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PREFPACE

This Memorandum presents the results of a theoretical study of the
behavior of certain types of transmitting antennas. The material has
possible eventual application to space communications and to problems in
commnications engineering and sciencs.
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This Memorandum deals with the determination of the probability
distribution of the electric field resulting from an arbitrary random array
of sources (or scatterers). The distribution is surprisingly simple, is
easily calculated for most interesting array distributions, and has wide
generality of application. B8pecifically, we find the antenna pattern
distribution of a synthetic aperture antenna formed by a moving space
vehicle emitting pulses randomly in time. However, our results apply not
only to synthetic aperture antemmas of arbitrary distribution but also to
randomly deleted antenmas and to chaff, meteor trail, and electrom cloud
diagnostics as well.

The problem is restricted to the study of the far field from N sources,
the positions of which are independent idenmtically distributed as K(r).
Markov's method is then used to analyze vhat is essentially a two-dimensional
random walk induced by a three-dimensional distribution. It is shown that
1f the Fourier transform y(k) of the distribution function F(r) can be
performed in closed form, then the limiting form of the probability density
of the resultant electric field vector is immediately obvious for every
frequency and direction of propagation. Finally, the probability density of
the resultant power or envelope is determined in closed form, and the
correlation between the resultant field at different angles and frequencies
is exhibited.
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I, INTRODUCTION

This Memorandum is concerned with the probability distribution of the
far field resulting from an array of N sources, the positions of which are
independent, identically distributed random variables. The importance or
utility of this simply stated problem is essentially derived from the
extreme simplicity of form of the answer.

mfrett(l) briefly discusses a specific random antenna--a linear array
with N sources uniformly distributed. However, the analysis is incomplete
in that he derives the distribution of only one of the two quadrature
components of the field, Hence, nothing can be said of the distribution of
the envelope or power. In this Memorandum an expression will be derived
for the envelope distribution of the resultant field from arbitrary spatial
distribution functions.

An interesting and very general study of the problem has been made by
Kelly and Lerner(z) in wvhich they exploit the mathematical analogy to the
shot effect of the radar echo from a random collection of scatterers. How-
ever, their specializations are made to cases in which the expected antemma
pattern is essentially zero.

The following examples will 1llustrate same of the array distributions
vhich may be of interest. A gas diffusing from a point source might have
a three-dimensional gaussian distribution. A synthetic aperture antenna
formed by emitting pulses at Poisson increments in time from a linearly
moving epace vehicle can be comsidered, under certain assumptions on the
data processing scheme, to have sources having a uniform probability density
over a line eegment. A short section of meteor trail may have its scatterers

obeying & uniform distribution over a cylinder cut out by the meteor. Also,



a phased array whose components are randomly deleted or damaged is a random
array with a distribution corresponding to the related complete array. The
expected changes in gain of rendomly deleted arrays are discussed by Ogg.(:”
The far field assumption, made in order to give the answer its sim-
plicity and utility, restricts some of the above examples to relatively
uninteresting cases. In order for the far field assumption to hold, the
lateral extent of the target must be less than the diameter of a Fresnel
zone. For example, the lateral extent of a gas cloud, meteor trail segment,
or synthetic aperture antenna--for distances on the order of 1000 km at
wavelengths on the order of 1 me-must be less than 1 km. Then again, the
qualitatively interesting cases occur when the extent of the array 1s a
small number of wavelengths, because the field components will tend to
add coherently rather than incoherently as the extent of the array decreases.
Figure 1 illustrates a typical sample random array vhere k is the
direction of propagation vector with megnitude

k| = 32 (2)

and points in the direction of propagation. Under the far field assumptionm,
for identically polarized sources, the resultant electric field E at a point

along the direction k can be written as the complex mmber

N
x- e =5 (2)
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Fig. | — Sketch of array and electric field component
arising from source at position ¢

For radar echoes k becomes 2k because of the doubled path. For a contimucus

distribution g(r)

Z- j:f[ e(z) e L ar (3)



II. THR FIEID DISTRINUTTON FROM A RANDOM ARRAY

This section will provide the details of the derivation of the
asymptotic probability distribution of the resultant electric field., For
purposes of exposition we assume N isotropic radiators of equal amplitude,
operating in phase. We may relax these assumptions later,.

The very general method of characteristic functions will be used here,
i.e., the characteristic function of the sum of independent (not necessarily
identically distributed) random variables (in this case vector-valued random
variables) is the product of the individual characteristic functions. The
inversion rormﬂa(h) yields the desired distribution function of the vector-
valued rendom varisble. Chandrasekhar(?) ascribes to Markov the origin of
this technique with respect to miltidimensional random variables.

The essential simplifications occur when the N random variables are
identically distributed and N is large (10 or more), thus allowing an
asymptotic expansion of the characteristic function, vhich is then easily
inverted.

Our problem is essentially that of solving a two-dimensional random
walk (each step being an electric field vector) induced by the three-
dimensional probability distribution of the positions of the radiators. We
assume the use of isotropically radiating sources of equal intensity that
are operating in phase. These sources are independently identically distri-
buted in space according to the probability distribution F(r) vhere

r= (x,y,s)t, & three-dimensional colum vector.

r(g)-Pr{sz,Ysy,Zsz}

The symbol "t" designates transpose.

(1)
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To this distribution functien M(r) there corresponds the characteristic
function(*s>) ¥(x) = ¥(k,, Xk, k). If the radiators also have some
randomness of phase 3, we may define a new k = (k ’ ky, k., l)tnndam
r = (x, 7, 5, 8)° and treat this oase along vith the former. In either

oase wvo ave the definition

v(x)-:{e-t-}-j o LT ) (5)

The contributien to the electric radiatien field in direction k due
to a source at position r is e 13-?'5. The complex number e gtz- will be
vritten as the two-dimensienal colum vector E = (cos l:_tg_, sin _lst_z:)t.
Hence the total electric field will be the sum of N two-dimensional vectors,
each of unit length but having random phases, the distributions of which

depend on F(r) and k, Our first task is to obtain the probability density

»B) vhere

Mn

1
- i 1 (6)
i=]
Note that |E| = 1 1f all the sources add coherently. Hence, ve call E the
normalized resultant vecter.
It will be wise to cemsider first the distribution of the centered

random variable

N
1
== ) (B, (7)
Em ”1}.:1
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is the expected value of the electric field in direction k due to the i-th
source (averaged over the spatial distribution F(r)). Iater, a change in
variable will yleld the desired distribution. The characteristic function
0(,)(3) of B(y) 18 given by

'(!)(!) = me@ [1}_’t§(N)] dF(?_']_’EQ'”"EN)

- (8)
® N
o [[Jer A le (Eysy) ] aF(z))ar(z,). . .ax(zy)
where the independence of the r 3 has been used. Making use of the identical
distribution of the E.J s the following equation is true for any Js
Q(N)(!) = [‘mexp [ﬁ zt(QJ-gJ)] dF(gd)]“ (9)

This integral can be evaluated omly for very special forms of F(r). See

8ection VI for such a case.
In order to proceed vith the analysis for general Mr), comsider the
expansion of Eq. (9)

N
(W = J]T 2+ /L, X(Eyny)- 2y X @) ) w0 larz)| (200

= [1 - % E {!t(_l_a'ﬁd)(sd'ad)t!} +0 ’-3/6]’
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because E {!'J-EJ} = O, Then

.
Yy () = exp [- :?-:] +0 (N"l/ 2)

which tends in the limit for large N to the characteristic functien

¥y
#y) = exp [- - (1)

vhere Q is the 2 x 2 covariance matrix corresponding to a single radiator
of unit amplitudes

Var(E) Cov(ELE.)

- 12
¢ Cov(EIER) Var(r.l) (22)

(Incidentally, the asymptotic derivations of results similar to these in
*

Ref. 5 are incorrect. ) The characteristic function (Eq. (11)) 1s easily

1nverted(6) to give the density

1.t -1
(-‘-’-(n))'W“PEEE(R)Q E(u)]

A change of variable corresponding to definitions found in Eqs. (6) anmd (7)
results in

R R t -1
MY - oo [- 3 (" ol (13)

¥The asymptotic expansions are incorrect in Egs. (85), (91), and (96),
although the answers exhibited in Egs. (87) and (93) are correct. The general
answer, Eq. (103), is incorrect because Eq. (100) 1s & moment matrix rather
than a covariance matrix,



8o, for large N, the probability density of the normalized resultant
electric field from N independent identically distributed sources is
bivariste normsl with mean u and covariance matrix % Q.
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III. EVAIUATION OF MBAN AND COVARIANCE MATRIX

In this section the results are pleasing in their simplicity and
interesting in their interpretation. We wish to find i and Q in terms
of ¥(r).

By the definition found in Eq. (8)

p=E 51}

= (= {co8 xz}, E {310 x2])"

(14)

- ( ﬂ.j"cu k.r ar(x), (mu‘ k- dr(_x:))t

= 3(x) = (v, ¥y())*

where y(k) 1s just the characteristic function of F(r) (see Eq. (5)) and
¥(k) 1s the two-dimensional vector formed from the real and imaginary parts
of y. We conclude, upon comparison with Eq. (3), that the expected antenna
space factor from the random array with distribution F(r) corresponds
exactly to the actual space factor from a source intensity distribution

g(r) equal to the probability demsity F/(r). This 1s intuitively obvious.

The covariance matrix Q also is easily expressed in terms of y(k).

From Bq. (12) we have, for a single unit rediator, the matrix
_7 2 2 -
B - BB - BBy

—
- o

(15)




Ny calculating Qll’ for example, we find

? - Jff‘na a(x) = ﬂ?fcﬂa ker a¥(z)

- m % (1 + cos 2 k°r) ar(r) (16)
- 5+ ¥{2K)
B2 - B2 - d e v(em) - 2 (1)

Proceeding in the same manner, we finally obtain

3+ EV(2) = v () Fwg(2K) - (k) we(x)

20g(2) = wy®) wp(®)  F - 3 (@) - 0, 2(x)

K _
g = (og(m)s vo(x))*

and

P(E) = Ny, § Q

vhere N(u, % Q) is the normel density function with mean p and covariance
matrix Q. A comment on the simplicity of this result is in order. The
characteristic function 1(5) is Just the three~dimensional Fourier trans-

form of F(r) and 1s precisely the far field pattern for a nomrandom
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1llumination P(xr). Here, we find that both y and Q, and therefore P(E),
o.re. simple functions of ¥ evaluated at the argument k which "just happens”
to be the direction of propagation vector. Thus, if the Fourier transform
of the distribution function F(r) can be performed in closed form, then the
probability density of the normalized resultant electric field vector is

immediately obvious for every frequency and direction of propagatiom.
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UNIFORM LINEAR ARRAY

We are concerned with the space factor of N isotropic sources operating
in phase vhose positions x, are independent, identically distributed random
variables uniformly distributed over an interval of length L. (See

rig. 2.)
-

gon o(s) , -Fexsg
P'(x,y,z) =< (29)
C , otherwise
k
a
—o *-o— AN —o—

Fig. 2— Uniform linear array

Actually it was this problem (suggested by Irving S. Reed) which led
to the investigations reported in this Memorandum. It would be of interest,
for example, to know the radiation pattern of a synthetic aperture antenne
realized by transmitting pulses at Poisson increments in time from a

rapidly orbiting satellite, deep space vehicle, or meteor trail. The data



At ... o

13

are simply processed as if the pulse positions were unknown. Such a random
antenna will have the property of suppressing the grating lobes arising
from transmission of regularly spaced pulses.

To proceed, we find simply

L
t
12 ™ x'r
W) = o) o {2 [ o=Zatn) 80 &
- ! - -ip
L (20)
. gin kx 5
ke 3
X
vhere kx = 27” cos o and o is the angle included between the direction of
propagation vector and the line of sources. We are motivated now to
define
k L
L
Y= E‘x—- = —-c%—g (21)
and call it the "effective" antenna length in wavelengths.
1l
’(!) =N (E,: b1 Q)
sin x y
L {
E =
0 (22)
q 1l sin sin2 ]
2 27 !Tsﬂ ' "g:
e (xv)

l lsin?2
0 5 -5




Figure 3
standard

b1

Observe that for y= 1, 2, 3, «¢o

0 3 0 |
g-<°>:Q- 1 (23)
° 3

shews the sketch of the expected value of E, along with the one

deviation lines of the real and imaginary part of E.

—— K , Meon value of E
-—== / _:é ,» Standard deviation of E

covessesnes ’%' Standard deviation of Eg

Qip2Qy=0

Remark 1:

Remark 2:

L)

(7]
~
)

Fig.3— Uniform linear distribution (N=10)

Here P(E) depends on the direction of propagation k through y.
A meteor entering the atmosphere and creating an ionization path
will result in a y which increases linearly with time. Thus, a

recelver will observe a return similar to Fig. 3 considered as
a function of time.
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GAUSSTAN ARRAY IN THREE-DIMERSIONS

It 1s clear that echo statistics from an array of normally distributed
sources (or scatterers) are of more than academic interest. Such a distrie-
bution arises naturally for a gas diffusing from scme source point, dipoles
subliming from an orbiting source, and in "nice" explosions (relatively
collisionless expansiocn of a gas which was cenfined and in equilibrium at
time zero).

Here we consider the distribution

(z) = —%—575 exp (-3]x|2/26°) (24)

S

and easily calculate by Eq. (5) the corresponding characteristic function
¥(x) = exp [ - (x| o?/6] (25)

stnce |k| = 25, we ave led to imtrotuce L , the cloud "redius” in

wavelengths:

£ @
Thus v(E) = e"'Va/?
and W) = e

»E) = Ny, ¥ Q)

o¥/2
2-
0



i _
3+ -
Q= (27)
o (3-3¢)
L -

The above results are plotted in Fig. 4.

—— K4, Meon value of E
=== /_I'cli , Standard deviation of Ep

Y 32_2., Standard deviation of E
T3

%': Cloud "radius” in wavelengths

.......
.

.o
‘‘‘‘‘
.

Fig. 4 —Gaussion array (N=10)

Remark 1: P(E) is independent of direction of propagation k.
Remark 2: A gas of N particles diffusing from an initial point concentration
Produces a y which is proportional to the square root of the

elapsed time. Now the echo statistics can be read from the graph.
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Remaxk 3¢ For vy > 1, the envelope r of the electric field E is essentially
Myleigh distributed.

-2
p(r)‘mexp[ +.Y/2] (r Y/

2
This in turn, for y >> 1, becomes P(r)-'-alre"r

UNIFORM DISTRIBUTION OVER A DISC

The statistics of the uniform distribution over the area of a circle
are of interest, for example, if one has coherent transmitters scattered
randamly in the ocean, desert, or on the surface of another planet, or
if one has the analogous problem of aralyzing echoes from clusters of points

on the sea., Consider a source, the position of which is a rapdam variable
having a uniform distribution over a disc of radius R

o.
r
-—-51 ;3 2=0, x2+y2$R°2
1¢Ro
F/(r) =< (28)
L 0 3 otherwise
ThentT)
2 J,(xv)
¥(k) = —2 (29)
2 R0 sin ©
where Jl(z) is the Bessel function of order one; y = ——— =

A
"effective" aperture diameter (wavelengths); and 6 is the angle between

k and the z axis. Equation (29), together with Eq. (18), yields the

Probability density of the field as a function of v.



OTHER DISTRIHUTIONS

As has been pointed out, the only difficulty in finding P(E) is in
computing the Fourier transform y(k) of F(r). This has been done in many
interesting cases, and no further examples will be emmerated.
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V. ENVELOPE DISTRIBUTION

The probability distribution of the electric field vector is useful
when completely coherent reception (detection) is renlized, i.e., the
phase of the carrier is known at the receiver. In generel, however, the
phase of the return is of secondary importance, and we shall be most
interested in the probability distribution of the envelope, or magnitude
of the field. Unfortunately, averaging out the phase proves to be a
difficult unsolved problem,(e) vhere satisfactory expressions exist only
for special cases. In this section we attempt to determine the envelope
density p(r).

Assume for simplicity that F(r) is symmetric in r; that is,
aF(r) = aP(-r). (The same amalysis will follow, after diagonalization of
Q, for the general case.) Then y(k) is real for all k and

%+ 3 v(2x) - v¥(x) 0
Q= (30)
0 % - 5 ¥(2)
vhich we rewrite
- -
\y, O
Q= (31)
° N
Then - B
- -
L o
a (M
Q - (32)
1
0 =
b, x2-—‘
vk
ye ( (k)



20

We have for the probability density of the normalized electric field

vector
WE) = Xy, 5
-¥x)f¥ E?Z
=T exp - 3 G X oy, I:I (33)
2x(\y)) 1 ‘o
Let = r cos @
LR (3)
E;=rsin)

Then after reduction

P(r’o)_%(,e-Acosae-l-Bcc.':se (35)

where

C= s exp |- N()‘lﬂg)ra - E.f ®
)72 Thl 2y

n(xe - Xl)ra
A= —,I———)\:L "

N r v(k)
M

B=
A = %+ Zy(2K) - ¥E(K)
1 [<] 2 - -

A, = 5 - 5 ()
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v(x) = fﬁc« x-r ar(r)

In order to proceed in the determination of p(r), we list the
following pertinent Bessel function relationships:
Bessel's integrels for the Bessel coefficients (Ref. 9, p. 20)

.
Jn(z)-%fzﬂem.'izsm.di , n20

1 (36)
In(z)-%;j?"‘m““o““ » n20

The series definitions of the coefficients (Ref. 9, pp. 15, 77):

(-1)%(5 2)™2
I () 'S_\, nl (n2+ my3 » 820
=0

3_p2) = (-1)® 3 (2) , 120
1 )D"Qm

I (z) y s 20 (37)

I_n(z) = In(z) , n20
| Iy(2) = (-2)" 3, (12)




The Fourier series expansions:

r

eiz sin § -2 ein ] Jn(z)
==

) (38)

i)

oZ CO8 ] _y ein ? In(z)
L HOn

Then the marginal density of the envelope is given
2
Bz) = jo »(r,9) do

2n
1 J‘ e-Ac0329+BcosGd

n o 0
e " Jo
By Eq. (38) . -
¢ 4
or) __;2;‘_0 J“ B co8 © 2 210 In('A) a8
o} el
Rearranging ®
ox
or) = c;’ I (-A) _1_2; J‘ o21m0 + B cos 8 oo
e oo 0
By Eq. (36)

Hr) = c) I(-A) I, (B (-2)°

Putting z = -A in Eq. (37)

Hr) = c) I(4) 1,(B)
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Fimlly, by Eq. (37)

Kr) = C I (A) Io(B) + 2 cX I (A) I, (B)
n=1

The expression given here for the density of the envelope r is the
princip;.l result of this section. Although p(r) is expressed as an
infinite sum, much information can be obtained from closer examination.

Consider, for example, the case where A o= M= i.e., the real
and imaginary components of the electric field E, are independent random
variables with identical variances )\ and with means ¥(k) and O, respec-
tively. (Observe that this case occurs for the field from a random array
only when y(2k) = va(.ls).) In such a case the parameter A in Eq. (39) is
equal to zero. Since

1, n=0

In(o) =
0,b, n¢o

all terms but the first drop out of Eq. (39) leaving

Kr) = ¢ 1,(B)

.%r-e@-%[r2+v2(§)]10<m:(£))forr20

This is Just the Rayleigh distribution with parameters y(k) and /N,
which is discussed, for example, by Rice (Ref. 10, p. 106).

Consider next the case where the mean value of E 1s zero, 1i.e.,
¥(k) = 0. Here we have E obeying an elliptical bivariate normal law

with mean zero, corresponding to an expected node in the antenna pattern.

(39)

(o)
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Now the pareameter B in Eq. (39) is sero; all terms of the sum but the

f4rst are zero. Thus

Kr) = ¢ I(A)

" MOytg)e® (“("2"‘1)"2)
O T [T [\ TR T

Finally, for comparison purposes, we append an approximation that is

A
good vhen 2 is on the order of one. We propose to reduce the elliptical

gaussian bivkiriate distribution of E to an "equivalent" circular distri-
bution. This is then imtegrated directly to give the Rayleigh distridbution.
There is no restriction to diagonal Q.

A locus of constant probebility of E (see Eq. (13)) 1s the ellipse
(B - u)! Q'l (E - p) = 1. The area of this ellipse is x A)ys Vhere Ay
and )‘2 are the first and second eigenvalues of Q; that 1is, )‘1 and 12 are
the lengths of the major and minor axes of the ellipse.

A circle of the same area would have radius r 8‘,‘[@ (the harmonic

mean of the lengths of the axes of the ellipse). Finally, recall that

M = 1]l = ||q"1||'1. Now simply replace the elliptical
1 m
= o0
M
-l
Q = P! P

(41)

(42)
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by the circular

! o |
(xl)..,_,)ﬂE T g
l.p Pu—2i 43)
QT =P o X ———175()'112) I; J:] (
( xlx.‘,)n;‘s

Hence Eq. (13) becomes

N N(E- v B
»(E) W exp -F;Wl] (4b)

When the phase is integrated out, the probabdbility density of the envelope

IGERN Re |yl
Kr) = —irs exp - G I ( ) (45)
T [ Z Il }° 72 ’

r is
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VI. AN EXACT CASE

In the preceding sections we have been forced to consider a random
walk with unit steps having an arbitrary distribution of angle at each
step. This differs from the classical case, treated by Kluyver(g) and
Ra.yleigh,(u) vhere all angles are equiprobable. However, we do get the
isoperiodic case when our source distribution F(g_) satisfies certain
conditions (roughly, a uniform distribution over a volume whose dimension
along the direction of propagation is an integral number of wavelengths).
To 1llustrate this, consider a random linear array where N sources are

distributed independently, uniformly over a length L (see Fig. 2). Then

2% L cos o
A

the distribution of the angle of the unit electric field vector from each

whenever k * L is an integer, i.e., = n, it is apparent that

source is uniform over 2x. Hence Klwver's(g) results apply (see also
Ref. 10, p. 242 and Ref. 11), and the probability density of the envelope
r = |E| is exactly

p(r) = r f:xJo(u) J'g(x) dx

This has been shown to approach a Rayleigh distribution in the limit for
large N.

(46)



s et e

7

VII. CORRELATION IN RADIATION AT DIFFERENT

The knowledge of the radiation field from a random array at one
direction and frequency will allow an improved estimate of the radiation
field at another direction or another frequency. It is intuitively clear
that specification of the radiation field in a given direction puts
constraints on the positions of the sources. This information induces a
conditional probabllity distribution on the random field at new angles
and frequencies.

Applications of the generalizations in this section are numerous.

An example of interest is the correlation between radar returns from a
cloud of fixed random scatterers when the carrier frequency is changed.

An "invisible" cloud at one frequency will, with a certain probability,
become visible at another. Let us also consider a certain scintillating
target model composed of N randomly distributed scatterers. The observation
angle will change as this target moves past, and we might wish to use the
past information in the optimal way in order to predict future fading and
provide for a good tracking capability. In the former example, we consider
a direction of propagation vector k changing in magnitude only; in the
latter, k changes only in angle. We shall treat both cases at once.

Let 51, 1-52 3 cee Em be m direction of propagation vectors for which
we should like to specify the radiation field vectors g(gl), g(ga), cee
E(k,). Recall that |k,| = i—’i‘ . Then for large N, so that the individual
}_!:_(51) are each approximately normally distributed as expressed in Eq. (18),
it is obvious that

P (Bky)) EKy)y oo 5 B)) = X (g, 5 Q) (47)
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B= (E(El)’ E(,k.e): cee 2(5,))1:

and Q is the composite matrix

— )
R
Q=] alkuk) | Qlk,
-_——————
Uk k) |
- |

and vhere each q(g_i,y_ J) is the 2 x 2 correlation matrix

Q(Ei:EJ) =B {(E(.lf.i) - Ej) <§(£J) - E.‘Dt}

and 1s shown explicitly in Eq. (51).

element of a typical component matrix

Qy(yop) = B {(Rglk,) - Blk,) (melx,) - Bytx,)))
= B {E(k,) Bli,)} - vy(k,) vylk,)
= JI[cos (51-.1_'_) cos (§J°£) ar(r)

- (k) wy(k,)

- [t Cern b Carap) e

We evaluate the upper left-hand

(18)

(49)

(50)
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=3 vR(ki+kJ) + § *R(k 'kd) - 'R( 1) *R( J)
Proceoding similarly we obtain

u(k,) = (vglx,), wolx,)) (51)

r5&,,(1: )+ 2¥:( ky =k, )-¥p(k, Wp(k ),-5_'&1(5 k) 2 kK, )-vp(k, Dy (k,)
Q(si’s‘,) -

Thus, the general joint distribution of the E'(Ei) has been demonstrated.

From Eqs. (47), (48), and (51) the conditional distributions may straight-
forvardly be obtained (see, for example, Ref. 6, p. 315).
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VIII. DISCUSSION

The problem we have studied in this paper is essentially the following.
What is the far field from an array of N (1sotropic) sources (of equal
amplitude and operating in phase), the positions of which are independent,
identically distributed vector-valued random variables? The phrases in
parentheses are noncrucial assumptions, made primerily to simplify the
exposition and are easily eliminated for greater generality. However,

the underlined assumptions are essential in that they are necessary for

the simplicity of the results.

Isotropy and equal amplitude of source radiation are noncrucial

assumptions if the probabiiity distributions on these parameters are
independent of position. As was mentioned in Section II, distributions of
the phases of the sources as a function of position may be admitted by a
mere reinterpretation of the notation. However, without the far field
assumption, p(E) would not have the nice explicit dependence on y(k),
although it would still be gaussian.

The limiting field distribution is given in Eq. (18); the envelope
distribution in Eq. (39); the envelope distribution at expected nodes of
the antenns pattern in Eq. (41); the joint distribution of the field in
several directions in Eqs. (47), (48), (51); the field from a gaussian
array in Fig. 4; and the field from a linear array in Fig. 3.

In summary it can be said that the limiting form of the probability
density of the resultant electric field vector arising from an array of N
sources, the positions of which are independent, ldentically distributed
random variables, is bivariate normal. If the Fourier transform of the

distribution function F(r) can be performed in closed form, then the
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probability density of the resultant electric field vector is immediately
obvious (Eq. (18)) for every frequency and direction of propagation.

It is suggested that examination of antenna statistics in the near
field is of interest and that the methods of Chandrasekhar (Ref. 5,
Chap. IV) and Kolmogorov (Ref. 12, p. 171) might be of use.
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