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1. ry

Let Xi1,...Ximi and Yil,..,Yini ; i=l,...,k be k pairs of

samples of mutually independent observations from continuous dis-

tribution functions Fi(x) and Gi(y) respectively; i=l,...,k. Then

for testing the hypothesis Fi = Gi; i=l,,..,k; test statistics of

I' k
the form (i) T = ci ti and (ii) Q = ciQ i are considered.

i-i i i=l
Here ci are the weights which may depend upon the sample sizes, ti

student's t statistic for testing the equality of means between two

normal populations with the same variance corresponding to the ith

pair of samples and Q, is the Chernoff-Savage Statistic 2 (1958) for

the ith pair of samples. Under suitable assumptions, the weights

ci which maximize the local asymptotic powers of the tests (i) and

(ii) are obtained. These results are specialized to (a) Pitman's

shift alternatives, (b) Lehmann's distribution free alternatives

and (c) contaminated alternatives. Finally, the asymptotic

efficiences of Q test relative to some of its parametric as well as

non-parametric competitors against the above mentioned alternatives

are discussed.

2. Introduction

It frequently happens that several independent test statistics

are available for testing the same null hypothesis. These may have

arisen from several sets of independent samples which cannot be

combined perhaps because they are reported by different investiga-

tors or because they have not all been gathered under the same

conditions. In such situtations, it is often considered reasonable



2

to combine the various results into a single measure on which an

objective Judgment of the evidence as a whoce can be based. One

measure is advanced by Fisher (1932). He proposed as a test

statistic the product of the tail errors of the individual tests.

It turns out that -2 times the logarithm of this product has a

chi-square distribution with 2k degrees of freedom when the null

hypothesis is true, k being the number of tests. For detailed

discussion about Fisher's method, the reader is referred to the

paper of Wallis (1942). General discussion of combining indepen-

dent tests can also be found in Birnbaum (1954) and Pearson (1938).

Recently, an interesting technique was advanced by Ph. van

Elteren (1960). He analyses a class of tests based on linear

k
combinations 7F cIW i of test statistics Wl,...,Wk of k independent

two sample Wilcoxon tests. He considers in particular two special

linear combinations, when (i) ci = c/mini and (ii) ci = c/(mi+ni+l)

where c is a positive real number and mi,ni are the sample sizes of

of the ith set and shows that the test (i) has a region of consis-

tency independent of sample sizes and the test (ii) has asympto-

tically the maximum power. In this paper, we consider a similar

problem in a more general frame work which includes as a special

case the problem considered by Ph. van Elteren (1960), mentioned

above. Precisely, we consider the following problem.

3. Problem

Let Xi, Yi; i=l,...,k be k pairs of independent stochastic

variables about whose cumulative distribution functions, nothing
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Hi(x) = )iF1 (x) + (l-\i)Gi(x).

z(ii th

Let ZNJ 1 , if the .1 smallest observation in the combined

sample of the ith pair comes from Xi and otherwise let

ZNJ a 0. Then the Chernoff-Savage statistic (1958) for the ith

pair of samples is
Ni

(4.1 1 -- E(i) z(i)
mi L- N,J N,J

e e i) are given numbers. Note that Wilcoxon's statistic

for the ith pair of samples is obtained from (4.1) by letting

Ei) = J/N and the normal score statistic for the correspondingN,j

samples by letting E(') = E(V(i )) where V(i)  V (i) is ansapls yletigNJ i i' Ni

ordered sample of size N. from a Standard normal distribution.

Following Chernoff-Savage (1950), we shall use the following

equivalent form of Q:

(4. 2) ' = JI(HN(x))dsIl)(x); i1,...,k,

Ci)i
where ENJ N/i

While JN need be defined only at l/Ni,..,,Ni/Ni but may have

its domain of definition extended to (0,1] by letting JN be constant

on (/Ni, (J+l)/N i.

In this paper, we consider the statistics of the form

k
(4.3) Q = Z oI 5

where the c's are real positive numbers and may depend upon the

sample sizes.
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We may test the hypothesis H0 : F (x) = G1 (x); i=l,...,k by

means of the critical region Q _ where is given by

(4.4) PH 0(Q_ 2:Q)=

where a is the level of significance. If the distribution of Q

under H0 is symmetric with respect to the origin, then the corres-

ponding left-sided test will have a critical region: Q 1 -% and

the two sided test will have a critical region IQI t' %/2'

5. General Properties of the distribution of Q

In what follows, we make the following assumptions:

(1) J(H) = lrm JN(H) exists for 0 < H < 1 and is not constant.
N.*o

(2) f [J"(HN)" J(HN )]dS()(x) = p(1/N 1/2)3; l=,...,k
JIN N Ni mif P i

where IN x:0 - HN (x) < 1

(3) JN i(1) = 0(,/R

(4) IJ(r)(H)l = I j.. K (H(l-H)]"r'(l/2)+6 for r - 0,1,2

dHr -

and for some 6 1 0 and some K.

Then, the application of Chernoff-Savage theorem (1958) yields
Qi-i(e)i x) x 1x2/

(5.1) lim P(- et dt,

where

(5.2) ai() J[Hi(x)]dFi(x)

and
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(5.3) Ni4 (e) - 2(l-A)fxf Gi(x)[l'G,(Y)JJ[Hi(X)]:[Hi(Y)J

dPi(x)dF (Y)

+ Flj ff F(x) [l-F i(y)]JH i(x)]JH i(y)J

provided r-(0) + 0.

Thus
k

(5.4) p.(o) (Q = cai

where

(5.5) ai = J[FI(x)]dF,(x)

(5.6) 2(0) = varH (Q) -k 2 1 A2

0 m =i
where

(5,) 2 = 1o 2(X - 2O(5.7) A J -dx J(x)dx)2

k
(5.8) (e) = E(Q) = C Clli(o)

(5.9) y 2(e) = var(Q) = k c1 2()

where and T-2(e) are given by (5.2) and (5.3) respectively.

By the Central Limit Theorem, the distribution of Q will be

approximately normal.

It follows that the critical value Q is approximately equal

to

(5.10) = 0() + a. A, (.2.l)/MlN

where

(5.11) f e /X212
A dx=
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and the power of the Q test with respect to a given set of distri-

bution functions Fi(x) and Gi(x) is approximately equal to

(5.12) () 1- Jy .j4 2 )

where i(x) is the standard normal distribution function.

6. Locally Best Q Test

From this section onward, we assume that mi, n. and k are non-

decreasing functions of a natural number n that tends to infinity.

The dependence on n is indicated when necessary, by writing mi(n),

ni (n), k(n), (n)(0), etc. We shall consider the following two

special cases:

Case 1: mi(n) and ni(n) tend to infinity as n tends to infinity but

mri (n) and ni(n) remain bounded away from zero, k(n) = k for each n.

n n

Case 2: mi(n) and ni(n) remain constants and k(n) tends to in-

finity as n tends to infinity. For simplicity sake, we assume that

m i(n) = mi , ni(n) = ni and k(n) = no

Furthermore, we make the following assumption:

Assumption 6.1:

For sufficiently large n,

,/i[J !Hi(x;n) °I  J Fl(x;n) ]/A

remains bounded as n tends to infinity. Then we prove the following

Theorem 6.1.

For each index n, assume the validity of the case 1 and

assumption 6.1. Then the S test with
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di(n)mi(n)Ni(n)

where

(6.2) di(n) = f J ,H(x;n) " J F,(x;n) JdF (x;n)

and c isan arbitrarZ positive constant-, has for n-) ,o, asympto-

tically the largest power against all alternatives for which di(n)

are positive.

Proof. We shall first prove that

T()(o) 1 as n -c.7.n) (,)

For this it suffices to show that 6-(n)(,) is continuous at 9 = 0,

uniformly in n. Consider first, the first integral on the right

hand side of (5.3) and let it be denoted by Ai (0). Thus

(6.3) Ai(e) = Gi(x)[l-Gi(y)]J[Hi(x)]J[Hi(y)]

dFi (x)dFi(y).

Setting Fi(x) = u and Fi (Y) = v, we rewrite (6.3) as

(6.4) A i(e)Jo8}v~ Oi(u) [1-G i(v) ]J[H i(u)] J[H i(V) ]dudv

where G*(u) - G (F 1 (u)] and H*(u) = u +

It is clear that integrand is continuous at 0 = 0 for almost all u

and v.

Furthermore, since
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*~ 1 *G (u) .:s H (u)

1-G (v) I. I-i (v)]
i i

J[HIu i KH(u)  _CH(u)  -,/(u)

we have, from (6.4)

(6.5) 10i(u)[l-G*(v)]S(H*(u)]J[Hi(v)]I

.;.K 1 (H *( -112+6[,_ * )-I/2+6[H*( )-1/2+6
)2[( . (u)]-V/2+11

We may assume 6 < 1/2, without loss of generality.

Then, from (6.5)

IG*(u)(l-G*(v)]J'[H*(u) ]J[Hi(v)] I

- K 1 ) 2 u + 4 6u 1/2+6(1_v)-1/2+6v-3/2+6(1_u)-3/2+6

Hence by Cramer ([1957], p. 67) A±(0) is continuous at 9 - 0.

Similarly the second integral on the right side of (5.3) is

continuous at 9 = 0. Hence cr2(n)(9) and so a fortiori 2(n)(9 )

is continuous at 8 = 0.

Next, because of the assumption (6.1)
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L(n)(9),,,(n)(o) . o(1)9

Hence the power of the Q test can be approximated by

(6.6) 1 - (a - V(n)(f )

This is maximum, when k.0YiscI(n)[(J Hi(x;n) I _J Fi(x;n)}J

(6 7) g (n)... dFi(x;n)
C (n) (0) kA Lc2(f)n (n)]/mi(n)N (n)

is maximum, which is so when ci(n) is as defined in (6.1)

This completes the proof of the theorem.

7. Computation of di(n)

The computation of di(n) highly depends upon the sequences of

alternatives, we have in mind. In subsequent analysis, we shall

concern ourselves with three sequences of admissible alternative
hypotheses viz. H HL and H n The hypothesis HP specifies that

for each i=l,...,k; Gi(x) = F(x+7i+-L), the hypothesis HL specifiesi- n

that for each i=l,...,k; Gi(x) = EF(x+7i)] \/ and the hypothesis

Hc specifies that for each i=l,...,k; xi has the distribution func-n
tion F(x+7,) and yi has the distribution function

(l i)F(x+7i ) + L X+vi); where 713is a real number, t is a finite
positive constant independent of i, and Fi(x) = F(x+7i). Alter-

natives of the form HP were introduced by Pitman, those of the formnLHL by Lehmann (1953) in order to study the non-parametric procedures
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when the alternatives themselves are given in a non-parametric form.
For an extensive study of Lehmann's alternatives, the reader is

referred to an interesting paper of Savage (1956). Alternatives of
the form HC are referred to as contaminated alternatives, whichn
have been considered by Hodges and Lehmann (1956) among others.

We shall, therefore, compute di(n) and hence ci(n) for the
above mentioned classes of alternatives. We shall make use of a

lemma due to Hodges and Lehmann (1961) and the reader is referred
to this reference regarding it. A consequence of this lemma in a

form appropriate for our purpose, may be stated as followss

Lemma 7.1. (Hodges-Lehmann).

If

i) F is continuous cumulative distribution function function
differentiable in each of the open intervals (--,al), (ala 2 ),..,j
(asl ,as), (aso) and the derivative of F is bounded in each of

these intervals and either

(ii) for the alternative Hp or Hc the function dJ(F(x)] is botudedn n dx -

as x -9 ±o, or

(ii') for the alternatives HL' the function F(x)log F(x) dJ(F(x)]
dx

is bounded as x -± w+o, then

(7-1) \v'i di(n) e~(l-i)f d(JF(x)]dF(x), in case the hypothesis

HnP is valid,
_J x log ,d)!JEFlx)]1

(7.2) \/W di(n) e(l-Ai -F(x) log Fx)( dx in case the

hypothesis HL is valid, and

(7.3) k/ di(n) (l-n G(x)nF(x)]d(x) case the
hypothesis % is valid.



12

The proof of this lemma follows by the method used in section

3 and 4 of Hodges-Lehmann (1961).

In order to save space the details are omitted.

Now the quantities dJ[F(x)dFI(x), f -F(x) log F(x) dJ[F(x)]

and ft G(x)-F(x)]l(x) dF(x) being constants, can be absorbed into

the constant c of (6.1), with the result that we have ci(n) - cm(n).

Thus the material discussed in this section coupled with the one

discussed in the previous section yields the following

Theorem 7.1

For each index n, assume the validity of the hypotheses n
n

or HL or He and the assumptions of lemma 7.1. Then for the case 1,n-n
the Q test with weights ci(n) = cmi(n), where c is an arbitrary

positive constant, has asymptotically the maximum power.

In what follows, we shall denote the locally best Wilcoxon

form of Q-test by the symbol Q and we shall call it locally best

test. Thus

k
~= cmi(n)QW

where wi is obtained from (4.l) by letting -NJ =

8. Relation between Elteren's W test and locally

best - test

Let X and Y denote the rth and the sth observations of

X, and Yi respectively; r=l,.e..,m; s~l,•..,n±°
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Denote

P-1 if Xi,r-Yi,s < 0

sgn(X i rY is) =if Xi,r Yips 0

+{i if X i,r-Y, s > 0

then the Elteren's locally best W test [cf* Elteren, Ph. van (1960)1

for case I as well as case II is defined as

(8.1) W = c 1i/(mi(n)+ni(n)+l ]

where m n

(8.2) Wi = - sgn(Xir -Y i's)

which is equivalent to the Wilcoxon's statistic (of. Wilcoxon (1945)]

for the i th pair of samples.

It is easy to check that

(8.3) Wi = 2miNiji - mi(Ni+l)

so that
k m1Ni k(8.4) W = 2c in+ W = i

Hence, asymptotically, the following linear relation exists between

the W statistic and QW statistic.

k
(8.5) W = 2c QW c 2 mi.

In our subsequent analysis, we shall use the following ex-

pressions connected with the Elteren's W test:

(8.6) p(e) - E(W) = 2c mi+ni+1  = [Gilx-F i(x)]dFiW

(8.7) 5-2() = varH (W) c2k mi ini
30i +n +1
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9. On the Combilnation of Independent Two-Sample tests

based on Student's t-statistic.

Let Fi(x) and Gi (x) be normal distribution functions with the

same variance 9- 2 Then the student's t-test for the ith pair of

samples, is based on the statistic

(9.1) ti  = ... .

i(jk[ )2 ]/I(mi+n,-2),-

where mn mi  ni

(9.2) i = Xij/m and Y i =- ik/n."
J-1 k=1l

But since the denominator of ti tends to one in probability, there-

fore an asymptotically equivalent statistic is

(9.3) t+ a
t i. m~ ni

which has normal distribution. Now proceeding as in sections 6 and

7, we conclude

Theorem 9.1.

For each index n, assume the validity of the hypotheses HP  H, n

o .Then the t-test with weights c.(n) = c N, has for

1; NI(n)< 2

n -- , asymptotically the largbst power. (c is an arbitrary posi-

tive constant).

We may note that

P
(a) Under Hn$
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k m (n)n (n).

NUnder k m(n)n

(b) Under k mi(n) n.(n)
(9.5) Pt(e) e(t) = c(lx)g P(x))d(x)

and N (n-)-2 FX--

( c) Under

() k ~mj~~(n)jn

(9.6) pi(e) a ( 2 v= J Ninr v . o d (G l x ) - F ( x ) )

and k m(n)n (n)

t ~Ni(n)a-2

under H L, Hn .anL Hd .

10. Thw asImptotic relative efficiencies of the tests

Briefly, thLe Ldea of the asymptotic relative efficiency is the

following:

Suppose tha.t For testing the hypothesis Ho against Hn, two

tests T and M r-eqtlre N and N observations to achieve the same

power 0 at thee L6evml of significance c. Then the asymptotic

efficiency ofr T ith respect to T is defined as

NwN */NW- eT.T*(a,,Ho, jH n })

We shallU b irxterested in studying the asymptotic efficiency

of () the Elte -en s W test relative to an arbitrary Q test against

(a) Pitman's shSXft alternatives and (b) Lehmann's distribution free

alternatives, armd Cii) the Elteren's W test relative to the locally

best t test MpA nst (a) and (ii1) arbitrary Q test relative to the

locally best t Uest against contaminated alternatives.
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The asymptotic relative efficiency of the Elteren's W test

relative to an arbitrary Q test is stated in the following

Theorem 10.1(a)

if
mi(n)

i) for all i, lim - = ri and lm- = a, exist and are
n-;o n n-hw n

positive,

(ii) the distribution function F is such that

lim /n X iF x)+(-%)Fi(x4 ) x - 1d,(x)/A

exists,

(iii) the hypothesis of lemma 7.1 are assumed,

then

the asymptotic relative efficiency of the Elteren's W test relative

to an arbitrary Q test for testing the hypothesis HO against H s

(10.1) e = 12A2 ( + f[(x-)]

fdxJ
where f is the density of F.

Proof.

Let n index the sample size for the Elteren's W test and n* the

corresponding index for the Q test. Furthermore, let the level of

significance be fixed at a and the limiting power at G. Then the

W and Q tests will have the same limiting power, if



17

k m.(n)n.(n) +6
2 T' l n)- n )ni j+l J (F(x+7 i+t/ V'F- F(x+i)]dF(x+Vj)

/ Ic mijn)ni~n)
V mi(n)+ni n)+l

Smn(n*)f (n)

± 
-

-J} JdP€x+7I)

i.e* if

k "is, ris 
rs1

(10.2) 2%3V F~xdFx

dJT[F(x) JdP(x)

and the same alternatives, if C/%/d= /VnT.

Substituting l = / in (10.2) yields the desired result.

It may be remarked that (10.1) agrees with the result found by

Chernoff-Savage (1958), Hodges-Lehmann (1961) for the two-sample

problem and Puri (1962) for the c-sample problem. Hence the

efficiency results of this paper as well as those mentioned above

apply directly to the present problem.

Proofs of theorems 10.1(b) to 10.1(d) are similar to those of

theorem 10.1(a) and are therefore omitted.

Theorem 10.l(b).

If
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(i) for all i, im asn)= ri and rn-n  = _exsadare

n. n n o n ... n.

positive,

(ii) the distribution function F is such that

Jim I/F [i 'A iFi(x)+(l-) i)[,i(x)]l'1 -J ,i (x) ]dFi (x) /A

n-)w -w

exists,

(iii) the hYPotheses of lemma 7.1 are satisfied,

then,

the asymptotic relative efficiency of the Elteren's W test relative

to an arbitrar- Q test for testing the hypothesis H against HL is.

>2

(10.3) e L A2  1Fxlg F(x 37 (x) () .

In particular when J = where T is the cumulative normal dis-

tribution function,

(lo.4) e L (F(x)) = ______

x log; J(x) dj(x) ,

- .927 by numerical evaluation

We may remark that ( 1 0.4) agrees with the result found by -Puri

(1962) for the c-sample problem.

Theorem 10.1 (c).

If
(ii mi(n) ni(n)
(i) for all i, lm -- =ri and lim - s. existand are

nf 4 n " - -- n w n ..

positive,
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(ii) the distribution function F and G are such that
1M l'mVnd +00[Jf A iF(x+ i )+(lA , x (1-O)F(x+y:i)+G G(x+y i)

-J F (x+ ]dF (x+Yi)/A

exists,

(iii) the hypotheses of lemma 7.1 are assumed,

then,

the asymptotic relative efficiency of an arbitrary Q test relative
to locally best T test for testing the hypothesis H against Hc isV n-

c+Cc JL X)...G(XJiJ i7(x) dF(x)2
(10-5) ec .(F -G) 2  , "d7(x)a

Q7 J. [F(x)-(x) ]dx

If, in particular, J(u) = u, then Q test becomes Elteren's W test

and we have 2

I +J F(x)-G(x)]dF(x)

(10.6) e = 12 - 2 •
[F(x.)-G(x)]dx ,

We may remark that the result (10.6) agrees with the result found
by Hodges, Lehmann (1956) for the two sample problem* Hence their
general comments regarding the merits of the performance of
Wilcoxon test relative to t test against contaminated alternatives

may be carried along the present situation.

Theorem 10.1(d).

if
mi(n) ni(n)() for all i, lm -- = r and lm - -s exist and are

ositnven-
positive*
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(ii) the hypotheses of lemma 7.1 are satisfied.

then,

the asymptotic relative efficiency of the Elteren's W test relative

to the locally best T test for testing the hypothesis Ho against

HL is

(10.7) eWT(F(x)) a 1 .(lO.7 ew'x[ l+log ]d lx)I.x

which agrees with the result obtained by the author (1962) for the

c-sample problem.

Similarly, it can be shown that

(10.8) eWT(F(x)) = 12 -2  f C

which is known to be the asymptotic efficiency of the two sample

Wilcoxon test relative to the student's t test. Hodges and

Lehmann (1956) have shown that always ew, (F(x)) ! o.864. In casew't
F(x) is normal distribution function, this is 3/r.

We now consider the case II. Let mi(n) = mi , ni(n) = ni and

suppose that the number, say v, of pair of samples tend to in-

finity in such a way that the limits:

L = lim 1 m1i+l

and
1 v mini

M _II ;r mi+ni

exist. Then subject to the conditions that underlying distribu-

tions satisfy some general regularity conditions, it can be shown

that
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(10'.9) eWT (F(X)) - 12 a- L f (X)X

M

As a special case, suppose that N repetitions of k blocks are

needed for Elteren's locally best W test and N for the locally

best T test. Then we shall have

(10) ) 1 2 mn+1 +M 2(x)

eW,T(F(x)) 12 C 2:1 fiT . m,+n i 1  - x

kmini

In particular, where mi = ni = 1

P/' 2

(10.11) eW, T(F (x) ) = 8 (fy f(xd
which is the asymptotic efficiency of the sign test relative to the

student's test, a quantity which is usually expressed as

(10.12) et (F(x) = 4 y 2f2 (0)

s,t.

see in this connection Hodges-Lehmann (1956) and Noether (1958).

It is interesting to note that the asymptotic relative

efficiency (10.10) depends on the number of blocks as well as their

sizes. When the sample sizes are equal from block to block, say

mi = ni - m, then the asymptotic efficiency (10.10)

depends only on the block size 2m. In the special case where F(x)

is normal distribution function (x), we have
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(10.13) ef,T(F(x)) i1 22r'+1

some values of this expression are tabulated below:

(i104) m 1 2 3 4 5 6 8 9 10 .
e P (F) .637 .764 .818 .849 .868 .881 .891 .898 .904 .909 .955
W,T

In conclusion, we may mention that the results given here are

valid for large number of replications.
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Footnotes

1. This paper was prepared with the support of the Office of
Naval Research (Nonr - 222(43) and Nonr - 285(38)). Re-

production in whole or in part .s permitted for the purpose
of the United States Government.

2. Chernoff and Savage use the symbol TN instead of Q..

3. if i xn r is a sequence of random variables and f rn a
sequence of positive numbers, we write xn = O p(rn), if

sn/rn tends to zero in probability, or equivalently, if,
for each e 0, Pn Irn e as n-
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Resume

Sur la combinaison de testes independantes d 'une classe

genorale pour duex e~bantillons.

Dans cet article,. on analyse des testes qui sont basees

sur des combinaisons lineaires de k statistiques independantes
41

pour deux echantillons. On compare deux classes de ces testes,

ou lea statisAques employees sont 6 rune part du type de Chernoff

et Savage [11 et de l'autre part du type de "Student", Sous

certaines conditions, on obtient lea coefficients de ces corn-

binaisons lineaires qul donnent les plus grandes puissances

asymptotiques locales de ces testes, Ces resultats sont parti-

cularises au cas ou lea hypotheses alternatives sont lea hypo-

theses (non parametriques) de Pitman ou de Lel-mann ou des

moyennes ponderees souvent appelees "distributions contarninees".

Enfin on discute lea efficacites asymptotiques du testeQ

relatives a quelques-uns de sea competiteurs parametriques

ainsi que competiteurs non-parametriques en relation -=x alter-

natives mentionnees ci-devant.
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