NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
MACHINING OF REFRACTORY MATERIALS

N. Zlatin
M. Field
J. Gould

METCUT RESEARCH ASSOCIATES INC.
CINCINNATI, OHIO
Contract: AF 33(600)-42349
ASD Project: 7-532a

Phase II Technical Engineering Report
1 November 1962 - 31 January 1963

Tests to determine the feasibility of high speed milling (edge trimming) are in progress. Preliminary test results indicate that high speed milling offers a better than average potential for success in edge trimming 6Al-4V titanium sheet and 15-7 Mo sheet in the 500 to 2500 feet/minute cutting speed range. Drilling tests have been made using the Tornetic drilling unit and a constant speed drill press on D6AC steel in the 54-58 Rc hardness range. Tapping test results on B-120VCA titanium at 400 BHN are presented comparing the Tornetic tapping data with conventional tapping. Machining test data is also presented on B-120 VCA titanium, TZM Molybdenum, Mo 0.5 Ti and D-31 Columbium alloy.

FABRICATIONS BRANCH
MANUFACTURING TECHNOLOGY LABORATORY

Aeronautical Systems Division
Air Force Systems Command
United States Air Force
Wright-Patterson Air Force Base, Ohio
MACHINING OF REFRACTORY MATERIALS
N. Zlatin
et al
Metcut Research Associates Inc.

An investigation to determine the feasibility of high speed milling (edge trimming) the thermal resistant alloys is in progress. Preliminary results obtained on 6A1-4V Titanium sheet and PH 15-7 Mo stainless sheet indicate that these alloys can be edge milled successfully at cutting speeds ranging from 500 to 2000 feet per minute.

A tool life of 202 feet of work travel was obtained when milling 6A1-4V Titanium sheet (35-36 Rc) .125" thick, at a cutting speed of 500 feet/minute, a feed of .010 inches/tooth and a depth of cut of .050". A 1-1/4" diameter, 3 flute throw-away carbide end mill with Grade 883 (C-2) carbide inserts was used for these tests. The cutter had a 0° axial rake, 0° radial rake and a 5° peripheral clearance angle. Liquid CO₂ was used as the cooling medium. However, when this test was performed without liquid CO₂ (dry) a tool life of 172 feet of work travel was obtained.

With the same test conditions listed above, a tool life of 228 feet of work travel was obtained when milling a thinner 6A1-4V Titanium sheet (.063") with liquid CO₂. Cutting speeds higher than 500 feet/minute - up to 2000 feet/minute - and feeds higher than .005 inches/tooth - up to .020 inches/tooth - reduced tool life significantly. Increasing the depth of cut from .050" to .100" also reduced tool life by about one half, however, when the depth of cut was increased from .100" to .150" tool life was reduced less than 10%.

When high speed edge trimming PH 15-7 Mo stainless steel sheet, .063" thick, annealed to 90 RB, a tool life of 150 feet of work travel was obtained. The cutting speed was 1500 feet/minute with a feed of .015 inches/tooth milling dry, without liquid CO₂. With liquid CO₂, the best tool life obtained was 97 feet of work travel at 1500 feet/minute and a .015 inches/tooth feed rate.

Comparative drilling tests performed on the Tornetic drilling unit and a constant speed and feed drilling machine on D6AC steel quenched and tempered 54-58 Rc showed that approximately 25% fewer holes were obtained on the Tornetic unit. More important, however, was the fact that the feed rate had been reduced to one half of its original value by the time the last few holes were drilled.

When tapping B-120VCA titanium solution treated and aged to 400 BHN using the Tornetic tapping unit and a conventional tapping machine, almost twice as many holes were obtained on the conventional tapping machine.
Tests to determine the feasibility of high speed milling (edge trimming) are in progress. Preliminary test results indicate that high speed milling offers a better than average potential for success in edge trimming 6Al-4V titanium sheet and 15-7 Mo sheet in the 500 to 2500 feet/minute cutting speed range. Drilling tests have been made using the Tornetic drilling unit and a constant speed drill press on D6AC steel in the 54-58 R_c hardness range. Tapping test results on B-120VCA titanium at 400 BHN are presented comparing the Tornetic tapping data with conventional tapping. Machining test data is also presented on B-120VCA titanium, TZM Molybdenum, Mo 0.5 Ti and D-31 Columbium alloy.
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from ASTIA, Document Service Center, Arlington Hall Station, Arlington 12, Virginia.

Copies of ASD Technical Reports should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.
This Phase II Interim Technical Progress Report covers the work performed under Contract AF 33(600)-42349 from 1 November 1962 to 31 January 1963. It is published for technical information only and does not necessarily represent the recommendations, conclusions, or approval of the Air Force.

This contract with Metcut Research Associates Inc., Cincinnati, Ohio was initiated under ASD Manufacturing Technology Laboratory Project 7-532a, "Machining of Refractory Materials". It is being administered under the direction of Mr. Robert T. Jameson of the Fabrications Branch (ASRCTF), Manufacturing Technology Laboratory, Aeronautical Systems Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

Mr. Norman Zlatin, Director of Machinability Research at Metcut, is the engineer in charge of this program. Others who have cooperated in the investigation reported herein and preparation of the report were Mr. J. V. Gould, Project Engineer, and Dr. Michael Field, Research Director. This project has been given the Metcut Research Internal No. 470-3300.

The primary objective of the Air Force Manufacturing Methods Program is to increase producibility, and improve the quality and efficiency of fabrication of aircraft, missiles, and components thereof. This report is being disseminated in order that methods and/or equipment developed may be used throughout industry, thereby reducing costs and giving "MORE AIR FORCE PER DOLLAR".

Your comments are solicited on the potential utilization of the information contained herein as applied to your present or future production programs. Suggestions concerning additional development required on this or other subjects will be appreciated.

PUBLICATION REVIEW

Approved by:
Norman Zlatin
Director, Machinability Research

Approved by:
Michael Field
Research Director
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. MATERIALS USED IN MACHINING TESTS</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Chemical Composition</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Heat Treatment</td>
<td>2</td>
</tr>
<tr>
<td>3. MACHINING TEST CONDITIONS</td>
<td>3</td>
</tr>
<tr>
<td>3.1 Machine Tools Used for Testing</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Turning Conditions</td>
<td>4</td>
</tr>
<tr>
<td>3.3 Face Milling Conditions</td>
<td>5</td>
</tr>
<tr>
<td>3.4 End Milling Conditions</td>
<td>6</td>
</tr>
<tr>
<td>3.5 Drilling Conditions</td>
<td>7</td>
</tr>
<tr>
<td>3.6 Reaming Conditions</td>
<td>8</td>
</tr>
<tr>
<td>3.7 Tapping Conditions</td>
<td>9</td>
</tr>
<tr>
<td>3.8 Grinding Conditions</td>
<td>9</td>
</tr>
<tr>
<td>4. HIGH SPEED MILLING OF SHEET MATERIAL</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Machine Tool Setup</td>
<td>11</td>
</tr>
<tr>
<td>4.2 High Speed Milling Test Conditions</td>
<td>11</td>
</tr>
<tr>
<td>5. TEST RESULTS</td>
<td>13</td>
</tr>
<tr>
<td>5.1 High Speed Milling (Edge Trimming) Test Results</td>
<td>13</td>
</tr>
<tr>
<td>5.1.1 High Speed Milling 6A1-4V Titanium Sheet</td>
<td>13</td>
</tr>
<tr>
<td>5.1.2 High Speed Milling PH 15-7 Mo Stainless Sheet</td>
<td>15</td>
</tr>
<tr>
<td>5.2 Comparative Drilling and Tapping Tests Using Tornetic and Constant Speed and Feed Drill Press</td>
<td>16</td>
</tr>
<tr>
<td>5.2.1 Drilling D6AC Steel, Q & T 54-58 Rc</td>
<td>16</td>
</tr>
<tr>
<td>5.2.2 Drilling 410 Stainless Steel, Q & T 45 Rc</td>
<td>16</td>
</tr>
<tr>
<td>5.2.3 Drilling 6A1-4V Titanium Solution Treated & Aged 360 BHN</td>
<td>17</td>
</tr>
<tr>
<td>5.2.4 Tapping B-120VCA Titanium Solution Treated & Aged 400 BHN</td>
<td>17</td>
</tr>
<tr>
<td>5.3 Machining Tests on B-120VCA Titanium</td>
<td>17</td>
</tr>
<tr>
<td>5.3.1 Face Milling Tests</td>
<td>17</td>
</tr>
<tr>
<td>5.3.2 End Milling Tests</td>
<td>18</td>
</tr>
</tbody>
</table>

- v -
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4 Machining Tests on TZM Molybdenum Alloys</td>
<td></td>
</tr>
<tr>
<td>5.4.1 Turning</td>
<td>19</td>
</tr>
<tr>
<td>5.4.2 Face Milling</td>
<td>19</td>
</tr>
<tr>
<td>5.4.3 End Milling</td>
<td>20</td>
</tr>
<tr>
<td>5.4.4 Drilling</td>
<td>21</td>
</tr>
<tr>
<td>5.4.5 Reaming</td>
<td>21</td>
</tr>
<tr>
<td>5.4.6 Tapping</td>
<td>22</td>
</tr>
<tr>
<td>5.4.7 Grinding</td>
<td>22</td>
</tr>
<tr>
<td>5.4.8 Recommendations for Machining TZM</td>
<td>22</td>
</tr>
<tr>
<td>Molybdenum Alloys</td>
<td></td>
</tr>
<tr>
<td>5.5 Machining Tests on D-31 Columbium Alloys</td>
<td></td>
</tr>
<tr>
<td>5.5.1 Turning</td>
<td>22</td>
</tr>
<tr>
<td>5.5.2 Face Milling</td>
<td>23</td>
</tr>
<tr>
<td>5.5.3 End Milling</td>
<td>23</td>
</tr>
<tr>
<td>5.5.4 Drilling</td>
<td>24</td>
</tr>
<tr>
<td>5.5.5 Reaming</td>
<td>24</td>
</tr>
<tr>
<td>5.5.6 Tapping</td>
<td>25</td>
</tr>
<tr>
<td>5.5.7 Grinding</td>
<td>25</td>
</tr>
<tr>
<td>5.5.8 Recommendations for Machining D-31</td>
<td>25</td>
</tr>
<tr>
<td>Columbium Alloys</td>
<td></td>
</tr>
<tr>
<td>6. PROGRAM FOR NEXT QUARTER</td>
<td>26</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The purpose of this program is to investigate and evaluate the machining characteristics of the refractory materials, selected high temperature alloys, and high strength steels of importance to the aerospace industry.

The machining research on the various alloys is being carried out under Phase II of the subject contract, and this report presents the results obtained during the period of 1 November 1962 to 31 January 1963.

Tests to determine the feasibility of high speed milling (edge trimming) are in progress. Preliminary test results indicate that high speed milling offers a better than average potential for success in edge trimming 6Al-4V titanium sheet and 15-7 Mo sheet in the 500 to 2500 feet/minute cutting speed range. Drilling tests have been made using the Tornetic drilling unit and a constant speed drill press on D6AC steel in the 54-58 R_C hardness range. Tapping test results on B-120VCA titanium at 400 BHN are presented comparing the Tornetic tapping data with conventional tapping. Machining test data is also presented on B-120VCA titanium, TZM Molybdenum, Mo 0.5 Ti and D-31 Columbium alloy.
2. MATERIALS USED IN MACHINING TESTS

The materials used in the machining tests were as follows:

- B-120VCA Titanium, Solution Treated
 285 BHN
- B-120VCA Titanium, Solution Treated and Aged
 365 BHN and 400 BHN
- D6AC Steel, Quenched and Tempered
 54 - 58 Rc
- 6Al-4V Titanium, Solution Treated and Aged, Sheet Material
 35 - 36 Rc
- PH 15-7 Mo, Mill Annealed, Sheet Material
 90 RB

2.1 Chemical Composition

The nominal chemical compositions of the alloys used in the machining tests were as follows:

<table>
<thead>
<tr>
<th></th>
<th>V</th>
<th>Cr</th>
<th>Al</th>
<th>C</th>
<th>Fe</th>
<th>N</th>
<th>O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-120VCA Titanium</td>
<td>13.5</td>
<td>11.0</td>
<td>3.5</td>
<td>0.035</td>
<td>0.22</td>
<td>0.02</td>
<td>0.007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6AC Steel</td>
<td>0.45</td>
<td>0.80</td>
<td>0.25</td>
<td>0.55</td>
<td>1.15</td>
<td>1.0</td>
<td>.05 Bal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Al</th>
<th>V</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>6Al-4V</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>Al</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH 15-7 Mo</td>
<td>.09</td>
<td>1.00</td>
<td>1.0</td>
<td>7.0</td>
<td>15.0</td>
<td>2.5</td>
<td>1.0 Bal.</td>
</tr>
</tbody>
</table>

2.2 Heat Treatment

The heat treatment given these alloys was as follows:

Hardness

- **B-120VCA Titanium**
 - Solution at 1450°F for one-half hour, air cool
 - Age at 900°F for 60 hours, air cool
 285 BHN
 400 BHN

- **D6AC Steel**
 - Heat to 1650°F for one hour, oil quench
 - Temper 500°F for 2 hours, air cool
 - Temper 400°F for 2 hours, air cool
 - Temper 300°F for 2 hours, air cool
 54 Rc
 56 Rc
 58 Rc

No heat treatment was performed on the 6Al-4V Titanium sheet material or the PH 15-7 Mo sheet material.
3. MACHINING TEST CONDITIONS

3.1 Machine Tools Used for Testing

Photographs of the lathe, milling machines, drilling machines and surface grinders used in the machinability tests were shown in ASD Interim Report 7-532a(III), dated August, 1961.

The turning tests were made on a 16" x 30" American Pacemaker lathe. This lathe is equipped with a 30 H.P. infinitely variable speed drive to provide exact cutting speed control as the bar diameter changes.

Milling tests were performed on a Cincinnati No. 3 Horizontal High Speed Dial Type Milling Machine. The machine is equipped with a cast iron flywheel to maintain a more constant speed when the interrupted cuts in face milling are encountered.

End milling tests were performed on a Cincinnati Vertical No. 2 Dial Type Milling Machine. A rotary seal is attached to the top of a hollow draw bar for applying spray mist or cutting fluid through a hole along the axis of the cutter. The machine also contains the standard integral cutting fluid system.

A Fosdick Heavy Duty 25" Box Column Upright Drill Press and a Cincinnati 16" Box Column Drill Press were used for the drilling, reaming and tapping tests. Both machines are equipped with separate infinitely variable speed drives to obtain feeds of .0001 to .025 inches per revolution. The Cincinnati drilling machine is also equipped with an infinitely variable spindle speed drive to provide exact drilling speed control.

The grinding tests were performed on a Norton 8" x 24" Hydraulic Surface Grinder. Grinding wheel speeds ranging from 1000 to 7500 surface feet per minute can be obtained on this machine by means of an infinitely variable speed spindle drive.

3.2 Turning Conditions

Turning tests were made using high speed steel, cast alloy and carbide tools.

Machine

16" x 30" American Pacemaker lathe equipped with a 30 H.P. variable speed drive.
3.2 Turning Conditions (continued)

Test Bars

Turning test bars were 4" in diameter by 18" long. A surface skin cut was taken on each bar before machining tests were made to remove any surface effects.

Cutting Tools

Turning tests were made using throwaway type and brazed tip carbide tools and 5/8" square high speed steel tool bits.

Tool Materials - Carbide

A variety of Carbide grades were used. The data charts give specific applications.

Tool Geometry - Carbide

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Rake (SR)</td>
<td>20° to -15°</td>
</tr>
<tr>
<td>Back Rake (BR)</td>
<td>0° to -15°</td>
</tr>
<tr>
<td>Side Cutting Edge Angle (SCEA)</td>
<td>0° to 45°</td>
</tr>
<tr>
<td>End Cutting Edge Angle (ECEA)</td>
<td>5° to 15°</td>
</tr>
<tr>
<td>Side Relief</td>
<td>5° to 10°</td>
</tr>
<tr>
<td>End Relief</td>
<td>5° to 10°</td>
</tr>
<tr>
<td>Nose Radius (NR)</td>
<td>1/64" and 1/32"</td>
</tr>
</tbody>
</table>

Machining Conditions - Carbide

- Feed: .005 in./rev. to .015 in./rev.
- Depth of Cut: .100"
- Cutting Fluid: Highly sulphurized oil, highly chlorinated oil, water soluble emulsions and dry.
- Tool Life End Point: .015" uniform wearland or .030" localized wearland.

Tool Material - High Speed Steel Tools

M-2, T-1, T-15, Braecut, Rex 49 and Hypercut high speed steel tool bits

Tool Geometry - High Speed Steel

Type: 5/8" square tool bits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side Rake</td>
<td>0° to 30°</td>
</tr>
<tr>
<td>Back Rake</td>
<td>0°</td>
</tr>
<tr>
<td>Side Cutting Edge Angle</td>
<td>0° to 15°</td>
</tr>
<tr>
<td>End Cutting Edge Angle</td>
<td>5°</td>
</tr>
<tr>
<td>Side Relief</td>
<td>5°</td>
</tr>
<tr>
<td>End Relief</td>
<td>5°</td>
</tr>
<tr>
<td>Nose Radius (NR)</td>
<td>1/64"</td>
</tr>
</tbody>
</table>
3.2 Turning Conditions (continued)

Machining Conditions - High Speed Steel Tools
Feed: .005 in./rev. to .015 in./rev.
Depth of Cut: .100"
Cutting Fluid: Highly sulphurized oil, highly chlorinated oil,
water soluble emulsions and chemical solutions.
Tool Life End Point: .030" to .060" wearland.

3.3 Face Milling Conditions

Face milling tests were made using single and multiple tooth carbide and
high speed steel cutters.

Machine
A Cincinnati No. 3 Horizontal High Speed Dial Type Milling Machine
was used in the face milling tests.

Test Bars
The test bars were nominally 2" thick by 4" wide by 10" long.
A clean-up machining cut was made on all sides to remove any
surface effects from prior treatment.

Cutters
A 4" diameter experimental cutter using clamped-in 5/8" square tool
bits was used as a single tooth cutter for the tool material, tool
genometry, cutting speed and feed evaluation.

Tool Material - Carbide
A variety of carbide grades was used in the face milling tests. The
data charts give specific applications.

Tool Geometry - Carbide
Axial Rake (AR) 10° to -10°
Radial Rake (RR) 10° to -5°
Corner Angle (CA) 45°
End Cutting Edge Angle (ECEA) 5°
Peripheral Clearance 6° to 10°

Machining Conditions - Carbide
Feed per Tooth: .003" to .010"
Depth of Cut: .030" to .060"
Width of Cut: 2"
Cutting Fluid: Soluble oil (1:20), highly chlorinated oil,
highly sulphurized oil and dry.
Tool Life End Point: .015" wearland on peripheral flank of cutter
or .030" localized wear, whichever occurred first.
3.3 **Face Milling Conditions** (continued)

Tool Material - High Speed Steel

M-2, T-1, T-15, Braecut, Rex 49, and Hypercut high speed steel

Tool Geometry - High Speed Steel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial Rake (AR)</td>
<td>0° to 20°</td>
</tr>
<tr>
<td>Radial Rake (RR)</td>
<td>0° to 30°</td>
</tr>
<tr>
<td>Corner Angle (CA)</td>
<td>45°</td>
</tr>
<tr>
<td>End Cutting Edge Angle (ECEA)</td>
<td>5°</td>
</tr>
<tr>
<td>Peripheral Clearance</td>
<td>10°</td>
</tr>
</tbody>
</table>

Machining Conditions - High Speed Steel

- Feed per Tooth: .005" to .010"
- Depth of Cut: .030" to .060"
- Width of Cut: 1-1/2" to 2"
- Cutting Fluid: Highly sulphurized oil, highly chlorinated oil and water soluble emulsions.
- Tool Life End Point: .016" uniform wear or .030" localized wear, whichever occurred first.

3.4 **End Milling Conditions**

End milling tests were made using high speed steel cutters for producing slotting cuts and peripheral cuts. Tool life is expressed in inches of work travel to obtain a specific wearland on the tool.

Machine

A Cincinnati No. 2 Vertical Dial Type Milling Machine was used for the end milling tests.

Test Bars

The test bars were nominally 2" thick by 4" wide by 10" long. All sides were clean-up machined prior to testing to remove any surface effects from prior treatment.

Cutters - High Speed Steel

The end mills used in the tests were 3/4" diameter, 4 tooth, right hand spiral, right hand cut, high speed steel end mills.

Tool Materials - High Speed Steel

Type M-2, Type M-3 and Type T-15
3.4 End Milling Conditions (continued)

Tool Geometry - High Speed Steel

- Number of Teeth: 4
- Helix Angle: 30°
- Radial Rake (RR): 10°
- Corner Angle (CA): 45° x 0.060"
- Peripheral Clearance: 6° to 10°

Machining Conditions

- Feed per Tooth: .001" to .004"
- Depth of Cut: .125" to .500"
- Width of Cut: 1/2" and 3/4"
- Cutting Fluid: Highly chlorinated oil, highly sulphurized oil and water soluble emulsions
- Tool Life End Point: .015" uniform wearland or .030" localized wear on peripheral cutting edge, whichever occurred first.

3.5 Drilling Conditions

Drilling tests were made using high speed steel drills.

Machine

Drill life testing was done on a Cincinnati 16" Box Column Drilling Machine. This machine was equipped with an infinitely variable spindle speed and feed drive to provide exact cutting speed control and to obtain feeds of .0001 to .025 inches per revolution.

Drill Material - High Speed Steel

M-1, M-2, M-3, T-15 and M-33 high speed steel drills were used in the tests.

Test Samples

The drilling test samples were 1/2" thick plates cut from round and rectangular bar stock.

Drill Geometry - High Speed Steel

- Drill Diameter: .250"
- Drill Length: 2-1/2"
- Point Angle: 90°, 118°, 90°/118°, 135°, 90°/135°
- Helix Angle: 25°
- Clearance: 7°
- Point Grind: Plain and split
3.5 Drilling Conditions (continued)

Drilling Conditions - High Speed Steel

- Feed: .002 to .005 inches/revolution
- Depth of Hole: .500" through hole
- Cutting Fluid: Highly sulphurized oil, highly chlorinated oil and water soluble emulsions.

3.6 Reaming Conditions

Reaming tests were made using high speed steel chucking reamers.

Machine

The reaming tests were made on a Cincinnati 16" Box Column Drilling Machine.

Test Samples

The reaming tests were made on 1/2" thick slugs on which drilling studies had previously been made.

Reamer Material

M-2 type high speed steel.

Reamer Geometry

- Type: Straight 6 Flute Chucking Reamers and 6 Flute, 10° R. H. Spiral Chucking Reamers
- Diameter: .272"
- Axial Rake (AR): 0° and 10°
- Radial Rake (RR): 0°
- Helix Angle: 0° and 10°
- Corner Angle: 45°
- Peripheral Clearance: 10°

Reaming Conditions

- Feed: .005 to .015 inches/revolution
- Depth of Hole: .500" through hole
- Stock Removed: .010" on radius
- Cutting Fluid: Highly sulphurized oil, highly chlorinated oil and water soluble emulsions.
- Tool Life End Point: .012" wear on reamer corner.
3.7 Tapping Conditions

Tapping tests were made with 5/16-24 NF high speed steel taps.

Machine
A Fosdick 25" Box Column Drilling Machine was used for the tapping tests.

Test Samples
The 1/2" thick slugs previously drilled and reamed were used for the tapping tests.

Tap Material
Type M-10 high speed steel taps were used in the tests.

Tap Geometry
Tap: 4 Flute Plug, 2 Flute Chipdriver Plug
Percent Thread: 60% and 75%

Machining Conditions
Depth of Hole: .500" through hole
Cutting Fluid: Highly sulphurized oil and highly chlorinated oil
Tool Life End Point: Galling and seizure of tap or tap breakage

3.8 Grinding Conditions

Grinding tests were made using various grinding wheels and a range of grinding conditions to effect the best Grinding Ratio.

Machine
The grinding tests were performed on a Norton 8" x 24" Hydraulic Surface Grinder equipped with a variable speed spindle drive to obtain wheel speeds from 1000 to 7500 feet per minute.

Test Bars
The test bars had a nominal size of 1" thick x 1-1/2" wide x 6" long. All surfaces were clean-up machined prior to testing to remove any surface effects.
3.8 **Grinding Conditions** (continued)

Grinding Wheels

The following grinding wheels were used for the tests:

- **Aluminum Oxide Wheels**
 - 32A46H8VBE
 - 32A46J8VBE
 - 32A46K8VBE

- **Silicon Carbide Wheels**
 - GC60J6VP
 - GC46K6VP
 - GC46L6VP
 - GC80N6VP

Grinding Conditions

- Wheel Speed: 2000 to 6000 feet per minute
- Down Feed: .0005 to .005 inches per pass
- Cross Feed: .025 to .100 inches per pass
- Table Speed: 20 to 60 feet per minute
- Grinding Fluid: Highly chlorinated oil, highly sulphurized oil, water soluble emulsion and chemical solution.

Test Procedure

The procedure used in the surface grinding tests to study the effectiveness of a set of grinding conditions was one of measuring the amount of wheel wear for a given amount of stock removed. Wheel wear was measured using a vernier caliper and an accurate indicator and depth measurements were made to determine the stock removed. The volume of stock removed and volume of wheel removed was thus calculated.

The Grinding Ratio (G) which indicates the effectiveness of a set of grinding conditions is defined as:

$$G = \frac{\text{Volume of Stock Removed}}{\text{Volume of Wheel Removed}}$$

All test samples were examined for surface cracking, chatter marks and any other detrimental surface effects produced by the test grinding.
4. HIGH SPEED MILLING TEST CONDITIONS

4.1 Machine Tool Setup

A photograph of the 36" x 6' Gray planer and the high speed milling head adapted to this machine for these tests is shown in Figure 1, page 27. This machine is equipped with a motor generator set which provides variable voltage to the drive motor through adjustable rheostats. The speed of the table is determined by the drive motor speed and the planer gear ratio. Normally, table speeds ranging from 37.5 to 300 feet/minute are available. However, this machine was modified to provide infinitely variable table speeds ranging from 40 inches/minute to 400 inches/minute.

The high speed milling head was designed and built using a Varidrive motor to provide spindle speeds ranging from 150 rpm to 9000 rpm.

A holding fixture was bolted to the machine table and hold-down screws spaced at approximately 6 inch intervals held the sheet metal workpiece securely to the table.

Figure 2, page 28, shows a close-up view of the high speed milling cutter head and the carbide throw-away type end mill holder used for these tests. Two nozzles with .027" diameter orifices were used to direct liquid CO2 on the tool and workpiece. Only one nozzle is shown in the photograph, the other nozzle is behind the cutter. The sheet metal workpiece projected out approximately 1/2" from the edge of the table at the start of a test. After a series of test cuts were made, the workpiece was moved out another 1/2".

Figure 3, page 29, shows the high speed edge trimming operation with liquid CO2 coolant spraying on the workpiece and cutter. The work material was 6Al-4V Titanium sheet (35-36 Rc), .063" thick. The cutter was revolving at 6000 rpm (2000 feet/minute) and the table was traveling at 270 inches/minute.

4.2 High Speed Milling Test Conditions

Cutters

The high speed milling tests were made using a three tooth throw-away carbide end mill cutter with the following geometry:

- Cutter Diameter: 1-1/4"
- Number of Teeth: 3
- Throw-away Carbide Shape: Positive rake triangular inserts
- Axial Rake (AR): 0°
- Radial Rake (RR): 0°
- Peripheral Clearance: 5°
4.2 High Speed Milling Test Conditions (continued)

Tool Material - Carbide

Positive rake throw-away type carbide inserts in a wide variety of grades were used. See the individual data charts for specific applications.

Work Material

To date, two work materials have been machined in this program. These are 6Al-4V Titanium sheet (35-36 R_c) and PH 15-7 Mo stainless sheet (90 R_p). Testing consisted of straight climb cuts on .063" and .125" thick material.

Machining Conditions

Cutting Speed: 500 feet/minute to 2500 feet/minute
Feed per Tooth: .005" to .030"
Depth of Cut: .050" to .150"
Width of Cut: .063" to .125"
Cooling Medium: Liquid CO_2, Dry, and Soluble Oil Spray Mist
Tool Life End Point: .030" or .060" Wearland on Peripheral Flank of Cutter, or Excessive Burr on Work Material
5. TEST RESULTS

5.1 High Speed Milling (Edge Trimming) Test Results

5.1.1 High Speed Milling 6Al-4V Titanium Sheet (35-36 R_C)

Figures 4 through 12, pages 30 through 38, present the data obtained when high speed milling (edge trimming) 6Al-4V Titanium sheet at 35-36 R_C. Figure 4, page 30, shows the effect of cutting speed at constant feeds using a 1-1/4" diameter 3 tooth end mill with Grade 883 (C-2) carbide inserts. Maximum tool life, 228 feet, was obtained at a cutting speed of 500 feet/minute with a feed of .010 inches/tooth. Tool life decreased rapidly when the cutting speed was increased up to 2000 feet/minute. At this cutting speed a tool life of 32 feet was obtained.

Figure 5, page 31, presents the same data plotted as a function of feed rate with constant cutting speeds. This chart shows that feeds of the order of .005-.010 inches/tooth provided the best tool life over the range of cutting speeds used.

The effect of cutting speed and sheet thickness is shown in Figure 6, page 32. Again, the best tool life was obtained at a cutting speed of 500 feet/minute when edge trimming sheet material .063" thick and .125" thick. When the cutting speed was increased, tool life was reduced significantly for both sheet thicknesses. Another interesting test point is shown on this chart. This test point was made without liquid CO_2 when milling the .125" thickness material at 500 feet/minute. A tool life of 172 feet of work travel was obtained without liquid CO_2 compared with a tool life of 202 feet of work travel when using liquid CO_2 as the cooling medium.

Figure 7, page 33, shows the effect of sheet thickness on tool life when the feed was increased from .005 inches/tooth to .020 inches/tooth. This data was obtained using a cutting speed of 1000 feet/minute with liquid CO_2. A tool life of 120 feet of work travel was obtained with the .063" thick material at a feed of .005 inches/tooth. Tool life decreased to 60 feet of work travel when milling the .125" thick sheet material with this feed. At a feed of .020 inches/tooth, tool life was almost the same, 30 feet, for both sheet thicknesses. The effect of depth of cut when varying the feed per tooth is shown in Figure 8, page 34. When milling at a cutting speed of 1000 feet/minute with a feed of .005 inches/tooth, a tool life of 120 feet of work travel was obtained at a depth of cut of .050" on the .063" thickness material. When the depth of cut was increased to .100", tool life decreased to 69 feet of work travel. However, another .050" increase in depth of
High Speed Milling 6Al-4V Titanium Sheet (35-36 R), (continued)

cut, i.e., .150", reduced tool life to 63 feet of work travel. When the feed was increased to .020 inches/tooth - tool life was reduced to values ranging from 10 to 25 feet of work travel for the three depths of cut taken in this series of tests.

Figure 9, page 35, shows the effect of depth of cut when using liquid CO\(_2\) and also when milling this Titanium alloy dry. For these tests the cutting speed and feed were held constant at 1000 feet/minute and .005 inches/tooth respectively. When a depth of cut of .050" was taken, a tool life of 120 feet of work travel was obtained with liquid CO\(_2\) and 102 feet of work travel dry or without liquid CO\(_2\). This resulted in approximately a 20% increase in tool life when using liquid CO\(_2\). However, when the depth of cut was increased to .100" and .150", a tool life of about 65 feet of work travel was obtained using liquid CO\(_2\) and 35 feet of work travel without liquid CO\(_2\). The beneficial effects of liquid CO\(_2\) when taking the higher depths of cut are obvious.

Figure 10, page 36, presents in bar chart form the effects of a cooling medium and depth of cut on tool life when high speed milling the 6Al-4V Titanium alloy. This chart shows that at a depth of cut of .050" little difference in tool life was obtained when using liquid CO\(_2\), soluble oil spray mist and milling dry. However, at depths of cut of .100" and .150" tool life was highest when liquid CO\(_2\) was used as the cooling medium.

The effect of carbide grade, Figure 11, page 37, shows that the best carbide for high speed milling this alloy was Grade 883 (C-2). This carbide provided a tool life of almost 40 feet of work travel at a cutting speed of 1500 feet/minute with a feed of .020 inches/tooth. The next best two carbide grades were Grade K-2S (C-6) and Grade K-6 (C-2). A tool life of just over 30 feet of work travel was obtained with these grades, while the poorest grade tested was Grade K-8 (C-3). This carbide provided 15 feet of work travel.

Figure 12, page 38, shows the effect of rate of wear on the carbide tool plotted against feet of work traveled at two cutting speeds, namely 500 feet/minute and 1000 feet/minute. This chart shows that for a length of cut of 100 feet of work travel, a wearland of about .010" was observed on the tool when milling at 500 feet/minute. However, when the cutting speed was doubled to 1000 feet/minute the wearland increased threefold to .030".
5.1.2 High Speed Milling PH 15-7 Mo Stainless Sheet

The data obtained when high speed milling PH 15-7 Mo stainless sheet, annealed at 90 R₂ - .063" thick - is presented in Figures 13 through 20, pages 39 through 46. The effect of cutting speed at constant feeds and feed rate at constant cutting speeds is presented in Figures 13 and 14, pages 39 and 40. These charts show that maximum tool life was obtained in the 1000 to 2000 feet/minute cutting speed range and the .010 to .020 inch/tooth feed range. The best tool life, 97 feet of work travel, was obtained when using a cutting speed of 1500 feet/minute with feeds of .015 to .020 inches/tooth. This data was obtained when using liquid CO₂ as the cooling medium.

The data presented in Figures 15 and 16, pages 41 and 42, show the effects of cutting speed and feed when high speed milling PH 15-7 Mo stainless sheet dry. It should be noted that tool life is increased approximately 50% over milling with liquid CO₂ as the cooling medium. Figure 15, page 41, shows that the optimum cutting speed was found to be 1500 feet/minute. At this cutting speed a tool life of 150 feet of work travel was obtained. Figure 16, page 42, shows that when a cutting speed of 1500 feet/minute was used, approximately the same tool life - 150 feet of work travel - was obtained with feeds of .010, .015 and .020 inches/tooth. At feeds lower than .010 inches/tooth and feeds higher than .020 inches/tooth, tool life decreased significantly. Feeds appeared to be somewhat more critical at the other cutting speeds used.

Figures 17 and 18, pages 43 and 44 show the effects of cutting speed and depth of cut on tool life when high speed edge trimming PH 15-7 Mo. When taking a .050" depth of cut with liquid CO₂, best tool life of 97 feet of work travel was obtained at 1500 feet/minute. When the depth of cut was increased to .100" tool life decreased to 77 feet of work travel, and at a depth of cut of .150" a tool life of 45 feet of work travel was obtained. At cutting speeds above and below 1500 feet/minute, tool life decreased significantly. Figure 18, page 44 presents the same type of data when milling dry. Significantly higher tool life values were obtained using the three depths of cut of .050", .100" and .150".

The effect of type of cooling medium is presented in Figure 19, page 45. This chart shows that no increase in tool life was obtained when using liquid CO₂ or a soluble oil spray mist over cutting dry. The data show that when taking a .050" depth of cut, a tool life of 150 feet of work travel was obtained cutting dry, while a tool life of 97 feet of work travel was obtained when using liquid CO₂ or a soluble oil spray mist.
5.1.2 High Speed Milling PH 15-7 Mo Stainless Sheet (continued)

The effect of different carbide grades, Figure 20, page 46, shows that Grade K-2S (C-6) was far superior to the other grades tested. At a cutting speed of 2000 feet/minute and a feed of .010 inches/tooth, Grade K-2S provided a tool life of 67 feet of work travel. The second best carbide, Grade K-6 (C-2) provided a tool life of 36 feet of work travel while less than 25 feet of work travel was obtained with Grades 883 (C-2) and K-8 (C-3).

5.2 Comparative Drilling and Tapping Tests Using Tornetic and Constant Speed and Feed Drill Press

5.2.1 Drilling D6AC Steel, Quenched and Tempered 54-58 R\text{c}

Figure 21, page 47, shows the data obtained when drilling D6AC steel quenched and tempered at 54, 56 and 58 R\text{c} using the Tornetic drilling unit and a constant speed and feed drilling machine. All of the drilling tests on D6AC steel were made at 100 feet/minute with an initial feed of .001 inches/rev. using Grade 883 (C-2) carbide tipped, #3 (.213") diameter drills. A drill life of 76 holes was obtained at the 54 R\text{c} hardness level with the constant speed and feed machine, while 60 holes were obtained on the Tornetic drilling unit. By the time the 60th hole was drilled, the feed rate had decreased to one half of its initial value because of the dulling of the drill point and cutting lips.

A drill life of 66 holes was obtained on the constant speed and feed drill press when drilling this alloy at 56 R\text{c}. With the Tornetic drilling unit 55 holes were obtained with corresponding decrease in feed rate as drilling progressed. When drilling this alloy at 58 R\text{c} on the constant speed and feed drilling machine, a drill life of 40 holes was obtained, while the Tornetic drilling unit provided 32 holes.

5.2.2 Drilling AISI 410 Stainless Steel, Quenched and Tempered 45 R\text{c}

In drilling AISI 410 stainless steel quenched and tempered to 45 R\text{c}, no significant difference in drill life was observed when using the constant speed and feed drilling machine and the Tornetic drilling unit. The data presented in Figure 22, page 48, shows that very low drill life was obtained on both drilling machines when drilling this alloy with Type T-15 HSS drills, at 75 and 100 feet/minute with a feed of .002 inches/rev. When the cutting speed was reduced to 50 feet/minute a drill life of 195 holes was obtained on the constant speed and feed drilling machine, and 205 holes on the Tornetic drilling unit. The feed rate decreased about 10% during the drilling of these holes on the Tornetic unit.
5.2.3 Drilling 6Al-4V Titanium, Solution Treated and Aged 360 BHN

Comparative data obtained when drilling 6Al-4V Titanium solution treated and aged 360 BHN with the Tornetic drilling unit and a constant speed and feed drilling machine, is presented in Figure 23, page 49. At a cutting speed of 75 feet/minute with a feed of .002 inches/rev., both drilling machines provided less than 20 holes. However, at a cutting speed of 65 feet/minute over twice as many holes were drilled on the constant speed and feed unit as were obtained on the Tornetic drilling unit. When the cutting speed was reduced to 50 feet/minute, 100 holes were drilled on both units before the test was discontinued. The drill used with the constant speed and feed drilling machine had a wearland of .006", while the drill used in the Tornetic drilling unit had a wearland of .010". In addition, the feed rate on the Tornetic unit had decreased 30% by the time the last hole was drilled.

5.2.4 Tapping B-120VCA Titanium, Solution Treated and Aged 400 BHN

Figure 24, page 50 shows the data obtained when tapping B-120VCA Titanium at 400 BHN with a conventional tapping unit and the Tornetic tapping unit. At a cutting speed of 17 feet/minute less than 10 holes were tapped with the Tornetic tapping unit before the tap stalled in the workpiece. At this cutting speed, using the optimum motor-spindle belt ratio, a maximum torque value of 120 in. -lbs. was available at the spindle. When the cutting speed was reduced to 10 feet/minute, by decreasing the motor-spindle ratio, tap life increased to 50 holes before the tap stalled in the workpiece. Cycling the tap did not increase tap life. A maximum torque value of 250 in. -lbs. was available when making this test. The cutting speed was reduced further to 6 feet/minute with a maximum torque of 300 in. -lbs. Tap life was increased to 72 holes before the tap broke in the workpiece. At a cutting speed of 9 feet/minute the conventional tapping machine provided a tap life of 100 holes before the test was discontinued.

5.3 Machining Tests on B-120VCA Titanium

5.3.1 Face Milling Tests

Climb cutting was employed in all of the face milling tests on the B-120VCA titanium alloy. A comparison of the super high speed steel, cast alloy and high speed steel tools is presented in Figure 25, page 51. Both the Braercut and Hypercut tools were superior to the others. The types M-2 and T-1 high speed steels had very short tool life. A similar comparison of the various grades of tools in face milling the same alloy but solution treated and aged to 400 BHN is shown in Figure 26, page 52.
5.3.1 Face Milling Tests (continued)

The relationships of cutting speed and tool life with a Braecut HSS tool in face milling the alloy at the two hardness levels are shown in Figures 27 and 28, pages 53 and 54. A reasonable cutting speed for the solution treated alloy was 30 to 40 feet/minute and 25 feet/minute for the solution treated and aged alloy. A tool life curve is shown in Figure 29, page 55 for the solution treated alloy with carbide tools. It is interesting to note that the permissible cutting speed is over 300% faster than with the super high speed steel tools.

As shown in Figure 30, page 56, the feed was critical. Increasing the feed from .005 to .008 inches/tooth resulted in decreasing the tool life from 125 to 45 inches of work travel.

The carbide Grade 883 (C-2) was far superior to the (C-1), (C-6), and (C-7) grades in face milling the B-120VCA Titanium alloy at both strength levels, 285 and 400 BHN, as illustrated in Figure 31, page 57.

5.3.2 End Milling Tests

The effect of cutting speed on tool life for end mill slotting B-120VCA Titanium in two different heat treated conditions is presented in Figure 32, page 58. The cutting speed for a given tool life on the solution treated alloy (285 BHN) was about 10% higher than with the solution treated and aged alloy (400 BHN).

As shown in Figure 33, page 59, the feed was very critical on the alloy in both heat treated conditions. Doubling the feed from .002 to .004 inches/tooth resulted in decreasing the tool life from a reasonable value to a very short tool life. As shown in Figure 34, page 60, while the type of cutting fluid selected did not affect tool life to any great extent, heavy duty soluble oil at 1:20 was slightly better than the other fluids tested.

Cutter life was also sensitive to feed in peripheral end milling, see Figure 35, page 61. Tool life decreased rapidly as the feed was increased or decreased from a feed of .002 inches/tooth on the B-120VCA alloy at 400 BHN. The relationship between tool life and cutting speed for the alloy at 400 BHN is shown in Figure 36, page 62.
5.4 Molybdenum Alloys

5.4.1 Turning Tests

The relationship between tool life and cutting speed for turning the TZM Molybdenum alloy is shown in Figure 37, page 63, for two different depths of cut. A tool life of 25 minutes was obtained at a cutting speed of 450 feet/minute, a feed of .009 inches/rev. and a depth of cut of .030". When the depth of cut was doubled to .060" the tool life dropped to 5 minutes. Also when the TZM Molybdenum alloy was cut dry, the tool life decreased to as much as one third of the value obtained with a soluble oil. The harder grade of carbide K-8 (C-3) appeared to be no better than the K-6 (C-2) grade, and the 44A (C-2) grade was somewhat poorer.

As indicated in Figure 38, page 64, longer tool life was obtained with the lighter feeds. At a feed of .005 inches/rev., the tool life was 41 minutes or 38 cubic inches as compared to 10 minutes or 22 cubic inches at a feed of .012 inches/rev.

The chart in Figure 39, page 65, shows superiority of soluble oil (1:20) over a highly chlorinated or sulphurized oil. The improvement in tool life with the higher side rake angle is presented in Figure 40, page 66. The tool life was increased almost 4 times by increasing the rake angle from 7⁰ to 20⁰.

5.4.2 Face Milling Tests

A comparison of various high speed steel and cast alloy tools is presented in Figure 41, page 67, for face milling the TZM Molybdenum alloy. The tool life with the super high speed steels, T-15 and Braecut, was about 50% greater than with the types T-1 and M-2 high speed steels. While the cast alloy tools showed some advantage over the T-1 and M-2 tools in one instance, these tools were poorer than the super high speed steels.

Although the feed is not critical as it affects tool life with high speed steel tools in face milling, there is a definite advantage in using a feed of .010 inches/tooth as shown in Figure 42, page 68. Also as indicated in Figure 43, page 69, tool life decreased appreciably as the depth of cut was increased. The depth of cut appears to have appreciable influence on tool life, see Figure 43, page 69. At a cutting speed of 152 feet/minute, the tool life decreased from 42 inches of work travel at a depth of cut of .030" to 25 inches when the depth was increased to .060". However, if the cutting speed is reduced 15%, the depth of cut can be increased from .030" to .060" without sacrificing tool life.
5.4.2 Face Milling Tests (continued)

From the results shown in Figure 44, page 70, tool geometry with high speed steel tools is a very important factor influencing tool life. Negative rake angles should not be used in milling TZM molybdenum. High positive radial rake angles should be used.

The tool life curves in Figure 45, page 71, show that a practical cutting speed for face milling the extruded TZM molybdenum alloy is 300 to 350 feet/minute with a C-2 grade carbide tool. With carbide tools, the depth of cut does not influence tool life very much. Increasing depth of cut from .030" to .060" resulted in a reduction in tool life of less than 10%. It should be noted that the tool life was appreciably poorer on the recrystallized, hot rolled and stress relieved alloy at the lower cutting speeds.

As indicated in Figure 46, page 72, soluble oil (1:20) was better than the highly chlorinated oil and considerably better when face milling dry with carbide tools.

Negative rake angles are not to be used with carbide cutters for face milling the TZM molybdenum alloy, see Figure 47, page 73. The optimum tool geometry is 0° axial rake and 0° radial rake. Higher positive rake angles also result in decreasing tool life. The feed was more critical with carbide tools. Note in Figure 48, page 74, that tool life decreased about 60% when the feed was increased from .005 to .008 inches/tooth.

5.4.3 End Milling

The TZM molybdenum alloy at 248 BHN can be slot milled at relatively high cutting speeds with high speed steel cutters, as shown by the tool life curves in Figure 49, page 75. A tool life of 70 inches work travel was obtained with an M-3 HSS cutter at a cutting speed of 160 feet/minute. The cutting speed can be increased to 190 feet/minute with a T-15 HSS cutter for the same tool life.

As shown in Figure 50, page 76, the type of cutting fluid used in end milling the TZM molybdenum alloy is not critical. The differences in the three fluids shown are not significant.

Heavier feeds should be employed in end milling. By increasing the feed from .002 to .005 inches/tooth, tool life in terms of inches of work travel was doubled, see Figure 51, page 77.
5.4.3 End Milling (continued)

The depth of cut should not exceed about .250", for as presented in Figure 52, page 78, if a depth of cut of .500" is taken, the cutter will break down rapidly and tool life will be about 50% of that obtained at a depth of .250".

The cutting speed for peripheral milling was about 50% greater than that used in slot milling. The tool life curves in Figure 53, page 79, show that for a tool life of 80 inches of work travel the cutting speed for end milling was 150 feet/minute as compared to 250 feet/minute for peripheral milling.

5.4.4 Drilling

Cutting speed tool life curves are presented in Figure 54, page 80, for two types of points and point angles. The 135° split point was appreciably better than the 118° plain point. For a drill life of 100 holes, the drilling speed was 125 feet/minute with drills having a 135° split point and approximately 105 feet/minute with drills having a 118° plain point. The tool life curve in Figure 55, page 81, shows that when the feed is increased from .005 to .009 inches/rev. the drill life decreases from 98 to 34 holes.

In drilling TZM molybdenum, the highly chlorinated oil showed an advantage over both the highly sulphurized oil and the soluble oil at a drill speed of 125 feet/minute, see Figure 56, page 82.

The bar chart in Figure 57, page 83, illustrates the importance of drill geometry. The split point was the best in most cases and the 135° point angle was superior to all of the other point angles. Of all of the grades of high speed steel drills tested, the premium grades proved the best, as demonstrated in Figure 58, page 84.

The drill life curves obtained on several TZM molybdenum alloys which were processed differently are shown in Figure 59, page 85. The drill life on the extruded and recrystallized (220 BHN) alloy was appreciably better than that obtained on the extruded (229 BHN) only, or the extruded, recrystallized, hot rolled and stress relieved (248 BHN).

5.4.5 Reaming

The tool life curves in Figure 60, page 86, indicate that the optimum feed for reaming is .015 inches/rev. over a range of cutting speeds. At lower and higher feeds the reamer life was poorer. The reaming speed should be 50 to 60 feet/minute. As shown in Figure 61, page 87, a highly chlorinated oil proved superior to the other two types of cutting fluids.
5.4.6 **Tapping**

The effect of cutting speed and tap style on tapping TZM molybdenum is demonstrated in Figure 62, page 88. From the chart it appears that the optimum cutting speed was 70 feet/minute. Tap life decreased at very low and also at higher cutting speeds. Four flute plug taps should be used, although at the proper cutting speed the two flute chip driver plug tap performed almost as well. Active cutting oils must be used in order to get a reasonable tap life. A comparison of active cutting oils with soluble oil is presented in Figure 63, page 89.

5.4.7 **Grinding**

The relative merits of several grades of grinding wheels for grinding the TZM molybdenum alloys are shown in Figure 64, page 90. At a wheel speed of 5000 feet/minute and using a soluble oil the harder grade 32A46N5VBE wheel produced the highest "G" ratio. However, chatter occurred under these conditions.

Further test results on the best three grades are presented in Figure 65, page 91. The "G" ratio was improved considerably by using a 5% solution of potassium nitrite and reducing the wheel speed. Under the conditions listed in Figure 65, page 91, a "G" ratio of 25 was obtained with the 32A46N5VBE wheel. The 5% solution of potassium nitrite also proved to be superior to active oils as shown in Figure 66, page 92. The table speed should be in the range of 20 to 50 feet/minute; the "G" ratio decreased at higher table speeds, see Figure 67, page 93.

As indicated in Figures 68 and 69, pages 94 and 95, the down feed should not exceed .002 inches/pass and the cross feed should be in the range of .050 to .100 inches/pass.

5.4.8 **Recommendations for Machining TZM Molybdenum Alloy**

The recommendations for machining the TZM molybdenum alloy are given in Table I, pages 123 and 124.

5.5 **Columbium Alloy**

5.5.1 **Turning**

Appreciable differences were found in the various carbide grades used in turning the D-31 columbium alloy. As shown in Figure 70, page 96, the C-6 grade was the poorest and the C-2 grade the best. A comparison of the C-2 grade of carbide with high speed steel and cast alloy tools is presented in Figure 71, page 97. The cutting speed with carbide is 50% faster than with the cast alloy and more than 300% faster than with high speed steel tools.
5.5.1 **Turning** (continued)

Tool life decreased rapidly as the feed was increased above .005 inches/rev. The tool life curve versus feed in Figure 72, page 98, indicates that the tool life at a feed of .009 inches/rev. was only one-third the tool life obtained at a feed of .005 inches/rev.

Tool geometry is also a very important factor in turning the D-31 Columbium alloy. Note in Figure 73, page 99, how the tool life increased as the side rake angle increased. Changing the side rake from 20° to 30° more than doubled the tool life.

5.5.2 **Face Milling**

The relationship between tool life and cutting speed is shown in Figure 74, page 100 for a feed of .010 inches/tooth with an M-2 high speed steel tool. In addition, test points are presented for lighter and heavier feeds. At the feed of .010 inches/tooth, the cutting speed should be 100 feet/minute. Test data in the chart also indicates that by reducing the feed 50%, tool life was doubled. Also as shown in Figure 75, page 101, tool life was improved considerably by using the premium grades of high speed steel tools.

A further increase in tool life was obtained through the use of a highly chlorinated oil, see Figure 76, page 102. As shown in Figure 77, page 103, tool geometry is another important factor in milling the D-31 columbium alloy with high speed steel tools. An axial rake of 0° and a radial rake of 30° proved best.

A comparison of the tool life curves in Figures 74 and 78, pages 100 and 104, shows that the cutting speed with carbide was 40% higher than with an M-2 high speed steel cutter. The feed was .010 inches/tooth in both cases.

5.5.3 **End Milling**

The proper selection of cutting fluid in end milling the D-31 columbium alloy is very important. Note in Figure 79, page 105, the great differences obtained in tool life with the three cutting fluids tested. The highly chlorinated oil was 500% better than the soluble oil and 50% better than the highly sulphurized oil.

The tool life curves in Figure 80, page 106, demonstrate the advantage of the T-15 high speed steel cutter over the M-2 cutter. The cutting speed for the equivalent tool life was 35% higher with the T-15 than with the M-2 cutter.
5.5.3 **End Milling** (continued)

As shown in Figure 81, page 107, the feed is also very critical. Tool life at a feed of .002 inches/tooth was over 50% greater than at a feed of .001 inches/tooth; while at a feed of .003 inches/tooth the tool life was nil.

5.5.4 **Drilling**

The effect of cutting speed and feed in drilling the D-31 columbium alloy is demonstrated in Figure 82, page 108. A feed of .002 inches/rev. permitted a 50% increase in cutting speed over that permitted with a feed of .005 inches/rev., however the production rate on the 85 holes drilled at 75 feet/minute and the heavier feed was greater than that for the 85 holes drilled at 120 feet/minute and the lighter feed. A tool life curve for a range of cutting speeds is shown in Figure 83, page 109, for a 1/8" diameter drill at a feed of .005 inches/rev.

In the smaller drills, the feed is even more important. Note in Figure 84, page 110, the wide range of drill life as the feed was increased with a 1/16" diameter drill. Also note how the drill life improved when the cutting speed was increased from 25 to 50 feet/minute. Chip removal was better at the higher drill speed. A feed of .0005 inches/rev. at a cutting speed of 50 feet/minute should be used on drills 1/16" diameter.

Another important factor in drilling small diameter holes is the length of the drill. In the chart in Figure 85, page 111, the overall length of the drill was 1-5/8", however by reducing the drill length from 1-5/8" to 1-1/4", the drill life increased from 15 holes to 61 holes.

5.5.5 **Reaming**

The relationship between cutting speed and reamer life is illustrated in Figure 86, page 112. Using a 10° right hand spiral reamer and a highly sulphurized oil, 100 holes .213" diameter can be reamed at a cutting speed of 125 feet/minute. The reamer life was appreciably less with either the highly chlorinated or the soluble oil, and with a straight flute reamer. As indicated by Figure 87, page 113, the feed rate is extremely important. A 40% reduction in reamer life resulted when the feed was reduced from .005 inches/rev. to .002 inches/rev. An even greater reduction occurred when the feed was increased to .009 inches/rev.
5.5.6 Tapping

A relatively low cutting speed must be used in tapping the D-31 columbium alloy. Note in Figure 88, page 114 that at a cutting speed of 12 feet/minute 50 holes were tapped, while only 17 holes were tapped at 16 feet/minute. The selection of cutting fluid is also critical. The chart in Figure 89, page 115, demonstrates the vast superiority of the highly chlorinated oil over various other types.

5.5.7 Grinding

The bar charts in Figures 90 and 91, pages 116 and 117, indicate that the best wheel of the group tested was the grade 32A46K8VBE for surface grinding both the unalloyed columbium and the D-31 columbium alloy. Various grinding fluids are also compared in Figure 92, page 118, on both metals. Note that potassium nitrite (KNO2) was the best of the group on the D-31 columbium alloy. This fluid had not as yet been tested in grinding the unalloyed columbium.

The relationship between wheel speed and "G" ratio is presented in Figure 93, page 119. Note how rapidly the "G" ratio decreased on the D-31 columbium alloy when the wheel speed was increased beyond 4000 feet/minute. The "G" ratio for the unalloyed columbium may be greater when the tests are conducted using potassium nitrite as the grinding fluid.

The effect of table speed on "G" ratio is shown in Figure 94, page 120, for two types of wheels. As shown in the chart, a change in table speed over a range of 20 to 60 feet/minute did not affect appreciably the grinding ratio. However, as illustrated in Figures 95 and 96, pages 121 and 122, increasing either or both the down feed or the cross feed can adversely effect the "G" ratio.

5.5.8 Recommendations for Machining D-31 Columbium Alloy

The recommendations for machining D-31 columbium alloy are given in Table II, pages 125 and 126.
6. PROGRAM FOR NEXT QUARTER

In the next quarter the machining program will be completed. Additional data necessary to fully complete the machinability evaluation of the various alloys tested in this program will be generated.

The high speed milling program will be completed. Additional materials to be tested are HS-25, Rene' 41 and B-120VCA Titanium sheet.

Drilling and tapping tests on the Tornetic units will be completed.
An overall view of 36" x 6' Gray planer and high speed milling head adapted to this machine. The planer provides infinitely variable table speeds ranging from 40 inches/minute to 400 inches/minute. Spindle speeds ranging from 150 rpm to 9000 rpm are available on the milling head.
Close-up view of high speed milling cutter head and carbide throw-away type end mill. One of the two nozzles used to direct liquid CO$_2$ on the cutter and workpiece is shown.

See Text, page 11
Close-up of high speed edge trimming operation with liquid CO$_2$ spraying on workpiece and cutter. The cutter was revolving at 6000 rpm (2000 feet/minute) and the table was traveling at 270 inches/minute.
High Speed Milling 6Al-4V Titanium Sheet, 35-36 Rc

Effect of Cutting Speed and Feed

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade 883 (C-Z) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Width of Cut: .063"
Depth of Cut: .050"
Cooling Medium: Liquid CO₂
Tool Life End Point: .030" Uniform Wearland

B = Heavy Burr on Workpiece

Climb Cutting

!.010 inches/tooth
.005 inches/tooth
.020 inches/tooth
.015 inches/tooth

500 1000 1500 2000 2500
Cutting Speed - feet/minute

See Text page 13

Figure 4
High Speed Milling 6Al-4V Titanium Sheet, 35-36 Rc

Effect of Feed and Cutting Speed

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade 883 (C-2) Carbide Inserts

AR: 0° RR: 0°
Peripheral Clearance: 5°
Width of Cut: .063"
Depth of Cut: .050"
Cooling Medium: Liquid CO₂
Tool Life End Point: .030" Uniform Wearland
B = Heavy Burr on Workpiece

See Text page 13
Figure 5
High Speed Milling 6Al-4V Titanium Sheet, 35-36 R_c

Effect of Cutting Speed and Sheet Thickness

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade 883 (C-2) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: See Below
Feed: .010 inches/tooth
Width of Cut: See Below
Depth of Cut: .050"
Cooling Medium: Liquid CO₂
Tool Life End Point: .030" Uniform Wearland

Climb Cutting

.063"
Sheet Thickness

.125"
Sheet Thickness (without liquid CO₂)

228 in. @ 500 ft./min.

500 1000 1500 2000 2500
Cutting Speed - feet/minute

200 175 150 125 100 75 50 25
Tool Life - feet of work travel

See Text page 13 Figure 6
High Speed Milling 6Al-4V Titanium Sheet, 35-36 R_c

Effect of Feed and Sheet Thickness

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade 883 (C-2) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: 1000 feet/minute, 3000 rpm
Feed: See Below
Depth of Cut: .050"
Width of Cut: See Below
Cooling Medium: Liquid CO₂
Tool Life End Point: .030" Uniform Wearland

See Text page 13
High Speed Milling 6Al-4V Titanium Sheet, 35-36 Rc

Effect of Feed and Depth of Cut

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade 883 (C-2) carbide inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: 1000 feet/minute, 3000 rpm
Feed: See Below
Width of Cut: .063"
Depth of Cut: See Below
Cooling Medium: Liquid CO₂
Tool Life End Point: .030" Uniform Wearland
B = Heavy Burr on Workpiece

Climb Cutting

Depth of Cut

Depth of Cut

Depth of Cut

Feed - inches/tooth

See Text page 13

Figure 8
High Speed Milling 6Al-4V Titanium Sheet, 35-36 R_c

Effect of Depth of Cut and Cooling Medium

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade 883 (C-2) Carbide Insert
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: 1000 feet/minute, 3000 rpm
Feed: .005 inches/tooth
Width of Cut: .063"
Depth of Cut: See Below
Cooling Medium: See Below
Tool Life End Point: .030" Uniform Wearland

See Text page 14 - 35 - Figure 9
High Speed Milling 6Al-4V Titanium Sheet, 35-36 Rₐ

Effect of Carbide Grade

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Carbide Inserts (See Grade Below)
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: 1500 feet/minute, 4500 rpm
Feed: .020 inches/tooth
Width of Cut: .063"
Depth of Cut: .050"
Cooling Medium: Liquid CO₂
Tool Life End Point: .030" Uniform Wearland

Climb Cutting

See Text page 14
High Speed Milling of 6A1-4V Titanium Sheet, 35-36 R_c

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade 883 (C-2) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: See Below
Feed: See Below
Width of Cut: .063"
Depth of Cut: .050"
Cooling Medium: Liquid CO_2
Tool Life End Point:
.030" Uniform Wear

500 feet/minute
.010 inches/tooth

1000 feet/minute
.010 inches/tooth

228 ft. @ .030" wear

0 0.005 0.010 0.015 0.020 0.025 0.030
Tool Wearland - inches

See Text page 14
Figure 12
High Speed Milling PH 15-7 Mo Sheet, Annealed 90 RB

Effect of Cutting Speed with Constant Feeds Using Liquid CO₂

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade K-2S (C-6) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: See Below
Feed: See Below
Width of Cut: .063"
Depth of Cut: .050"
Cooling Medium: Liquid CO₂
Tool Life End Point: .060" Uniform Wearland

See Text page 15
High Speed Milling PH 15-7 Mo Sheet, Annealed 90 RB
Effect of Feed with Constant Cutting Speeds using Liquid CO₂

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade K-2S (C-6) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: See Below
Feed: See Below
Width of Cut: .063"
Depth of Cut: .050"
Cooling Medium: Liquid CO₂
Tool Life End Point: .060" Uniform Wearland

Climb Cutting

Tool Life - feet of work travel

150
125
100
75
50
25

2000 feet/minute
1500 feet/minute
1250 feet/minute
1000 feet/minute
500 feet/minute

Feed - inches/tooth

See Text page 15

- 40 -

Figure 14
High Speed Milling PH 15-7 Mo Sheet, Annealed 90 RB
Effect of Cutting Speed with Constant Feeds
Dry (Without Liquid CO₂)

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade K-2S
(C-6) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: See Below

Feed: See Below
Width of Cut: .063"
Depth of Cut: .050"
Cooling Medium: Dry
Tool Life End Point: .060"
Uniform Wearland

See Text page 15

Figure 15
High Speed Milling PH 15-7 Mo Sheet, Annealed 90 RB
Effect of Feed with Constant Cutting Speeds
Dry (Without Liquid CO₂)

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade K-2S (C-6) Carbide Inserts
AR: 0° RR: 0° Peripheral Clearance: 5°
Cutting Speed: See Below

Feed: See Below Width of Cut: .063"
Depth of Cut: .050"
Cooling Medium: Dry Tool Life End Point: .060"
Uniform Wearland

See Text page 15
- 42 - Figure 16
High Speed Milling PH 15-7 Mo Sheet, Annealed 90 RB
Effect of Cutting Speed and Depth of Cut Using Liquid CO₂

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade K-2S (C-6) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Feed: .015 inches/tooth
Width of Cut: .063"
Tool Life End Point: .060" Uniform Wearland

Climb Cutting

<table>
<thead>
<tr>
<th>Tool Life - feet of work travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>125</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutting Speed - feet/minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2500</td>
</tr>
</tbody>
</table>

See Text page 15
Figure 17
High Speed Milling PH 15-7 Mo Sheet, Annealed 90 RB

Effect of Cutting Speed and Depth of Cut
Dry (Without Liquid CO2)

Cutter: 1-1/4" Dia. 3 Tooth End Mill with
Grade K-2S (C-6) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Feed: .015 inches/tooth
Width of Cut: .063"
Tool Life End Point: .060" Uniform Wearland

See Text page 15
High Speed Milling PH 15-7 Mo Sheet, Annealed 90 RB

Effect of Cooling Medium and Depth of Cut

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Grade K 2S (C-6) Carbide Inserts
AR: 0° RR: 0°
Peripheral Clearance: 5°
Cutting Speed: 1500 feet/minute, 4500 rpm
Feed: .015 inches/tooth
Width of Cut: .063"
Depth of Cut: See Below
Tool Life End Point: .060" Uniform Wearland Climb Cutting

See Text page 15

Figure 19

<table>
<thead>
<tr>
<th>Depth</th>
<th>Tool Life (feet of work travel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.050"</td>
<td></td>
</tr>
<tr>
<td>.100"</td>
<td></td>
</tr>
<tr>
<td>.150"</td>
<td></td>
</tr>
<tr>
<td>.050" (Dry (without CO₂))</td>
<td></td>
</tr>
<tr>
<td>.050" (Soluble Oil Spray Mist)</td>
<td></td>
</tr>
<tr>
<td>.100" (Liquid CO₂)</td>
<td></td>
</tr>
<tr>
<td>.150" (Liquid CO₂)</td>
<td></td>
</tr>
</tbody>
</table>

Type of Cooling Medium
High Speed Milling PH 17-7 Mo Sheet, Annealed 90 RB

Effect of Carbide Grade

Cutter: 1-1/4" Dia. 3 Tooth End Mill with Carbide Inserts (See Grade Below)
AR: 0\degree\hspace{1cm} RR: 0\degree
Peripheral Clearance: 5\degree
Cutting Speed: 2000 feet/minute, 6000 rpm
Feed: .010 inches/tooth
Depth of Cut: .050"
Width of Cut: .063"
Cooling Medium: Liquid CO\textsubscript{2}
Tool Life End Point: .060" Uniform Wearland

Climb Cutting

Carbide Grade

See Text page 16 - 46 - Figure 20
Drilling D6AC Steel, Quenched & Tempered to 54-58 R_c
With Tornetic Drilling Unit and Constant Speed and Feed Drill Press

100 ft./min., .001 in./rev.

Tornetic Data
Motor Spindle Ratio: 1:1.21
Thrust: 100 psi (425 lbs.)
Torque Setting: 100
Speed Setting: 100
Reduction in Spindle Speed: 10%

Drill: Grade 883 (C-2) Carbide Tipped Drill
Drill Dia.: #3 (.213")
Drill Length: 4"
Point Angle: 118°
Clearance Angle: 5°
Point Grind: Notched
Depth of Hole: 1/2" through hole
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .016" Uniform Wearland

Production rate of 100% = penetration rate of 2 inches/minute

Drill Life - number of holes
Drilling AISI 410 Stainless Steel, Quenched & Tempered 45 R_C
with Tornetic Drilling Unit and Constant Speed and Feed Drill Press

Drill: Type T-15 HSS
Drill Dia. 1/4"
Point Angle: 118°
Point Grind: Chisel Point
Clearance Angle: 7°
Depth of Hole: 1/2" through hole
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .016" Uniform Wearland

Tornetic Data
Motor Spindle Ratio: 1:1.21
Thrust: 100 psi (425 lbs.)
Torque Setting: Variable
Speed Setting: Variable
Reduction in Spindle Speed: 10%

Drill Life - number of holes
Tapping B-120VCA Titanium, Solution Treated & Aged 400 BHN
Using Conventional and Tornetic Tapping Unit

Effect of Cutting Speed

- Tap Material: M-10 HSS
- Tap Size: 5/16-24 NF
- Tap Design: 2 Flute Chip Driver
- Percent Thread: 75%
- Depth of Hole: .500" through hole
- Cutting Fluid: Highly Chlorinated Oil
- Tool Life End Point: Tap Stalled in Hole

B = Tap Broke in Hole

Test Discontinued
.008" Wearland @ 9 feet/minute

See Text page 17
Face Milling B-120VCA Titanium, Solution Treated 285 BHN

Effect of High Speed Steel

Cutter: 4" Dia. Single Tooth Face Mill
AR: 10° RR: 0°
TR: 7° Incl.: 7°
CA: 45° ECEA: 10°
Clearance: 10°
Cutting Speed: 51 feet/minute, 51 rpm
Feed: .010 inches/tooth
Depth of Cut: .060"
Width of Cut: 2"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .040" Uniform Wearland

<table>
<thead>
<tr>
<th>Tool Life - inches of work travel per tooth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braecut</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

High Speed Steel
Face Milling B-120VCA Titanium, Solution Treated and Aged 400 BHN

Effect of High Speed Steel

Cutter: 4" Dia. Single Tooth Face Mill
AR: 10° RR: 0°
TR: 7° Incl.: 7°
CA: 45° ECEA: 10°
Clearance: 10°
Cutting Speed: 34 feet/minute, 34 rpm
Feed: .010 inches/tooth
Depth of Cut: .060"
Width of Cut: 2"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .040" Uniform Wearland
Face Milling B-120VCA Titanium, Solution Treated 285 BHN

Effect of Cutting Speed with HSS Cutters

Cutter: 4" Dia. Single Tooth Face Mill with Braecut HSS
AR: 10° RR: 0°
TR: 7° Incl.: 7°
CA: 45° ECEA: 10°
Clearance: 10°
Feed: .010 inches/tooth
Depth of Cut: .060"
Width of Cut: 2"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .040" Wearland

Cutting Speed - feet/minute

Tool Life - inches of work travel per tooth

See Text page 18
Face Milling B-120VCA Titanium Solution Treated and Aged 400 BHN
Effect of Cutting Speed with HSS Cutters

Cutter: 4" Dia. Single Tooth Face Mill with Braecut HSS
AR: 10° RR: 0°
TR: 7° Incl.: 7°
CA: 45° ECEA: 10°
Clearance: 10°
Feed: .010 inches/tooth
Depth of Cut: .060"
Width of Cut: 2"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .040" Wearland

Graph showing the relationship between cutting speed (feet/minute) and tool life (inches of work travel per tooth).
Face Milling B-120VCA Titanium, Solution Treated 285 BHN
Effect of Cutting Speed with Carbide

Cutter: 4" Dia. Single Tooth Cutter with 883 (C-2) Carbide
AR: 10° RR: 0°
TR: 7° Incl.: 7°
CA: 45° ECEA: 10°
Clearance: 10°
Feed: .005 inches/tooth
Depth of Cut: .100"
Width of Cut: 2"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .016" Uniform Wearland

See Text page 18
Face Milling B-120VCA Titanium, Solution Treated 285 BHN

Effect of Feed with Carbide

Cutter: 4" Dia. Single Tooth Cutter with 883 (C-2) Carbide
AR: 10° RR: 0°
TR: 7° Incl.: 7°
CA: 45° ECEA: 10°
Clearance: 10°

Cutting Speed: 122 feet/minute, 122 rpm
Depth of Cut: 0.100"
Width of Cut: 2"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .016" Uniform Wearland

See Text page 18
Face Milling B-120VCA Titanium, Solution Treated 285 BHN

Effect of Carbide Grade

Cutter: 4" Dia. Single Tooth Face Mill
AR: 10° RR: 0°
TR: 7° Incl.: 7°
CA: 45° ECEA: 10°
Clearance: 10°

Cutting Speed: 122 feet/minute, 122 rpm
Feed: .005 inches/tooth
Depth of Cut: .100"
Width of Cut: 2"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .016" Uniform Wearland

Tool Life - inches of work travel per tooth

Carbide Grade

883 (C-2) 370 (C-6) 44A (C-1) 350 (C-7)

Figure 31

See Text page 18
End Mill Slotting B-120VCA Titanium

Effect of Cutting Speed

Cutter: 3/4" Dia. HSS End Mill
Tool Material: M-2 (Unless Noted)
Helix Angle: 30°
CA: 45° x .060"
RR: 10°
Peripheral Clearance: 10°
Feed: .002 inches/tooth
Depth of Cut: .125"
Width of Cut: .750"
Cutting Fluid: See Below
Tool Life End Point: .012" Uniform Wearland or .020" Localized Wearland

Cutting Fluids:
- Solution Treated & Aged 400 BHN Soluble Oil (1:20)
- Solution Treated 285 BHN Highly Chlorinated Oil
- Highly Chlorinated Oil
- Solution Treated

See Text page 18

Figure 32
End Mill Slotting B-120VCA Titanium

Effect of Feed

Cutter: 3/4" Dia. M-2 HSS End Mill
Helix Angle: 30° CA: 45° x 0.060"
RR: 10° Peripheral Clearance: 10°
Cutting Speed: See Below
Depth of Cut: 0.125"
Width of Cut: 0.750"
Cutting Fluid: See Below
Tool Life End Point: 0.012" Uniform Wear
0.020" Localized Wear

Solution Treated & Aged 400 BHN
Soluble Oil (1:20)
32 feet/minute

Solution Treated 285 BHN
Highly Chlorinated Oil
40 feet/minute

See Text page 18

Figure 33
End Mill Slotting B-120VCA Titanium

Effect of Cutting Fluid

Cutter: 3/4" Dia. M-2 HSS End Mill
Helix Angle: 30° CA: 45° x 0.060"
RR: 10° Peripheral Clearance: 10°

Cutting Speed: See Below
Feed: .002 inches/tooth
Depth of Cut: .125"
Width of Cut: .750"

Tool Life End Point:
- .012" Uniform Wearland
- .020" Localized Wearland

- Solution Treated & Aged 400 BHN, 32 feet/minute
- Annealed 285 BHN, 40 feet/minute

Cutting Fluid

- Highly Sulphurized Oil
- Nitrite Amine Solution (1:20)
- Soluble Oil (1:20)
- Heavy Duty Soluble Oil (1:20)
- Heavy Duty Soluble Oil (1:10)
Peripheral End Milling B-120VCA Titanium Solution Treated and Aged 400 BHN

Effect of Feed

Cutter: 3/4" Dia. 4 Tooth M-2 HSS End Mill
Helix Angle: 30° CA: 45° x .060"
RR: 10° Peripheral Clearance: 10°
Depth of Cut: .125"
Width of Cut: .750"
Cutting Speed: See Below
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .012" Uniform Wear
.020" Localized Wear

Feed - inches/tooth

See Text page 18
Peripheral End Milling B-120VCA Titanium
Solution Treated and Aged 400 BHN

Effect of Cutting Speed

Cutter: 3/4" Dia. 4 Tooth M-2 HSS End Mill
Helix Angle: 30° CA: 45° x .060"
RR: 10° Peripheral Clearance: 10°
Feed: See Below
Depth of Cut: .125"
Width of Cut: .750"
Cutting Fluid: Highly Chlorinated Oil
(unless noted)
Tool Life End Point: .012" Uniform Wear
.020" Localized Wear

See Text page 18

Figure 36
Turning TZM Molybdenum, 217 BHN

Effect of Cutting Speed

Tool: Carbide (See Below)
BR: 0° SR: 20°
SCEA: 15° ECEA: 15°
Relief: 5° NR: 1/32"
Feed: .009 inches/rev.
Depth of Cut: .030" (unless noted)
Cutting Fluid: Soluble Oil (1:20)
(unless noted)
Tool Life End Point: .010" Wearland

350 400 450 500 550
Cutting Speed - feet/minute

Tool Life - minutes

K-6 (C-2)
K-8 (C-3)
K-6 (C-2) .060" depth
44A (C-2)
K-6 (C-2) Dry

See Text page 19

Figure 37
Turning TZM Molybdenum, 217 BHN
Effect of Feed Rate

Tool: K-6 (C-2) Carbide
BR: 0° SCEA: 15°
SR: 20° ECEA: 15°
NR: 1/32" Relief: 5°
Cutting Speed: 500 feet/minute
Depth of Cut: .030"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .010" Wearland

Feed Rate - inches/rev.

Tool Life - minutes
Tool Life - cubic inches of metal removed
Effect of Cutting Fluid

Tool: C-2 (K-6) Carbide
BR: 0° SR: 20°
SCEA: 15° ECEA: 15°
Relief: 5° NR: 1/32"
Cutting Speed: 450 feet/minute
Feed: .009 inches/rev.
Depth of Cut: .030"
Tool Life End Point: .010" Wearland

See Text page 19 - 65 - Figure 39
Turning TZM Molybdenum, 217 BHN

Effect of Side Rake Angle

Tool: C-2 (K-6) Carbide
BR: 0° SR: See below
SCEA: 15° ECEA: 15°
Relief: 5° NR: 1/32"
Cutting Speed: 450 feet/minute
Feed: .009 inches/rev.
Depth of Cut: .030"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .010" Wearland

Side Rake Angle - degrees
Face Milling TZM Molybdenum, 235 BHN

Effect of Tool Material

Cutter: 4" Dia. Single Tooth Face Mill With
HSS and Cast Alloy (see below)

<table>
<thead>
<tr>
<th>Material</th>
<th>AR</th>
<th>TR</th>
<th>RR</th>
<th>Incl</th>
<th>CA</th>
<th>ECEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>0°</td>
<td>15°</td>
<td>10°</td>
</tr>
</tbody>
</table>

Cutting Speed: 152 feet/minute
Feed: .010 inches/tooth
Depth of Cut: .030"
Width of Cut: 2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point:
- .015" Uniform
- .030" Localized

<table>
<thead>
<tr>
<th>Tool Material</th>
<th>T-1</th>
<th>M-2</th>
<th>Stellite</th>
<th>Crobalt</th>
<th>Tantung</th>
<th>T-15</th>
<th>Braecut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast Alloy</td>
<td>HSS</td>
<td>HSS</td>
<td>98 M-2</td>
<td>#2</td>
<td>G</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>
Face Milling TZM Molybdenum, 235 BHN

Effect of Feed

Cutter: 4" Dia. Single Tooth Face Mill
With T-15 HSS

AR: 0° TR: 14°
RR: 20° Incl: -14°
CA: 45° ECEA: 10°

Clearance: 15°
Cutting Speed: 230 feet/minute
Depth of Cut: .030"
Width of Cut: 2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .015" Uniform Wear
 .030" Localized Wear

See Text page 19 - 68 - Figure 42
Face Milling TZM Molybdenum, 229 BHN

Effect of Depth of Cut

Cutter: 4" dia. Single Tooth Face Mill with T-15 HSS
AR: 0° RR: 20°
TR: 14° Incl.: -14°
CA: 45° ECEA: 10°
Clearance: 15°
Feed: .010"/tooth
Depth of Cut: See below
Width of Cut: 2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .015" uniform
.030" localized

See text, page 19

Cutting Speed - feet/minute

Figure 43
Face Milling TZM Molybdenum, 235 BHN

Effect of Tool Geometry

Cutter: 4" Dia. Single Tooth Face Mill
With T-15 HSS

CA: 45° ECEA: 10°
Clearance: 15°
Cutting Speed: 152 feet/minute
Feed: .010 inches/tooth
Depth of Cut: .030"
Width of Cut: 2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .015" Uniform Wear
.030" Localized Wear

![Diagram showing tool life and cutter rake angles]

See Text page 20 Figure 44
Face Milling TZM Molybdenum

Effect of Cutting Speed

- Cutter: 4" Dia. Single Tooth Face Mill With 883 (C-2) Carbide (unless noted)
- AR: 10° RR: 0° TR: 0° Incl: 0° CA: 45° ECEA: 5° Clearance: 10°
- Feed: .005 inches/tooth
- Depth of Cut: .030" (unless noted)
- Width of Cut: 2"
- Cutting Fluid: Soluble Oil (1:20) (unless noted)
- Tool Life End Point: .015" Uniform Wear .030" Localized Wear

See Text page 20
Face Milling TZM Molybdenum, 235 BHN
Effect of Cutting Fluid

Cutter: 4" Dia. Single Tooth Face Mill
With 883 (C-2) Carbide
AR: 0° TR: 0°
RR: 0° Incl: 0°
CA: 45° EGEA: 5°
Clearance: 10°
Feed: .005 inches/tooth
Depth of Cut: .030"
Width of Cut: 2"
Cutting Fluid: See below
Tool Life End Point: .015" Uniform Wear
.030" Localized Wear

- Diagram showing tool life versus cutting speed with different cutting fluids.
- Dry cutting
- Soluble Oil (1:20)
- Highly Chlorinated Oil

See Text Page 20
Effect of Tool Geometry

Cutter: 4" Dia. Single Tooth Face Mill
With 883 (C-2) Carbide

CA: 45°
ECEA: 5°

Clearance: 10°

Cutting Speed: 445 feet/minute
Feed: .005 inches/tooth
Depth of Cut: .030"
Width of Cut: 2"

Cutting Fluid: Soluble Oil (1:20)

Tool Life End Point:
- .015" Uniform Wear
- .030" Localized Wear

See Text page 20
Face Milling TZM Molybdenum

Effect of Feed

Cutter: 4" Dia. Single Tooth Face Mill
With 883 (C-2) Carbide

AR: 0° TR: 0°
RR: 0° Incl.: 0°
CA: 45° ECEA: 5°
Clearance: 10°
Cutting Speed: 445 feet/minute, 445 rpm
Depth of Cut: See Below
Width of Cut: 2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .015" Uniform Wear
 .030" Localized Wear

-030" depth) extruded only 229 BHN
-060" depth)

Recrystallized, hot rolled & stress relieved 235 BHN

Feed - inches/tooth

See Text page 20 - 74 - Figure 48
End Mill Slotting TZM Molybdenum, 248 BHN

Effect of Cutting Speed

Cutter: 3/4" Dia. 4 Tooth HSS End Mill
(See Below)
Helix Angle: 30° RR: 10°
CA: 45° x .060"
Peripheral Clearance: 10°
Feed: .004 inches/tooth
Depth of Cut: .125"
Width of Cut: .750"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .012" Uniform Wear
.030" Localized Wear

See Text page 20

- 75 -

Figure 49
End Mill Slotting TZM Molybdenum, 248 BHN

Effect of Cutting Fluid

Cutter: 3/4" dia., 4 tooth HSS End Mill
Tool Material: M-3 HSS
Helix Angle: 30° RR: 10°
CA: 45° x .060"
Peripheral Clearance: 10°
Cutting Speed: 150 feet/minute
Feed: .004 inches/tooth
Depth of Cut: .125"
Width of Cut: .750"
Tool Life End Point: .012" uniform wear
.030" localized

See text, page 20
End Mill Slotting TZM Molybdenum

Effect of Feed

Cutter: 3/4" Dia. 4 Tooth HSS End Mill
(See Below)
Helix Angle: 30° RR: 10°
CA: 45° x .060"
Peripheral Clearance: 10°
Cutting Speed: 152 feet/minute, 740 rpm
Depth of Cut: .125"
Width of Cut: 2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .012" Uniform Wear
.030" Localized Wear

![Graph showing tool life versus feed for different materials and hardness.]

See Text page 20

- 77 -

Figure 51
End Mill Slotting TZM Molybdenum, 229 BHN

Effect of Depth of Cut

Cutter: 3/4" dia., 4 tooth HSS End Mill
Tool Material: T-15 HSS
Helix Angle: 30° RR: 10°
CA: 45° x .060"
Peripheral Clearance: 10°
Feed: .004 inches/tooth
Cutting Speed: 152 feet/minute, 760 rpm
Width of Cut: .750"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .012" uniform wear
.030" localized

B: Breakdown

See text, page 21
End Milling TZM Molybdenum, 248 BHN
Effect of Milling Setup

Cutter: 3/4" Dia. 4 Tooth HSS End Mill
(See Below)
Helix Angle: 30°
CA: 45° x 0.060"
Peripheral Clearance: 10°
Feed: 0.004 inches/tooth
Depth of Cut: See Below
Width of Cut: See Below
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: 0.012" Uniform Wear
0.030" Localized Wear

Peripheral Milling
M-3 HSS

Slot Milling
T-15 HSS

Slot Milling
M-3 HSS

See Text page 21
Drilling TZM Molybdenum, 229 BHN
Effect of Cutting Speed and Drill Point Geometry

Drill Material: M-1 HSS
Dia.: .250" Length: 2-1/2"
Helix Angle: 29° Clearance: 7°
Style: Standard Screw Machine Length
Feed: .005 inches/rev.
Depth of Hole: .500" through hole
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .015" Wearland on Drill Martin

![Graph showing the effect of cutting speed on drill life with different point geometries.](image)

- 118° plain point
- 135° split point

See Text page 21
Drilling TZM Molybdenum, 248 BHN

Effect of Feed

Drill Material: Type M-1 HSS
Dia.: .250" Length: 2-1/2"
Point Angle: 118° Helix Angle: 29°
Clearance: 7° Point Grind: Plain
Style: Standard Screw Machine Length
Cutting Speed: 125 feet/minute
Depth of Hole: .500" thru
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .015" Wearland on Drill Margin

See Text page 21
Drilling TZM Molybdenum Alloy

Effect of Cutting Fluid

Drill Material: M-1 HSS
Dia.: .250" Length: 2-1/2"
Helix Angle: 29° Point Grind: Plain
Point Angle: 118° Clearance: 7°
Style: Standard Screw Machine Length
Cutting Speed: See Below
Feed: .005 inches/rev.
Depth of Hole: .500" through hole
Cutting Fluid: See Below
Drill Life End Point: .015" Wearland on Drill Margin

Drill Life - number of holes

Highly Chlorinated Oil
Highly Sulphurized Oil
Soluble Oil (1:20)

Cutting Fluid
Drilling TZM Molybdenum Alloy 229 BHN
Effect of Drill Point Geometry

Drill:
Drill Material: M-1 HSS
Dia.: .272" Length: 3"
Helix Angle: 29° Clearance: 7°
Style: Standard Screw Machine Length
Cutting Speed: 150 feet/minute
Feed: .005 inches/revolution
Depth of Hole: .500" through hole
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .016" Localized Wear

Drill Life - Number of Holes

Point Grind
Point Angle Plain Split
90° 118
118/90 135/90

Figure 57
Drilling TZM Molybdenum Alloy, 229 BHN

Effect of HSS Type

Drill:
Dia.: 1/4"
Length: 2-1/2"
Helix Angle: 29°
Clearance: 7°
Point Angle: 118°
Point Type: Plain Point
Cutting Speed: 150 feet/minute
Feed: .005 inches/revolution
Depth of Hole: 1/2" through hole
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .015" wearland

See text, page 21
Drilling TZM Molybdenum Alloy
Effect of Feed & Work Material

Drill:
Drill Material: M-1 HSS
Dia.: .250 Length: 2-1/2"
Helix Angle: 29° Clearance: 7°
Style: Standard Screw Machine Length
Depth of Hole: .500" through hole
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .016" localized wear

Material Condition
- ○ Extruded, recrystallized
 hot rolled & Stress relieved
 248 BHN
- ● Extruded & recrystallized
 220 BHN
- ◆ Extruded only, 229 BHN

See text, page 21 - 85 - Figure 59
Reaming TZM Molybdenum, 229 BHN

Effect of Cutting Speed & Feed

Reamer:
Reamer Material: M-2 HSS, straight 6 flute chucking reamer
Dia.: .272" Clearance: 10°
Corner Angle: 45°
Feed: See below
Depth of Hole: .500" through hole
Stock Removed: .010" on radius
Cutting Fluid: Highly Chlorinated Oil
Reamer Life End Point: .012" wear on reamer O.D.

Reamer Life - number of holes

Cutting Speed - feet/minute

See text, page 21
Reaming TZM Molybdenum, 229 BHN

Effect of Cutting Fluid

Reamer:
Reamer Material: M-2 HSS, straight 6 flute
chucking reamer
Dia.: .272" Clearance: 10°
Corner Angle: 45°
Cutting Speed: 85 feet/minute
Feed: .015 inches/revolution
Depth of Hole: .500" through hole
Stock Removed: .010" on radius
Reamer Life End Point: .012" wear on reamer O.D.

Cutting Fluid

- Highly Chlorinated Oil
- Highly Sulphurized Oil
- Soluble Oil (1:20)

See text, page 21
Tapping TZM Molybdenum, 229 BHN
Effect of Cutting Speed & Tap Style

Tap Material: M-10 HSS
Tap Size: 5/16-24 NF
Tap Style: See below
Percent Thread: 75%

Depth of Hole: .500" through hole
Cutting Fluid: Highly Chlorinated Oil
Tap Life End Point: Tight hole with Class 2 Plug Gage

*Test Discontinued

Cutting Speed - feet/minute

Tap Life - number of holes

Tap Style
- 2 Flute Chip Driver Plug
- 4 Flute Plug

Figure 62
Tapping TZM Molybdenum, 229 BHN

Effect of Cutting Fluid

Tap Material: M-10 HSS
Tap Size: 5/16-24 NF
Tap Style: See below
Percent Thread: 75%
Depth of Hole: .500" through hole
Tap Life End Point: Tight hole with Class 2 Plug Gage
Cutting Speed: 70 feet/minute, 856 rpm

Cutting Fluid

- Highly Chlorinated Oil
- Highly Sulphurized Oil
- Soluble Oil (1:20)

*Test Discontinued

Tap Life - number of holes

See text, page 22
- 89 -

Figure 63
Grinding TZM Molybdenum, 248 BHN

Effect of Wheel Grade

Wheel Grade: See below
Wheel Speed: 5000 feet/minute
Cross Feed: .050 inches/pass
Down Feed: .001 inches/pass
Table Speed: 40 feet/minute
Grinding Fluid: Soluble Oil (1:20)

C: Chatter

Figure 64

Wheel Grade

G Ratio

- 90
Grinding TZM Molybdenum, 248 BHN

Effect of Wheel Grade and Grinding Fluid

Down Feed: .001 inches/pass
Cross Feed: .050 inches/pass
Table Speed: 40 feet/minute
Grinding Fluid: See Below
C: Chatter

Wheel Speed - feet/minute

See Text page 22
Grinding TZM Molybdenum, 248 BHN

Effect of Grinding Fluid

Wheel Grade: 32A46N5VBE
Wheel Speed: 4000 feet/minute
Down Feed: .001 inches/pass
Cross Feed: .050 inches/pass
Table Speed: 40 feet/minute

KNO₂ (5% Solution) | Soluble Oil (1:20) | Soluble Oil (1:40) | Highly Chlorinated Oil | Highly Sulphurized Oil

Grinding Fluid
Grinding TZM Molybdenum, 248 BHN

Effect of Table Speed

Wheel Grade: See Below
Wheel Speed: 4000 feet/minute
Down Feed: .001 inches/pass
Cross Feed: .050 inches/pass
Grinding Fluid: KNO_2 (5% Solution)
(unless noted)

See Text page 22

Figure 67
Grinding TZM Molybdenum, 248 BHN

Effect of Down Feed

Wheel Grade: See Below
Wheel Speed: 4000 feet/minute
Cross Feed: .050 inches/pass
Table Speed: 40 feet/minute
Grinding Fluid: KNO₂ (5% Solution)
(unless noted)

See Text page 22

Figure 68
Grinding TZM Molybdenum, 248 BHN

Effect of Cross Feed

Wheel Grade: See Below
Wheel Speed: 4000 feet/minute
Down Feed: .001 inches/pass
(unless noted)
Table Speed: 40 feet/minute
Grinding Fluid: KNO₂ (5% Solution)
(unless noted)

See Text page 22

Figure 69
Turning D-31 Columbium Alloy, 207 BHN

Effect of Carbide Grade

Tool Material: See Below
Tool: BR: 0° SR: 20°
SCEA: 0° ECEA: 5°
Relief: 5° NR: 1/64
Cutting Speed: 350 feet/minute
Feed: .005 inches/revolution
Depth of Cut: .030"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .010" Wearland

See text, page 22

- 96 -

Figure 70
Turning D-31 Columbium Alloy, 207 BHN

Effect of Cutting Speed and Tool Material

Tool Material: see below
Tool: BR: 0° SR: 20°
SCEA: 0° ECEA: 5°
Relief: 5° NR: 1/64
Feed: .005 inches/revolution
Depth of Cut: .030"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .010" wearland for carbide.
 .030" wearland for HSS.

Test Stopped .006" wear

M-2 HSS
T-15 HSS
K6 (C-2) Carbide
Cribalt #2 Cast Alloy

See text, page 22

Figure 71
Turning D-31 Columbium Alloy, 207 BHN
Effect of Rake Angle

Tool Material: Type M-2 HSS
Tool: BR: 0° SR: (see below)
SCEA: 0° ECEA: 5°
Relief: 5° NR: 1/64
Cutting Speed: 100 feet/minute
Feed: .005 inches/revolution
Depth of Cut: .030"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .030" Wearland

Side Rake Angle - Degrees

See text, page 23

- 99 -
Face Milling D-31 Columbium, 217 BHN

Effect of Cutting Speed and Feed

Cutter: 4" Dia. Single Tooth Face Mill
With M-2 HSS
AR: 0° RR: 0°
TR: 14° Incl.: -14°
CA: 45° ECEA: 5°
Clearance: 10°

Feed: See Below
Depth of Cut: .030"
Width of Cut: 1-1/2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .016" Uniform Wear
.030" Localized Wear

Test Discontinued
@ .010" Wear

See Text page 23

Figure 74
Face Milling D-31 Columbium, 217 BHN

Effect of Tool Material

Cutter: 4" dia. Single Tooth Face Mill with HSS
AR: 0° RR: 20°
TR: 14° Incl.: -14°
CA: 45° ECEA: 5°
Clearance: 10°
Cutting Speed: 152 feet/minute
Feed: .010 inches/tooth
Depth of Cut: .030"
Width of Cut: 1-1/2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .016" Uniform Wear
 .030" Localized

Tool Life - inches work travel/tooth

M-2 T-15 Braecut

Tool Material - type of HSS

See text, page 23
Face Milling D-31 Columbium, 217 BHN

Effect of Cutting Fluid

Cutter: 4" dia. Single Tooth Face Mill with M-2 HSS
AR: 0° RR: 20°
TR: 14° Incl.: -14°
CA: 45° ECEA: 5°
Clearance: 10°
Cutting Speed: 142 feet/minute
Feed: .010 inch/tooth
Depth of Cut: .030"
Width of Cut: 1-1/2"
Tool Life End Point: .016" Uniform wear
.030" Localized

Cutting Fluid

See text, page 23

- 102 -

Figure 76
Face Milling D-31 Columbium, 217 BHN

Effect of Cutter Rake Angles

Cutter: 4" dia. Single Tooth Face Mill with M-2 HSS
CA: 45° ECEA: 5°
Clearance: 10°
Cutting Speed: 122 feet/minute
Feed: .010 inch/tooth
Depth of Cut: .030"
Width of Cut: 1-1/2"
Cutting Fluid: Soluble Oil (1:20)
Tool Life End Point: .016" Uniform Wear
.030" Localized

See text, page 23

Figure 77
Face Milling D-31 Columbium, 217 BHN

Effect of Cutting Speed

Cutter: 4" Dia. Single Tooth Face Mill
With K-6 (C-2) Carbide

AR: 0° RR: 10°
TR: 7° Incl.: -7°
CA: 45°
ECEA: 10° Clearance: 10°

Feed: .010 inches/tooth
Depth of Cut: .030"
Width of Cut: 2"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .016" Uniform Wear
 .030 Localized Wear

See Text page 23 - 104 - Figure 78
End Mill Slotting D-31 Columbium, 217 BHN

Effect of Cutting Fluid

Cutter: 1/2" Dia. 4 Tooth, M-2 HSS End Mill
Helix Angle: 30° RR: 10°
CA: 45° x .060"
Peripheral Clearance: 10°
Cutting Speed: 83 feet/minute, 635 rpm
Feed: .003 inches/tooth
Depth of Cut: .060"
Cutting Fluid: See below
Tool Life End Point: .012" Uniform Wear
.030" Localized Wear

See Text page 23

Figure 79
End Mill Slotting D-31 Columbium, 217 BHN

Effect of Feed

Cutter: 1/2" Dia. 4 Tooth M-2 HSS End Mill
Helix Angle: 30° RR: 10°
CA: 45° x .060"
Peripheral Clearance: 10°
Cutting Speed: 102 feet/minute, 780 rpm
Depth of Cut: .060"
Width of Cut: .500"
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .012" Uniform Wear
 .030" Localized Wear

See Text page 23
- 106 - Figure 80
End Mill Slotting D-31 Columbium, 217 BHN
Effect of Speed and Cutting Fluid

Cutter: 1/2" Dia. 4 Tooth M-2 HSS End Mill
Helix Angle: 30° RR: 10°
CA: 45° x 0.040" Peripheral Clearance: 6°

Feed: See below
Depth of Cut: .060"
Width of Cut: .500"
Cutting Fluid: See below Tool Life End Point: .012"

Uniform Wear or .030" Localized Wear

Test Stopped @ 176" work travel, 70 ft./min., .010" Wearland
Test Stopped @ 192" work travel, 102 ft./min., .008" Wearland

Highly Chlorinated Oil .003 inches/tooth
Soluble Oil (1:20) .003 inches/tooth
Highly Chlorinated Oil T-15 HSS .003 inches/tooth

Cutting Speed - feet/minute

See Text page 24 - 107 - Figure 81
Drilling D-31 Columbium, 225 BHN

Effect of Cutting Speed

Drill Material: Type M-1 HSS
Helix Angle: 29° Point Grind: Plain
Point Angle: 118° Clearance Angle: 7°
Style: Standard Screw Machine Length
Feed: See Below
Depth of Hole: 125" through hole
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .015" Wearland on Drill Margin

Test Stopped .008" Wearland

Dia.: 1/8"
Length: 1-7/8"
Feed: .005 inches/rev.

See Text page 24

- 108 -

Figure 82
Drilling D-31 Columbium, 225 BHN

Effect of Drill Length

Drill Material: Type M-1 HSS
Dia.: 1/16" Point Grind: Plain
Helix Angle: 29°
Point Angle: 118°
Clearance Angle: 7°
Cutting Speed: 75 feet/minute, 4600 rpm
Feed: .002 inches/rev.
Depth of Hole: .125" through hole
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .015" Wearland on Drill Margin

Drill Life - number of holes

Drill Length - inches

See Text page 24

Figure 83
Drilling D-31 Columbium, 225 BHN

Effect of Feed Rate

Drill Material: Type M-1 HSS
Dia.: 1/16" Length: 1-5/8"
Helix Angle: 29° Point Grind: Plain
Point Angle: 118° Clearance Angle: 7°
Style: Standard Screw Machine Length
Cutting Speed: See below
Depth of Hole: .125" thru
Cutting Fluid: Highly Chlorinated Oil
Tool Life End Point: .015" Wearland on
Drill Margin

160 Holes @ .0005 in./rev. Feed

50 feet/minute
25 feet/minute

Drill Life - number of holes

Feed Rate - inches/rev.

See Text page 24

- 110 -
Drilling D-31 Columbium, 225 BHN

Effect of Cutting Speed and Feed

Drill Material: Type M-1 HSS
Dia.: #21 (.159") Length: 2-1/8"
Helix Angle: 29° Point Grind: Plain
Point Angle: 118° Clearance Angle: 7°
Style: Standard Screw Machine Length

Feed: See below
Depth of Hole: .250" thru
Cutting Fluid: Highly Chlorinated Oil
Drill Life End Point: .015" Wearland on Drill Margin

See Text page 24

Figure 85
Reaming D-31 Columbium, 207 BHN
Effect of Cutting Speed

Reamer: M-2 HSS 6-flute Chucking
Reamer 10° Right Hand Spiral
(unless noted)
Dia.: .213" Clearance: 10°
Corner Angle: 45°
Feed: .005 inches/rev.
Depth of Hole: .500" through hole
Stock Removed: .010" on radius
Cutting Fluid: See Below
Reamer Life End Point: .012" Wearland on Reamer Corner

Highly Sulphurized Oil

Straight Flute Reamer
- Highly Sulphurized Oil
- Highly Chlorinated Oil
Soluble Oil (1:20)

Reamer Life - number of holes
Cutting Speed - feet/minute

See Text page 24 - 112 - Figure 86
Reaming D-31 Columbium, 207 BHN

Effect of Feed

Reamer: M-2 HSS 6 Flute Chucking Reamer
10° Right-Hand Spiral
Dia.: .213" Clearance: 10°
Corner Angle: 45°
Cutting Speed: 150 feet/minute, 2690 rpm
Depth of Hole: .500" thru
Stock Removed: .010" on Radius
Cutting Fluid: Highly Sulphurized Oil
Reamer Life End Point: .012" Wearland on Reamer Corner

See Text page 24

Figure 87
Tapping D-31 Columbium, 207 BHN

Effect of Cutting Speed

Tap Material: M-1 HSS
Tap Size: 1/4-28 NF
Tap Style: 2 flute
Percent Thread: 75%
Depth of Hole: .500" thru
Cutting Fluid: Highly Chlorinated Oil
Tap Life End Point: Tap breakage

See Text page 25

Figure 88
Tapping D-31 Columbium, 207 BHN

Effect of Cutting Fluid

- Tap Material: Type M-1 HSS
- Tap Size: 1/4-28 NF
- Tap Style: 2 flute
- Percent Thread: 75%
- Cutting Speed: 17 feet/minute, 260 rpm
- Depth of Hole: .500" thru
- Tap Life End Point: Tap breakage
Grinding Unalloyed Columbium, 112 BHN

Effect of Wheel Grade

Wheel Speed: 4000 feet/minute
Cross Feed: .050 inches/pass
Down Feed: .001 inches/pass
Table Speed: 40 feet/minute
Grinding Fluid: Highly Chlorinated Oil

See Text page 25
Surface Grinding D-31 Columbium Alloy, 217 BHN
Effect of Wheel Grade

Wheel Speed: 2000 feet/minute
Down Feed: .001 inches/pass
Gross Feed: .050 inches/pass
Table Speed: 40 feet/minute
Grinding Fluid: KNO₂, 5% solution

Figure 91
Grinding Columbium
Effect of Grinding Fluid

Wheel Grade: 32A46K8VBE
Wheel Speed: 4000 feet/minute
Down Feed: .001 inches/pass
Cross Feed: .050 inches/pass
Table Speed: 40 feet/minute

- D-31 columbium, 217 BHN
- Unalloyed columbium, 112 BHN

Grinding Fluid

Figure 92
Grinding Columbium
Effect of Wheel Speed

Wheel Grade: 32A46K8VBE (unless noted)
Down Feed: .001 inches/pass
Cross Feed: .050 inches/pass
Table Speed: 40 feet/minute (unless noted)
Grinding Fluid: See Below

D-31 Columbium, 217 BHN
KNO₂ (5% Solution)

Unalloyed Columbium, 112 BHN
Highly Chlorinated Oil
Table Speed: 60 feet/minute

Unalloyed Columbium, 112 BHN
Soluble Oil (1:20)

Wheel Speed - feet/minute

See Text page 25

Figure 93
Surface Grinding D-31 Columbium Alloy, 217 BHN
Effect of Table Speed

Wheel Grade: See below
Wheel Speed: 2000 feet/minute
Down Feed: .001 inches/pass
Cross Feed: .050 inches/pass
Grinding Fluid: KNO₂, 5% solution

Table Speed - feet/minute

See text, page 25 - 120 - Figure 94
Surface Grinding D-31 Columbium Alloy, 217 BHN
Effect of Down Feed

Wheel Grade: See Below
Wheel Speed: 2000 feet/minute
Cross Feed: .050 inches/pass
Table Speed: 40 feet/minute
Grinding Fluid: KNO₂, 5% solution

G Ratio

[Graph with data points for 32A46K8VBE and 32A46J8VBE]

Down Feed - inches/pass

See text, page 25

Figure 95
Surface Grinding D-31 Columbium Alloy, 217 BHN
Effect of Cross Feed

Wheel Grade: See Below
Wheel Speed: 2000 feet/minute
Down Feed: .001 inches/pass
Table Speed: 40 feet/minute
Grinding Fluid: KNO₂, 5% solution

Cross Feed - inches/pass

See text, page 25
<table>
<thead>
<tr>
<th>Operation</th>
<th>Tool Material</th>
<th>Tool Geometry</th>
<th>Tool Used for Tests</th>
<th>Depth of Cut inches</th>
<th>Width of Cut inches</th>
<th>Feed in/rev</th>
<th>Cutting Speed ft/min</th>
<th>Tool Life min.</th>
<th>Wear Land inches</th>
<th>Cutting Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turning</td>
<td>C-2 Carbide</td>
<td>BR: 0° SCEA: 15°</td>
<td>5/8" square brazed tool bit</td>
<td>.030</td>
<td>-</td>
<td>.009</td>
<td>450</td>
<td>25</td>
<td>.010</td>
<td>Soluble Oil (1:20)</td>
</tr>
<tr>
<td>Turning</td>
<td>C-2 Carbide</td>
<td>BR: 0° SCEA: 15°</td>
<td>5/8" square brazed tool bit</td>
<td>.060</td>
<td>-</td>
<td>.009</td>
<td>350</td>
<td>20</td>
<td>.010</td>
<td>Soluble Oil (1:20)</td>
</tr>
<tr>
<td>Face Milling</td>
<td>T-15 HSS</td>
<td>AR: 0° ECEA: 10°</td>
<td>4" diameter single tooth face mill</td>
<td>.060</td>
<td>2</td>
<td>.100</td>
<td>100</td>
<td>70</td>
<td>.015</td>
<td>Soluble Oil (1:20)</td>
</tr>
<tr>
<td>Face Milling</td>
<td>C-2 Carbide</td>
<td>AR: 0° ECEA: 5°</td>
<td>4" diameter single tooth face mill</td>
<td>.060</td>
<td>2</td>
<td>.005</td>
<td>350</td>
<td>100</td>
<td>.015</td>
<td>Soluble Oil (1:20)</td>
</tr>
<tr>
<td>End Mill Slotting</td>
<td>T-15 HSS</td>
<td>Helix Angle: 30°</td>
<td>3/4" diameter 4 tooth HSS end mill</td>
<td>.125</td>
<td>.750</td>
<td>.004</td>
<td>190</td>
<td>78</td>
<td>inches</td>
<td>Soluble Oil (1:20)</td>
</tr>
<tr>
<td>End Mill Peripheral Cut</td>
<td>M-3 HSS</td>
<td>Helix Angle: 30°</td>
<td>3/4" diameter 4 tooth HSS end mill</td>
<td>.125</td>
<td>.750</td>
<td>.004</td>
<td>190</td>
<td>142</td>
<td>inches</td>
<td>Soluble Oil (1:20)</td>
</tr>
</tbody>
</table>
TABLE I (continued)
RECOMMENDED CONDITIONS FOR MACHINING AND GRINDING

TZM MOLYBDENUM - 217 BHN

<table>
<thead>
<tr>
<th>Operation</th>
<th>Tool Material</th>
<th>Tool Geometry</th>
<th>Tool Used for Tests</th>
<th>Depth of Cut inches</th>
<th>Width of Cut inches</th>
<th>Feed</th>
<th>Cutting Speed ft/min.</th>
<th>Tool Life</th>
<th>Wear-land inches</th>
<th>Cutting Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td>M-33 HSS</td>
<td>118° plain point 7° clearance angle</td>
<td>.250" diameter drill 2-1/2" long</td>
<td>1/2" thru hole</td>
<td>-</td>
<td>.005</td>
<td>150</td>
<td>68 holes</td>
<td>.015</td>
<td>Highly Chlorinated Oil</td>
</tr>
<tr>
<td>Reaming</td>
<td>M-2 HSS</td>
<td>Helix Angle: 0° CA: 45° Clearance: 10°</td>
<td>.272" diameter 6 flute chucking reamer</td>
<td>1/2" thru hole</td>
<td>.010" depth on hole radius</td>
<td>.015</td>
<td>60</td>
<td>51 holes</td>
<td>.012</td>
<td>Highly Chlorinated Oil</td>
</tr>
<tr>
<td>Tapping</td>
<td>M-10 HSS</td>
<td>4 flute plug 75% thread</td>
<td>5/16-24 NF tap</td>
<td>1/2" thru hole</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>100 holes</td>
<td>-</td>
<td>Highly Chlorinated Oil</td>
</tr>
</tbody>
</table>

SURFACE GRINDING

<table>
<thead>
<tr>
<th>Wheel Grade</th>
<th>Grinding Fluid</th>
<th>Wheel Speed feet/minute</th>
<th>Table Speed feet/minute</th>
<th>Down Feed inches/pass</th>
<th>Cross Feed inches/pass</th>
<th>G Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>32A46N5VBE</td>
<td>5% KNO₂ Solution</td>
<td>2000*</td>
<td>40</td>
<td>.001</td>
<td>.050</td>
<td>25</td>
</tr>
<tr>
<td>32A46L8VBE</td>
<td>5% KNO₂ Solution</td>
<td>4000</td>
<td>40</td>
<td>.001</td>
<td>.050</td>
<td>13</td>
</tr>
</tbody>
</table>

If wheel speed of 2000 feet/minute is not available, use conditions for wheel speed of 4000 feet/minute.
<table>
<thead>
<tr>
<th>Operation</th>
<th>Tool Material</th>
<th>Tool Geometry</th>
<th>Tool Used for Tests</th>
<th>Depth of Cut inches</th>
<th>Width of Cut inches</th>
<th>Feed in/rev</th>
<th>Cutting Speed ft/min.</th>
<th>Tool Life</th>
<th>Wear-land inches</th>
<th>Cutting Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turning</td>
<td>M-2 HSS</td>
<td>BR: 0° SCEA: 0° SR: 20° ECEA: 5° Relief: 5° NR: 1/64"</td>
<td>5/8" square solid HSS</td>
<td>0.030</td>
<td>-</td>
<td>0.005</td>
<td>60</td>
<td>40+ min.</td>
<td>0.030</td>
<td>Soluble Oil (1:20)</td>
</tr>
<tr>
<td>Turning</td>
<td>C-2 Carbide</td>
<td>BR: 0° SCEA: 0° SR: 20° ECEA: 5° Relief: 5° NR: 1/64"</td>
<td>5/8" square brazed tool bit</td>
<td>0.030</td>
<td>-</td>
<td>0.005</td>
<td>300</td>
<td>40+ min.</td>
<td>0.010</td>
<td>Soluble Oil (1:20)</td>
</tr>
<tr>
<td>Face Milling</td>
<td>Super HSS</td>
<td>AR: 0° ECEA: 5° RR: 20° CA: 45° Clearance: 10°</td>
<td>4" diameter single tooth face mill</td>
<td>0.030</td>
<td>1-1/2</td>
<td>0.010</td>
<td>135</td>
<td>50 in/tooth</td>
<td>0.016</td>
<td>Highly Chlorinated Oil</td>
</tr>
<tr>
<td>Face Milling</td>
<td>C-2 Carbide</td>
<td>AR: 0° ECEA: 10° RR: 10° CA: 45° Clearance: 10°</td>
<td>4" diameter single tooth face mill</td>
<td>0.030</td>
<td>2</td>
<td>0.010</td>
<td>150</td>
<td>90 in/tooth</td>
<td>0.016</td>
<td>Highly Chlorinated Oil</td>
</tr>
<tr>
<td>End Mill</td>
<td>T-15 HSS</td>
<td>Helix Angle: 30° RR: 10° Clearance: 10° CA: 45°</td>
<td>1/2" diameter 4 tooth HSS end mill</td>
<td>0.060</td>
<td>0.500</td>
<td>0.003</td>
<td>100</td>
<td>200+ inches</td>
<td>0.008</td>
<td>Highly Chlorinated Oil</td>
</tr>
<tr>
<td>Drilling</td>
<td>M-1 HSS</td>
<td>118° plain point 7° clearance angle</td>
<td>.125" diameter thru hole 1-7/8" long</td>
<td>1/8" thru hole</td>
<td>-</td>
<td>0.005</td>
<td>75</td>
<td>175+ holes</td>
<td>0.008</td>
<td>Highly Chlorinated Oil</td>
</tr>
</tbody>
</table>
TABLE II (continued)

RECOMMENDED CONDITIONS FOR MACHINING AND GRINDING

D-31 COLUMBIUM ALLOY, 207 BHN

<table>
<thead>
<tr>
<th>Operation</th>
<th>Tool Material</th>
<th>Tool Geometry</th>
<th>Tool Used for Tests</th>
<th>Depth of Cut inches</th>
<th>Width of Cut inches</th>
<th>Feed in/rev</th>
<th>Cutting Speed ft/min</th>
<th>Tool Life</th>
<th>Wear land inches</th>
<th>Cutting Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaming</td>
<td>M-2 HSS</td>
<td>10° RH Helix CA: 45° Clearance: 10°</td>
<td>.213" diameter 6 flute chucking reamer</td>
<td>1/2" thru hole</td>
<td>.010" depth on hole radius</td>
<td>.005</td>
<td>125</td>
<td>105</td>
<td>.012</td>
<td>Highly Sulphurized Oil</td>
</tr>
<tr>
<td>Tapping</td>
<td>M-10 HSS</td>
<td>2 flute chip driver tap 75% thread</td>
<td>1/4-28 NF tap</td>
<td>1/2" thru hole</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>50 holes</td>
<td>-</td>
<td>Highly Chlorinated Oil</td>
</tr>
</tbody>
</table>

SURFACE GRINDING

<table>
<thead>
<tr>
<th>Wheel Grade</th>
<th>Grinding Fluid</th>
<th>Wheel Speed feet/minute</th>
<th>Table Speed feet/minute</th>
<th>Down Feed inches/pass</th>
<th>Cross Feed inches/pass</th>
<th>G Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>32A46K8VBE</td>
<td>5% KNO₂ Solution</td>
<td>2000*</td>
<td>40</td>
<td>.0005</td>
<td>.025</td>
<td>7.5</td>
</tr>
<tr>
<td>32A46K8VBE</td>
<td>5% KNO₂ Solution</td>
<td>4000</td>
<td>40</td>
<td>.001</td>
<td>.050</td>
<td>4.5</td>
</tr>
</tbody>
</table>

If wheel speed of 2000 feet/minute is not available, use conditions for wheel speed of 4000 feet/minute.
DISTRIBUTION LIST

Contract No. AF 33(600) 42349

ASD Project 7-532a

<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Aerojet-General Corporation
Attn: Mr. W. Tenner, Manager
Manufacturing Engineering
P.O. Box 1947
Sacramento, California |
| 1 | Aeronautical Systems Division
Attn: ASAPT
Wright-Patterson Air Force Base, Ohio |
| 1 | Aeronautical Systems Division
Attn: ASRCE (Mr. Teres)
Wright-Patterson Air Force Base, Ohio |
| 1 | Aeronautical Systems Division
Attn: ASRCEE-1 (Mr. H. W. Zoeller and
Mr. G. L. Campbell)
Wright-Patterson Air Force Base, Ohio |
| 2 | Aeronautical Systems Division
Attn: ASRCEM-1A, Mrs. N. Ragen
Wright-Patterson Air Force Base, Ohio |
| 1 | Aeronautical Systems Division
Attn: ASRCMP-2, Mr. James T. Gow
Wright Patterson Air Force Base, Ohio |
| 1 | Aeronautical Systems Division
Attn: Mr. Henry A. Johnson, ASRCOD
Wright-Patterson Air Force Base, Ohio |
| 6 + reproducible | Aeronautical Systems Division
Attn: Mr. Robert T. Jameson, ASRCTF
Wright-Patterson Air Force Base, Ohio |
| 1 | Aeronautical Systems Division
Attn: Mr. R. B. Brinkman, ASRKRA
Wright-Patterson Air Force Base, Ohio |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Aeronautical Systems Division
 Attn: Col. Lee R. Standifer
 Wright-Patterson Air Force Base, Ohio |
| 1 | ASD Ballistic Missiles Center
 Attn: SSRK (Mr. F. Becker)
 AF Unit Post Office
 Los Angeles 45, California |
| 1 Final Only | Aerospace Corporation Library
 Technical Reports
 2400 East El Segundo Boulevard
 El Segundo, California |
| 1 | Air Research & Development Command
 Attn: Mr. C. W. Kniffin, RDTDEG
 Andrews Air Force Base
 Washington 25, D.C. |
| 1 | Allison Division
 General Motors Corporation
 Attn: Mr. E. D. Berlin, Head of
 Experimental Process Development
 P.O. Box 894
 Indianapolis 6, Indiana |
| 1 | American Society for Metals
 Attn: Dr. Taylor Lyman
 Novelty, Ohio |
| 1 | University of Arizona
 College of Engineering
 Attn: Professor B. S. Mesick,
 Professor of Mechanical Engineering
 Tucson, Arizona |
| 1 | Armco Steel Corporation
 Attn: Leslie RajKay, Technical Librarian
 Research & Technology
 3501 East Biddle Street
 Baltimore 3, Maryland |
| 30 | Armed Services Technical Information Agency
 Attn: TIPCD
 Arlington Hall Station
 Arlington 12, Virginia |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Defense Metals Information Center
 Battelle Memorial Institute
 Attn: Mr. F. Boulger
 505 King Avenue
 Columbus 1, Ohio |
| 1 | Bay State Abrasive Products Company
 Attn: Mrs. Ruth D. Walker, Librarian
 Westboro, Massachusetts |
| 1 | Bendix Products Division
 Bendix Aviation Corporation
 Attn: Mr. A. J. Walsh, Staff Assistant
 401 Bendix Drive
 South Bend, Indiana |
| 1 | Binns Machinery Products
 Attn: Mr. Carol B. Shafer, Comptroller
 1224 Richmond Street
 Cincinnati 3, Ohio |
| 1 | Boeing Airplane Company
 Attn: Mr. T. C. Pitts
 Manufacturing Manager
 Wichita 1, Kansas |
| 1 | Boeing Airplane Company
 Attn: Mr. B. K. Bucey, Ass't. to Vice-Pres.
 Manufacturing
 P. O. Box 3707
 Seattle 24, Washington |
| 1 | Boeing Airplane Company
 Attn: Mr. L. Pickrell
 Manufacturing Development
 P. O. Box 3707
 Seattle 24, Washington |
| 1 | The Boeing Company
 Attn: Mr. W. R. Leighty, Manager
 Operations & Control
 Military Aircraft Systems Division
 Wichita Branch - Wichita 1, Kansas |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Professor Orlan W. Boston
1645 Arbordale Drive
Ann Arbor, Michigan |
| 1 | California Institute of Technology
Attn: Dr. Donald S. Clark
Prof. Mechanical Engineering
Pasadena, California |
| 1 | University of California
Attn: Dr. E. G. Thomsen,
Department of Ind. Engineering
Berkley 4, California |
| 1 | University of Southern California
Attn: Dr. Reno Cole and Dr. M. Asimow
Los Angeles, California |
| 1 | The Carborundum Company
Attn: Mr. Donald P. Hunt, Senior Develop. Engr.
Stupalox Project
P. O. Box 337
Niagara Falls, New York |
| 1 | Carnegie Institute of Technology
Attn: Dr. Milton Shaw, Department of Mechanical Engineering
Schenley Park
Pittsburgh 13, Pennsylvania |
| 1 | Cessna Aircraft Company
Attn: Mr. Del Roskam, Vice-President
Wichita, Kansas |
| 1 | Chance Vought Aircraft, Inc.
Attn: Chief Librarian, Engineering Library
Dallas, Texas |
| 1 | Administration Contracting Officer
Attn: Mr. Wm. C. McOwen, RCHBOA
Cincinnati Management Office
U.S.A.F., 3rd Floor, Swift Building
230 East Ninth Street
Cincinnati 2, Ohio |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Destination</th>
</tr>
</thead>
</table>
| 1 | Cincinnati Milling Machine Company
 Attn: Dr. M. Eugene Merchant, Director
 of Physical Research
 4701-4801 Marburg Avenue
 Cincinnati 9, Ohio |
| 1 | University of Cincinnati
 Attn: Prof. Hans Ernst
 Cincinnati 21, Ohio |
| 1 | Cleveland Pneumatic Industries, Inc.
 Attn: Mr. Fred W. Olsen, Ass't. Program
 Planning Director
 3781 East 77th Street
 Cleveland 5, Ohio |
| 1 | Climax Molybdenum Co. of Michigan
 Attn: Mr. Marion Semchyshen
 14410 Woodrow Wilson
 Detroit 38, Michigan |
| 1 | Cornell University
 Attn: Prof. William Pentland
 Ithaca, New York |
| 1 | Curtiss-Wright Corporation
 Curtiss Division
 Attn: Mr. J. H. Sheets
 Caldwell, New Jersey |
| 1 | Curtiss-Wright Corporation
 Attn: Mr. J. H. Garrett
 Mr. R. A. Kaprelian
 Mr. A. Slachta
 304 Valley Boulevard
 Wood-Ridge, New Jersey |
| 1 | Curtiss-Wright Corporation
 Attn: Mr. Odif Podell, Vice-President
 Operational Planning
 Wood-Ridge, New Jersey |
| 1 | Curtiss-Wright Corporation
 Metals Processing Division
 Attn: Mr. F. C. Wagner
 Mr. B. H. Triffleman
 P.O. Box 13
 Buffalo, New York |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Douglas Aircraft Company, Inc.
Attn: Mr. N. H. Shappell, Works Manager
3000 Ocean Park Boulevard
Santa Monica, California |
| 1 | Douglas Aircraft Company, Inc.
Santa Monica Division
Attn: Mr. J. L. Waisman
Chief Metallurgist
Santa Monica, California |
| 1 | Douglas Aircraft Company, Inc.
Attn: Engineering Library E-250
Mr. A. D. Jamtaas, Chief Engineer
1820 Statesville Avenue
Charlotte, North Carolina |
| 1 | Douglas Aircraft Company, Inc.
Attn: Mr. Jess L. Jones, General Manager
2000 N. Memorial Drive
Tulsa, Oklahoma |
| 1 | Douglas Aircraft Corporation
Missiles & Space Vehicles
Attn: Mr. B. B. Moss
Culver City, California |
| 1 | Dyna-Systems, Inc.
Attn: President
4030 Spencer Street
Torrance, California |
| 1 | E. I. duPont deNemours & Company, Inc.
Attn: Mr. Donald L. Macleary,
Metal Products
Wilmington 98, Delaware |
| 1 | Fairchild Engine & Airplane Corporation
Fairchild Aircraft & Missiles Division
Attn: Mr. A. D. Jairett, Mgr. Tool
Engr'g. & Mfg.
Hagerstown 10, Maryland |
| 1 | Fansteel Metallurgical Corporation
Attn: Mr. Rinaldo M. Curcio
Technical Administrator
North Chicago, Illinois |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Ford Motor Company
Attn: Dr. Michael Humenik, Supv.
Scientific Laboratory
Detroit, Michigan |
| 1 | Foreign Technology Division
Attn: TD-E2B
Wright-Patterson Air Force Base, Ohio |
| 1 | The Garrett Corporation
AiResearch Manufacturing Division
Attn: Mr. H. W. Young, Factory Mgr.
9851 Sepulveda Boulevard
Los Angeles 45, California |
| 1 | General Dynamics/Astronautics
Attn: Mr. V. G. Mellquist
Zone 290-0
P. O. Box 1128
San Diego, California |
| 1 | General Dynamics/Convair
Attn: Mr. W. E. Wise, Mfg. Develop.
& Process Spec.
Zone 190-00
San Diego 12, California |
| 1 | General Dynamics/Fort Worth
Attn: Mr. R. A. Fuhrer, Chief
Manufacturing Engineer
P. O. Box 748 (Mail Zone T34)
Fort Worth, Texas |
| 1 | General Dynamics/Pomona
Attn: Mr. A. T. Seeman, Chief of
Engr'g. Manufacturing
P. O. Box 1011
Pomona, California |
| 1 | General Electric Company
Attn: Mr. H. J. Siekmann, Metallurgical
Products Department
11177 East Eight Mile Road
Detroit 32, Michigan |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | General Electric Company
Attn: Mr. D. A. Brown, Specialist
Technical Services
Cincinnati 15, Ohio |
| 1 | General Electric Company
Manufacturing Engineering Research Lab.
Large Jet Engine Department - 3ldg. 700
Cincinnati 15, Ohio |
| 1 | General Electric Company
Attn: Mr. D. A. Stewart, Supervisor
Machinability Unit
Building 700
Cincinnati 15, Ohio |
| 1 | General Electric Company
Attn: Dr. W. W. Gilbert, Mgr. Mach.
Development Services
Schenectady, New York |
| 1 | Giddings & Lewis Machine Tool Company
Attn: Mr. Jesse Daugherty, Vice-President
Engineering
Fond du Lac, Wisconsin |
| 1 | Goodman Manufacturing Company
Attn: Mr. Ken Stalker
48th Place & Halsted Street
Chicago, Illinois |
| 1 | Goodyear Aircraft Corporation
Attn: Librarian, Dept. 154, Plant G
1210 Massilon Road
Akron 15, Ohio |
| 1 | Grumman Aircraft Engineering Corporation
Attn: Mr. W. J. Hoffman, Vice-President
Manufacturing Engineering
Bethpage, Long Island, New York |
| 1 | Hiller Aircraft Corporation
Attn: Engineering Library
1350 Willow Road
Palo Alto, California |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Hughes Tool Company
Aircraft Division
Attn: Mr. T. E. Piper, Materials Develop.
Florence Avenue at Teale Street
Culver City, California |
| 1 | University of Illinois
Attn: Dr. Kenneth J. Trigger, Prof. Mechanical Engineering
Champaign, Illinois |
| 1 | Jack & Heintz, Inc.
Attn: Mr. J. L. McGinnis, Manager of Manufacturing
17600 Broadway
Cleveland 1, Ohio |
| 1 | Lear, Inc.
Attn: Mr. A. F. Haiduck, Group Vice-President
110 Ionia, N. W.
Grand Rapids, Michigan |
| 1 | Lockheed Aircraft Corporation
Attn: Mr. Martin Georges, Chief Manufacturing Engineer
P. O. Box 511
Burbank, California |
| 1 | Lockheed Aircraft Corporation
California Division
Attn: Mr. Robert L. Vaughn, Producibility Methods Engineer
2555 North Hollywood Way
Burbank, California |
| 1 | Lockheed Aircraft Corporation
Missiles & Space Division
Attn: Mr. A. H. Petersen, Manager Prod. Engineering Department
Sunnyvale, California |
| 1 | Lockheed Aircraft Corporation
Missile Systems Division
Attn: Mr. H. W. Allen, Manager PMS Methods & Area Engineering
Sunnyvale, California |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Lycoming Division
AVCO Manufacturing Corporation
Attn: Mr. W. H. Panke, Supt.
Manufacturing Engineering
Stratford, Connecticut |
| 1 | The Marquardt Corporation
Attn: Mr. C. W. Seymour, Dir. of
Manufacturing and Materials
16555 Saticoy Street
Van Nuys, California |
| 1 | The Marquardt Corporation
Ogden Division
Attn: Mr. Kaz Sato, Chief
Manufacturing Engineer
P. O. Box 670
Ogden, Utah |
| 1 | Marquette University
Attn: Dr. A. O. Schmidt
Milwaukee, Wisconsin |
| 1 | The Martin Company
Attn: Chief Librarian, Engineering Library
Baltimore 3, Maryland |
| 1 | Martin-Marietta Corporation
Attn: Mr. C. A. Blaney, Dir. of Operations
Orlando Division
Orlando, Florida |
| 1 | McDonnell Aircraft Corporation
Attn: Mr. A. F. Hartwig, Chief Ind. Engineer
P. O. Box 516
St. Louis 66, Missouri |
| 1 | Menasco Manufacturing Company
Attn: Mr. R. Runyon
805 So. San Fernando
Burbank, California |
| 1 | University of Michigan
Attn: Dr. Lester Colwell
Ann Arbor, Michigan |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Monarch Machine Tool Company
 Attn: Mr. A. Albrecht
 Sidney, Ohio |
| 1 | National Beryllia Corporation
 Attn: Mr. Philip S. Hessinger, Vice-Pres.
 First and Haskell Avenue
 Haskell, New Jersey |
| 1 | Director
 Naval Research Laboratories
 Attn: Code 2021
 Washington 25, D.C. |
| 1 | Department of the Navy
 Bureau of Naval Weapons
 Attn: T. F. Kearns, RRMA-22
 Washington 25, D.C. |
| 1 | North American Aviation, Inc.
 Rocketdyne Division
 Attn: Mr. William B. Johnson, Dept. 564-02
 Numerical Control Coordinator
 6633 Canoga Avenue
 Canoga Park, California |
| 1 | North American Aviation, Inc.
 Attn: Mr. L. P. Spalding
 International Airport
 Los Angeles 45, California |
| 1 | North American Aviation, Inc.
 Attn: Mr. Latham Pollock, Gen'l. Supt. Mfg.
 International Airport
 Los Angeles 45, California |
| 1 | North American Aviation, Inc.
 Attn: Mr. D. E. Myers, Jr.
 Dept. 56, Group 752
 4300 East Fifth Avenue
 Columbus 16, Ohio |
| 1 | North American Aviation, Inc.
 Attn: Mr. David H. Ross, Department 64
 Manufacturing Development Section
 4300 East Fifth Avenue
 Columbus 16, Ohio |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Northrop Corporation
 | Norair Division
 | Attn: Mr. R. R. Nolan, Vice-President & Division Manager
 | 1001 East Broadway
 | Hawthorne, California |
| 1 | The Norton Company
 | Attn: Dr. L. P. Tarasov, Research & Development Department
 | Worcester 6, Massachusetts |
| 1 | Oak Ridge National Laboratory
 | Metals & Ceramics Division
 | Attn: Mr. W. C. Thurber
 | P. O. Box X
 | Oak Ridge, Tennessee |
| 1 | Pennsylvania State College
 | Attn: Prof. George L. Thuering
 | State College, Pennsylvania |
| 1 | Pratt & Whitney Aircraft
 | Attn: Mr. Herbert Maier
 | Materials Control Laboratory
 | West Palm Beach, Florida |
| 1 | Pratt & Whitney Company, Inc.
 | Attn: Mr. Paul M. Arnold
 | West Hartford 1, Connecticut |
| 1 | Precision Sheet Metal, Inc.
 | Attn: Mr. G. M. Grein, Vice-President Development
 | 5235 West 104th Street
 | Los Angeles 45, California |
| 1 | Republic Aviation Corporation
 | Attn: Mr. A. Kastelowitz, Director Mfg. Research
 | Farmingdale, Long Island, New York |
| 1 | Rock Island Arsenal
 | Attn: Dr. A. C. Hanson, Laboratory Director
<pre><code> | Rock Island, Illinois |
</code></pre>
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Rohr Aircraft Corporation
Attn: Mr. B. F. Raynes, Exec. Vice-Pres.
P. O. Box 878
Chula Vista, California |
| 1 | Ryan Aeronautical Company
Attn: Mr. Robert L. Clark, Works Mgr.
P. O. Box 311
Lindbergh Field
San Diego 12, California |
| 1 | Sandia Corporation
Attn: Library
P. O. Box 5800
Albuquerque, New Mexico |
| 1 | Sikorsky Aircraft Division
United Aircraft Corporation
Attn: Mr. Alex Sperber, Factory Manager
N. Main Street
Stratford, Connecticut |
| 1 | Solar Aircraft Company
Attn: Mr. J. A. Logan, Mgr. Facilities Div.
2200 Pacific Highway
San Diego 12, California |
| 1 | Sperry Gyroscope Company
Div. Sperry-Rand Corporation
Attn: Mr. G. A. Richroath, Vice-Pres.
for Manufacturing
Great Neck, New York |
| 1 | Standard Pressed Steel Company
Attn: Mr. Robert L. Sproat, Director
Engineering & Development
Jenkintown, Pennsylvania |
| 1 | Temco Aircraft Corporation
Attn: Mr. P. F. Young, Supt.
P. O. Box 6191
Dallas 2, Texas |
| 1 | Thiokol Chemical Corporation
Redstone Division
Attn: Mr. T. Howard Burns
Huntsville, Alabama |
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>DESTINATION</th>
</tr>
</thead>
</table>
| 1 | Thiokol Chemical Corporation
Attn: Mr. James A. Bryson, Materials Development Department
Brigham City, Utah |
| 1 | Thompson Ramo Wooldridge, Inc.
Attn: Dr. A. S. Nemy, Research & Dev. Div.
23555 Euclid Avenue
Cleveland 17, Ohio |
| 1 | Tool Research and Engineering Corporation
Attn: Vice-President, Manufacturing Res.
403 South Raymond Avenue
Pasadena, California |
| 1 | U. S. Atomic Energy Commission
Office of Technical Information
Attn: Margaret L. Pflueger, Chief Information Section
P. O. Box 62
Oak Ridge, Tennessee |
| 1 | Universal-Cyclops Steel Corporation
Attn: Mr. C. P. Mueller, Technical Manager Refractomet Division
Bridgeville Plant
Bridgeville, Pennsylvania |
| 1 | Vanadium-Alloys Steel Company
Attn: Dr. J. C. Hamaker
Vice-President, Technology
Latrobe, Pennsylvania |
| 1 | Warner & Swasey Company
Attn: Mr. Robert Hook
5701 Carnegie Avenue
Cleveland 3, Ohio |
| 1 | Commander
Watertown Arsenal
Ordnance Materials Research Office
Attn: Dr. J. L. Martin
Watertown, Massachusetts |
1

Commanding Officer
Ordnance Materials Research Office
Watertown Arsenal
Attn: Mr. N. L. Reed, Assistant Director
Watertown 72, Massachusetts

1

Westinghouse Electric Corporation
Aviation Gas Turbine Division
Attn: Mr. E. C. Sedlack, Div.
 Manufacturing Manager
P. O. Box 288
Kansas City, Missouri
AD
Metcut Research Associates Inc.
Cincinnati, Ohio

MACHINING OF REFRACTORY MATERIALS, by N. Zlatin, M. Field, J. Gould
February, 1963 126 p. incl. illus. (Proj. 7-532a)
(ASD TR 7-532a(IX)
(Contract AF 33(600)-42349)

Unclassified Report
Tests to determine the feasibility of high speed milling (edge trimming) are in progress. Preliminary test results indicate that high speed milling offers...

AD
a better than average potential for success in edge trimming 6Al-4V titanium sheet and 15-7 Mo sheet in the 500 to 2500 ft./min. cutting speed range. Drilling tests have been made using the Tornetic drilling unit and a constant speed drill press on D6AC steel in the 54-58 R_C hardness range. Tapping test results on B-120VCA titanium at 400 BHN are presented comparing the Tornetic tapping data with conventional tapping. Machining test data is also presented on B-120 titanium, TZM molybdenum and D-31 columbium alloy.