NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
PHONON-PHONON INTERACTION IN CRYSTALS

SIXTH QUARTERLY PROGRESS REPORT
1 September 1962 - 30 November 1962

Signal Corps Contract No. DA-36-039-sc-87209
Order No. 39589-PM-61-91-91
PR and C No. 61-ELP/R-4122

Placed by U.S. Army Signal Research
And Development Laboratory
Fort Monmouth, New Jersey
ASTIA AVAILABILITY NOTICE
Qualified requestors may obtain copies of this report from ASTIA. ASTIA not authorized. FOR OTS PUB 19 FEB 63 TH.
The objective of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals.

U. S. Army Signal Research and Development Laboratory
Fort Monmouth, New Jersey

ELECTRONICS LABORATORY
GENERAL ELECTRIC COMPANY
SYRACUSE, NEW YORK
TABLE OF CONTENTS

1. PURPOSE ... 1
 1.1 Task I Analytical Study ... 1
 1.2 Task II Experimental Study on Phonon Generation and Propagation 1
 1.3 Task III Experimental Study of Phonon Interactions 1
 1.4 Task IV Material Evaluation 1

2. ABSTRACT .. 2

3. PUBLICATIONS, LECTURES, REPORTS, AND CONFERENCES 3

4. FACTUAL DATA .. 4
 4.1 Phase I Theoretical Aspects 4
 4.1.1 Non linear Analysis 5
 4.1.2 Velocities in Crystals 7
 4.2 Phase II Experimental Studies 10
 4.2.1 General Consideration 10
 4.2.2 Complete Cryogenic and Microwave Assembly 11
 4.2.2.1 Microwave Structure used for Piezoelectric Excitation of Phonons 11
 4.2.2.2 Microwave Structure used for Magnetostrictive Excitation of Phonons 11
 4.2.3 Materials .. 11
 4.2.4 Experimental Results 13
 4.2.4.1 Generation of Phonons 13
 4.2.4.2 Phonon Propagation in Quartz 13

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Diagram of Acoustic Waves in a Crystal, Showing Some Allowed Interactions</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Portable Electromagnet with Dewar Assembly Used for Experimenting at Liquid</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Nitrogen and Room Temperatures</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Transverse Echoes in BC Quartz</td>
<td>14</td>
</tr>
<tr>
<td>4.</td>
<td>Echo Pattern in AC Quartz</td>
<td>15</td>
</tr>
<tr>
<td>5.</td>
<td>Echo Display in C-axis CdS. 3.3 kMc/s Piezoelectric Excitation</td>
<td>17</td>
</tr>
<tr>
<td>6.</td>
<td>Echo Display in C-axis CdS. 9.4 kMc/s Piezoelectric Excitation</td>
<td>18</td>
</tr>
<tr>
<td>7.</td>
<td>Transverse Mode in C-axis CdS. 1.15 kMc/s Magnetostrictive Excitation</td>
<td>19</td>
</tr>
<tr>
<td>8.</td>
<td>Transverse Mode in <100> Germanium. 1.15 kMc/s Magnetostrictive Excitation</td>
<td>20</td>
</tr>
</tbody>
</table>
1. **PURPOSE**

The work performed under this contract is aimed at studying the generation, propagation and interaction of phonons in solids by means of microwaves. The main interest is centered on phonon-phonon interaction in crystals.

1.1 **Task I Analytical Study**

Investigate the generation and propagation of phonons in solids. Study the phonon interactions in one and three dimensional media.

1.2 **Task II Experimental Study of Phonon Generation and Propagation**

Investigate experimental techniques of generating phonons. Develop methods for enhancement of the transducer coupling. Evaluate the properties of phonon propagation in crystals.

1.3 **Task III Experimental Study of Phonon Interactions**

Study and evaluate the various types of phonon interactions in solids experimentally.

1.4 **Task IV Material Evaluation**

Measurement of the elastic properties of various materials and search for materials suitable for phonon propagation and interactions.
2. **ABSTRACT**

The objective of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals.

Theoretical curves based on the selection rules have been drawn for the various modes of operation for phonon-phonon interaction in solids. These are then analyzed with regard to the various types of parametric interactions that are possible.

Experimental results and observations are discussed pertaining to phonon generation and attenuation in various types of single crystals.

Experimental studies involving the search for phonon interactions are discussed.
3. **PUBLICATIONS, LECTURES, REPORTS, AND CONFERENCES**

1. A conference was held at the Electronics Laboratory between W. G. Matthei, S. Wanuga and W. Brouillette on November 20, 1962 to discuss the status of the project.

2. A paper titled, "Field Enhancement Techniques for the Generation of Microwave Phonons" was presented at the 1962 Ultrasonic Symposium on November 30, 1962 at Columbia University. (H. Hsu, W. Brouillette and S. Wanuga.) The paper has been submitted for publication in the forthcoming issue of PGUE of IRE Proceedings.
4. FACTUAL DATA

4.1 Phase I Theoretical Aspects

During the past period, we have cataloged all the possible interactions that can take place among colinear phonons. These fall broadly into two categories. The first comprises all the interactions that involve direct amplification of the signal wave with gain, with an idler corresponding to a lower sideband. The second comprises all the interactions where the idler corresponds to the upper sideband, thus the interaction falls in the category of up-conversion with gain. The interactions can also, of course, be characterized as to whether they involve forward wave interaction or backward wave interaction.

In discussing these interactions, it is necessary to point out that, for any frequencies presently obtainable, the relation between frequency and wave vector is essentially linear. The selection rules usually discussed in texts in relation to the absorption of sound by thermal phonons are arrived at by considering the entire dispersion curve. The low energy phonons considered in the present waves are not subject to the restriction that an interaction cannot take place where all phonons lie on the same polarization curve. This also presents the disadvantage that for such an interaction, energy may go to the upper sideband rather than the lower.

We also point out that the selection rules we then arrive at are necessary, but not sufficient conditions for interaction to take place. These rules are arrived at by observing that in an interaction, both phonon
energy and momentum are conserved, if we exclude Umklapp processes. In the latter interactions, the phonons must have sufficient energy to carry them to the band edge, which will not occur for the frequencies under discussion. The conservation rules are not the only conditions that must be met. There must also exist appropriate interactions probabilities, arising from the anharmonic Hamiltonian terms.

The selection rules are easily depicted in terms of a transition diagram such as Figure (1). This diagram shows nine possible backward wave interactions where signal and pump energy propagate in opposite direction, the idler is the lower sideband, and the signal is amplified as it propagates through the medium. The polarization branches are marked "L" for the longitudinal wave, and "T_s" and "T_f" for the transverse slow and fast waves respectively. The smaller diagram above indicates the relative position of signal, pump and idler wave for all cases. The transition marked "I" corresponds to a signal phonon which is a slow transverse wave, a pump which is a transverse wave, and idler which is also slow transverse. The segment from "O" to "A" is the signal, that from "O" to "B" the pump, and that from "A" to "B" the idler. Each of the nine cases can be derived from the diagram. Similar diagrams have been prepared for the backward wave case with up conversion, and for the forward wave mixed mode cases for both up and down conversion. The up and down conversion on a single branch is obvious without a diagram.

4.1.1 Non-linear Analysis

In addition to the above considerations, we have examined
\[\omega - \beta\] Diagram of Acoustic Lattice Waves in a Crystal, Showing Some Allowed Interactions.
various methods of analysing the non-linear interaction. In these analyses, it is commonly assumed that only those modes of interest can be propagated. For direct amplification, one thus assumes that the only modes propagated are signal, pump, and an idler corresponding to the lower sideband. This type of condition can often be met in an electromagnetic structure by using waveguides or helices with cut-off frequencies. In the solid crystalline medium, modes of all frequencies can be propagated. This restricts the validity of previous analysis and efforts will be continued for a method of determining what effect this may have on traveling wave interactions.

4.1.2 Velocities in Crystals

Numerous types of crystals are being continually studied both from the standpoint of possible use for phonon interaction studies and characteristics of phonon propagation. Two crystals have been investigated during this period. They are hexagonal CdS and ZnO. There are five independent elastic moduli for hexagonal symmetry. Both have higher electromechanical coupling coefficients \(k \) greater than quartz. A. R. Hutson\(^1\) reports the coupling coefficients as 0.095 for quartz, 0.2 for CdS and 0.4 for ZnO. CdS and ZnO may be useful for phonon interaction studies, since the power flow in a crystal is proportional to \(k^2 \). Velocity equations for this type of crystal are given in section 4.1.3 of the Second Quarterly Progress Report of this contract.

Elastic Constants of Hexagonal CdS at 27° C. taken from K. E. Bolef(2) et al.

\[C_{11} = 84.32 \times 10^{10} \text{ dynes/cm}^2 \]
\[C_{12} = 52.12 \times 10^{10} \text{ dynes/cm}^2 \]
\[C_{13} = 46.38 \times 10^{10} \text{ dynes/cm}^2 \]
\[C_{33} = 93.97 \times 10^{10} \text{ dynes/cm}^2 \]
\[C_{44} = 14.89 \times 10^{10} \text{ dynes/cm}^2 \]
\[C_{66} = \frac{C_{11} - C_{12}}{2} \]

The value of density (\(\rho \)) used was 4.823 g/cm\(^3\).

Table I gives calculated velocities for the C direction.

TABLE I

C-axis CdS \(<001>\)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Calculated Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_1)</td>
<td>(4.38 \times 10^5 \text{ cm/sec.})</td>
</tr>
<tr>
<td>(V_{1t} = V_{2t})</td>
<td>(1.73 \times 10^5 \text{ cm/sec.})</td>
</tr>
</tbody>
</table>

\(<100>\) Direction or any other direction perpendicular to \(<001>\) axis.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Calculated Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_1)</td>
<td>(4.18 \times 10^5 \text{ cm/sec.})</td>
</tr>
<tr>
<td>(V_{1t})</td>
<td>(1.76 \times 10^5 \text{ cm/sec})</td>
</tr>
<tr>
<td>(V_{2t})</td>
<td>(1.83 \times 10^5 \text{ cm/sec.})</td>
</tr>
</tbody>
</table>

Values for the calculated velocities for ZnO are given in table II. The elastic constants were taken from T.B. Bateman (3), at 25°C.

Elastic Constants of ZnO

\[
\begin{align*}
C_{11} &= 209.71 \times 10^{10} \text{ dynes/cm}^2 \\
C_{12} &= 121.14 \times 10^{10} \text{ dynes/cm}^2 \\
C_{13} &= 105.13 \times 10^{10} \text{ dynes/cm}^2 \\
C_{33} &= 210.94 \times 10^{10} \text{ dynes/cm}^2 \\
C_{44} &= 42.44 \times 10^{10} \text{ dynes/cm}^2 \\
C_{66} &= \frac{C_{11} - C_{12}}{2}
\end{align*}
\]

The density used was 5.676 g/cm³.

TABLE II

C-axis ZnO <001>

\[
\begin{align*}
V_1 &= 6.09 \times 10^5 \text{ cm/sec.} \\
V_{1s} = V_{2s} &= 2.73 \times 10^5 \text{ cm/sec.}
\end{align*}
\]

<100> direction as any other direction perpendicular to <001> axis.

\[
\begin{align*}
V_1 &= 6.07 \times 10^5 \text{ cm/sec.} \\
V_{1s} &= 2.73 \times 10^5 \text{ cm/sec.} \\
V_{2s} &= 2.79 \times 10^5 \text{ cm/sec.}
\end{align*}
\]

4.2 Phase II Experimental Studies
4.2.1 General Considerations

Preliminary experiments have been carried out and theoretical studies have been made for determining the types of phonon interactions that are possible. The conditions necessary for interaction have been determined from the selection rules and are continuously being investigated for experimental verification.

Phonon-phonon interaction studies are based on the anharmonicity in the inter-atomics potential of the crystal. It is this phenomenon which contributes a large share of sonic attenuation in a solid. It is, therefore, necessary to continually study the generation and propagation of ultrasonic waves in various media in order to determine which crystals may be better suited for phonon interaction studies. For each crystal orientation and mode of operation the attenuation and propagation characteristics will differ. For these reasons new crystals and crystal orientations are always being studied and data being obtained for use in the present phonon interaction studies now being carried out. Data obtained from some of these studies are presented in following sections.

As shown in previous reports, acoustic-phonon interactions can take place either for forward wave or backward wave type of operation. Experiments presently attempted were directed toward the forward type of interaction involving phonons of the same polarization, i.e., all longitudinal or all transverse.
4.2.2 **Complete Cryogenic and Microwave Assembly**

The main experimental assemblies for phonon generation and detection remain the same. A small Dewar for use at liquid nitrogen temperature was made for experimental studying at these temperatures.

Figure (2) shows the unit placed in our portable electromagnet. This electromagnet is used mainly for experimental study with magnetostrictive transducers at both liquid nitrogen and room temperatures. The complete assembly offers a better technique of experimental study since there is more ease in handling the microwave structures and the unsilvered Dewar offers direct observation of the set up.

4.2.2.1 **Microwave Structures used for Piezoelectric Excitation of Phonons.**

Modifications have been made in the microwave cavities by replacing the resonant posts with the chisel shaped posts described in our Fifth Quarterly Progress Report. These have been made mainly where transverse mode generation in X-cut quartz rods was desirable.

4.2.2.2 **Microwave Structures used for Magnetostrictive Excitation of Phonons**

A wideband structure consisting of a shorted stainless steel coaxial line was built for use with the new Dewar described in section 4.2.3. The structure operated satisfactorily over a frequency tuning range of 1 to 1.8 kMc/s.

4.2.3 **Materials**

Quartz, cadmium sulfide, germanium, silicon and cadmium telluride were the materials used during this period.
FIGURE 2

PORTABLE ELECTROMAGNET WITH DEWAR ASSEMBLY USED FOR EXPERIMENTING
AT LIQUID NITROGEN AND ROOM TEMPERATURES
4.2.4 Experimental Results

4.2.4.1 Generation of Phonons

Magnetostrictive excitation was used mainly in the experimental testing during this period. A few successful tests were made using the self piezoelectric excitation of cadmium sulfide at S- and X-band frequency.

4.2.4.2 Phonon Propagation in Quartz

Several different orientations of quartz crystal were investigated. Rods 3 mm. in diameter and 2 cm. long of AC and BC oriented quartz were plated with magnetostrictive films on one edge. These two cuts are of interest in the phonon interaction study since they are the only two orientations of rotated Y-cuts where transverse waves have no cross coupling to other modes. The acoustic energy travels parallel to the normal of the wave fronts.

The BC-cut crystal is made by a rotation about the X-axis making an angle of -55° with respect to the Z-axis. Figure (3) shows the echo pattern observed for the BC-cut crystal at 1.15 kMc/s and room temperature. The velocity was 5.03×10^5 cm/sec. A measurement of attenuation for these conditions gave a figure of about 1.4 ab/cm.

Figure (4) shows the echo pattern observed for an AC-cut rod. This cut is made by a rotation about the X-axis of 31° with respect to the Z-axis. The echo pattern is not clear since there appears to be other modes being generated. The transverse velocities for this particular cut are very close, being 3.84 and 3.32×10^5 cm/sec. The crystal will
FIGURE 3

TRANSVERSE WAVE ECHO PATTERN IN BC QUARTZ
MAGNETOSTRICTIVE EXCITATION
1.15 kMc/s - ROOM TEMPERATURE
FIGURE 4

ECHO PATTERN IN AC QUARTZ
MAGNETOSTRICTIVE EXCITATION
1.15 kMc/s - ROOM TEMPERATURE
be tested at liquid helium temperature in order to distinguish the proper modes. The attenuation appears to be significantly larger for this cut of crystal compared to the BC-cut rod.

4.2.4.3 **Phonon Propagation in CdS**

Cadmium sulfide crystal is of the hexagonal class and is piezoelectric. Small bars of C-axis oriented crystal were processed on our polishing equipment and tested at various frequencies. Figure (5) shows the echo pattern observed at 3.3 kMc/s and at liquid helium temperature. The rod was approximately 5 mm. square and 1.4 cm. long with a resistivity of approximately 10^5 ohm-cm. The crystal itself was used as the transducer. The echo pattern is completely undistinguishable as to mode designation. Figure (6) shows the same rod tested at X-band frequency under the same conditions.

A piece the same block of CdS was cut to approximately 0.7 cm. length and the ends were polished flat and parallel. The ends were then plated with magnetostrictive films. The crystal was then tested at liquid helium temperature and 1.15 kMc/s. Figure (7) shows the transverse mode observed. Velocity is 1.7×10^5 cm/sec. A measurement of attenuation under these conditions gave a figure of approximately 5.9 db/cm.

4.2.4.4 **Phonon Propagation in Non-piezoelectric Media**

Magnetostrictive transducers were used for phonon generation in non-piezoelectric materials. Figure (8) shows the transverse mode observed in a $<100>$ oriented germanium crystal 3 mm. diameter by 2 cm. length. The test was made at 1.15 kMc/s and liquid helium temperature. Velocity measured was 3.56×10^5 cm/sec.
FIGURE 5

ECHO DISPLAY IN C-AXIS GAS
PIEZOELECTRIC EXCITATION
3.3 km/s - LIQUID HELIUM TEMPERATURE
FIGURE 6

ECHO DISPLAY IN C-AXIS CdS

PIEZOELECTRIC EXCITATION

9.4 kMc/s - LIQUID HELIUM TEMPERATURE

-18-
FIGURE 7

C-AXIS CdS

MAGNETOSTRICTIVE EXCITATION

TRANSVERSE MODE. VEL. = 1.7×10^5 cm/sec.

1.15 kMc/s - LIQUID HELIUM TEMPERATURE
FIGURE 8

〈100〉 GERMANIUM
MAGNETOSTRICTIVE EXCITATION
TRANSVERSE MODE. VEL. = 3.56 x 10⁵ cm/sec.

1.15 kMc/s LIQUID HELIUM TEMPERATURE
Additional samples of CdTe were also plated with magnetostrictive films and tested for phonon propagation. In each case the material appeared very soft and thin sheets peeled off in the 110 plane.

5. PHONON-PHONON INTERACTION

During this period, a series of experiments were performed, seeking evidence of phonon-phonon interaction in one of various forms. These include direct interaction, yielding gain at the signal frequency, upper sideband conversion, with consequent increased attenuation in the signal mode and appearance of a sum frequency, and production of a third harmonic signal.

The first test involved an X-cut quartz rod. A thin film transducer of nickel-cobalt was applied. At room temperature, echoes were observed at 1.16 gcp/s. The observed attenuation was about 1 db/cm for the fast transverse mode.

A further test was made in the X-cut rod, generating a signal at 3.3 gcp/s and looking for the third harmonic at 9.9 gcp/s. The rod was cooled to liquid helium temperature, pulses were generated at 3.3 gcp/s with a thin film, using an X-band cavity to detect a possible 9.9 gcp/s, but no third harmonic was observed.

Another run was made on an X-cut quartz rod, driving it at 1 gcp/s magnetostrictively and attempting to detect the third harmonic with negative results.
Three tests were performed on a silicon rod cut along the $<111>$ axis. In these experiments one end of the rod was filmed so that it would operate at one gcps, and the other filmed for three gcps. Both experiments seeking third harmonic generation of the 1 gcps signal and interaction between a 1 gcps and a 3 gcps signal were performed. The sample was cooled in liquid helium. No third harmonic could be detected when the crystal was driven at 1 gcps.

In the second tests of these series, one gcps echoes were obtained by driving the appropriate cavity, and a 3 gcps pump signal was applied to the other cavity. The time lapse between the pulses could be controlled so that the pump signal was applied just as the signal pulse was being reflected from the end of the sample being driven at the pump frequency. When this adjustment was made, a very slight decrease in the amplitude of the signal echoes was observed. This could be due to a direct feed-through from pump transmitter to signal receiver.

A similar test was performed on a $<100>$ germanium crystal, using a magnetostrictive film transducer. The crystal was cooled in liquid helium, and the filmed end placed in a cavity that could be excited both at 1.1 gcps and 3.3 gcps, by using a 1/4 and 3/4 wave length mode respectively. Both longitudinal echoes, with a velocity of 5×10^5 cm/sec and transverse echoes with a velocity of 3.56×10^5 cm/sec, could be observed at both frequencies.

The sample was excited simultaneously with 1.1 and 3.3 gcps energy. The 1.1 gcps echoes were observed to show a slight gain in amplitude
when the 3.3 gcps signal was applied. However, this was definitely proved to be RF feed-through from the S-band transmitter to the L-band receiver.

If interaction occurs with up-conversion, then the signal echoes should show an increased attenuation with the addition of a pump signal, and energy should appear at the sum frequency.

One experiment was performed during this period to test this. A silicon <111> rod was used with thin films at liquid helium. A single cavity operating at 1 gcps and 3 gcps was used to excite one end with pump and signal energy. A cavity tuned to the sum was placed on the other end. We were not able to observe interaction in this one experiment, and some difficulty was encountered with feed-through. We are presently improving this experiment so that more trials may be made using other samples and other transducers and cavities.
6. **CONCLUSIONS**

All possible interactions that can take place among collinear phonons have been studied and used for determining the most promising experiments. Tests were performed in order to verify experimentally phonon-phonon interactions in crystals. Although no positive evidence has been observed, difficulties encountered in each test are removed so that the experimental procedures are being optimized.

Numerous orientations of quartz crystals have been studied. Some of these cuts appear to be promising for use in the phonon-phonon interaction studies. CdS was also investigated for phonon propagation at kHz/s frequencies. Although the attenuation is greater than quartz, other advantages such as higher coupling coefficient may be useful.
7. PROGRAM FOR NEXT INTERVAL

The study of phonon-phonon interactions will continue. Emphasis will be placed on the forward wave type of interaction searching for frequency conversion. The microwave structures will be modified for improving experimental techniques, mainly for solving r.f. feed-through problems. Generation and propagation of acoustic waves in various materials and crystal orientations will be carried out. These will include testing at various temperatures and frequencies.
8. IDENTIFICATION OF PERSONNEL

Dr. Hsuing Hsu - 24
Dr. J. Walter Brouillette - 148
Stephen Wanuga - 360
AD

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHONON-PHONON INTERACTION IN CRYSTALS by Eiiness Hau
and Stephen Wanaga. First Quarterly Progress Report
1 May 1961-31 July 1961. 54 p. incl. line drawings
and photographs. (Contract DA-36-039-se-87209)

Unclassified Report

The objective of this project is to study the generation,
propagation, and interaction of phonons in solids by
means of microwaves with emphasis on the phonon-phonon
interaction in crystals. These phonon interactions are
interpreted as parametric interactions due to crystal
anharmonicity.

In this quarterly report, the concept of three dimensional
parametric interactions is discussed. The mechanism of
various types of traveling wave parametric interactions
are analyzed. The selection rules of coupled phonon modes
and various experimental approaches are described.
Detailed discussions on the low temperature microwave
structures and experimental results on the generation and
propagation of microwave phonons are presented.

AD

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHONON-PHONON INTERACTION IN CRYSTALS by Eiiness Hau
and Stephen Wanaga. First Quarterly Progress Report
1 May 1961-31 July 1961. 54 p. incl. line drawings
and photographs. (Contract DA-36-039-se-87209)

Unclassified Report

The objective of this project is to study the generation,
propagation, and interaction of phonons in solids by
means of microwaves with emphasis on the phonon-phonon
interaction in crystals. These phonon interactions are
interpreted as parametric interactions due to crystal
anharmonicity.

In this quarterly report, the concept of three dimensional
parametric interactions is discussed. The mechanism of
various types of traveling wave parametric interactions
are analyzed. The selection rules of coupled phonon modes
and various experimental approaches are described.
Detailed discussions on the low temperature microwave
structures and experimental results on the generation and
propagation of microwave phonons are presented.

AD

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHONON-PHONON INTERACTION IN CRYSTALS by Eiiness Hau
and Stephen Wanaga. First Quarterly Progress Report
1 May 1961-31 July 1961. 54 p. incl. line drawings
and photographs. (Contract DA-36-039-se-87209)

Unclassified Report

The objective of this project is to study the generation,
propagation, and interaction of phonons in solids by
means of microwaves with emphasis on the phonon-phonon
interaction in crystals. These phonon interactions are
interpreted as parametric interactions due to crystal
anharmonicity.

In this quarterly report, the concept of three dimensional
parametric interactions is discussed. The mechanism of
various types of traveling wave parametric interactions
are analyzed. The selection rules of coupled phonon modes
and various experimental approaches are described.
Detailed discussions on the low temperature microwave
structures and experimental results on the generation and
propagation of microwave phonons are presented.

UNCLASSIFIED

AD

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHONON-PHONON INTERACTION IN CRYSTALS by Eiiness Hau
and Stephen Wanaga. First Quarterly Progress Report
1 May 1961-31 July 1961. 54 p. incl. line drawings
and photographs. (Contract DA-36-039-se-87209)

Unclassified Report

The objective of this project is to study the generation,
propagation, and interaction of phonons in solids by
means of microwaves with emphasis on the phonon-phonon
interaction in crystals. These phonon interactions are
interpreted as parametric interactions due to crystal
anharmonicity.

In this quarterly report, the concept of three dimensional
parametric interactions is discussed. The mechanism of
various types of traveling wave parametric interactions
are analyzed. The selection rules of coupled phonon modes
and various experimental approaches are described.
Detailed discussions on the low temperature microwave
structures and experimental results on the generation and
propagation of microwave phonons are presented.

UNCLASSIFIED
The objective of this project is to study the generation, propagation, and interaction of phonons in solids by means of microwaves with emphasis on the phonon-phonon interaction in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

Various types of crystals and crystal cuts have been evaluated. With these results, the coupled phonon modes can be calculated from the selection rules for experimental testing of possible phonon interactions. Typical experimental procedures and setups used in experimental testing are described. Experimental results and observations are discussed pertaining to phonon generation in various types of single crystals.

The objective of this project is to study the generation, propagation, and interaction of phonons in solids by means of microwaves with emphasis on the phonon-phonon interaction in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

Various types of crystals and crystal cuts have been evaluated. With these results, the coupled phonon modes can be calculated from the selection rules for experimental testing of possible phonon interactions. Typical experimental procedures and setups used in experimental testing are described. Experimental results and observations are discussed pertaining to phonon generation in various types of single crystals.
The objective of this project is to study the generation, propagation, and interaction of phonons in solids by means of microwaves with emphasis on the phonon-phonon interaction in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

In this quarterly report, the concept of parametric interactions in scattering processes of waves and quasi-particles is further discussed. Some introductory remarks on interactions of optical phonons are described. Experimental work on the magnetostriuctive excitation of microwave phonons in various materials is presented. The results, such as the generation of phonons in silicon, are now reliably reproducible.
General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHONON-PHONON INTERACTION IN CRYSTALS by Kai-tung Hau
and Stephen Wamug. Fourth Progress Report for Interim
Period 1 February 1962-31 May 1962. 57 p. incl. line
drawings and photographs. (Contract DA-36-039-ae-87209)
Unclassified Report
The objective of this project is to study the generation,
propagation, and interaction of phonons in solids by means
of microwaves with emphasis on the phonon-phonon interaction
in crystals. These phonon interactions are interpreted as
parametric interactions due to crystal anharmonicity.

During this interim period, several phonon interaction
processes have been investigated. Special attention has
been made to evaluate possible methods of enhancing phonon
interactions and improving the detection sensitivities of
microwave phonons. Various new materials and
techniques have been evaluated. In this report, some
analytical and experimental results of these studies are
presented. Furthermore, continued work on the
magnetotropic excitation of microwave phonons is described.

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHONON-PHONON INTERACTION IN CRYSTALS by Kai-tung Hau
and Stephen Wamug. Fourth Progress Report for Interim
Period 1 February 1962-31 May 1962. 57 p. incl. line
drawings and photographs. (Contract DA-36-039-ae-87209)
Unclassified Report
The objective of this project is to study the generation,
propagation, and interaction of phonons in solids by means
of microwaves with emphasis on the phonon-phonon interaction
in crystals. These phonon interactions are interpreted as
parametric interactions due to crystal anharmonicity.

During this interim period, several phonon interaction
processes have been investigated. Special attention has
been made to evaluate possible methods of enhancing phonon
interactions and improving the detection sensitivities of
microwave phonons. Various new materials and
techniques have been evaluated. In this report, some
analytical and experimental results of these studies are
presented. Furthermore, continued work on the
magnetotropic excitation of microwave phonons is described.

1. Generation and
propagation of
phonon-phonon
interaction

2. Phonon-phonon
interaction

3. Parametric
interaction

I. Hau, Kai-tung
II. Wamug, Stephen
III. Contract DA-36-039-ae-87209
The objective of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

A series of calculations have been made for the required crystal orientation with respect to the magnetic field and the magnetic field strength required to achieve optically pumped maser action in ruby at liquid nitrogen temperature.

Several phonon interaction processes have been attempted (phonon-phonon interaction in X-cut quartz-electro-phonon interaction in (LiIO₃) GaAs).

Details of field enhancement techniques used in cavity structures for increasing transducer action (both piezoelectric and magnetostrictive) are presented.
The object of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals.

Theoretical curves based on the selection rules have been drawn for the various modes of operation for phonon-phonon interaction in solids. These are then analyzed with regard to the various types of parametric interactions that are possible.

Experimental results and observations are discussed pertaining to phonon generation and attenuation in various types of single crystals.

Experimental studies involving the search for phonon interactions are discussed.

The object of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals.

Theoretical curves based on the selection rules have been drawn for the various modes of operation for phonon-phonon interaction in solids. These are then analyzed with regard to the various types of parametric interactions that are possible.

Experimental results and observations are discussed pertaining to phonon generation and attenuation in various types of single crystals.

Experimental studies involving the search for phonon interactions are discussed.

The object of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals.

Theoretical curves based on the selection rules have been drawn for the various modes of operation for phonon-phonon interaction in solids. These are then analyzed with regard to the various types of parametric interactions that are possible.

Experimental results and observations are discussed pertaining to phonon generation and attenuation in various types of single crystals.

Experimental studies involving the search for phonon interactions are discussed.
The objective of this project is to study the generation, propagation, and interaction of phonons in solids by means of microwaves with emphasis on the phonon-phonon interaction in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

In this quarterly report, the concept of three dimensional parametric interactions is discussed. The mechanisms of various types of traveling wave parametric interactions are analyzed. The selection rules of coupled phonon modes and various experimental approaches are described. Detailed discussions on the low temperature microwave structures and experimental results on the generation and propagation of microwave phonons are presented.
AD
General Electric Co., Syracuse, N.Y.
Unclassified Report
The objective of this project is to study the generation, propagation, and interaction of phonons in solids by means of microwaves with emphasis on the phonon-phonon interaction in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.
Various types of crystals and crystal cuts have been evaluated. With these results, the coupled phonon modes can be calculated from the selection rules for experimental testing of possible phonon interactions. Typical experimental procedures and setups used in experimental testing are described. Experimental results and observations are discussed pertaining to phonon generation in various types of single crystals.

1. Generation and propagation of hypersonic phonons
2. Phonon-phonon Interaction
3. Parametric Interaction

I. Hau, Haung
II. Wanaga, Stephen
III. Contract DA-36-039-sc-87209

UNCLASSIFIED

AD
General Electric Co., Syracuse, N.Y.
Unclassified Report
The objective of this project is to study the generation, propagation, and interaction of phonons in solids by means of microwaves with emphasis on the phonon-phonon interaction in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.
Various types of crystals and crystal cuts have been evaluated. With these results, the coupled phonon modes can be calculated from the selection rules for experimental testing of possible phonon interactions. Typical experimental procedures and setups used in experimental testing are described. Experimental results and observations are discussed pertaining to phonon generation in various types of single crystals.

1. Generation and propagation of hypersonic phonons
2. Phonon-phonon Interaction
3. Parametric Interaction

I. Hau, Haung
II. Wanaga, Stephen
III. Contract DA-36-039-sc-87209

UNCLASSIFIED
<table>
<thead>
<tr>
<th>AD</th>
<th>UNCLASSIFIED</th>
<th>AD</th>
<th>UNCLASSIFIED</th>
<th>AD</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Electric Co., Electronics Laboratory, Syracuse, N.Y.</td>
<td>UNCLASSIFIED</td>
<td>General Electric Co., Electronics Laboratory, Syracuse, N.Y.</td>
<td>UNCLASSIFIED</td>
<td>General Electric Co., Electronics Laboratory, Syracuse, N.Y.</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>I. Bae, Heiung</td>
</tr>
<tr>
<td>II. Wamuya, Stephen</td>
</tr>
</tbody>
</table>

The objective of this project is to study the generation, propagation, and interaction of phonons in solids by means of micro-waves with emphasis on the phonon-phonon interaction in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

In this quarterly report, the concept of parametric interactions in scattering processes of waves and quasi-particles is further discussed. Some introductory remarks on interactions of optical phonons are described. Experimental work on the magnetostriuctive excitation of microwave phonons in various materials is presented. The results, such as the generation of phonons in silicon, are now reliably reproducible.
The objective of this project is to study the generation, propagation, and interaction of phonons in solids by means of microwaves with emphasis on the phonon-phonon interaction in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

During this interim period, several phonon interaction processes have been investigated. Special attention has been made to evaluate possible methods of enhancing phonon interactions and improving the detection sensitivities of microwave phonons. Various new materials and techniques have been evaluated. The analytical and experimental results of these studies are presented. Furthermore, continued work on the magnetostriuctive excitation of microwave phonons is described.
Unclassified Report

The objective of this project is to study the generation, propagation, and interaction of phonons with emphasis on the phonon interactions in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

A series of calculations have been made for the required crystal orientation with respect to d.c. magnetic field and the magnetic field strength required to achieve optically pumped maser action in ruby at liquid nitrogen temperature.

Several phonon interaction processes have been attempted (phonon-phonon interaction in X-cut quartz—electron-phonon interaction in CIO₃Ga). Details of field enhancement techniques used in cavity structures for increasing transducer action (both piezoelectric and magnetostrictive) are presented.

UNCLASSIFIED

1. Generation and propagation of hypersonic phonons
2. Phonon-phonon Interaction
I. Hau, Hsiung II. Wang, Stephen III. Contract DA-56-039-sc-87209

UNCLASSIFIED

AD

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHONON-PHONON INTERACTION IN CRYSTALS by Hsiung Hau and
Stephen Wang. Fifth Progress Report for Interim Period
1 June 1962 - 31 August 1962. 49 p. incl. line drawings
and photographs. (Contract DA-56-039-sc-87209)

Unclassified Report

The objective of this project is to study the generation, propagation, and interaction of phonons with emphasis on the phonon interactions in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

A series of calculations have been made for the required crystal orientation with respect to d.c. magnetic field and the magnetic field strength required to achieve optically pumped maser action in ruby at liquid nitrogen temperature.

Several phonon interaction processes have been attempted (phonon-phonon interaction in X-cut quartz—electron-phonon interaction in CIO₃Ga). Details of field enhancement techniques used in cavity structures for increasing transducer action (both piezoelectric and magnetostrictive) are presented.

UNCLASSIFIED

1. Generation and propagation of hypersonic phonons
2. Phonon-phonon Interaction
I. Hau, Hsiung II. Wang, Stephen III. Contract DA-56-039-sc-87209

UNCLASSIFIED

AD

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHONON-PHONON INTERACTION IN CRYSTALS by Hsiung Hau and
Stephen Wang. Fifth Progress Report for Interim Period
1 June 1962 - 31 August 1962. 49 p. incl. line drawings
and photographs. (Contract DA-56-039-sc-87209)

Unclassified Report

The objective of this project is to study the generation, propagation, and interaction of phonons with emphasis on the phonon interactions in crystals. These phonon interactions are interpreted as parametric interactions due to crystal anharmonicity.

A series of calculations have been made for the required crystal orientation with respect to d.c. magnetic field and the magnetic field strength required to achieve optically pumped maser action in ruby at liquid nitrogen temperature.

Several phonon interaction processes have been attempted (phonon-phonon interaction in X-cut quartz—electron-phonon interaction in CIO₃Ga). Details of field enhancement techniques used in cavity structures for increasing transducer action (both piezoelectric and magnetostrictive) are presented.
<table>
<thead>
<tr>
<th>AD</th>
<th>UNCLASSIFIED</th>
<th>AD</th>
<th>UNCLASSIFIED</th>
<th>AD</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
</table>
| General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHOTON-PHONON INTERACTION IN CRYSTALS by J. Walter

The object of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals.

Theoretical curves based on the selection rules have been drawn for the various modes of operation for photon-phonon interaction in solids. These are then analyzed with regard to the various types of parametric interactions that are possible.

Experimental results and observations are discussed pertaining to photon generation and attenuation in various types of single crystals.

Experimental studies involving the search for phonon interactions are discussed.

| 1. Generation and propagation of hypersonic phonons |
| 2. Phonon-phonon Interaction |
| 3. Parametric Interaction |

| I. Brouillette, J. Walter |
| II. Manuga, Stephen |

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHOTON-PHONON INTERACTION IN CRYSTALS by J. Walter

The object of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals.

Theoretical curves based on the selection rules have been drawn for the various modes of operation for photon-phonon interaction in solids. These are then analyzed with regard to the various types of parametric interactions that are possible.

Experimental results and observations are discussed pertaining to photon generation and attenuation in various types of single crystals.

Experimental studies involving the search for phonon interactions are discussed.

| 1. Generation and propagation of hypersonic phonons |
| 2. Phonon-phonon Interaction |
| 3. Parametric Interaction |

| I. Brouillette, J. Walter |
| II. Manuga, Stephen |

General Electric Co., Electronics Laboratory, Syracuse, N.Y.
PHOTON-PHONON INTERACTION IN CRYSTALS by J. Walter

The object of this project is to study the generation, propagation and interaction of phonons with emphasis on the phonon interactions in crystals.

Theoretical curves based on the selection rules have been drawn for the various modes of operation for photon-phonon interaction in solids. These are then analyzed with regard to the various types of parametric interactions that are possible.

Experimental results and observations are discussed pertaining to photon generation and attenuation in various types of single crystals.

Experimental studies involving the search for phonon interactions are discussed.

| 1. Generation and propagation of hypersonic phonons |
| 2. Phonon-phonon Interaction |
| 3. Parametric Interaction |

| I. Brouillette, J. Walter |
| II. Manuga, Stephen |
10. **DISTRIBUTION LIST**

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>Position</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Corps of Engineers Liaison Office</td>
</tr>
<tr>
<td>Marine Corps Liaison Office</td>
</tr>
<tr>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Chief of Ordnance</td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
</tr>
<tr>
<td>Commander, Army Rocket and Guided Missile Agency</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Commander</td>
</tr>
<tr>
<td>Chief, U.S. Army Security Agency</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Dr. B. Gossick</td>
</tr>
<tr>
<td>Dr. B. Salzberg</td>
</tr>
<tr>
<td>MIT</td>
</tr>
<tr>
<td>Lincoln Laboratory</td>
</tr>
<tr>
<td>Dr. H. Uhlir</td>
</tr>
<tr>
<td>RCA Laboratories</td>
</tr>
<tr>
<td>Dr. E. Conwell</td>
</tr>
<tr>
<td>Bell Telephone Laboratories</td>
</tr>
<tr>
<td>Solid State Electronic Laboratory</td>
</tr>
<tr>
<td>Polytechnic Institute of Brooklyn</td>
</tr>
<tr>
<td>No. of Copies</td>
</tr>
<tr>
<td>--------------</td>
</tr>
</tbody>
</table>
| | Stamford Research Institute
Palo Alto, California
Attn: Dr. T. Jones |
| 1 | Dr. A. Burke
Micromega Corp.
413½ Del Ray Ave.
Venice, California |
| 1 | Purdue University
Physics Laboratory
Lafayette, Indiana
Attn: Dr. H. Y. Fan |
| 1 | Shockley Transistor Corp.
391 South San Antiono
Mountain View, California
Attn: Dr. W. Shockley |
| 1 | Dr. M. Chodorow
Microwave Laboratory
WW Hansen Laboratories of Physics
Stamford University
Stamford, California |
| 1 | Director, Electronics Defense Corps
Engineering Research Institute
University of Michigan
Ann Arbor, Michigan |
| 1 | Cruft Laboratory
Harvard University
Cambridge, Massachusetts |
| 1 | Mr. Alvin D. Bedrosian
USAERDL Liaison Officer
SDL/BD-70-131
Cambridge 39, Massachusetts |
| 2 | Dr. Om P. Gandhi
Philco Scientific Laboratory
Blue Bell, Pennsylvania |
| 1 | Dr. Carl H. Becker, Director of Research
Precision Inst. Co.
1011 Commercial Street
San Carlos, California |
No. of Copies

Commanding Officer
U.S. Army Electronics Research and Development Laboratory
Fort Monmouth, New Jersey

Attn: Director of Research 1
Attn: Technical Documents Center 1
Attn: Technical Information Division 3
Attn: Rpts Dist. Unit, Solid State and Frequency Control Div. (Record Copy) 1
Attn: Director, Solid State and Frequency Control Division 1
Attn: Ch. S and M Br., Solid State and Frequency Control Division 1
Attn: Deputy Director, Solid State and Frequency Control Division 1
Attn: W.G. Matthei, Solid State and Frequency Control Division 4
Attn: F. A. Brand, Solid State and Frequency Control Division 1
Attn: H. Mette, Solid State and Frequency Control Division 1
Attn: Dr. E. Hafner, Solid State and Frequency Control Division 1

Richard Clayton
Texas Instruments
P. O. Box 6015
Dallas, Texas 1

Dr. Rowen
Solid State Device Development Lab.
Bell Telephone Labs.
Whippany, New Jersey 1

Texas Instruments
Apparatus Div.
Attn: Dr. D. Eden
P.O. Box 6015
Dallas 22, Texas 1

C.O.
USAEMA
Attn: SELMA-R2b
225 S. 18th Street
Philadelphia 3, Pennsylvania 1

Total number of copies to be distributed 75

This contract is supervised by the Solid State and Frequency Control Division, Electronic Components Department, USAELRDL, Ft. Monmouth, N. J. For additional technical information contact Mr. W. G. Matthei, Project Engineer, Telephone 53-51370.