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This Memorsndum presents the results of a theoretical study of the

behavior of certain types of transmitting antennas. The material bas

possible eventual application to space cmmmicatlons and to poblies in

COmMlOStioins englneering am science.
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This Yemorandum deals with the determination of the probability

distribution of the electric field resulting from an arbitrary random array

of sources (or scatterers). The distribution Is surprisingly simple, is

easily calculated for mt interesting array distributions, and has vide

generality of application. Specifically, we find the antenna pattern

distribution of a synthetic aperture antenna formed by a moving space

vehicle emitting pulses randomly in time. However, our results apply not

only to synthetic aperture antennas of arbitrary distribution but also to

randomly deleted antennas and to chaff, meteor trail, and electron cloud

d1anotics as well.

The problem is restricted to the study of the far field from I sources,

the positions of which are independent identically distributed as F(r).

Xhrkov's method is then used to analyze what is essentially a two-dimensional

random walk induced by a three-dimensional distribution. It is shown that

if the Fourier transform *(k) of the distribution function F(r) can be

performed in closed form, then the limiting form of the probability density

of the resultant electric field vector is imediately obvious for every

frequency and direction of propagation. Finally, the probability density of

the resultant power or envelope Is determined in closed form, and the

correlation between the resultant field at different angles and frequencies

Is exibited.
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This Memorandum In concerned with the probability distribution of the

far field resulting from an array of N sources, the positions of which are

independent, identically distributed random variables. The importance or

utility of this simply stated problem is essentially derived from the

extreme simplicity of form of the answer.

Naffett(l) briefly discusses a specific random antenna--a linear array

with N sources uniformly distributed. However, the analysis is incomplete

in that he derives the distribution of only one of the two quadrature

coqonents of the field. Hence, nothing can be said of the distribution of

the envelope or power. In this Memorandum an expression will be derived

for the envelope distribution of the resultant field from arbitrary spatial

distribution functions.

An interesting and very general study of the problem has been made by

Kelly and Lerner(2) in which they exploit the mathematical analogy to the

shot effect of the radar echo from a random collection of scatterers. How-

ever, their specializations are made to oases in which the expected antenna

pattern is essentially zero.

The following exmples will illustrate some of the array distributions

which may be of interest. A gas diffusing from a point source might have

a three-dimensional gaussian distribution. A synthetic aperture antenna

formed by emitting pulses at Poisson increments in time from a linearly

moving space vehicle can be considered. under certain assumptions on the

data processing scheme, to have sources having a uniform probability density

over a line segment. A short section of meteor trail my have its scatterers

obeying a uniform distribution over a cylinder cut out by the meteor. Also,



2

a phased array whose components are randomly deleted or damaged is a random

array with a distribution corresponding to the related complete array. The

expected changes in gain of randomly deleted arrays are discussed by Ogg. ( 3 )

The far field assumption, made in order to give the answer its sim-

plicity and utility, restricts some of the above examples to relatively

uninteresting cases. In order for the far field assumption to hold, the

lateral extent of the target must be less than the diameter of a Fresnel

zone. For examule, the lateral extent of a gas cloud, meteor trail segent,

or synthetic aperture antenna--for distances on the order of 1000 km at

wavelengths on the order of 1 m--must be less than 1 kin. Then again, the

qualitatively interesting cases occur when the extent of the array is a

small number of wavelengths, because the field components will tend to

add coherently rather than incoherently as the extent of the array decreases.

Figure 1 illustrates a typical sample random armay where k is the

direct ion of propagation veto with magnitude

and points in the direction of propagation. Under the far field assumption.,

for identically polarized sources. the resultant electric field I at a point

along the direction k can be written as the coqilex umber

0- -  (2)

6-1
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z

00 L

%0 0 y

Fig. I-Sketch of array and electric field component
arising from source at Position L

For radA~r echoes k bcon 2k because of the doubled 3path. For a contiuo

distributionagr

1fir (Q)e di~ (3)
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This sect ion will provide the details of the derivation of the

asyqtotic ]probability distribution of the resultant electric field* For

purpose. of exposition we assm N Isotropic radiators of equal litud,

opei'ating in phase. We my relax these asumpiqtions later.

The very general method of characteristic functions will be used here,

i.e., the characteristic function of the sum of independent (not necessarily

identically distributed) random variables (in this case vector-valued randomu

variables) is the product of the individual characteristic functions.* The

invers ion formulaM yields the desired distributi~on function of the vector-

valued random variable. Candraseke ascribes to Markav the origin of

this technique with respect to multidimensional random variables.

The essenti1al siurplificat inns occur when the N random variables are

identically distributed and N is large (10 or more), thus allowing an

asymptotic expansion of the characteristic function, which Is then easily

Inverted.

Our problem is essentially that of solving a two-dimensional random

valk (each step being an electric field vector) induced by the three-

dimnsional probability distribution of the positions of the radiators. We

assume the use of isotropically radiating sources of equal intensity that

are operating in phase. These sources are independently identically distri-

buted in space according to the probability distribution r) where

r w (zRyOZ) t , a three-dlimensional colm vector.*

F(D - PX 1Cx, Y YVz %Z} (Ii)

The symbol "t' designates transpose.



To this distributica function I(r) there corresponds the characteristio

ftm:Ln(,5)*(A) - *(x kY kz). If the radiators also have some

1anoioesu of phase 58, we my define a nwv k n (k X, k 7 , k z, 1 )t and a myv

r = (x# yp u, B)t and treat this ass. along with the fw.er In either

ae" we bave the definition

* u sE - ffakj e a M d7(:) (5)

The contribution to the electric radiation field in direct ion k due

to a source at position r is e - .The complex number e IiL ill be

written as the tw-dimeunsionl column vector R - (coo k tr, sin Or t

Hance the tetAl electric field will be the sum of N two-dimensional vectors,

each of unit length but having random phases, the distributions of which

depend an 7(r) and k. Our firt task is to obtain the probability density

p V hee

N

!-~ ~ z~(6)

[Note that IZ I - 1 if all the sources add coherently. Bunc., we call!I the

namlized resultant vector*

It will be wise to consider first the distribution of the centered

ranas variable

N

Aiml
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is the expected value of the electric field in direction k due to the i-th

source (averaged over the spatial distribution 7(r)). Later, a change in

variable will yield the desired distribution. The characteristic function

#NL)of A )is given by

#(Nfffexp [ juWt](Nl)2~'I

(8)

where the independence of the rj has been used. Making use of the identical

distribution of the r 3 , the folloving equation Is true for an ji

e [ffxp (Ij !t(aj 0l 2..jJ (9)

This integral can be evaluated only for very special foa of F(r). See

Section VI for such a case.

In order to proceed with the anlysis for general , consider the

examiom of Eq. (9)

- W, {_t!,_ a),I,_a., , o -
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because 1 - 0. Then

t

Qwhich tend in the 14-4 for large I to the characterititc function

#()- exp I- ()

where Q is the 2 x 2 covariance matrix corresponding to a single radiator

of unit aqplitudet

Vkr(E) aov(ERI)]

CI01) a~, (12)

(Incidenta1y. the as7ymtotic derivations of results similar to these in

Ref. 5 are ncorrect.*) The characteristic function (Eq. (11)) is easily

inver'ted( 6 ) to give the density

(2,flQfl 112 exp [. - ) Qt-1

A change of variable correspoM ing to definitions found in zqs. (6) and (7)

results in

P . en-(_.) (13)

*The asymptotic expansions are incorrect in Eqs. (85), (91), and (96),
although the answers exhibited in Eqs. (87) and (93) are correct. The general
answer, Eq. (103), is incorrect because Eq. (100) is a moment matrix rather
than a covariance matrix.



8

So. for large N, the probability density of the normlized resultant

electric field from N independent identically distributed sources Is

blwalate noarm with men and cowiance mtrIx I .
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MI. NVAWUATION OF EAW AID OOVARIAOE MAT=H

In this section the results are pleasing in their simplicity and

interesting in their Inberyetation. We wish to find se an Q in term

of Fr().

If the definition found In Sq. (8)

- c {k } I in k )

-ffos k. r d1z), Ws.Tin kor "(0)t

- j (S) W(E , *1(k)t

where (k) is just the characteristic function of F(r) (see Eq. (5)) and

(_k) is the two-dimensional vector formed from the real and imaginary parts

of $. We conclude, upon comparison with Eq. (3), that the expected antenna

space factor from the random array with distribution F(r) corresponds

exactly to the actual space factor from a source intensity distribution

g(E) equal to the probability density F'(r). This is intuitively obvious.

The covariance matrix Q also is easily expressed in terms of t(k).

rom q. (12) we bave, for a single unit radiator, the matrix

22
-

- ( 1)

--- ---I ' -NI;
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IF aeoU2atling Qfll for eaIle, we fi.nd

- I 2  0 -J 0.2 k*r dP(E)

(1 coo 2 kr)r) (16)

1

=+ *R2E

2 21 (17)

Proceeding in the oine ma er, we finally obtain

and

11

characteritic function *(k) is just the three-dimnsional Fourier tra-

form of r) and is e lyeorei the fir fieldo watteh fmen a andcon



Illumination F(r). Here# ws find that both pand Q, and therefore P(E)P

are si~le functions of * evaluated at the argument k which "Just happens"

to be the direction of propagation vector. Thus.. if the Fourier transform

of the distribution function F(r) can be performed in closed form, then the

probability density of the normalized resultant electric field vector in

1medately obvious for every frequency and direct ion of propagation.
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VUXM LXXL4R ARPY

We are concered with the space factor of N isotropic sources operating

In phase whose positions Z. are independent, identically distributed ran

variables uamifm.3 distributed over an Intervl of lemh L. (See

Mig. 2.)

L L
5(y) 2 (9 2

P1'(x, ,s) .(19)

LO otherwise

k

a

Fig. 2- Uniform linear array

Actually it was this problem (suggested by Irving S. Reed) which led

to the investigtions reported in this Memorandum. It would be of interest,

for example, to kno the radiation pattern of a synthetic aperture anten

realized by transmitting pulses at Poisson increments in time from a

rapidly orbitIng satellitep deep space vehicle, or meteor trail. The data
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are simply processed as if the pulse positions were unknown. Such a ranftm

antenna will have the property of suppressing the gating lobes arising

from transuission of regularly spaced pulsese

To proceed, we find siupy

L C

Qk)= - (kzjk Sk)) T. f e -  ()8(S) dr

(20)
L

~kx

where k = cos a and a is the angle included between the direction of
x

propagtion vector and the line of sources. We are motivated now to

define

k cL L co a(1

an call It the "effective" antenom length in wavelengths.

1N Q)

.(sin it y)
" ( (22)

1+ 1 si 2x sin1"

01 1 sin 2L (re) If go ll



Observe that for y 1j, 2, 3, ...

Q (23)00

Figure 3 shows the sketch of the expected value of E, along with the one

standard deviation lines of the real W maglnary pat of E.

/. , Mean value of E

Al 0, Standard deviation of E R
Standard deviation of EX

10

al , Stndr deito0fE

...... .. .... . -,.:-.".'tm t*, -o a -t a a .

-1 23 7

Fig. 3- Uniform linear distribution (NnIO)

Reumrk 1: Here P(E) depends on the direction of propagation k through y.

Remark 2: A meteor entering the atmosphere and creating an ionization path

will result in a y which increases linearly with time. Thus, a

receiver will observe a return similar to Fig. 3 cooAuired as

a function of time.



GAUSSIAN ARRAY IlN Tfl-D1NIONS

It is clear that echo statistics from an array of normally distributed

sources (or scatterers) are of more than academic interest. Such a distri-

bution arises naturally for a gas diffusing from some source point, dipoles

subliming from an orbiting source, and in "nice" explosions (relatively

collisionless expansion of a gas which was cenfined and in equilibrium at

tfri zero).

Here we consider the distribution

IFJ 1 E12 )

) . 3' (-312/22) (24)
It

and eaily calculate by Eq. (5) the corresponding characteristic function

= exp [-_k,2 a2/6] (25)

Since k = - we are led to introduce , the cloud "radius" in

wavelengths:

(26)

22

Thus (k) -y /2

i2

and *(22E) -= -2

P()- N(p , N Q)

(e-Y A

0
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(27)o (1i( )2

The above results are platted In Fig. i4.

Mean value of E

Standard deviation of E.

.. .. / Standard deviation of E,
10lo

Sx Cloud "radius" in wavelengths

d .. °. .... .....

Fig. 4-Gaussion arroy (NIO)

Remark 1: P(E) is independent of direction of propagation k.

Remark 2: A gas of N particles diffusing from an initial point concentration

produces a y which is proportional to the square root of the

elapsed time. Now the echo statistics can be read from the gajh.
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Biosm 3: For y > 1, the envelcpe r of the electric field I Is essentially

sylegta distributed.

2 -y22 -Y2 /a.77M-> 1 1- 10'

This in turn, for y >> i, became P(r) - 2 e"

UpMlR T DSTI ON OVER A DISC

The statistics of the uniform distribution over the area of a circle

are of interest, for exsmple, if one has coherent transmitters scattered

randomly in the ocean, desert, or on the surface of another planet, or

if one has the analogous problem of aLalyzing echoes from clusters of points

on the sea. Consider a source, the position of which is a random variable

bving a uniform distribution over a disc of radius RO .

1 2 22
p ; z O x + y :g 0

IF(r) (28)

0 j otherwise

Then(
7)

i~)- 2. ()

2 0 sine9

where Jl(z) is the Bessel function of order one; 
y = 2 -

"effective" aperture diameter (wavelengths); and 6 is the angle between

k and the z axis. Equation (29), together with Eq. (18), yields the

probability density of the field as a function of y.
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07 DISTRIHJTONS

As bas been pointed out, the only difficulty in finding P(E) is in

conputing the Fourier transform *(k) of F(!:). This has been done In zmW

interesting cases, and no further emuples vili1 be enumerated.
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V. UVELoPE DITRIWJION

The probability distribution of the electric field vector is useful

when completely coherent reception (detection) is realized, i.e., the

phase of the carrier is known at the receiver. In general, however, the

phase of the return is of secondary importance, and we shall be most

interested in the probability distribution of the envelope, or magnitude

of the field. Unfortunately, averaging out the phase proves to be a(8
difficult unsolved problem,(8 ) where satisfactory expressions exist only

for special cases. In this section we attempt to determine the envelope

density p(r).

Assue for simplicity that F(r) is synmetric in r; that is,

dF(r) - dF( -r). (The same analysis will follow, after diagonmlization of

Q, for the general case.) Then *(k) is real for all k and

I + 1 *2q~) 0

19 2Q (30)

0 1- (2_)

vhich ve rewrite

Q =(31)

Then

1 01

( )(32)

0 1

i -c'Ck)

: " 0
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We have for the probability density of the norm'zed electric field

vector

- X(.l.)2//2 2 ' 2 (33)

Let F rco 8 (3)

EI= r sin)

Then after reduction

p(r,e) 1 C e A co 20 + B coo 0 (35)

vhere

Nr E N( X +X2 )r 2  N N2 (k) ]

A N(X2 - ).2

4 X 1 X2

N r *(k)
E m

X1

11
)2 + *(L)- ()
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andD

*(k) Jcoo k.r dP(r)

In order to proceed in the determination of p(r), we list the

folloaing pertinent Bessel function relationships:

Bssuel's integrals for the Bessel coefficients (Ref. 9, p. 20)

i n(j) - ein iz sin # d# , Ito

(36)

In(Z) - . nLvefin#+zcoo#d# k 0

The series definitions of the coefficients (Ref. 9, PP. 15, 77):

Jn(Z) - 2 n) 2: n 0
M.o

-n(z) - (_)n ,n(z) , n 0

n(Z) "C 1= ' Z),) n k. o (37)

L n(Z) =(z) , no

In(Z) - (.i)n Jn(in)



22

The Fourier series expansions:

e±z sin ein I jn(Z)

(38)

z cOS I - ein * i(Z)

Then the marginal density of the envelope is given

p(r) - p(rG) do
0

1 C 2 e- A coo 20 + B coo e
g eO d e

p(r) - C 2 jCB coo 6 e 2  In(-A) dO

Rearranging 0

p(r) - C~ I (_A) 2 1~2nO + B coo 0 d

y Eq. (36) c

p(r) - Cy I,(-A) 12(B) (-l)"

Putting z a -A in Eq. (37)

p(r) - C In(A) In(B)
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I, Finall, by Sq. (37)

p(r) - X 1o(A) XO(B) + 2 C In(A) I~n(B) (39)

~The expression given here for the density-of the envelope r is the

principal result of this section. Although p(r) is expressed as an

Infinite sum, much information can be obtained from closer examination.

Consider, for example, the case where X, = - X i.e., the real

and imaginary components of the electric field E, are independent random

variables with identical variances X and with means ,(k) and 0, respec-

tively. (Observe that this case occurs for the field from a random array

only when (2_) 2 (k).) In such a case the parameter A in Eq. (39) is

equal to zero. Since

rl, n 0

In(O) =

101 n 0

all terms but the first drop out of Eq. (39) leaving

p(r) C Io(B)
040

- rexp- [r 2 + *2k)] 10 ( 4r for r t 0

This is Just the Rayleigh distribution with parameters ,(k) and x/N,

which is discussed, for example, by Rice (Ref. 10, p. 106).

Consider next the case where the mean value of E is zero, i.e.,

,(k) = 0. Here we have E obeying an elliptical bivariate normal law

with mean zero, corresponding to an expected node in the antenna pattern.
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ov the paameter B in 3q. (39) Is HmO &U terW Of the m but the

first are zero. Thus

p(r) - C 1o(A)

T ,for r 2( )

Finally, for coisrison prposes, we append an approximation that is

good when L is on the order of one. We propose to reduce the elliptical

gaussian bivariate distribution of E to an "equivalent" circular distri-

bution. This is then integrated directly to give the Rayleigh distribution.

There is no restriction to diagonal Q.

A locus of constant probability of E (see Eq. (13)) is the ellipse

(E - pL)' Q-1 (E - p) - 1. The area of this ellipse is x 1,, where ,

and X are the first and second eigenvalues of Q; that is, X, and X are

the lengths of the maJor and minor axes of the ellipse.

A circle of the saee area would have radius r =4 (the harmonic

mean of the lengths of the axes of the ellipse). Finally, recall that

),1) nIQII n 11Q m " No sinply replace the elliptical

00 L
Q'

1
p1 (1X2
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by the circular

21/2

O 11

Bence Zq. (13) becomes

p(I) - N _,2 1TNELI(EL)(
2ojIQii1" 2 IIQII J2

When the ph,. as integratedl out, the probability density of the envelope

nap(r) e IQI 2  (I&5)

2 Ii II
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VI. AN EXACT CASE

In the preceding sections we have been forced to consider a random

walk with unit steps having an arbitrary distribution of angle at each

step. This differs from the classical case, treated by Kluyver(9 ) and

Rayleigh,(II ) where all angles are equiprobable. However, we do get the

isoperiodic case when our source distribution F(r) satisfies certain

conditions (roughly, a uniform distribution over a volume whose dimension

along the direction of propagation is an integral number of wavelengths).

To illustrate this, consider a random linear array where N sources are

distributed independently, uniformly over a length L (see Fig. 2). Then
2n L cons =n ti paetta

whenever k • L is an integer, i.e., 2 L = n. it is apparent that

the distribution of the angle of the unit electric field vector from each

source is uniform over 21r. Hence Kluyver's(9 ) results apply (see also

Ref. 10, p. 242 and Ref. 11), and the probability density of the envelope

r w 131 is wwmctly

p(r) - r fc x J0(rxc) JN- (x) dx (Ii6)

This has been shown to aproach a Rayleigh distribution in the limit for

large N.
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VII. COMEMATION IN RADIATION AT DD'FF1!
AID= AND FPE NS

The knowledge of the radiation field from a random array at one

direction and frequency vill allow an improved estimate of the radiation

field at another direction or another frequency. It is intuitively clear

that specification of the radiation field in a given direction puts

constraints on the positions of the sources. This information induces a

conditional probability distribution on the random field at new angles

and frequencies.

Applications of the generalizations in this section are numerous.

An example of interest is the correlation between radar returns from a

cloud of fixed random scatterers when the carrier frequency is changed.

An "invisible" cloud at one frequency will, with a certain probability,

become visible at another. Let us also consider a certain scintillating

target model composed of N randomly distributed scatterers. The observation

angle will change as this target moves past, and we might wish to use the

past information in the optimal way in order to predict future fading and

provide for a good tracking capability. In the former example, we consider

a direction of propagation vector k changing in magnitude only; in the

latter, k changes only in angle. We shall treat both cases at once.

Let k , p, ... , k be m direction of propagation vectors for which-mn

we should like to specify the radiation field vectors 1(k), ()p ... P

E(k). Recall that IkLl - A. Then for large I, so that the individual
Xi

1(k1 ) are each aPProxiMtely normally distributed as expressed In Eq. (18),

it Is obvious that

S.., 2))(7)
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where UM

ad Q is the coeite mtrix

QQk 1  I Q(k ,k)

and where each Q(tc1 2EJ) is the 2 x 2 correlation mtrix

Q(ipt) - 1) (! - ")t, (I&9)

and is shown explicitly in Eq. (51). We evaluaate the upper left-band

element of a typical component nmtrix

- I{E(~ 'n(j)} -"~~*Qj

*fffcos (t~*o:) cos O(E* ) Z

- T'~Cos ((kicJ~k 3 .) + 1 cosB(i-k) dP(Zr)

-*11(10 *RQhj)
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k - 2 Lhj + *j~jjj - *jj(ji) *jt(E)

PrxOesdOa simila'ly we obtain

()-(RQ~jv ,(ki))t s

Q(I,_a) -

(kI j)+ 2 :k(- ) -l' )*R(j) '4R(2 k j). - * R(+k--J)-* 1(k)*()

Thusi, the general Joint distribution of the E(ki) has been demonstrated.

rom Iqs. (4 )0 (48), and (51) the conditional distributions my straight-

fowardlY be obtained (see, for ea le, Ref. 6, p. 315).
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VIII. DISCUSSION

The problem we have studied in this paper is essentially the following.

What is the far field from an array of N (isotropic) sources (of equal

amplitude and operating in phase), the positions of which are independent,

identically distributed vector-valued random variables? The phrases in

parentheses are noncrucial assumptions, made primarily to simplify the

exposition and are easily eliminated for greater generality. However,

the underlined assumptions are essential in that they are necessary for

the simplicity of the results.

Isotropy and equal amplitude of source radiation are noncrucial

assumptions if the probability distributions on these parameters are

independent of position. As was mentioned in Section II, distributions of

the phases of the sources as a function of position may be admitted by a

mere reinterpretation of the notation. However, without the far field

assumption, p(E) would not have the nice explicit dependence on

although it would still be gaussian.

The limiting field distribution is given in Eq. (18); the envelope

distribution in Eq. (39); the envelope distribution at expected nodes of

the antenna pattern in Eq. (41); the joint distribution of the field in

several directions in Eqs. (47), (48), (51); the field from a gaussian

array in Fig. 4; and the field from a linear array in Fig. 3.

In summary it can be said that the limiting form of the probability

density of the resultant electric field vector arising from an array of N

sources, the positions of which are independent, identically distributed

random variables, is bivariate normal. If the Fourier transform of the

distribution function F(r) can be performed in closed form, then the
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probability density of the resultant electric field vector is immediately

obvious (Ej. (18)) for every frequency and direction of propagation.

It is suggested that examination of antenna statistics in the near

field is of interest and that the methods of Chandrasekhar (Ref. 5,

Chap. IV) and Kolmogorov (Ref. 12, p. 171) might be of use.
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