each species by multiplying Eq. (1) suc-

. 2 . . .
cessively by m_, ma—Ya’ and 1/2 mal’a + m e and integrating over velocity
space, making libez;_a.l use of the definition of the mean value of any function

= m . » I3
of velocity, naQ = fff fan de Vyd Vz' This procedure yields, after suit-

able rearrange ment:

i')pu
st T Vlegyg) =g (@)
Do'_\:u N
Pa "DE = " VPq * VIg t Q (E v, xBI+ L By uy, ()

j=1
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Other useful forms of the energy equation are obtained in terms of the en-
thalpy and the total enthalpy

0 (3 S
Pa Dt \"a 7 €a _y—ay—pa-vga+(gg—ya)_ha+ea-h2—wu
+ E. - v . P .+ — (4b)
=1 aj —a i=1 —aj ot
and
2
p* R+ Ta + = -V +V E
PaDE\™a T Z 7T ¢n )™ " V"9, ) (-!a -I-o.) ¥ —'Qay-a
A Vi apu N
- hO. + €. + = |®a + 3t + ng Euj (4c)

It is to be noted that Ga can also be expressed as 3kTa/Zma. The physical

significance of the various terms in the above equations is well known and
will not be considered here.

To complete the formulation, Maxwell's equations are required:
E 3t (5)

- o— oo ot (€)

j (42)

-
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V.E = 2 (7
GO

V.B =0 (8)
Also required are the equations of state for each of the species a:
A= flp, p) 9)
€, = f (pu, Pu) (10)

It is worth remarking at this point that the basic unknowns of the prob-

.'.

of which comprises considerably morc¢ unknowns than equations. We shall

A
» E’ » A » : 4 L) , i
lem are pu, v, pa B "a’ €. ;n q Eu_] Fa_) and w, the entire set

therefore implicitly assume that solutions of the Boltzmann equation will
permit I 9y Enj’ Eo.j’ and W to be expressed in terms of the other un-
knowns (as is the case for dilute neutral gases). The remaining set of un-
knowns number 7N + 6, two less than the number of equations available.
This is due to the well-known fact that Eq. (8) is merely an initial condition
when used with Eq. (5), and the fact that Eqs. (2), (6), and (7) are not inde-
pendent, since (6) and (7), or (2), can be used to obtain the conservation of
charge relation. Hence, either Eq. (5) or (8) and one of Eqs. (2), (6), or (7)

may be taken as superfluous equations.

Henceforth, we shall restrict out attention to three-component mixtures

composed of ions, electrons, and neutral particles.

B. Useful Formulations of the Three-Fluid Equations

The equations for the individual species listed in the previous section
(which we shall refer to as the three-fluid, three-temperature formulation)
are generally not the most convenient forms for dealing with specific three-

component flow problems, due primarily to certain simplifications which

TIt is noted that the variables Q , Q, J, and n_ are defined in terms of
the unknowns listed here. a a



arise from consideration of the coupling between the three species. This
coupling, as can be seen from the equations listed, takes three distinct forms:
first, momentum coupling due to collisions between particles of different
species (the terms _I?aj); second, energy coupling due to collisions between
particles of different species (the terms Eaj); and third, electromagnetic
coupling due to collective .interactions of the charged species [the terms

Qu(_l? + Vo ¥ E)]

If the momentum and electromagnetic coupling between ions and electrons
is very strong, then the number density of each species tends to be the same
value, and the difference in mean velocities vs and Ve produced by mechani-
cal effects tends to be small compared to either §i or §e' This suggests
that it may be useful to describe the momentum properties of the ions and

i + Pe and

mean velocity p_ v. = p.v. + p v . The mean velocities of the ions and elec-
p—p i—i e—e

trons are then described by the diffusional velocities yip and ‘-Yep where

z P = 0.

i, e

electrons as a single fluid (the plasma) of mass density pp =p

a~ ap
Similarly, if the momentum coupling between ions and neutrals and/or
electrons and neutrals is very strong, the differences in mean velocities

vi - Y, and Ye " Vo is small compared to Ei’ :Ce, or En' This suggests
that it may be useful to describe the momentum properties of ions, electrons,
and neutrals as a single fluid of mass density p = P, t P, + Py and mean
velocity pv = AN + Pe¥e + Pa¥n’ The mean velocities of the individual
species are then described by the diffusional velocities Wo W and wo
where i,ze:,n Pa¥, = 0. For this description it is desired to recast the in-
dividual momentum equations into the form of one momentum equation for the
total mixture, and two additional diffusion equations for determining the
diffusional velocities. This is the standard fluid mechanical treatment of

multicomponent mixtures (see Hirschfelder, Curtis, and Birds).

If, however, the momentum coupling between the charged particles and
neutrals is not strong, it may be desirable to describe the momentum prop-

erties of the mixture, composed of (a) a plasma of mass density pp and mean



velocity Xp’ and (b) a neutral gas of mass density P, and mean velocity Yo
The mean velocities of ions and electrons are described by the diffusional
velocities —“—'ip and V—vep' For this description it is desired to recast the
individual momentum equations for ions and electrons into one momentum
equation for the plasma, and one additional diffusion relation (a generalized

Ohm's law) for determining the diffusional velocities.

Similar considerations may be applied to the energy coupling, although
no exact reformulations appear useful. However, if the coupling between
species is sufficiently strong, the assumption Ti = Te = Tn = T may be
permissible, and the energy properties of the mixture may be described by
a single temperature. It is then desirable to combine the individual energy
equations into one equation by eliminating the coupling terms. Likewise, if
the coupling between ions and neutrals is sufficiently strong to permit the
assumption Ti = Tn = Tg while the electrons are weakly coupled, then the
energy properties of the mixture may be described by two temperatures, Tg
and Te’ In this case it is desirable to combine the energy equations for ions

and neutrals by eliminating the mutual coupling term.

There exist, of course, other extremes in both momentum and energy
coupling between species which, in theory, would suggest different formula-
tions. These are not considered important here, as they are not physically

probable.

To summarize, the momentum and energy properties of a three-

component mixture may usefully be described as indicated below.

Momentum Energy
Three-fluid: Pir Per P Vio Voo v Three-temperature: Ti’ Te, Tn
Two-fluid: pp, !p’ Wer Pr Voo Q Two-temperature: Te, Tg
One- fluid: Pr Vo Woo W, Q, f One-temperature: T
C. Useful Forms for the Individual Component Equations

As an aid in recasting the equations in the forms suitable for the descrip-

tions of the previous section, the individual component continuity, momentum,



and energy cquations will be revised in the following ways: first, equations

for the ions and electrons will be written in terms of Xp and the diffusional

velocities yip and Wer’ and, second, equations for all species will be written

in terms of v and the diffusional velocities W W and W

In terms of the first variables, the equations become (where a = i or e)

ap

Bt 7 (Paap) * 7 (Pap) = ()

Py p
Po ~DE * D Palap) * PaWap (V7¥p) + Pq (W V) vy = - VR,
+V-§ap + Qa. (E + y_p x B) + Qalvap x B + zgaj - wo,xp
(12)
DP |Pa (A DPY. _
Pp Dt g (uGP * e0-) ¥ Pa¥ap" "Dt V'SaP " Pop (V-_!p)
' (EGP:QP) tQuw (B + v, x B) - vy jzgaj
v2 [
P _._c A
+ ZEQJ. tog B - SBlep te) (U +e)
: P (13)
Additional forms of the energy equation are
DP | Pq /A DPv
- -—-i = - . + .
pP Bt Pp (haP ¥ eu) * payap Dt v Elup I vpo,p
(Iap ﬂp) + Qa!ap-(]_?, + vy X B) - v ?—a_]
2
op p
+ 2 E +—a+w—2-—g(w.+w)a +e +—2
; aj t a 2 p i ap a Py
(14)



and

oP | Pq (A v P
pp]_)?B;hap+€a+2 +ppﬁp(—apxp)

' + Vv lpvzw = -V.q_ +tVe(v.1 )
27a p—a —ap —p =ap

i')p‘1

tE Qu!p + I—E'Qu—up ?Eaj + ot

2
Pa ZP_ A +
iy ((.ui + me) (_\Yap-zp) + 2 + hap € (15)

A A
»u _,h , 1 ,
ap ap ap =ap
and -qup are defined in terms of the appropriate mean values of the difference

It is to be noted that in the above equations the quantities p

in particle velocity and mean plasma velocity (Qap), instead of the difference

in particle velocity and mean species velocity (90.)°

In terms of the second variables, the equations become (where

a =i, e, or n)

o

Pa B

ot | v.(po.!o.) tV-lpgy) = v, (16)
Dv D

Po Bt ¥ Dt P t P W, W:¥) tp (w -V)v =

-Vpat'l-V-;ut‘*'Qa (E+Xx§)+qu_vax§+Zfaj - w v
J

(17)



p
D a A Dy _ .
P Dt [T’_ “at * 6“)] + paya.D_t T v'-qat B pat (V.X) + (;at'vg)
) ) v
+Qaya.(£+xx]—3)+.Eaj—\-".—aj+w - (18)
J J
Alternative forms of the energy equation are
Dp—u(ﬁ + e )| + -Rv—-=—v~ + vV
P ot at a Pa¥o Dt ot V:VPat
P AT + Quw (B4 v x B) + LBy - v 1P
J J
2 ap
v at
and
2
D |Pa (2 v D {fa 12 .
Pﬁ[? (hat+7+ o] PP DT ¥ar|t [Py Ya|T
- v.qnt + v'(!. .=ru.t) + E Qa—‘i + E Qu.-\!a.
op
at
+ z Eaj M- T (20)
J
Y
v hoe Ty and 9, are

Again it is to be noted that the quantities Pot' Yat
defined in terms of the appropriate mean values of the difference in particle

velocity and mean mixture velocity (gat).



SECTION III

ONE - FLUID FORMULATION

A. Basic Fluid Mechanical Formulation

Considering the mixture as a single fluid with momentum properties
described by p and v, we obtain the equation of continuity by adding the three

Eqs. (16) and making use of the facts that Zpu\ga = 0 and Zwa = 0:

%2 + Vpy) = 0 (21)

The conservation of the individual species may be expressed directly by (16)
where, it is to be remembered, only one such equation is required in com-

bination with Eq. (21) and Maxwell's equations.

The momentum equation for the mixture is obtained by adding the

Eqs.(17):

v}

v

pﬁ:-th+V-'§t+Q(I_E+!x_T_3)+J_x§ (22)

A form for the diffusional relations useful for comparison with standard

fluid mechanical developments is obtained by eliminating the Dv/Dt term

from Eqs. (17) and (22). (Only two of these relations are independent.)

o Pa o (pa )
JZ—-aj“'p_ Pyt VP (5 Q@ - Q) (E+ ¥ xB)

)

pa . pO.
PP L7 Qa¥e) X B et T VL) - (Vg

D
T 51 (Pa¥y) * PW (Vi v) +p (w V) v (23)

10



These equations merely represent the conservation of the difference in
momentum of a single species and the mixture; the left-hand side is the
friction force acting on a single species due to interaction with the other
species, and the right-hand side represents the summation of effects which
reqmre this interaction for dynamical eaulhbrmm In addition, these equa-
tlons are of the form obtained by Hirschfelder, Curtiss, and B1rd by the
standard perturbation solution of the Boltzmann equations for the species,

in which it is assumed that:
1. All species are of equal temperature;

2. The velocity distribution function of each species is perturbed
slightly from the Maxwellian one corresponding to the mean

properties of the mixture;

3. The forces on the particles arising due to E and B do not

directly affect the distribution function;

4, There is no chemical reaction (ma = 0).
The precise equations obtained by Hirschfelder, Curtiss, and Bird, >
when written in the form of Egs.(23), are:
Pa v v (p“ : ) B
ngﬁjz_P_ p, +Vp , * -‘-}—Q-Q(1 (E + v x B)
(Gos o es) .
t{s L -Quw,xB (24)
where
n n n n, DT DT 9T
P =-2_“_l_(w,-w +_2LJ_ _J___E_T_ (25)
-y n“D J(l) -J a n Duj(l) P; Pa

1



The usefulness of comparing Eqs. (24) and (25) with Eq. (23) is that it makes
evident the effect of the approximations made in obtaining (24) and (25) [ the
last five terms on the right-hand side of (23) are neglected], and it further
yields the form of the friction terms -Eaj {subject, of course, to the previous
assumptions). It is pointed out that the terms neglécted in Eq. (23) are a
direct consequence of the assumption that the velocity distribution function of
each species suffers only small departures from the Maxwellian one corre-
sponding to the mean properties of the mixture. If the coupling between
species is strong, we may expect the mean properties of each species to
differ little from the mean mixture properties; this, of course, represents

the situation in which the one-fluid model is convenient.

For the one-temperature model, the energy equations are obtained by

adding the Eqs. (18), (19), or (20), respectively:

D Pa [A

ti(E+yxB) (26)
or
D Po (A
P Bt ET(at+€a) =-Vgt+1th+(‘!tV_V)
ap
+j(E + v x B) + o (27)
or
2
D P A
Pﬁ[z'ig (hat+‘u+'vz-)]='vqt+v("7t)
ap
tEQu B 45y (28)

12



Similarly, the appropriate energy equations for the two-temperature

model are obtained by adding Eqs. (18), (19), or (20) for ions and neutrals,
respectively:

Dv
D po, A —_
P Bt z'p_(ucﬁ:."‘a) T Pe¥e DBt T v(qit."qnt)
i,n
T by Py (VY 4 [(Zit * Int):v=v]
+ Qi\li'(g + v x B) + Eie + E - v (Eie + Ene)
VZ
+ (wi + wn) > (29)
or
Dv
D Pa (A ' - _
Poe| L & (ho.t * ‘u) TP B - " Vilay *oan) * v Vipg +opy)
i,n
+ [(Iit Y1) ___\L] +Qw, (E +y xB)+E,_+E_
v2 )
A (Bie + Ene) + (wi + wn) 2z * at (pit + pnt) (30)

13



or

(31)

The energy equation for the clectrons is obtained directly from Eqs. (18),

(19), or (20).

For the three-temperature model, the appropriate energy equations

are obtained directly from Eqs. (18), (19), or (20).

B. Form of the Friction Forces, -l—juj

It is not profitable to proceed with the one-fluid model without intro-
ducing the form of the momentum coupling terms -I-)aj' The form adopted

here, for reasons to be discussed, is as follows:

Pie © 7 Bei ™ Mie W, - W) # Eie (32)
Ein = " Zni T Min (‘—Vn - ‘—"i) + ID)'.n (33)
Pre ™ " Pen ™ Men' (W, - w, )+ §ne (34)
where the tensors Nie and Ten are of the form
) nn (35)

.= A . - .
2(1] n_LO._) = (n"cl._] n_Lu.j —

14



where é is the unit tensor and n is the unit vector in the direction of the

magnetic field.

The form of these relations suggested by comparison with the standard
fluid mechanical treatment is, from Eq. (25), Paj = nuj(\_v_j - \_v_a) + anVT.
It is recalled, however, that this form includes the assumption that electric
and magnetic fields do not directly affect the velocity distribution function;
this has been shown by other investigators (e. g., Chapman and Cowling, 6
Marshall, 7 and Braginskis) to be imprecise. In particular, Braginski

obtains, for a mixture of ions and electrons, the following form:

el - : ] B
Paj = o5’ (¥ = ¥o) + Mg [‘1"5 o) IBI]

n3

+ nLvT + gL [vT x B (36)
a) —— Qa) —-— 'BI
where it has been assumed that the velocity distribution function is unaffected

by electric fields. The form of the tensors v is
= I -, -n)nn (37)
L R T

Clearly, if the electric fields were properly accounted for, a term propor-

tional to E is expected in Eq. (36).

Examination of Braginski's results reveals that over all ranges of
magnetic field strength, n) in (37) varies from n“to Zq"; n'uj is always
less than 20 percent of the value of uI't Furthermore, for moderate magnetic
field strengths [ (w Dions < < 1], the ion velocity distribution function is
only slightly affected by the magnetic field. These considerations suggest
that the forms of Eaj in Eqs. (32) through (34) give proper emphasis to the

most important effects.

15



C. One-Fluid Formulation in Terms of p, f, Q, v, j, and VA

. Relationships Between Variables

It is found most convenient to cast the one-fluid formulation in

terms of the variables p, {, Q, v, j, and v We list here the other

A
important variables in terms of these:
*
Py = 9, (Y - f)p (38a)
P, = a3 fp (38b)
s e mee]_
Pe = - O 9 T (1 - f)p (38¢c)
ie
% €
* €
Qe =Q - a, -r—n—: (1 - f)p (38e)
' s (1 - fa})
a a.a - a
_ % ™Me L 5% 2
Y- -0 TTF T-0 YA (380)
a, e a
2 2
* *
ay (1 - fuz)
—n = % !A (383)
a,f
3
% %
a aca, (1 fa,)
.. 5. P 2 v (38h)
—e v ©: =A
Y e (1 - f) % (1 -1)
% % m P

16



where

* mg
a, = 1 - Q — (39a)
pe,
* = ! 39b
e = me mee1 (39b)
It frge 100
i ie
m
¥ _ Mpox
a; = —xﬁ: a, (39c)
% s )
. a, - a a. - g _
= 1+ 2 *1-(5a )(:l"z‘———l——fa (39d)
1 - ayf 5 (1 - fa,)
-1
e;m
0.5 = ( T e m) (39e)
e i
m.Q
ok i
u; = 1 - (391)
1 - §)
a, & el
Furthermore, we may write
£
- e T i +D (1 -4 40a)
¥ W T W e (1T -D0p L&' Die |! =) ¥a (402
a i a
6 6
E-3 3
. _ % my _— Dne v (40b)
Pn Yo T E FF e (1 - f)p L f —A
0,2 (16 1

17



.5 e . in
hn Y T e (0 -0p LT XA (40c)
a e
2
where

a (1** m e

* 5 6 e i

N R ) (41a)
a, ie

Die ® = =T =1 (41b)
a.,
&
* L £ (1 ¢ *)
seste (14 04(12 (]5(14 uz
Dne = _:"z. = f X + f e slesie (1 _ T)’ (41(:)
%3 %3 2%
* L s (1 ¢ =:<)
) a a,a a.a ~ fa
in T F T F

For the sake of brevity, we shall now make the standard assumption of
charge neutrality (see Lehnert4) and further assume that me/mi << 1 and
'meei/mieel < < 1. In the absence of the assumption of charge neutrality,
there appears to be no advantage in the one-fluid formulation. With these
assumptions, the coefficients a, A, and D in the above equations become
unity.T We shall neglect the unspecified terms in the friction forces between

species (_I_’aj).

TIn order to obtain the correct limits, it is necessary to perform the
subsequent algebra by retaining the coefficients a, A, and D, and then
invoking the previous assumptions.

18



2. Generalized Ohm's Law and Ambipolar Diffusion Equation

In terms of the new variables, it is convenient first to extract an
Ohm's law for j and a diffusion equation for VA from the three dependent
relations (23), where Eqs. (32) through (34) with (40a-c) are used to eliminate

Paj’ To obtain a diffusion equation for VA Eq. (23) for neutrals is written

in terms of the new variables, with the result that

(eny, | * Min) .
f Yagy ~ " f ¥Ry g F TRy F AL D),

m e,
1

m,
e i .
+ (nen” 1 * m.e "in) eih - flp I]—||’_1_

tonyy PV Ty
-{-I‘,% [p(l - f)_\LA] +p(1 - 6)
X [xA(V'z) + (XA‘V)X]} (42)

To obtain a generalized Ohm's law, Eq. (23) for ions is subtracted from the
similar one for electrons, and Eq. (42) is employed to eliminate YA The

result is

19



where

and

(E+VXB)"J- _T(-l__'_ﬂ(l—ZfV".L)(LXB)“l

m.,

1
Ehy Py LT [0 vy ) - I ow e R

-+

m_m, [DJ_ ]
+ p(l ) + j(v- v) + (LV)V 0L
Y JD et - nrg] +ot1 - 0 [atv o+ (XA'V)X]in 1
£ . ©y 1{D [y . g
+ _Fp+_FT+(J_xI_3)+—fz-? 5;[9( -)xA]

n + n.
emL "

+ o1 - 0 [rp(v 0 4 (zA'V)z]] o PR (43)
n
S P (44)
",J. nen",l nin
2
a -l = ml
( 0, l) e(1 - De
(meei
: + 1 - ) - ; 45

x () | Mendy 1Y )T 7Yy Min miee) 2]
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ny,

1) L - .
Edy g e [V ey oy g Ry

e.m
1 e

e 1

1

i ™
ol TEROID [Yu,.x.“ S0y Y YT

e.m
+ 2 (v )+ (1 - Y (V) 45¢
e.m; - Tt i1 ¥ Tetna (45¢)
o - f 1 1
~p T VP - T VP, - T VPey (45d)
R I N | : ! v 1 w.
£, = ( ; ) A FURS S STURSE S\ G Y (45e)

Schluterl has derived equations similar to Eq. (43), in which Nen and

Die are scalars and the viscous stresses are neglected. Cowling2 has
employed Schluter's assumptions in deriving similar equations, assuming

in addition that the termperatures of all components are equal and that the
inertial terms involving j and v are neglected. Briefly, the terms in this
equation represent current-producing mechanisms due to: (a) electric field,
(b) Hall effect, (c) different motions of ions and electrons caused by pressure
gradients, (d) different motions of ions and electrons caused by viscous
stresses, (e) generation of ions and electrons of unequal velocities, (f) dif-
ferent inertial forces acting on ions and electrons, (g) different inertial
forces acting in the ion-electron mixture and the neutral particles and

{h) relative motion between ions and neutral particles. The form of this
equation for a fully ionized gas is readily obtained by setting

f=v, = w, =w = 0
i e

21



In Eq. (42), the various terms represent motion of the plasma rela-
tive to the mixture due to: (a) action of pressure gradients (this includes
both mass diffusion and pressure diffusion), (b) the Lorentz force acting on
the plasma, (c) currents flowing in the plasma, (d) generation of neutral
species (i.e., recombination of ions and electrons), (e) action of viscous
sfresses, and (f) inertial effects. Schluter has also derived a similar
equation, and has pointed out that, if the last five effects are absent, the
temperatures of all components are equal, and the gas is slightly ionized

(f << 1),. then Eq. (42) reduces to the usual ambipolar diffusion equation:

2kT
A T n + n, -V—ni
41 en"'l in i, L
3. Continuity and Momentum Equations

Incorporation of the previous assumptions leaves the continuity

equation unchanged; hence, from Eq. (21)

% +vtpw) = 0 (46)

Recalling that only one species-conservation relation is necessary, we

obtain from Eq. (16), for the neutral species:
a = .
% (o) + - [o1 - Ay, ] =0 - (V- fpy) (47)

The momentum equation is obtained from Eq. (22) with Q = 0

w)

v

p-D—t-'—-th+V~.1:'t+(lx§) (48)
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4. . knergy Fquations

The energy equations for the three-temperature model are
obtained directly from Eqgs. (18), (19), or (20) using the relations (38)

through (41). The form corresponding to Eq. (20) becomes, for ions:

-

2 m
D A v D e .
= (1 - f) (hit + >+ ei) T z(l - v - .p J_z-z

P Bt

+ v % pv2 [(l - [)_v_ - ] = - V- ¢ + V(v Tlt)
e. m
+-—p(l-f)(Fv)+—n;p ; Ly, - oS ii
i e
op.
1t (49a)

*Ein * By * gr

for electrons:

D MeCi w2 D MeCi
P Dt| me “'f)( t+'z‘+‘e) tP 5t |“me, | A

i'e
m1 1 2 Me€y m1
e Ltz ( — 10 - vy -5 L~
i ie i
e; e;
-vq t Vvl - (- e (ErY) - —p
i i
f mi . apet
x E-q(1 - )XA i e.p A * E:en B —E—:ie * at (49D)
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and, for neutrals:

2
p gf [f(ﬁnt + -‘-’2- + en):l S g{ [(l - f)l’.A'X] - V[-% pvz (1 - f)_!A] =

-V + V(v )-E_-E_ + E-E_ng (49c)
nt Y Tnt en in T 7Bt

Relations corresponding to Eqs. (18) and (19) can similarly be obtained.

The energy equations for the two-temperature model are obtained
from Eqs. (29), (30), or (31). For the mixture of ions and neutrals, the

form corresponding to Eq. (31) becomes

2
D " A v
p-D_f[(l - f) (hit+ei)+f(hit+en)+—z—]

S < T (1 - fv, - sl
P Dt m.e Va eipl— -

m e

1 2 e i
-V--Z-pv (-m.e)
ie

m,
x [(1 -, - T .i_] = Vig a4 vV [Y-' (24 * Ent)]

ei ei me
*Ei-P(l °f)(§'_‘£)+-n—‘;'9_l‘_3- (1 - f)vA--p-g;L

8(p;, *+ Py
+E_+E 4+—2__ 0ot (50)

ie ~ne ot

The energy equation for electrons for this case is again (49b).

24



The one -temperature formulation for the energy equation is obtained

from Eqs. (26), (27), or (28). The form corresponding to Eq. {28) becomes

. 2
-0 (R ) v en) |

m

(- 1 (ﬁit +e)) -

©
Qo

2)pt

T (51)

- V.ﬂ,t + V-(l.zt) + E.i +

It is pointed out that the relationships of the energy flux vectors 950 Lot

and ¢ to the corresponding vectors relative to the individual species 9

. and 4, are given by:

m . m A
_ e . 1. _ _e .
9t © 9 “[XA e T - L Tie * ["“ BT l—] (hit + ‘i)

- —

m,
1 .
et ~ de - LXA T el - Dp LI Tet

-

eime me A
+ (" eemi P(l - f)X_A + —e-e—!_ (het + Ge)

P e VY2 (ﬁ +e)
3, f YA Int P YA nt “n

nt

where the terms represent (a) energy flux due to transport within species,
(b) work performed by shear forces due to relative motions of species, and

(c) transport of energy due to relative motion of species. Of these, the

term
m A kT
e ~ 5 e
?e_ L (he) Y7 Te L

is the most widely recognized.
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5. Concluding Remarks on the One-Fluid Formulation

In addition to the continuity, momentum, energy, and diffusion
equations presented previously, Maxwell's Eqs. (5) through (7)
[Eq. (7) is unnecessary if Q = 0] and the equations of state (9) through (10)
are required. In the latter connection, it should again be noted that the

quantities Py P et cetera, differ from the corresponding ones

it’ Pet’ Pnt’
Py Pis Pgr Pp» et cetera, by factors containing the diffusional velocities
squared (_\3(21); hence these factors must be negligible compared to 6(21 if

any confidence is to be placed in the equations of state.
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SECTION IV

TWO-FLUID FORMULATION

A. Basic Formulation

The two-fluid mode! (i. e., plasma and neutral gas) is best formulatced

in terms of the variables 'pp, P Q, Y—p’ Vo and )_ . For future reference,

the relations between the diffusional velocities and plasma current arc

1 1 .
w = e —— 52a
—ep Pl Cu e; J—p { )
m_ m,
Y i
and
1 1
w. =y - — —————————— ] Szb
—1p Pi ee ei J'p ( )
m_ m,
e i

and the relations between ion and electron densities and the plasma density

and net charge density are

Q i
P, P, ™
__:.EPL__e_ (52c¢)
P _e __i
m m.
[ 1
and
Je . Q
P, ™, P
p e e (5
p _e _ S
m m,
[ 1
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The continuity equation for the plasma is obtained by adding Eqs. (11)

for ions and electrons (noting that ), Py wo.p = 0)
i, c -
9p
_a.gl = V-(pp !p) = o tw (53)

The continuity equation for the neutral gas is obtained directly from Eq. (2)

9p
n -
I + v‘(Pn !n) = ey (54)
Addition of Eqs. (12) for ions and for electrons yields the momentum

equation for the plasma

DPy
ppjj_-2=-Vpp+V-gp+Q(E ty,xB) +(j,xB

+ Ein + —Ifen - (wi + me)!p

(55)
The momentum equation for the neutral gas is obtained directly from Eq. (3)

Dnvn
Pn _&- = - Vvp, t(¥ L R A (56)
The appropriate form of a generalized Ohm's law is obtained by
multiplying Eq. (12) for ions by ei/mi. multiplying Eq. (12) for electrons
by ee/me, adding the two results, eliminating the term in this result con-
taining Dp!p/Dt with Eq. (55), and introducing the relations (52). This

results in
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Q e Qf Qg QZ
+—-‘£)(VP'VIQ)+_+_'_(E+Y_ x B)

pp m e p Ps Pe Pp

e e e e
+(_e_+_1_-2>(,'_ xB)+(_1.-..Q_)p <_e_-3)

m m ) m p_J] —in m P en

i P 1 P € P

e. e
+(_1-_z)p, < P (57)

m, m_ | —ie p i e'—p

i e P

As will be seen subsequently, this equation takes on a more recognizable
form upon substitution of appropriate forms of the coupling coefficients

P., P , and P, .
—in’ —en ~ie

The energy equations for ions and for electrons for the three-
temperature model are obtained directly from Eqs. (13), (14), or (15). The

form corresponding to Eq. (15) is as follows for ions:

2 .
Pl P. [a v P J
D i D 1 =p
Pp DT Po (hip te; t ! ) - Pp BT e, e |7 Ip

£ _._1]P
m m,
e i
2
1 . vp
"Vl e e 2| T T V% Vv, T
e i
e. e dp.
1
+ — - Vi ip
mlpl -E—:lp m, (e e ELP+E1 * e e
m_  m,
e i
v2 j
. A 1 iy
- (o, tw)|==[h_+ +e.)-———— (58a)
i e p \ iP '22 i e, ] e; |Pp
m m;,
e i
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For clectrons:

2 .
DP | Pe [ v pP 1 ip
Pp DT p_-(he!p.'-ee+-2B +ppﬁ— T e \p. Yp

P L2 B O ) B
m m,
e i
2
1 vp
* Vs e lp 27|° -v°3ep+V(vp Icp)
e i
e ®e 1
tmo Pe (E'Xp) R i e \E ipt Ben = Bie
e el e i
m m,
e i
3p J
e 1 2
+_'3'€B-(wi+we) ) e, \p. p
£ __1]P
m m
e i
p v2
e [A
+F; he+.z?.+ee (58b)

For neutrals, the energy equation comes from Eqs. (4a), (4b), or {4c).
From (4c),

2

v

n
o \B +e +.2.) -E,, - E_ (58

'
€
¥ >

Forms corresponding to Eqs. (13) and (14) for ions and electrons and
Eqs. (4a) and (4b) for neutrals can similarly be obtained. Relations (52c-d)
may be used to express the factors pi/pp, pe/pp in terms of pp and Q, if

‘desired.
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For the two-temperature model. the energy equation for the ion-neutral
mixture is obtained by merely adding Eqs. (58a) and (58c); the equation for

electrons remains (58b).

For the one-temperature model, the energy equation for the mixture
is obtained by adding Eqs. (58a). (58b), and (58c)

2
D" A Yn pP P A e A Vp
P
- V'(g.p + g_n) + V. (Vp'l ) + V. (!n-ln) + E‘Ql’_p + E:J_p
9p 9p P. A P, A
p n 1 ‘e 2
t o t 3t ((.oi + we) N (hip + ei) + . (hep + ee) + vp
2
A Vn
- W hn+en+—z- {59)

Similar equations written in terms of either enthalpy or internal energy can

also be obtained.

B. Approximate Two-Fluid Formulation

If, as in the case of the one-fluid formulation, we introduce the Eqs.
(32) through (35) for the form of the momentum coupling terms, and if,
further, we assume that m_/m. << 1, |e. m_/e m' << 1, and
t e i i e e 1
| m, Q/ee ppl << 1,' the equations in the preceding section can be written
in the following form.

Continuity:

_ﬁE + V-(pp Xp) = w e (60)

TIt is to be noted that this assumption does not require macroscopic
charge neutrality.
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n -
-5t t Ve, ¥ T ey (61)
Momentum:
DPX
P = - wp_+ Vv.T_+QE + B) +(j_ x B
P Pp T, tQE +y, x B) 4, x B
- o, + we)zp t Ny, (v, - XP) + Nen’ v, - Xp)
n.. m sk m, —
$ A0 €5 45 (._._-1 )'f\ j_+P_+P (62)
Py €c P Py €5 /=" lp ¥ Sin 7 ~en
Dn!n
P "Dt - - VPy +(V-T) - @, Yy T My (Vg - Y—p) i} gen'( n - !'P)
Nin e e [ ™ P - |
LIS S .3y ~P, -P 63
Pp e 1P (ei Pp) fen TP T Tin - Zen o
where
-1
; Qm,
5 = (1 - _._1_) (64)
P e,
p i
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Ohm's law (after some rearrangement):

Ly o
on,L

where

By, x By - 6“(

P

p )(Vgip " Viiip
4
)(Vp -V

m, m
(27 e

Pl L

(65)
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Energy (three-temperature model):

me .
- (ee pp) Lp (67a)

6
Pp ™\ DP (ip Mg Vf; _
(o) Bz a) () o(0 %)
1 (S P
'Vﬂep+V(vae)"6'ﬁ’<TiB)(§v)
9p

m
+ (e ‘; );_p (67b)
e
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2
Dn f, . . Vo ) Bpn
Phn Bt \"™n " T - v 9, + v'(y-n. ;n) * Bt

2
v

n
- o (ﬁn te + T) - E,_ - E_ (67c)
Energy (one-temperature fnodel):
p® [ vn) . pPl oA '
pnﬁ(hn+‘n+'2_ +Pp'm' (hip te)

+ - meei(f§+)+2—
EW 'miee ep = ‘e Vol ©

- V'(gp +gn) + V-(y_p'l'p) + V-(Xn-;n) +§-Qy_p +§'LP

9 o A 1 meel A
+-&P-+-5r-(u +w)|(h +e)+;¥§§ s hep+ep)
2
+ Ve (ﬁ ‘v“) 6
vp -wn n+£n+-z— (68)

Equations (60) through (66), in the absence of viscous effects and chemical
change, assuming charge neutrality and assuming Nen’ Nin t° be scalars,

have been thoroughly discussed by Lehnert.” In particular, Lehnert

=m,n,v, , and Ne = M P v, , where

assumes n_ = m_n e e ie

e"e'en’ Min iiin
the v's are suitably defined collision frequencies.
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o

{9!

S:o.t

Daj(l)

H

D%/Dt

D/Dt

It

aj

o>

o>

ap

NOMENCLATURE

magnetic intensity

peculiar velocity of a particle of species a; -ga. = -Yu. " Ve

peculiar velocity of a particle of species a relative to mass
velocity of plasma: C =V -v

—ap —a P
peculiar velocity of a particle of species a relative to mass
velocity of mixture; C =V - v

at —a

binary diffusion coefficient of species a and j
thermal diffusion coefficient of species a

substantial derivative operator relative to species a;
D*/Dt = (8/8t) + v 'V

substantial derivative operator relative to mixture:
D/Dt = (8/3t) + vV
electric field

rate of energy transfer per unit volume from species j to

species a

charge of a particle of species a
molar fraction of neutral particles; f = nn/(ni + nn)
velocity distribution function of species a

specific perfect gas enthalpy of species a relative to mass
. N A
velocity of species; ho. = u, + pa/pa

specific perfect gas enthalpy of species a relative to mass
. A - A
velocity of plasma; hup =u_ + pap/p

ap a
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= >

at

|

ap

NOMENCLATURE (Continucd)

specific perfegct gas enthalpy of specics a relative to mass
A A
velocity of mixture; h = u 4 pat/pﬂ

N
total current density; J = z nev
- a a—a
a=1
conduction current density relative to mixture,
J = new. +new
1i—1i e e—e
conduction current density relative to plasma,
J = new. +new
p ii—ip e e—ep

Boltzmann's constant

mass of particle of species a

number of species present

total number density of mixture

number density of species a

rate of momentum transfer per unit volume from species j
to species a

total plasma pressure pp =p,.. tp

N
total pressure of mixture P, = )X Pat
=1

partial pressure of species a relative to mass velocity of
2

species; p_ = 1/3 Py C(1
partial pressure of species a relative to mass velocity of

2
1/3 Py cap

plasma; pap
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at

c>

NOMENCLATURE (Continued)

partial pressure of species a relative to mass velocity of

mixture; Py & 1/3 Py Co.t

total charge density of mixture; Q = }: Qo.
. a
e

charge density of species a; Q(1 =ne.

energy flux vector of mixture; 9, = Y 9t
a

energy flux vector of species a relative to mass velocity of

species; 9, = °P EZ C + Pa eaC

energy flux vector of species a relative to mass velocity of plasma;

- 2 -
dap® pa-c—;upcup oy orap ~ da T Yap Tap

energy flux vector of species a relative to mass velocity of

mixture;
94t = po.gatgat afa¥a T 9o T ¥q Igt
A
* po.\-ya[uat * (po.p/po.) * e(1]
temperature of mixture

temperature of ion-neutral mixture
. 2
temperature of species a; To, = l/3(ma/k) C.

time

mean translational kinetic energy per unit mass of a particle of

species a relative to mass velocity of species;
a = 1/2¢% = 3/2(k/m )T
a a a a
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’é< |>< 1<

A<

1€

NOMENCLATURE (Continued)

mean translational kinetic energy per unit mass of a particle of

species a relative to mass velocity of plasma; Gap = 1/2 Cup

mean translational kinetic energy per unit mass of a particle of

species a relative to mass velocity of mixture; u s 1/2 Cat

at

velocity of a particle of species a

mass velocity of mixture; pv = z PV
- S a—a

ambipolar diffusion velocity; v, = Xp -V

mass velocity of plasma,; Pp!p =Y, + PeV¥e

. . . - v
mass velocity of species a; v = (I /na) f,dvV
diffusion velocity of species a relative to mixture; wWoEV, -V

diffusion velocity of species a relative to plasma;

w EvVv -V
—ap -a P

energy per unit mass of a particle of species a, excluding

translational energy

mass density of mixture; p = ) p

a a

mass density of plasma; pp = p; +p

mass density of species a; p_ = n m

[{]]
+

shear tensor of plasma ;p

shear tensor of mixture I, = E T
a
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NOMENCLATURE (Continucd)

shear tensor of species a relative to mass velocity of species;

pl-pCC

a a= a—a—a

)

I

shear tensor of species a relative to mass velocity of plasma;

Tap papl= B pa—(—:apgap = pup‘I—' " PeCala - Pa¥ap¥ap

shear tensor of species a relative to mass velocity of mixture;

I1-pC C_=p l-pCC -pww

I = pat= a—at—at at= a—a—a a—a—a

at

mass rate of production per unit volume of species a
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