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THE FORCED OSCILLATION OF SHALLOW DRAFT SHIPS

By W. D. Kim'

Considering a three-dimensional disk with a circular or

elliptic waterplane as a ship of shallow draft, the interaction between

the disk oscillating with six degrees of freedom and the induced motion

of the surrounding fluid is investigated. The potential problem is

formulated by the use of the concept of surface distributed sources

so that an integral equation for the source density is obtained. The

numerical solution of the integral equation is found and the dependence

of added mass, added moment of inertia, and damping factors on various

frequencies is determined.

I. INTRODUCTION

Consider the forced oscillation of a rigid disk on a free

surface. The form of the disk is such that it will create large wave-

making effects. The present analysis thus serves as a complement to

the thin-ship theory (1, 3)?. When the draft is small, the normal

derivative of Green's function (the potential due to a unit source)

does not enter into the kernel of the integral equation, and moreover

the kernel can be evaluated explicitly. However, for arbitrary cross-

sections [21, the presence of the normal derivative of Green's
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function makes the numerical solution extremely difficult.

It is assumed that the amplitude of oscillation is sufficiently

small so that the problem can be linearized. One may choose the ratio

of actual draft to the wavelength € as a small-parameter and develop

a perturbation procedure following the method of MacCamy [3]. It

then turns out that the added mass, added moment of inertia, and damp-

ing factors associated with surge, sway, and yaw are terms of order €.

Furthermore, this procedure reduces the potential problem of an oscillat-

ing disk to a series of boundary value problems of increasing orders

in a.

The solution of the lowest order problem is sought in the

form of a potential due to the distribution of sources over the disk.

Then, the singular property of surface distributed sources enables one

to determine the density from an integral equation which satisfies the

boundary values on the disk. The numerical solution of this integral

equation can be obtained approximately by use of a finite sot of linear

equations which relate the unknown densities at selected pivotal points.

A scheme has been developed for evaluating the singular inte-

gral in two variables. (The fundamental singularities are log r and -. )

From the solutions of the linear equations, pivotal values of pressure

can be obtained. Thus, knowing the pressure distribution, one can

evaluate added mass, added moment of inertia, and damping factors for

heave, roll, and pitch corresponding to a specific frequency. It was

found that accurate results for high frequency motion require a large

number of pivotal points.
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II. GENERAL FORMULATION

Suppose the plane y u 0 represents the undisturbed free sur-

face of an inviscid and incompressible fluid; 0 and 0 are axes which

lie in that surface. The hull of a ship in the equilibrium position

is given by

- So(;, ;) , (2.1)

where the form of the ship is assumed to satisfy the following condi-

tions:

So(;, ) * 0 along the edge of the ship,

so(;, ) * , maximum draft at the center, (2.2)

so(;, ) . S(-, ;), and So(;, ;) - So(, -4).

The last two conditions indicate that in the equilibrium position, the

center of the waterplane coincides with the origin 0 of a time-indepen-

dent reference frame which is called the space frame 0 , ;e

Now, suppose the ship is excited into small oscillations.

After transient disturbances have been dissipated, the resulting fluid

motion will be periodic with a frequency. of oscillation a. Considering

such a motion to be irrotational, the velocity potential may be written

in the form

O(x,yz;t) a RO[U(x,y,z)*iot) • (2.3)

At any instant, the position of the oscillating ship may be described

in terms of a position vector R m + J? + kZ, and the Eulerian angles
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0 a ± + je + k0, where i, J, k denote unit vectors along axes of
x y

the space frame. One calls the components X, i, and Z, surge, heave

and sway, respectively, and the angular components 0x, ey, and 0 ,

roll, yaw and pitch, respectively. Since the motion of the ship is

periodic in time, one has

R(t) a Re[ROe'i0t]

8(t) = Rer8ei
t ]  (2.4)

where R° and @Pare amplitudes of the linear and angular displacements,

respectively. From rigid body dynamics, the velocity of a particle on

a ship is given by

= A xr , (2.5)

where r is the position vector with respect to the space frame, while

r' is the position vector with respect to a moving frame attached to

the ship.

In order to show the physical significance of small oscilla-

tions, independent and dependent variables are made dimensionless by

dividing each variable by the wave length. The space coordinates then

become

x = k, y - ky , z= k (2.6)

where k represents the wave number which is equal to a2/g (or 2r/ ),

g being the acceleration of gravity, and 1 being the wave length of

free waves of frequency a. Assuming the ratio of actual amplitudes to

the wavelength is small, one may express the normalized amplitudes for



the linear displacements using a small parameter a as X I ui,

Y U .T1, and Z - eZ1. Similarly, the amplitudes for small angular

displacements may be expressed as e e9 e a CLel and eo . e.

X x' y yz

Accordingly, neglecting the terms involving 2 the velocity potential

for the resulting fluid motion can be expressed as

0- 0 , (2.7)

where 01 and its derivative are bounded. Furthermore, the linearized

dynamic pressure is

" - pOt(;,y,;t) • - pkkt410 . (2.8)

where p is the density of the fluid, and the linearized surface eleva-

tion becomes

1ix z t

" 0 t(x o ,;t) = 0 90 0t(i,;t) (2.9)

Since the fluid is considered to be incompressible, the velocity poten-

tial must satisfy the Laplace equation,

720 . 0

or

72U a 0 in y < 0, outside S • (2.10)

At a free surface, the first-order boundary condition to be satisfied

is

ott + go V 0 ,

or

U- - kU = 0 on O, outside S . (2.11)
y



Next, on the immersed surface the kinematic condition can be written

as

where n represents the unit vector normal to the surface, i.e.,

1 = inx + jny + kn,, and i is the velocity vector of a point on the

surface. Note that the surface S of the ship in motion differs from

the surface at rest S0 which was introduced earlier. Since

; ;3 5=S

it is consistent with the omission of the second order terms to require

that condition (2.12) be satisfied on So. By substituting (2.5) into

the right hand side of (2.12) one obtains

0; z Xn + Yny + Enz + xqx + eyqy + eiqz

or
6
E [U (, ,)) ] = -ia[iOn + ion + ion + xq + eyq + eq 5

Jul x y z x x y Y

on so(;,;) • (2.13)

Since the problem is linearized, the total potential U is expressed as
6
E U J = 1, 2, --- 6, and (q 9 qy q ) represents the components of

Jul x y z

a vector given by a - E x n.

Finally, at large distances, the propagating disturbance must have the

form of a radically outgoing wave, ioe.,

U(x,y,z) -.± ek; eik; -7) as r - , (2.14)
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where r u 2 and 9 = arctan )
To show clearly the dependence of the solution on parameters

describing the type of oscillation, one relates the dynamic pressure

functions pj(xy,a) J u 1, 2, --- 6, to the potential function

U(;,;,;) by

o o a 6
p2 p3 +~*~ 1~.~O~, ~ p6 3 io E iI -1

k Il k 12 P3 Z x4 +iYP5 k zJul

(2.15)

Then the boundary conditions (2.10), (2.11), (2.13), and (2.14) can be

transformed into

p= 0 in y < 0 , outside S (2.16)

(Pj) pj 0 on y a 0 , outside S (2.17)

(Pl)n3  n., (P 2 )n =ny (p3 )n = nz

(P4)n • - a n z (p.5)n a - n

(p) n "a n' - f n. on S°(xo)

6n 0 a y ar xn
p -Jo •i  a ) s r -=•(2.19)

where

-S -Sx 1 5
nx  . ny * and n z  .

x Ii ) x ,2.22

(2.20)



III. SHALLOW DRAFT APPROXIHATION,

In this section, the first order forces and moments due to

the dynamic pressure are related to the added mass, added moment of

inertia, and damping factors of an oscillating ship. The perturba-

tion procedure for a ship of shallow draft is developed.

The forces and moments due to the dynamic pressure exerted

on the immersed surface are given by

F f = JJ ,i,;t).n dS ,(3.1)

S(,;;t)

and

a f(~; ~;;;). 2 dS .(3.2)

S;;t)

Since, from (2.8), (,P,;t , and since S(;,;;t) mS 0+uS 1,

the first order forces and moments are

l -L 1 ;;t'on dS ,(3.3)

and

a1  
- pJj 0 (a;)1  dS . (3.4)

BY (2.3) and (2.15), one finds

0 1 g R*[Rlp *i'Otj, where J a 1,293, (3.5)

or

g -gReel~p 1 0'Jt, where j a 4,5,6. (3.6)
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Therefore, the substitutions of (3.5) into (3.3), and (3.6) into

(3.-4) yield

F1 = Qpg R Re[Rlp0i-' at]._ dS , where J - 1,2,3, (3.7)

and

G1 = pga fJ' ReC p e'i-t.q dS , where j - ,5,6. (3.8)
so(;,;)

Suppose the first order forces and moments are expressed in

the form

l - -(3.9)

and

G 1 -Y - , (3.10)

where M and I are called the added mass, and added moment of inertia,

while N and H are called the damping coefficients for translation and

rotation, respectively.

By substituting (2.4) into (3.9) and (3.10) one obtains

F= a Re(oA + i )Rle'Ot] , (3.11)

and

= ~ReE(o2 oI' + ioi); 8e~i~) (3.12)

In equating (3.7) to (3.11), and (3.8) to (3.12), all variables are

made dimensionless by the transformation x a kx, y a k;, and z = k,

then one has
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k */ Re{ fj jfld} k'iif in j'j -a dS}, where j u 112,3,

S(XZ) S0(x,z)

(3.13)

k4 1/p aRe{ S Pji p dS}, k/PC z im~fj' pj*.2 dS} , where j a 4,5,6.
3(x,z) S0 (x,z)

(3.14)

SO(x,z) represents the image of So(;,;), and hence S°(x,z) - k 2sO(,;-).

Next, it will be shown how the shallow draft approximation

can be developed. Here the shallow draft means that the ratio of

actual draft ; to the wavelength K is small. Therefore, one may begin

by writing the hull of the ship in the form

y = esl(x,z) - a f x a - b 9 z ' b , (3.15)

with e = 2 re/! as the small dimensionless parameter appropriate for the

case of shallow draft. S1 (x,z) satisfies the following conditions

S1(o,0) = 1, S1 (x,z) = S1 (-x,z), and Sl(x,z) = sl(x,-Z).(3.16)

From (3-15), [l+(Sx)2 +(S z)2)' can be expanded into

x zrl 2(s )2]. .4 = l2(

@m

+ (-)-)Me2m O (s 1) 2 +(S1 )21m
m x

m=2

thus one obtains
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S xSo s 0s

Onx 1+S +s +()s by i+(S)2+(S)2O
lSx )2+Sz 2 1+x z Xl x

UC*1 .( 2) + lC+o( e2)) + C1 .S+o(e2)) OIes x + A by z (1

where n - cS1 + 0(¢2), .1 + O(e2), and n - - cSl o 0(¢2) (3.18)
xX y z z

Designating the right hand member of (2.18) as R (xZ)

j - 1,2, --- 6, these quantities are expanded into

m=O

From (3-18) one now finds

*,,(xz) o, RO(X,z) a 1, R.(x,) = 0, .t(xs) 5-

Rj~xZ)-0,Rox~)- i RI-(x Z) - ..SlR(~)u0

R~~~xl-s)z 0,,R(~s

(3.20)
Rl(x,z). -s -S n R(x,,,)- 0, Rj(x,z)--- s + s
3 '5 a x aZ

R s(x,z) ,---6

Similarly, the pressure would also have to be developed in the form

pj(XYZ)= c mp 4(x,y,z) j = 1,2, --- 6 • (3-21)

M=O

Here one makes use of Taylor's theorem and writes pM for y a 0 as
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mn
p'~Ex~eS(x,5esz u ~j(S~~)n .± p'(X,O,z). (3.22)n=O Iyn

Substitution of expansions (3.17), (3.21) and (3.22) into

the left hand member of (2.18) yield

[-es 1+O(C 2 ) , . m+n[Sl(,,Z) In *n+lI RXOZ

m=O n=O bxyj(xOz)

+ - n,4.1 ""t'(,,, ° '  ¢,,,)mO nO nI"Cl+0(C 2)]-~ 1 m+nSlx ' ) n n+ ?(x,O,z) (3.23)

1a z ib n+1 P

" -s OC Zm+n[(Sl(, n))f 2±...p(x,O,s).zMao n=O n1 y A zJ

Upon equating coefficients of like powers of € in (3.19) and (3.23),

one obtains

cp;(x,o,Z))y - RO(x~z) , (3.24)

(PiO )y a 1 xz lO

(P1:,X,,o.)l a xj(x.) O+'L,(,,o.z), ,Slpo(,O,z o, ..- 'cpo(x,O, 3) )

and so forth. Therefore, pm can be determined recursively by solvingi
boundary value problems of the following form.

Find a function w(xy,z) such that

' 2 w = 0 in y < 0, outside S (3.25)

wy w = 0 on y = 0, outside S (3.26)

Wy L(x,z) on y - 0, within S (3.27)

w -f(e) ky ikr = 0(1) as r (3.28)

Vp r
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Note that h(x,z) is a function whose values are given by (3.20).

In evaluating the added mass, added moment of inertia, and

damping coefficients, the half-length of the ship a appears as an

integral limit. Therefore, all lengths will be made dimensionless

by dividing them by a instead of the wavelength. This change can be

readily carried out by introducing a new set of independent and de-

pendent variables,

x =x/a, y Y/a , z Z/a

and (3.29)

w(x,y,z) a aV(x/a, y/a, z/a) where a - k

The boundary value problems can be stated as follows:

Find a function V(x,y) such that

4V - 0 in y < 0 , outside S , (3.30)

V- - aV a 0 on y = 0 , outside S , (3.31)
y

V- h(x,)z on ' y , within S , (3.32)
y

V =)0a a 0(1 as r -•(3.33)

Now the order of the added mass, added moment of inertia,

and damping factors involving a specific type of oscillation will be

examined by the use of expansions which resulted from the shallow

draft approximation. Substitution of (3.18), (3-.21) and (3.22) into

(3.13) and (3.14) lead to the following expressions:
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kvX/P,. 0(c, kN/ok Y-N 0(.),

kv /p = Rei Po(x,0,o,.d}, ki/"P a= Iff Po(x,,z)dS},
yS 0so

so  so

Henceg in toe of the now variables, one obtains the added mass and

damping coefficient for heave an

M a M/p( ;3 Rex V2(j,O,z)dS} i

kI/p0(u) k /P a0()

I y /p a Imm Iv xp,O,'dx)

S

the added moment of inertia and damping coefficient for roll a

H. H/pa e- ImI ~V(x,0 ,oz)dS ,N .N/pa 0 XMI11 V(',,')dS

S

and the added moment of inertia and damping coefficient for pitch as
I I z/Pa4 Ref *- (XO'~

S (3.35)

S" -{6[ v ' ,O, )ds},

S
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where 1 represents the image of S0 (x,z) under the transformation

- x/a, and ' = z/a, and which is equal to -1 S°(x,z). Furthermore,2

t a
since pj(xYZ) a aV (~,q,), J • 2,4,6, from (3.20) and (3.22) one

finds

LV2G, o,z ')~ 3--1, 1 =X0 )3 Z, and =V x,- 0 o nS

(3.37)

Also, from (3.21), one finds

(V ' z(3-O, - aV G ,OZ) = 0 outside S . (3.38)
j y

IV. INTEGRAL REPRESENTATION

An integral representation of the solution of the boundary

value problem which is formulated in the preceding section will be

discussed here. Consider a region (a fluid space) bounded by the

hull of a ship and a free surface. An oscillating ship generates waves

in this region which in turn react so as to influence the motion of

the ship. A disturbance created at a point on the hull is transmitted

to a point (x,y,z) some distance away through the fluid. As a result

it will be shown that for some function f(x,z) defined over the hull,

the resulting potential in the region may be expressed in the form,

v~~ ) .•
V(xqyqz) z fJ f(4,C)G(x,y,z,,O,C)ddC (41

S

(Hereinafter, delete the tilde on variables for the sake of convenience.)
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Physically, expression (4.1) may be interpreted as the field poten-

tial caused by distributed sources of the density f(x,z) over the

hull S, and then Green's function G represents the field potential

caused by a unit point source at (C,0,C) on the hull. The appro-

priate Green's function (1] for the present problem is obtained by

setting I = 0:
eO

G(x,yqZfjt9OC) + B-a eJYJ 0 (pr)dp
0
OD (4.2)

2
= a+ e• y J o ( pr ) d O ,

0

r 2 a (x-C) 2 + (z-C) 2 , and R2 = r2 + y2 , where J0 (or) is the zero

order Bessel function of the first kind, and the integral sign is

0
to be understood as the integration along the positive real axis

except for an arc in the lower half plane to avoid the positive real

root a a of the denominator.

From (4.2) it can be shown that

G -2aG-8 in y < 0 (4.3)y - aR

If the integrals W and L are defined by

W(x,y,z) = R f(rC) R (

S

and

L(x,y,z) -3'55 f(¢,C)H(x,y,z)d.dC , (4.5)
S
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whereH(x,y,Z) -La-# J (pr)e~ydp,
0

it follows from (4.1) that V(xgylz) a W(x,y,Z) + L(x,y,t). For a

function f(xsz) continuous on S, the integral L satisfies condition

(3.30), and W + L satisfies condition (3.33). Furthermore, by (4.3)

one finds

V y(xtytz) - av(x,y,z) = W y(x,y,z) in y < 0. (4.6)

It in a standard theorem of potential theory that W satisfies the

relation

ham W y(xgy,5) a f(x,z) within S,
(4.7)

Y-00 a=0 outside S
y.(O

Hence,

V y(X,0,Z) - aV(X,0,Z) a f(x,z) within S ,(4.8)

and

V y(x,0,z) - aV(x,0,z) = 0 outside S ,(4.9)

so that W + L also satisfies condition (3.31).

Now it can be seen from (3.32) that the potential V(xgy,z) given by

(4.1) will be the solution of the given boundary value problem if

f(xlz) is chosen an a solution of the following integral equation:

b(x,z) - aV(x,0,z) . f(x,z) (4.10)

or
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f(xz) + f(,C)G(x,O,z,C,O,C)dCdC = h(xz) within S. (4.11)

S

By making use of known integrals in [71, the kernel of the integral

equation can be explicitly shown to be

G(x.,z ,,0,C) = - -a EYo(ar) +S (ar)-i2Jo(ar)), (4.12)

where Y (ar) denotes the zero order Bessel function of the second

kind, and S°(ar) denotes the zero order Struve function, respectively.

Here one observes that as ar becomes large, S (ar) Yo (ar), hence

Green's function (4.12) tends to

(xOzrOC) '- 2ra[Y (ar) -iJ (ar)]
r 0 0

2 s~a sin(ar-n/4) -_ -___ __ )1

2ia 4  cos(ar -(4)]

r x

/rrar 2 ! nar2

2 r2'ra -i~ar-r/4) .(.3

Therefore, the kernel of the integral equation fluctuates as the fre-

quency of the oscillation increases.

According to the Fredholm theory, Equation (4.11) is soluble

if the homogeneous equation,

f o(x,z) + aj fJ'o( ,C)G(x,O,z,C,O,C)d~dC = 0 (4.14)
S

possesses only the trivial solution, f°(xz) - 0. However, it has been

shown in [1 that the potential constructed with the solution of

Equation (4.14),
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V 0(X,y,s) u O(J ,G(xYJ,',OC)d~dC
S

vanishes identically in y < 0. Since V0 vanishes, one finds from (4.8)

that f0 (x,z) must also vanish. Hence, the integral Equation (4.11) can

be solved.

Upon finding the solution f(xz), then from (3.37) and (4.10)

the pressure may be determined by

P2 = aV2 (xOz) = 1 - f2 (x,Z), for heave (4.15)

P4 = aV4 (x'O'z) - z - f4 (x,z), for roll (4.16)

P6 a aV6 (x'O'z) - x - f6 (x,z), for pitch (4.17)

where f(x,s) a Re[f(x,z)] + Im(f(x,z)1. Then, substitution of (4.15)

into (3.34) yields

M..I rr fl - ef2(,)Id
y a

S (4.18)

y a fj Im[f 2 (x,z)i dS for heave,

S

substitution of (4.16) into (3.35) yields

Ix. - 1 sz - Re[f 4 (xz))} dS (
S (4.19)

Hx  z IM f4 (x,z)] dS for roll,

x a rr
S
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and substitution of (4.17) into (3.36) yields

Is 1 ff xjx - Re(f 6 (xz))} dSa6

S (4.20)

H - j x Re[f 6 (x,z)] dS for pitch,

S

V. NUMERICAL PROC EDURE

Suppose an ellipse + 12 i which becomes x W2

under the transformation x - /, z - /a, and b = E/a, represents the

surface of a zero-draft ship. A numerical procedure will be presented

which determines approximately the value of the unknown density f(x,z)

over the surface of the ship. The procedure is based on Fredholm's

method of replacing the integral equation with a finite set of linear

equations which relate the values of f(x,z) at chosen pivotal points

on the elliptic surface.

The substitution of (4.12) into (4.11) yields

lb
2f (xs.. z ~~Cf ( 0 a) S0(ar - iJ(ar)dCdc

-1 -b

= 2h(x,z) on y = S(x,s). (5.1)

Since f(xz) is a complex function, (5.1) can be resolved into a pair

of equations
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-1 -b

- a 2 f f Imtf(,C)Jo(ar)dCdC - 2h(x,t)

-1 -b

1b (

21mcf(x,Z)] +a 2 f f Re[f(C,)3Jo(ar)dCdC

-1 -b

1 b

, S. SIm[f( ,))[ -a log(ar) -M R(ar) Cd, =0

-1 -b

. Yo(ar) + 8o(a;) log(ar). R(ar) is a regular function

at r- 0.

A lattice is established on the elliptic surface by dividing

the long axis into sixteen equal intervals h, and the vertical ordin-

ates parallel to the short axis into eight equal intervals k(x) (see

Figure 11. Then each pivotal point can be identified by the coordinates

xi -(i-8)h j v 0,1, -- 16, where h =1/8

(5.3)
zj(xi) (j-4)k(xi) j 0,1, 8, where k(x) _x.

To obtain the solution f(xi zj) , it is necessary to consider Equations

(5.2) only at the forty-one pivotal points contained in one quadrant.

(The function becomes either symmetric or anti-symmetric relative to the

coordinate axes depending upon the type of oscillation.)

Since r denotes the distance from a given point P (xisj),

where i 0,1, --- 8, and j = 0,1, --- 4, to a variable point Q (CC)

= (xizm), where I a 0,, --- 16, and m = 0, 1, --- 8, one finds the
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integrands

2_+(Z____0_2 and f(4,0log q t 2 ZJ V 2

possess a singularity at (xi~zj) = (xi'ZM). Nevertheless, these

improper integrals associated with the above integrands do exist. A

numerical scheme will be shown for evaluating such integrals involving

two variables.

A. Treatment of the Integral.

I s(xitz ) - T, d~dt (5.4)

x0  z o(Z 
2

In the given lattice, division lines and curves form a four-

sided (two or three sided near the boundary) mesh. A neighboring region

6 of a point P is defined as a region which is the union of all meshes

touching P. Then the region S of the integration may be divided into

two parts, so that

I s(x i~z = I6(x izj) + I s_6(xi zj)

where, for example, if 6 is a neighboring region about an interior

point P,

I6(xz j) = 'i+ljj+l dCdC • (5.5)
XijlZj_1 (xi- ) +(zJ-C)2
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For the evaluation of IS6, Simpson's rule is generally used. In case

there are an odd number of divisions in an interval of integration,

the integral over the division nearest to the region 6 is evaluated

by the trapezoidal rule instead.

Now, setting x - xi up, and -j = q, (5.5) may be ex-

pressed as

h k k
16 (X i zj =6-222 dqdp = fF(h,q)dq (5.6)

-h -k p+2-k

h

where g(p,q) = f(xi+P, z +q), and F(h,q) = (pq) dp. Since f(x,z)

-h 4p +q2

is continuous and bounded, it can be shown that F(hq) is also a

bounded and continuous function of q for q ; 0. When q approaches zero,

F(h,q) becomes logarithmically singular. Therefore, a generalized

Gaussian quadrature formula is used for an approximate evaluation of I .

To determine this formula, rewrite (5.6) in the form

k 2
I X Zlol,rF(h 1q)1 dq owZ HiF*(h'qi) (5-7)

6xi'zj) 1 lo Lq ogjq

-k i=l

The abscissae qi can be found as the zeroes of the second degree poly-

nomial Q(q) a 1 + aq + bq2 , which is a member of the set of polynomials

orthogonal in the interval (-k,k) for a weight function logiqj. It

turns out that

Q(q) 1 "o q21- 31ogk
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so that

q l =  "- l o g k ,and q 2 -3  i -i o V " (5 .8 )

Now the weights Hi corresponding to qi can be determined by requiring

that formula (5.7) be exact if F*(hq) is a polynomial of degree zero

or one. In the present case these are

H1 = H2 = k(logk-l) • (5.9)

By substituting (5.8) and (5.9) into (5.7) one obtains a quadrature

formula

6h k(logk-g(pq 2) 

log q 4J2+q -h log q2 p +q2

k. 1 log x'k) +(C *.q2

ii f~z+ 2  d] (5.10)2 2xi 1 log q2 q(X A-) +q2

which gives exact results if F*(hq) is a polynomial of degree less than

or equal to three.

Next, by Lagrange's interpolation formula, f(x,z:iql) and f(x,z q2)

can be related to the function evaluated at the equally spaced points

f(xzil), f(xz ) and f(xzjl). Thus, one finally finds the for-

mula



-25 -

x

1(x Is lot k 1 [2 f(CWz~1  +2(k2_q 2)f (C,z)

+ q2 f( ,Zj) "  1 dC (5.11)

2 j~l xi'C) 2+q 2
2

The integral 16 expressed by (5.11) is now readily evaluated by the

use of Simpson's rule.

For the boundary points (x iz 0 ) i = 1,2, --- 8, the associ-

ated 16 is treated in a quite similar manner. Here one writes

Xri 1 1(2

x 1 z0
16 (x is o ) '. , ~-r- - d~dC (5.12)

X i 1  z 0  (xi '4)2+(zo 'C)
2

Following the transformations (5.6) and (5.7), (5.12) can be expressed

in the form

j'h ) jq.Hh (h

-h(X I p q) dqdp oq q o HF'(hqi).f-h O 0V;=q2 0 gq i=l

(5.13)

Then the abscissae qi can be found from the quadratic equation

kc k k k k

log qdq q qlog qdq(JG q log qdq)]q+f q logqdqj [i ogd
0 0 0 0 0

k k k kc

- s ~ogd~qJ'qloq q qlog qdq -( q 2log qdq) 2 0 O
0 0 0 0

(5.14)
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Note that qi depends upon k(xi ) in a rather complicated manner. Here,

the weights Hi corresponding to qi are given by

H 1  - . ,flog qdq - Pq log qdq]

(5C15)

H= q .L-F q - P log q dq]

Hence, the quadrature formula involving the functions evaluated at the

equally spaced points f(x,z0 ) and f(x,z1 ) becomes

X( +lH(kq) 1 H2 (k-q2 ) ,_1_,___(__
0 11 "L1 1ol q.J( 2-O2 + k log q 2 2 2 0xl. i +q C) -0+q 2

S+l. . 1 H2 q2  1 (5.16)
Ak log q 1 J(- 2 2 + k log q2 2

xi-I(xi-) +ql 2 2

The integral 16 associated with the point (xoZ 4 ) at the leading edge

of the ellipse also requires a special treatment. From the definition

of the neighboring region, one starts by writing

z x 8k h
i6(Xo,=4) f(rC) d d4 g(pq) dpdq

-2 2 r 2-z 0 x 0  (ixo-) +(z4-C) 0 0 pq

h 2

logIpIF( k) P L F(pgk) (5.17)
0 i=l

Then the abscissae p, can be found from (5.14) by replacing the variable

q with p, and the integral limit k with h, respectively. It also follows
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from (5.15) that the weights Li corresponding to pi are given by

h h

Li -. ~.p-! flog pdp -Jp log pdp]
o o (5.18)

h h

L ~ log pdp -j p log p dp
0 0

The quadrature formula can now be written as

I() (h-pl) f(Xo,_ _ 0(P 2 ) L2(h-P) f(xC)
I2 ( dC 0 dC6o'z4 J h log p, F2h log p2  2 2

zo(pI ) p +(z4- z o(P2 ) 2.(z4 -C)

2 (PI) Lp f(xl, C) z,(P2 ) Lp f(xl')
+Lf 1l d + L2P2, l dC.•

h log p+2z h log P2zp 2 2Zo(Pl) iP1+(z 4 _ €  zo0( P2)p 2 +( 2-

(5.19)

Since z4 a 0, and since f[xZ = Uf(Xo ' 4 0,1, --- 89

(5.19) may be rewritten as

I 9z (P 2 ) L2 (h-p2 ) 1. df(xz )

l) LI(hPl) p 1 d hlog 2  2

18(Xo2z4 ) C log P1  5- -

zoCP 1 ) p z o(P 2 )

Z (Pl)  L ,f(xl,C) z (P2)  L22f(xlC)

+ LI l p.,1 ,C dC + L2  P2 f2 - dC . (5.20)

o ( 1 ogP 1  +C22 (p2)P2+zo(p) v~l pI 2 (2) ~ p

Here, functions f[xl z (pi)] may be approximated by f[x 1 ,= (x,)] (or
related to f x1 ,z (x )] by linear interpolation) to evaluate the third

and fourth integrals.
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B. Treatment of the Integral.

r6 2(zj_€)

Js(xi zj) j f(CC)lo x- ) C)2 dCdC • (5.21)

x z
0 0

If the region S of integration is divided into a neighboring

region 6 and a remaining region, one obtains

Js(Xi,9Zj)= J6(xi zj) + Js.6(xi zj) •

Applying Simpson's and the trapezoidal rules, the integral JS-6 can

be evaluated by a process similar to the one used for the evaluation

of IS 6* For example, if 6 is a neighboring region about interior

points P, the integral J6 is given by

J6(xi zj) = r f(C,)lo/(x-O+( zj7 dCdC • (5.22)

xi. I zJ. I

By the transformation C-xi  = , = q, (5.22) may be rewritten as

h k k
J6(xizj) - j f g(p,q)lo4qp dpdq = j G(h,q)dq , (5.23)

-h -k -k

where g(pq) a f(xi+p, zj+q), and G(h,q) = g(p,q)logp +q dp It

can be shown that G(h,q) is not only a bounded and continuous function

of q for q 0, but also remains finite when q approaches zero. There-

fore, non-generalized Gaussian quadrature formula may be used to evalu-

ate J6" In order to derive such a formula, write (5.23) in the form
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k 2
J6xizj - 0 (h,q)dq ow M MG(h'q) (5.24)

-k i=l

The abscissa* q are obtained as zeroes of the second degree poly-

nomial Q(q) = 1thus q and q k (5.25)
k 2s 1  2 V;3 =

Now, the weights Mi corresponding to qi are

M1 a M2 =H (5.26)

Then, substitution of (5.25) and (5.26) yields a quadrature formula

J8 (xifq) k+q2 dp + g(pjq dp]

7 2+2
"k T f(4, +q 1)1oI x q2 d4 q d4

xi. 1  xi. 1

(5.27)

which again gives exact results if G(h,q) is a polynomial of degree

less than or equal to three.

If f(x,zi+ql) and f(x,zj+q2 ) are expressed in terms of f(x,sJ1

f(x,z ) and f(x,z J+) by Lagrange's interpolation formula, one finally

finds

k (xi,, +i 1 ,,, F.2J 22

Z x i.1
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Note that quadrature coefficients are equal to those of Simpson's 
rule.

For boundary points (x ,z ) i = 1,2, --- 8, the integral J6 is

.+i (. . dCdr (5.29)
S6 (x ilzo) 9 1. f(4,0)1o xi-C)2+(Zo-C)2 •~4o (-9

xi 1 z 0

Then (5.29) can be transformed into

2

J86(xi 9z0) P J g(p,q ).n/p 2 +q 2 dqdp = jG(hgq) Pd lMG(h,q,). (.5.30)
h i= 1

In the present case, the abscissae qi and corresponding Mi are readily

found as

q-q = + k

and (5.31)

H 1 H2 = k/2 •

Hence, in terms of f(x,z0 ) and f(x,z1 ), the quadrature formula (5.30)

can be explicitly shown as

x + k- k-q2  5
~1og,,[xx-)+-C2) Iqx4,%M4

xi 1

+ 1 lo&]x +q2 + 2 log 4xi1  4+q72(C,,l)d4 . (5.32)

xi-

Note that quadrature coefficients are similar to those of the trape-

zoidal rule. The integral J6 associated with the boundary point (xo,z4 )

requires a special treatment. Now, a quadrature formula will be derived

by writing
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S6(Xoz 8) r f(, C)lo(Xo-t) +(z/4 - ) dtdC = _g(pq)lo dpdq

Z0 X 0

2

joG(p,k)dp " NiG(p,,k) (5.33)
0=1

Then, from (5.31) one finds

and (53)

N = N - h/2 •

Since fcxo,z (p )) = f(xoz 4 ) j = 0,1, --- 8, one obtains the quadra-

ture formula

(p)h-p 1  og7 dC (P2) h-p 2  C1x~4 1 0(p2)+ dCj+OP) Cd fxoz 4

Z [p (p )  "  '(P 2 ) P2 "

~~~(p 1  ogr-22 f~l, op2  2  2+ Cdf+, d 8P2)  )dC (p•)1'

(5.35)

Here, functions f[x1Izj(pi)] may be approximated by f[xl,2 (x 1 )] (or

related to f[x 1 z (x 1 )] by linear interpolation.)

Application of the singular integral formulae:

for inner points (5.11) and (5.28),

for boundary points (5.16) and (5.32),

for leading-edge points (5.20) and (5.35),

together with Simpson's and the trapezoidal rules enable one to reduce
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the pair of integral equations (5.2) to eighty-two linear equations

relating the values of Re[f(xz)] and Im[f(x,z)] at forty-one pivotal

points.

For example, if (xi,z ) are inner points, (5.2) is reduced to the

form

i+l j+ l. 
i- 1 162Re~fi .I I I ( -_ r1. as log ar + +I- m=J-I r1 -=0 Mao )=i+l moo

+ Jl1i+l (+ + J] m ! -a log rm

Ii-l M=o )=i-1 mj+

16 8 16 8
" o Z 1  - R(ar Re.f m _a2 Z ,RJo(-ar I,(r - 2hiJ,L I,, M MLM-O

=0 m0 I1= 3a0

16 8 i+l j+l

S)Rerfiij+ ImfiI]+&; as 0 (. )
am 0 LIo m I ILIM Im'lo a 2

1.0 Maoz=0i-l m=j-l

[i1l8 
16 8 i+l j- +1

I I+ I+ I I-l + IG _ o r
2=0Mao2=i+l 3=0 Ini-l 3=0 )=i-1l=+1 I

16 8

- Z~7Km Tt R(ar m) Imrf1 m) a 0 (5.36)
2=0 m=0

where the notations represent, respectively,

fii a f(xizj i f 2 3 = f(z29z3 ), r23 =Ax,) 2 ~-

2 k2 (I-3 log k) " ix 2 2 J , 1 ir ; ,M . J - z o )M J x1
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C Ch D k(x )(The coefficients for Simpson's or the (5.37)

trapezoidal rule),

q2 10 k-i 2(k 2_qk2

Im I k log q2 9 Im mk a I

In (5.36), an appropriate change is necessary if (xz,z) are boundary

points. Furthermore, one observes that the function f(x,s) has the

following properties;

for heave f ,m f17- ,m f 199-m fl-,9-m

for roll fdm . fl7-1,m = .f,93-m = fl7- 1 ,9-M (5-38)

for pitch f I'm = fl7-1,m = fl,9-m • fl7-1,9-m

Therefore, using (5.38) the left hand side of (5.36) can be formed into

a rectangular matrix for unknowns fiJ. In this manner, one obtains

three sets of linear equations describing the type of forced oscillation.

For various values of the frequency parameter a aa 2/g a 2";/a, one

can determine the values of the density function by solving these equa-

tions.

Actual steps of the computation work for obtaining the

solution consist of:

(Step 1) Determination of the distance r from the given pivotal point

to all pivotal points on the lattice.

(Step 2J Calculation of functions appearing in the coefficients of

the linear equations by means of interpolation from the given

table.
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[Step 3) Summation of the coefficients and grouping of the matrix

in accordance with the type of oscillation.

[Step 41 Numerical solution of linear equations by the elimination

process based on the algorithm of Gauss.

VI. NUMERICAL RESULTS

The results presented in this paper are obtained by the

application of a new numerical scheme developed for evaluating

improper double integrals associated with the fundamental singular-

ities 1/r and log r. As it will be shown, the present results agree

fairly well with the results computed by the application of the pre-

vious scheme (see Section V in (8)) which uses a circular neighboring

region about the singularity. Secondly, in the present work, the

added moment of inertia and damping coefficient for roll and pitch are

computed correctly. These quantities presented in [81 are in error.

It was discovered that a mistake was committed in Step 3 of solving

linear equations for the source density. In the course of grouping

the matrix in accordance with rolling or pitching oscillation, the

signs occuring in (5-38) were unwittingly reversed. Subsequently, the

added moment of inertia and damping coefficient were determined from

erroneous values of the pressure. Lastly, in the present work, the

range of the computation was extended up to the frequency parameter

a - 2r. However, as has been seen in (4.13) because of the fluctuating

tendency of the kernel at large values of the argument, the accuracy

of results decreases beyond a - r. To assure the same accuracy over
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the range of a = r to 2", the mesh spacing may be bisected.

The investigation was performed for an elongated ellipse of

axes ratio b = b/ = 1/8, and 1/4, and its limiting case, a circle of

b = 1. Thus, three groups of computations were necessary with each

value of the frequency parameter a, which assume the values "/6, rV5,

r/4, "/3, 2r/5, r/2, 2/3, 9r, 5r/4, 3n/2, 7r/4, and 2r.

For each combination of b and a, three sets of linear equa-

tions describing the type of oscillations; namely, heave, roll and

pitch, were solved. From the solutions of the linear equations,

pivotal values of the pressure were determined. Then, using Simpson's

rule one finds normalized added mass M, normalized added moment of

inertia I, and normalized damping coefficients N or H by the pair of

appropriate formulas (4.18) to (4.20).

In order to substantiate the preceding remark, the values

of Hy and Ny computed by the use of the previous scheme and those com-

puted by use of the present scheme are compared in Table 1.

TABLE 1

Previous Result Present Result

b=l bal/8 bl b=1/8

a My Ny MY NY My Ny My NY

r/5 2.129 1.016 0.102 0.032 2.118 1.022 0.113 0.031

r/4 1.987 1.026 0.098 0.036 1.981 1.031 0.108 0.034
"/3 1.809 1.002 0.090 0.041 1.807 1.006 0.099 0.038

2r/5 1.706 0.968 0.085 0.043 1.704 0.970 0.093 0.040
r/2 1.593 0.910 0.077 0.045 1.592 0.909 0.084 0.041
2r/3 1.473 0.811 0.066 0.044 1.467 0.807 0.072 0.040

TV 1.341 0.628 0.051 0.039 1.319 0.638 0.056 0.033



- 36 -

T-2
In Figure 2 and Figure 3, the dependence of-a M and

2 A y
- N on the parameter a are presented. In Figure 4 and Figure 5,
A y -2 -2
the quantities A Ix and Z H are plotted as functions of the para-A x -2 -2

meter a. Similarly, the quantities Z I and -a H are plotted in

Figure 6 and Figure 7, respectively. The multiplication factor

-2 -
a - for the ordinates represents the ratio of the area of a circleA B h

with radius equal to a (half the long axis of the disk) to the area of

the waterplane of the disk under consideration. This factor was intro-

duced in order to make the curves comparable. The actual values corres-

pond to one-fourth of the ordinate for the ellipse of b = 1/4, and one-

eighth of the ordinate for the ellipse of b = 1/8, respectively.

The curves for the circular disk b = 1 in Figure 2 and

Figure 3 compare very closely to the corresponding curves in Figure 6

and Figure 7 of [s), which were obtained by treating the circular disk

problem by deleting the angular dependence. The same method is applied

to solve the case of pitching in [61. In Table 2, the results obtained

by the present method and those obtained by the method of [6) are com-

pared. In the latter method, the accuracy of the computation is

increased by means of doubling the numbers of pivotal points on the

radius of the circular disk. Over the range of a = Tr to 2r, the

present method gives the lower values of I and H which amounts to
z z

3 to 14% for Iz and 8 to 20% for Hz, respectively.



TABLE 2

For a Pitching Circular Disk

By Present Method By Method of (6]

a Iz H H

TY/6 0.281 0.013 0.282 0.014

-"/5 0.285 0.020 0.287 0.021

n/A 0.289 0.031 0.293 0.034

-n13 0.289 0.051 0.294 0.055

2rr/5 0.284 0.064 0.290 0.070
r~/2 0.273 0.079 0.279 0.085

2r/3 0.252 0.091 0.259 0.097

ri 0.219 0.091 00227 0.099

5r/4 0.203 0.086 0.212 0.095

3i'/2 0.190 0.079 0.203 0.091

7TV/4 0.176 0.071 0.198 0.085

2 T 0.167 0.063 0.194 0.079

It should be noted that as the frequency of the forced oscillation a

tends to zero (hence, a - 0), M becomes a constant and N y(being a S 2

the damping factor will vanish. Since MH is 0(log a), in the two-

dimensional case, M tends to infinity while N ybecomes a constant an

the frequency tends to zero. In Figure 3, the limiting values of the

ordinate may be shown by the relation

lim '2  -
a-0 A yN A

where A . rvE, and S = r~S/- - A,/a for the elliptic disk, Hence,

at the origin, the slopes are given by
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for b - 1 9.8696 ,

for b = 1/4 1/4r 2 = 2.4674 ,

for b a 1/8 1/8r 2  1.2337, respectively.

The computed results deviate very rapidly from the low frequency approxi-

mation shown in the above. Furthermore, as the frequency tends to zero

in Figure 4 and Figure 6, I x and Iz become constants, while in Figure 5

and Figure 7, H and H will vanish.x
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