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ABSTRACT

The purpose of this study was to investigate the interaction of plane
elastic waves with a thin, hollow, cylindrical shell embedded in an elastic
medium.

The cylindrical shell is considered to be elastic, isotropic, homo-
geneous, and of infinite length. It is surrounded by an elastic, isotropiec,
and homogeneous medium whose motions conform to the ordinary theory of elas-
ticity. A plane stress wave, either dilatational or shear, with a step varia-
tion in time, whose wave front travels in a direction perpendicular to the
cylinder axis, envelops the shell. Later, a Duhamel integral is used to study
other wave shapes for the incident stress.

The response of the shell is studied by expressing the two components
of displacement, radial and tangential, in terms of Fourier series, each term
of which is called a mode. The equations of motion of the shell in vacuo
are derived from expressions giving the strain and kinetic energies due to
generalized external forces. Forces on the shell result from the stresses in
the medium at the boundary. Stresses in the medium are taken to be the sum
of the stresses due to the incoming stress wave expressed in terms of Fourier
series whose coefficients are known, and those due to the reflected and dif-
fracted effects expressed in terms of a pair of displacement potentials rep-
resenting waves diverging from the axis of the shell.

The equations to be solved consist of two pairs of coupled integro-
differential equations in the generalized coordinates of the shell and the
displacement potentials. By use of a digital computer they are solved mode-
wise by a step-by-step iterative integration technique known as the Newmark

Beta Method, with which values for the potential functions, and the acceler-



ations, velocities, and displacements of the shell are determined. Stresses
in the shell are found from the displacements, and the values of the potential
functions permit determination of stresses for any point in the medium.
Although the equations are written to include an infinite rumber
of modes, only the first three modes are considered in detail. The computed
solution is compared with values obtained from a series expansion of the
equations, which is valid for short times, and with the static solution based
on the theory of elasticity to which the general solution should approach
asymptotically. 1In addition, the results of two particular problems are
compared with results given in another study.
Numerical solutions are obtained to determine the effect of the
several parameters which describe the relative physical properties of the

shell and medium. Results are presented in tabular and graphical form.
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CHAPTER I

INTRODUCTION

1.1 General Remarks

The problem of designing underground protective structures to
resist the effects of nuclear weapons has become increasingly important in
recent years with the development of modern weapons whose destructive capacity
is overwhelming. Engineers in this field are hampered to a great extent by a
lack of theoretical information on how structures in media such as soil or
rock behave when subjected to dynamic loads. Even for static loads alone,
much of the design practice today is of a semi-empirical nature.

When a nuclear explosion occurs, stress waves are transmitted
through the air and ground. How are they transmitted and how are they modified
by the presence of a structure embedded in the medium? How does the structure
respond?

The purpose of this report is to study one aspect of the problem,

the interaction between the medium and structure.

1.2 Statement of Problem

The problem considered here consists of analyzing the elastic
response of a hollow cylindrical shell (tunnel lining) embedded in an elastic
medium when subjected to an incident plane stress wave traveling in a direction
perpendicular to the axis of the shell. Some questions with which this problen.
may be associated are: Do tunnel linings in contact with rock afford a measure
of protection significantly higher than an unlined opening? What magnitude
and time variation of displacement, velocity, and acceleration would equipment

mounted within such a structure be subjected to? How are stress waves within
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the medium modified in the vicinity of the shell? This study was conducted
in an attempt to find some qualitative and quantitative answers to these

questions within the limitations imposed by the assumptions noted below.

1.3 Basic Assumptions

The cylindrical shell is considered to be of infinite length, and
is embedded in an elastic medium of infinite extent in all directions. A
plane stress wave whose front travels in a directlon perpendicular to the
cylinder axis envelops the shell. Strains parallel to the axis in both the
medium and shell are assumed to vanish; thus, since each cross section of the
shell is exactly similar to every other, the problem is reduced to one of
plane strain.

In the mathematical development of the problem certain basic
assumptions were made, the most important of which are given here with a few
explanatorv remarks:

(1) The medium is considered to be homogeneous, isotropic, and
linearly elastic. This implies that the ordinary theory of stress wave
propagation applies. In view of the non-homogeneous, non-isotropic, and
non-elastic characteristics of most materials encountered in nature, this
is a severe limitation; however, current theories of stress propagation
through such media have not advanced to the stage where this limitation can
be readily overcome. In the case of some rocks, though, this assumption
may be Jjustified.

(2) The material in the shell is alsc considered to be homogeneous,
isotropic, and linearly elastic. Generally speaking, this assumption is valid
for values of stress below the so-called proportional 1limit of materials

commonly used. In addition, the thickness of the shell relative to its radius



is assumed small; this permits expression of all stress components of the
shell in terms of a function which describes the deflection of its middle
surface. This deflection must satisfy a linear partial differential equation
with the appropriate boundary conditions.

(3) The incident stress wave considered is either a plane dilata-
tional or a plane distortional (shear) wave. Under actual conditions, both
waves are propagated with the shear lagging the dilatational wave. The
combined effect for elastic conditions may be determined through the principle
of superposition.

(h) The radial and tangential particle velocities of the medium
at the boundary are equal to that of the shell. This is the continuity
relation insuring that the shell and the medium are in contact with no
relative slip occurring at the boundary.

(5) Any additional mass within the shell 1s assumed to be dis-
tributed symmetrically about the axis. The significance of this assumption
is found in the development of the equations of motion to account for any
additional mass located within the shell.

Other assumptions are presented in the formal development of the

mathematical expressions used to describe the behavior of shell and medium.

1.4 Method of Approach

The two components of shell displacement, radial and tangential,
are written in terms of Fourier series from which expressions giving the
strain energy and kinetic energy of the shell in vacuo are derived. The
equations of motion are derived from lLaygrange's equations in terms of the
displacement functions and forces acting on the shell. Forces on the shell

result from the stresses in the medium at the boundary. Stresses in the
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medium are taken to be the sum of the stresses due to the incoming stress wave
expressed in terms of Fourier series whose coefficients are known, and those
due to the reflected and diffracted effects expressed in terms of a pair of
displacement potentials representing waves diverging from the axis of the
shell. The form of these potentials as derived by Lamb (h)*, is in terms of
sine and cosine series, the nature and treatment of which has been studied
by Paul (6).

The equations of motion, described as a pair of coupled integro-
differential equations, are solved modewise using a numerical technique
known as the Newmark Beta Method (5) which permits determination of the
coefficients of the potentials and values of acceleration, velocity, and
displacement of the shell.

The solution obtained is compared with values obtained from a series
expansion of the equations, which is valld for short times, and with the static
solution based on the theory of elasticity which the machine solution should

approach asymptotically.

1.5 Previous Work

The problem stated above has been the subject of & recent report
by Baron (1), whose analysis consists of first solving for the displacements
caused at the boundary of an unlined cylindrical cavity subjected to a plane
stress wave. This is done through an integral transform approach, the solu-
tion of the transformed equations being expressed using Hankel functions.
The evaluation of the inverse transform is accomplished only with great
computational effort. Values of displacements obtained are then used as

influence coeffic.ients in determining the displacements of the shell.

* Numbers in parenthesis refer to the corresponding entry in the Bibliography.
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Solutions obtained for two different sets of parameters by Baron are compared
in Section 4.6 with results obtained by the method of solution outlined in
this report.

The study by Psul (6) consisted of analyzing the effect of a plane
stress wave incident on an unlined cylindrical cavity in an elastic medium.
The reflected and diffracted waves are described in terms of displacement
potentials which represent outgoing shear and dilatational waves. A method
was developed for determining values of these potentials, and a similar

method is used in this report.

1.6 Notation

Notation is defined throughout the text where it first appears;
however, the following list summarizes the main uses of certain symbols. In
discussions of special topics other meanings may be ascribed to the symbols,

at which time they will be redefined.

A = Area of cross section of the shell, per unit length.
An, Bn’ Cn = Coefficients of Fourier series for stresses in the
medium.
A , B ’ C_ = Coefficients of Fourier series for total stresses
n’ “n’ "n
in the medium.
AMm » Bdm = Weighting factors.
e, bn = Generalized coordinates for the displacements of
the medium at the boundary.
a , b = QGeneralized coordinates for displacements of the
ns’ ns
shell.
1 Gy = Velocities of wave propagation, dilatational and
shear, respectively.
d = Distance from neutral axis of shell to its outermost

fiber.
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X, ¥, 2

Moduli of elasticity for the medium and shell,
respectively. Bar over the symbol refers to the
plane strain modulus.

Volumetric strain.

Generalized coordinates of the displacement
potentials.

Moment of inertia of the shell, per unit length.

Parameter which relates to the shape of a time
dependent stress wave.

R/r, ratio of radii.

c2/cl, ratio of velocities.

Mags of the shell per unit surface area.
Additional mass within the shell.

Mode number.

Generalized forces.

Radius of the shell.

Multiplying factors.

Polar coordinates.

Kinetic energy of the shell.

Kinetic energy of additional mass within the shell.
Thickness of the shell; also, time.
Strain energy of the shell.

Displacement vector.

Components of the displacement vector in the radial
and tangential directions, respectively.

Radial and tangential displacement components of
the shell.

Components of the displacement vector in the x and y
directions, respectively.

Rectangular coordinates.
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a
;na , non-dimensionalized radial component of
P displacement.
bsn ﬁ;
Ro ' non-dimensionalized tangential component

P of displacement.
Strains along the x and y axes, respectively.
Circumferential strain.

A variable of integration.

, & parameter.
, & parameter.

, & parameter.
, 8 parameter.

, @ parameter.

Dlm‘b ot wulH o> Mlmml.

1+y)(1l=2
l-y

, & parameter.

Polar coordinates.

Position angle of the incident wave.
Curvature of the shell.

lame constants.

Poisson's ratio.

~_
l-y

Arguments of the functions F and G, respectively.
Mass density of the medium.
Mass density of the shell.

Normal components of stress parallel to the
x and y axis, respectively.

Shearing stress component.
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°r9
sb

g
smax

s

?, ¥

Radial and tangential normal stresses in polar
coordinates. Additional subscripts s and m,
when used, refer to the shell and medium.
Shearing stress in polar coordinates.

Bending stress in the shell.

Maximum stress in the shell.

Amplitude of incident dilatational wave.
Amplitude of incident shear wave.

Non-dimensionalized time in the case of the
incident dilatational wave.

Non-dimensionalized time in the case of the
incident shear wave.

Displacement potentials, dilatational and shear,
respectively.
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CHAPTER 1I
BASIC EQUATIONS

2.1 Eguations for the Medium

The differential equation of motion of a particle in & homogeneous,
isotropic, and linearly-elastic medium in terms of its displacement vector u
1s given by Kolsky (3) in the form

ce .= = = = X%
AN+ 99 " u-p9x (Ixu) =p = (2-1)

at
vhere A and p are the Lame constants , and p is the density of the medium. The
vector u may be expressed as the sum of two displacements, the gradient of

a scalar potential and the curl of a vector potential
E=a¢+6x\f (2-2)

Here ¢ is & potential giving rise to an irrotational displacement and Ya
potential leading to an equivoluminal displacement.
If the vave equations (2-3) are satisfied and u expressed as in

(2-2), the equations of motion (2-1) are automatically satisfied.

2
2 1

vV 9= a—%

cy ot
(2-3)

Fv=2 ¥

Y=z

¢y ot

vhere the velocities of wave propagation are
cl =

(2-4)

for the dilatational and shear waves, respectively.
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Since the problem is essentially a two-dimensional one wherein only the
rotation about the cylinder axis is considered, the expression for the
propagation of shear waves can be written in terms of a scalar potentilal

function

3 with v =¥ (2-3a)

“ro

<*o
<
!
N?mh“
Folp

¢ and ¥ are functions of x, y, and t. The components of the displacement

vector u can be expressed as
_ o)
u =R+ (2-5)
$-&
u = -
y X
Stress components are
9x = Ae + 2uex

Oy = Wiy (2-6)

g = ke + 2u¢
Yy y

where e represents volumetric strain, € and ey strain along the x and y axis
respectively, and Txy the shearing strain. The strain components for small

displacement are

(2-6a)

auxau
Tyt Ot
In terms of the potential functions, the equations for the stress components

become
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2 2 2
) e % . 3
o =n (2« ) +2u (X + )
XX 2 aye 3 &S}
2 2 2
) Ty , ¥
o =u(2$%- + =3) (2-7)
Xy ax2 ay2

o 3 o 3
o =x (32,29, &8, L4
SRR 2 | &%;7

In polar coordinates

2 2

2 o) 19 19
v = e— - 4 — —
3r2 r 3r r2 692

Yo, 12,10 12
a? T Pt el
(2-8)
Pv,raw, 18 1%
a? T r r2 892 ) 2 at?
2
Displacements in polar coordinates become
19
u=§+;%
(2-9)

PN

where u and v represent radial and tangential components of displacement,

respectively.

Stress components may be written as

3 2 2 2
R e A= Tt IRl REIe A1 28 =)
2 2 2
SEUE RS N B f= 1] (210
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where or ’ °r9’ 999" represent respectivzly the radial, shear and circum-

r
ferential (hoop) stresses in the medium.

In the following development of the equations, the incoming wave,
considered a step function of time, is either a dilatational or shear wave.
The step wave was chosen as a convenient form from which, through the principle
of superposition using Duhamel's integral, the effects of any time dependent
wave may be approximated. It is shown by Kolsky (3) that for either the
incoming dilatational or shear wave, the reflected wave from a plane body must

have both dilatational and shear components in order to satisfy boundary con-

ditions. The same holds in the present case.

2.11 Dilatational Wave

The orientation of the incoming dilatational (compressional) wave
with respect to the spatial coordinates and time are shown in Fig. 1. Owing
to symmetry about the x axis, the radial stress, hoop stress, and the radial
component of displacement are even functions of 9, while the shear stress and
tangential component of displacement are odd functions of 6.

In the expressions previously given, the dilatational potential may

now be separated into two parts

@ = ¢1n + qJout

where

Pin T - 9 04 (x+c1§)

represents the potential of the incoming step wave, and ¢out represents the
potential of the outgoing dilatational wave.

The displacement and velocity of a particle behind the plane wave
front can be derived from the potential of the incoming wave, with notation

defined in Fig. 1
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1
u = - qp‘)(- (x+clt)

g (2-11)
iy oo
pey
The velocities in polar coordinates become
g
0= - ) cos 6
(2-12)
o
v= —E-3gine
PCy

The radial and tangential displacements at the boundary r = R due to the

incoming plane stress wave are expanded in Fourier series as a function of

time as
o
u(R,t,8) = z an(R,t) cos né
n=0
(2-13)
o
v(R,t,0) = E: bn(R,t) sin né
n=1
and the velocities as
[
u(R,t,8) = Z én(R,t) cos né
n=0
® (2-14)
v(R,t,8) = E: Bn(R,t) sin né

The Fourier coefficients are determined as a function of 91, a measure of the
degree of envelopment of the shell by the incoming stress wave (Fig. 1), by

evaluation of the integrals
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2]
20 1
é=-—Lf cos @ cos né a@
n xpcy Jy
0
. 20 1
b = _J’—f sin @ sin né 46
n C) J,

The indicated integrations are performed using the orthogonality properties
of the sine and cosine functions to get the following result

,

sin 91 n=0
g % sin 291
®n(in) T %pc) "yt n=1
sin(n-1)6 sin(n+1)6
1 + 1 n=2,3%
L~ n-1 Nl =€ 2y e
(2-15)
o - sin 291
g 1l 2 n=1
b = e
n(in) %pc
PCy sin(n-l)el sin(n+1)91
n-1 ! Bo=2 3 e

The subscript (in) has been added to designate the coefficients due to the
incident wave. 61 is a time dependent variable which varies from O to =«
during the transit of the incoming wave across the cavity, after which it
becomes a constant equal to x.

The stresses in the medium behind the wave front are as shown in
Fig. 1, where ;,* a ratio relating the stress in a direction perpendicular to
the direction of wave propagation, is derived from the assumption that there
is no strain behind the wave front in the direction parallel to the wave front.

It 1s related to Poisson's ratio, v, of the medium in the following way

* The bar over the symbol does not indicate a vector quantity.
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The stresses behind the wave front are in polar coordinates

arr

°re
996

Stresses

expressed in terms

g
rr

%90

l1-=-v

- ap(c0529 +V sin%6)

1y
% ( = ) sin 26

-ap(sin29 + 3 cos6)

15

(2-16)

(2-17)

in the medium as a function of radius and time are now

of Fourier scries

0

(r,t,9) = }: An(r,t) cos nf
n=0
0

(r,t,8) = E: Bh(r,t) sin né
n=1
[ ]
-

(r,t,9) = 24 Cn(r,t) cos né

n=0

(2-18)

and the coefficlients determined in the same manner as used previously for

velocities are

~

g

= - £ .
An(in) =%

5 1y
(1+v)9l + 5 ) sin 26,

(1)6, + (1+9) sin 26, + (li-"-) sin 4,

(1-'\7)esm(n-2)9l
+ +

(1-C)s:1n(n+a)el 21+y) sin no

n-2 n+2

sin h91
T
sin(n-2)6l sin(n+2)9l

n«2 n+2

(2-19)

1)3’“’)5)' .

l}i)“’)S" b
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(

(1+v)8, - (1—3) sin 20, =0
cn(in) = - 55 . <(V-1)6l + (1+v) sin 20, + (!ii) sin hel n=2

(;-l)sin(n-a)e1 (;-l)sin(n+2)9l 2(1+v)sin né,

+ +
n-2 n+2 n

k n =1,3,45,...

where the subscript (in) again refers to the incident stress wave.

As noted earlier, the reflected and diffracted wave is represented
as a diverging or outgoing cylindrical wave from a line source whose origin is
the axis cf the cylinder, and includes both dilatational and shear components.
The outgoing potential functions are expressed as infinite series, each term

of which will henceforth be called a mode

-]

out = Z fn(r,t) cos nb

¢ -
n=0

Vout = E: gn(r,t) sin né (2-20)
n=1

It is shown in the appendix that the coefficients are of the form

00
n
f =$'—ll-f1"n(t-—r—coshu)coshnu du
n n ¢ 1 171
¢y 0 1

(2-21)
[ ]
= S:llz u/\ ¢*(t - = cosh u.) cosh nu_ du
&n JERVA c 2 Uy Mo
2

2

where Fn(t --fl cosh ul) and Gn(t - iL cosh u2) represent the nth order
1 2
derivative of the respective functions, n being equal to the mode number

considered.
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To express the velocity components of the medium at the boundary

due to the outgoing waves as in equations (2-14), one differentiates

equations (2-9) with respect to time and substitutes the expressions given

above for the potential functions. This

velocity coefficients

én(out) =

bn(out) =

results in the following for the

cosh u, cosh nu

1 19y

sinh u, sinh nu2 du

2 2

sinh ul sinh nul dul

cosh u_ cosh nu2 du,

2 2

(2-22)

where (gl) and (§2) represent the arguments of the respective functions.

The subscript (out) refers to the outgoing wave.

The stresses in the medium due to the outgoing waves are also

expressed in series form as in equations (2-18), the coefficients being

found by substitution into equations (2-10)

(-1)%
An(out) = o+

1

-1)%
cn+2
2

n+2
‘/; G (g2) sinh 2u, sinh nu, du,

+2 A 2
lg o (§l) cosh nul[a + 2 cosh®u,] du

(2-23)
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- ]
n
L) p Fn+2(§ )} sinh 2u, sinh nu, du
0 1 1 1 1

Bn(out) Y
&

! 2 i n+2
- JQ G (§2) cosh 2u, cosh nu, du,

o0
n
(-1)7u +2 M 2
Cn(out) = cn+2 JC F'n (§l) cosh nuy [u 2 sinh ul] dul

- -]

n
+ (D) p f c“*e(g ) sinh 2u_ sinh nu
cn+2 0 2 2

2

2 W,

2.12 Shear Wave

The orientation of the incoming plane shear wave with respect to
the spatial coordinates and time are shown in Fig. 2. In this case the shear
stress and tangential component of displacement must be even functions of 6
while the radial stress, hoop stress, and radial component of displacement
are odd functions of 6.

The incoming wave expressed in terms of a shear potentiasl function
is

Vi = 9, K (x + c,t) (2-24)

from which the velocity of a particle behind the wave front in polar

coordinates may be derived as

ag

]
——sine
PCy

g (2-25)

-%— cos @
PCy

o
n

<
[}

The stresses in the medium behind the wave front are as shown in Fig. 2. 1In

terms of polar coordinates they are



¢ =0_ s8in 20
rr 8

°r9 = us cos 26
%p = -as sin 20

19

(2-26)

Velocities and stresses due to the incoming plane stress wave as functions

of radial distance and time are expanded in terms of Fourier series in a

manner similar to that of the dilatational wave, except that because of the

difference in symmetry, the sine and cosine terms are interchanged. The

coefficients are also found in a similar manner and are given here. The

coefficients for the velocity series are

8n(1n) =

Br(in) =

and the coefficients for the stress series are

An(in)

Bn(in) =

'9 ] sin 291
a 1 2
£ x
xpcy sin(n-1)6,  sin(n+l)e,
n-1 B n+l
( sin 91
g sin 26
2 b 4 J 6. + —_—1
upc2 1 2
sin(n-l)el sin(n+l)9l
n-l + n+l
-

= — X
%

[ sin L6
6. - 1
1 In

sin(n-2)9l sin(n+2)9l

n-2 n+2

~

[ 8in 26,
2
sin 48
6. + -——T——l
1 +
sin(n-2)9l sin(n+2)9l

+

L ne2 n+2

2,3,...

(2-27)

2,3,...

(2-28)
1,3,4,5,...
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Co(in) = "An(in)

9l is a time dependent variable similar to that for the dilatational wave
except that now it is a function of the position of the incoming shear wave,
which travels with velocity Cye

The outgoing potential functions are expressed modewise as

[--]
Pout = }: fn(r,t) sin né
n=1
(2-29)
- -]
Vout = E: gn(r,t) cos né
n=0
where the coefficients are of the form
[
L_)_ X
c JC (¢ - ) cosh ul) cosh nu, du;
(2-30)

r
e (t - s cosh u2) cosh nu, du,

cf‘*~3

°2

The terms have the same significance as in the case of the dilatational wave.
Modal coefficients are derived as before. The coefficients for the velocity

terms are

S-lzn +2
Jf o (§l) cosh u; cosh nu; du
0

®n(out) = ~ "ol 17
(o]
1
[ -]
O G™*2(¢.) sinh u_ sinh nu. &
n+1 2 2 2 Mo

(2-31)



bn(out) =

and the coefficients

An(out) )

Bn(out) =

cn(out) =

2l

00

(-1)" +2
F'TS(8.) sinh u. sinh nu, du
0 1 1 1 1

cn+l
1

[ ]
n
-1 n+2
S—E%I \/\G (&2) cosh u, cosh nu, du,
02 0

+

for the stress terms are

0

+2 A 2
\/; Fn (gl) cosh nul[ﬁ + 2 cosh® u,) du;

n
./‘ Gn+2(§ ) sinh 2u_ sinh nu, du
0 2 2 2

C)p
n+2
¢

+ 2

(-4

n
g-lz B +2

- == ‘/N 0 (gl) sinh 2u; sinh nu, du,
¢y 0

du

1 nof +2
(<1).p n
- G (§2) cosh 2u, cosh nu, du, (2-32)

cr21+2 0

[}

n
-1 +2 A 2

M/; Fn (gl) cosh nul[a - 2 8inh” u)] du

cn+2 1
1

n
S-l} B n+2
- v ‘/; G (ga) sinh 2u, sinh nu, du,,

2

2.2 Equations for the Shell

In the following derivations of the equations of motion for the

shell, it is assumed that the thickness of the shell is small in relation to

its radius. This assumption permits description of the behavior of the shell

in terms of its middle surface, and effectively concentrates all of the mass

in a line thickness.

This should be kept in mind when interpreting the results.
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The effects of shear and rotatory inertia are not considered, since they
affect only the very high modes, which are not considered in this study.

The deformation of any point (6) on the shell can then be described
by specifying the components of displacement (Fig. 3):

u, = radlal displacement, positive outwards

vy = tangential displacement, positive in the direction
of increasing 6.

The strain energy of the shell per unit length can be expressed as

1 EaA A
U=-‘-—f (k)sz9+-—-f (e,)°Ra0 (2-33)
2 2 0
0 0

where Es = "plane strain" modulus of elasticity of the shell

I = moment of inertia per unit length of shell

A = area of the cross section per unit length of shell

k = change in curvature of the cross section

€g = extensional strain in the 6 direction

R = radius of the cylinder

Flugge (2) gives the expressions for the curvature and extensional strain

terms as

and

v
€= % (g +u)
] R ‘90 s
correct to first order terms. The strain energy equation in terms of the
components of displacement then becomes

an
= — (-—-§+u)2+?f-A-f(avs+u)2d9 (2-34)
2R5 0 892 8 2R 0 0 8

ESI
U
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The kinetic energy of the shell can be expressed as

3
[]

21
g J; (ﬁi + \'ri) R4 (2-35)

where

mass of shell per unit surface area

B
]

2,21 Dilatational Wave

In view of the symmetries of the problem, the displacement com-

ponents of the shell can be expanded in tems of the following Fourier series

us(e,t) = z asn(t) cos né
n=0
(2-36)
vs(O,t) = Z 'bsn(t) sin né

n=l

Equations for the strain and kinetic energies of the shell are then expressed

as the following quadratic forms in the generalized displacements and

velocities
on — - [- -] -— [
EInr EAx E In E Ax
) 8 2 5 2 2,2 8 2
U-(5+ R)aao+ 5Zasn(l-n)+2R Z(nbsn"'asn)
R 2R
n=1 n=l
(2-37)
-]
.2 msxR .2 o2
T = maBd__ + =5 Z ( sn+bsn)
n=1

The Lagrangian equations of motlon in terms of the generalized displacement

coefficients asn and bsn are

or U
®ED %

T 3 - (2-38)
FE) w1
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where Qn and 'O-,n are generalized forces corresponding to the displacement

terms 8n and bsn’ respectively. The following equations of motion result

EBI i:'sA) Q,
i+ ( 4 ) 8 = e n=2~0
80 m—RE mRa 80 2amR
- (2-39)
EI 2 Qn
. 8 2 8
o+ (1-n°) & +——1(a__+nb ) = =—= n=12, ...
sn mRE sn mRa sn sn mnrR
nkE A Eh
so s
b+ —2 (asn + nbsn) === n=1,2 ..

Now to determine the generalized forces Qn and 'Q'n, the principle
of virtual work is applied. Consider a virtual displacement corresponding
to an increment 8asn of coordinate 8o

Virtual work, by definition = Qn . Sasn

The external forces acting on the shell are

[ -]

arr = Z An cos né
n=0
(-

°r0 = z Bn sin né

where Kn and En represent the sum of the forces on the shell due to the

incoming and outgoing stress waves

Kn = A (in) + A (out)
En = Bn(in) + Bn(out)

The coefficients An and Bn have been discussed previously. The work due to
a virtual change of the generalized coordinate 8. is

an

Virtual Work = f A cos°nd - Ba_ - RO
O n sn



25
The generalized force term is determined by equating the two expressions of
work, from which we get

Qo=2uRA° n=0

Q, = 7R Kg n=1,2, ...
and by a similar computation
Qn = xR Bn

The equations of motion now become

ESI 2 2 ESA An
asn + m—R-E (1-n%) & + ;R—a (asn + nbsn) = o
- - (2-40)
. nEA B_
on ¥ 7 (8gy *W0) =7
mR

2.22 Shear Wave
Because of the difference in symmetry associated with the shear
wvave as compared to the dilatational wave, displacement coamponents in the

case of the incoming shear wave are written as

us(e,t) = Z asn(t) sin nb

n=1

® (2-41)
vB(O,t) = Z bsn(t) cos né

n=0

Expressions for the strain and kinetic energies in terms of the generalized

coordinates asn and bsn now become

EIn EAr ¢
_ _8 2 2\2 8 - 2
U= - asn(l-n )<+ 5 E ( b+ asn)
n=l n=1

(2-42)
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o0
_ . 2 mnR +2
T = maRb_ + =3 Z (as

n=1

52 )
n+ sn

The equations of motion determined in a manner similar to that of the

dilatational wave are then

E I 2 EA Kn
fon * T (1-n%) &g, +—5 (ag, - mb ) = ¢
(2-43)
.0 rl-E- A EI‘l
sn ; (as - nbsn) =m
mR

2.23 BEffect of Additional Masgs

The equations of motion derived thus far assumed no mass within the
shell. The simplest way to consider the effect of additional mass is to
assume that it is distributed within the shell symmetrically about the axis.
The total quantity can be assumed equal tc 2aRm', with m' the magnitude of
the added mass measured in terms of the surface area of the shell. If it is
assumed to move with the same velocity as the mass center of the shell, its

kinetic energy can be expressed as

2x 2
' 2xRm' 1 , 2 .
T = ‘?n ;.5 [\/(; (-us cos 0 + v, sin e)de] (2-44)

for the case of the incoming dilatational wave. If ug and v, are replaced by
their Fourier expansions, and if the indicated integration is carried out,

the kinetic energy T' due to the amdditional mass may be represented as

L om'mR 2 . 2
T = n (asl easlbsl+551)

This kinetic energy .wust be added to the kinetic energy of the shell which

was derived earlier. 8ince the above expression affects only the n = 1 mode,
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the other modes need not be considered. With this additional kinetic energy,

the equations of motion for the n = 1 mode become

A
3 m' .. de . _];
ésl tom ( sl bsl) =3 (asl + bal) T m
- o (2-45)
EA B
eom . § !
b1 " Zm (asl - bsl) + R (asl + bsl)" m
If now we add the above equations, we get
E A A, B
.o 2o ) 1 1
"1t Pe1t 3 (agy +o) =+ 7
or
2E A A, B
. s 8 1 1
851 = “Pgy - 2 (asl + bsl) te twm
mR
and
2k A A. B
. . 8 1 1
L L R (asl + bsl) Tt

By making the appropriate substitutions for 8, and bsl’ the equations of

motion can be written as

z A T ' -
N o A - U S,
sl mR2 sl sl m 2(m+m') m 2(m+m' )
- - (2-46)
EA

8 1 m'
bg1 * -l (agy + ) =7 * Smamry *

m ],

. _en+m'

2(m+m')
Note that these equations are similar in form to the equations derived earlier
without the additional mass; the effect of the additional mess merely alters
the right-hand side.

In the case of the incoming shear wave, the kinetic energy of the

additional mass is
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2n 2
1
pr - 2oRn 1 f (@ 8sin @ + v_ cos ) ae (2-47)
2 2 -} 8
4x=-v 0
and by a similar method, the equations of motion for the n = 1 mode are
written
a + fgf- (a - Db ) = A—]-'- 2m+m - ﬁ . m'
sl mR2 sl sl m 2(m+m m 2(m+m'
- - - (2-48)
i;; - 2 (a - Db ) = - .A_l. . m' + .‘l 2mim’
sl mR2 sl " " m  2(mm') m 2(m+m'

The significance of the additional mass on the numerical results is discussed
in a later chapter. Inclusion of a flexible support for the additional mass
is also possible by changing the above equations; however, this problem is

not treated here.

2.3 Boundary Conditions

It is assumed that the shell is attached to the medium permitting
no differential displacements at the boundary between the two. Thus, con-
tinuity of stresses and displacements are maintained at the boundary. A
convenient way of satisfying the boundary condition of equal displacements
of the shell and medium is to equate the corresponding velocity components
of the shell and medium. This is done modewise for both the dilatational
and shear incoming waves by merely equating the coefficients of the velocity

terms as follows

0.
]

an én(in) + én(out)

(2-49)

o'
1]

en 5n(in) + ﬁn(out)
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2.4 Summary of Bquations in Non-Dimensionalized Form

It is convenient to express the equations derived earlier in
non-dimensionalized form by introducing certain dimensionless variables and

parameters. Let

asn Es tcl

A S s = (2-50)
an ES

g =22 . =
R @

n P

be the non-dimensionalized form of the displacement and time variables.

Parameters are expressed as

E
8
"t =E
[+
=2
LI
n = Qtv)(1-2v)
v -V
. (2-51)
Tt =R
A
TR
1
=5
173

The last two parameters given above become unnecessary vwhen considering an

unstiffened shell since for this case A and I are given by

1
A=t and =3 t2 (2-52)

Although the equations were derived considering an unstiffened shell of
uniform thickness, the response of a shell with thin, closely spaced stiffeners

can also be approximated by specifying A and I separately from t. The



equations of interest in non-dimensionalized form are

o
n
B

n

n

Pln(el) + qln(r,c)

P2,(6;) + Q2,(F,0)

N1 (o ,8,) + P3,(6;) + Q3 (F,0)

B, = N2, (@ ,p,) + Ph (6,) + Q4 (F,G)

(2-53)

where Pln, P2n, P}n, and Phn are functions whose values are determined

directly from the position of the incident wave. an, Qan, Q}n, and th are

functions of the outgoing shear and dilatational waves; and Nln and Nen are

functions of the displacements.

form are derived from equations given earlier.

case of the incoming dilatational stress wave.

n
Pln(el) = —VTr—E ﬁ

"

1
P2n(91) =

n g

P3 (6) = - E;%;ﬁ: .

f
sin 91
sin 20
1
9+
sin(n-l)9l sin(n+l)9l
\ T a1 ' o
( o sin 26,
l 2
sin(n-l)o1 sin(n+1)9l
n-1 T T el
\
#q» , (1-y) sin 20,
(l+v)91 + >

(1-v) sin (n-2)9l

(1-v) sin (n+2)@

These various functions in non-dimensionalized

Given here are those for the

- (1-y) sin 48,
(1'V)9l + (1+vy) sin 20) + ———p—

1

n-2 +

+

2(1+y) sin né

n+2

1

n

0
1
2,3,
1
(2-54)
2,3,...
n=0
n =2
n=1,3,4,5,...



sin uel
- 91 - T n=2
. (6.) n, Mg(1-v)
P S "I - M,
ntl 2"‘“;:»“t ﬁ sin(n-2)91 sin(n+2)6l
L n=2 - n+2 n =
Wig 2,2 ]
N (@ ,8) = - m _“A<°‘n +n8 ) +n;(1-0%) o
| *lE 2
12, @8,) = - e [nytom, + %)
[ ]
n . +2
an(F,C—) = = (~1) j(; P (;1) cosh u; cosh nu, du,
n cl n+l f\- n+2
+ (-1)" - (;2-) Jo G (ga) sinh u, sinh nu, du,
-]
n | +2
@ (F,6) = - (-1) j; F (8,) sinh u) sioh nu; du;
c. n+l
+ (-1)" (-é) j; Gn+2(§2) cosh u, cosh nu, du,
-1)%n, r 2
Q)n(F,G) = mrv-)n—p%;: _/; Fn+2(§1) cosh nu, l:-:—: + 2 cosh ul] du,
(-l)n n ¢ D42 ” 42
T g 'lp'lt . (c—e-) j;) G (52) sinh 2u, sinh nu, du,

(-1)" Ty °° +2
th(F,G) = W ‘/; o (;l) sinh 2u, sinh nu, du,

n
(-1) n, ¢ n+2

© 02
B 2h+vhp_"t ‘ (E;) j;) G (!2) cosh 2u2 cosh nu,, du2

31
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2.5 Other Equations of Interest

Dilatational Wave

The hoop stress in the shell is determined from the relation

%99

where
v
_l s
€9 R (30_ + us)

By substitution of the Fourier expansion of the displacement components the
hoop stress can be expressed modewise as a fraction of the absolute amplitude

of the incoming stress wave, as

%
ToT - [nﬁn + an:l cos né (2-55)
P n=0
The bending stress is determined from the relation

Esd beus \
6, =——(—=+u
sb R2 &2 8

which may also be expressed modewise as

®
°sb ‘ 2
2 - Z (n2-1) @_ cos no (2-56)
p n=0

where 4 1s the distance from the neutral axis of the shell to its extreme
fiber.
Stresses within the medium at any radius r may be determined by

summation of modal stresses as follows

_]__l_arr = _I__I_An cos né
%p n=o %
(2-57)
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90 i §.n
3 = sin né
[ To] = & Tl

() -
-I—-TU“ = z T—Tcn cos né
cP n=0 GP

where Kn’ En’ and Un are coefficients previously described as generalized

stresses of the incoming and outgoing stress waves.

j Shear Wave
The corresponding equations for the incoming shear wave are, for
I the shell
g - ]
(L] -
l 5. ] = Z (an-nﬂn) sin né
! 8
‘ n=1
[ (2-58)
. e
' o
sb \ 2
l<’l-dZ(l-n)cxns:Lnne
8
n=1
and for the stresses in the medium
- [ ] -
A
rro_ Y D cin no
A T v L
( 8 nol | 8
{ o« -
5 9.9 - Bn
b '|°_T = T°_T cos né (2-59)
. 8 n=0 °
0 > T
09 Z n
= sin né@
lasl & Icsl

where all terms are as defined before.
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CHAPTER III

METHOD OF SOLUTION

3.1 General

In this chapter are presented the numerical techniques used in
solving the problem. Since the methods employed are similar in theory for
both the incoming dilatational and shear waves, only the solution to the
incoming dilatational (compressional) wave will be discussed in detail here.
The equations (2-53) to be solved consist of two pairs of coupled integro-
differential equations in the generalized coordinates of the shell and the
potential functions. The integral terms in these equations contain elements
of the outgoing wave potentials, both dilatational and shear, whose values
must be determined through application of the boundary equations at each
instant of time considered.

In the numerical solution, time is taken to be the independent
variable, and is expressed in terms of the half transit time of the incoming
wave across the cavity, 17 = tcl/R. Increments of time are expressed as a
fraction of the half transit time; if N is defined as the number of time
steps for the wave to travel one radius, then i/N denotes the elaspsed time
after the ith step has been taken (Fig. 4).

The position angle, 91, can be defined for any step in time as
6, = arc cos (1 - 1/N) (3-1)

After total envelopment, i.e., for i/N > 2, 91 becomes equal to 7.

3.2 Numerical Integration of the Potential Functions

Lamb (4) notes that if a point source f(t)dz is located at the

point (x =0, y =0, z = z), its effect at a distance r from the origin in
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the xy plane can be represented by the equation

Vrfea? §+ze) i
(o}
1

1

v lr N 1422

which may be represented graphically as in Fig. 5. To obtain the effect of

£(t -

a line source of density F(t) on the z axis, spherically symmetric point
sources with the rame variation in time can be assumed to be situated all
along the axis, asnd their combined effect represented as an integral over all

the point sources

1 ? J 2,,2 a
°=5 l; F(t - rch )4?2_:;5 (3-2)

The limits of minus infinity to plus infinity are shown here in order to
represent the general case. It will be shown that for a disturbance beginning
at some definite time, the limits of the integral may be taken as finite.
Now let
24 2° = ra(l + z2/r2)
= r2 c:osh2 uy

and the above integral can be written as

@ = j; F(t - EI:I cosh u,) du, (3-3)

from which the graphical interpretation in Fig. 6 is made.

Consider for the present the determination of the integral values
at the boundary r = R. We define t = 0 to be that time when the first effects
of the outgoing stress waves (i.e., from the point source at z = 0) reach the
boundary. As time increases the effects of other point sources progressively
further away along the z axis will reach the boundary in the xy plane. Thus

it can be seen that though the limits of infinity are given in the integrals,
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for finite times the limits can be represented by finite values. The maximum
value of the variable R cosh uy in equation (3-3) that need be considered can
therefore be represented as a function of time. At t =0

R cosh u,, = R
that is, Uy is zero for time zero. For any time later

R cosh Uy = R + tcl

in the case of the outgoing dilatational wave (Fig. 6). R cosh u,, locates
the point farthest along the z axis whose wave front has Jjust reached the
boundary in the xy plane, ¢y being the velocity of wave propagation. In

non-dimensionalized form this can be written

[

cosh ulm =l+1=1+g

=2

where the terms are as previously defined. Since the integration is over all
point sources whose wave front has reached or passed the boundary in the xy

plane, the integral expression of equation (3-3) can be written with new

limits
“1m
R
¢ = h/:) F(t - EI cosh u,) du,
Let
cosh u) = 1+¢ (3-4)

where { now becomes the variable of integration varying in value from

0 to 7. In terms of { the integral expression becomes

Jf $-1+1-52 S
O

l+§/ (3-5)

Note that a singularity of the integrand occurs at { = 0, for all values of 7.

Paul (6) has presented a numerical technique for evaluating integrals of this
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general type taking into account the singular point. The method is essentially
a modified trapezoidal rule in which weighting coefficients are obtained. If
the range (0,7) of the integral is subdivided into subranges each of equal

length At, the above integral for any time T = 1AT can be represented as

(1-1) (m+1)ar
Q = Z j %.5-_)35 (3-6)
m=0 mAT 2f

where £({) is a polynomial of first degree in { which approximates the

quotient

Fg-l+1-;2
J1+g/2

as a linear function over each subrange. The results of the integration of
equation (3-6) are then put in the form

(1-1)

¢- [AMm | Rm | Fi-m * BJlm | Rm+l ' Fi-m+l:l (3-7)
m=0

where

A = J‘% {2(m+l) [(m+1)l/2 ) m1/2:| _ %[(m+l)3/2-m3/2]}

. \/%_ {% [(m+1)3/ 2.3/ 2] -m [(m+l)l/ 2 gt/ 2] }

(3-8)
™

represent a set of weighting functions which can be computed for any interval
being considered. For large values of m these functions were written in a
form more convenient for computational purposes by asymptotic expansion, to

get the following result

WAt [ 1 1 1 1 ]
AM = | ommae - + -
n 2 l2m 52 o3 Glm* 529)
3=9
_  jmAT [ 1 1 > 1 }
MM = —_— e ——— - ——E
mn 2 lam 6m2 32m:lJ 16m
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For an illustration of the variation of AM and BM functions with m, see
Fig. 10, Rm is termed the multiplying factor which for this particular

integral is equal to

R =
" Jl + ZE
2

All of the various integral expressions for the potential functions were
simplified to the form of equation (3-6) thereby permitting use of the above
weighting factors for all integrals. However, the expression for the multi-
plying factor Rm varies for the different integrals.

The integration for the outgoing shear potential ¥ is handled in a
similar manner, except for a minor modification which results from the fact
that the shear wave travels outward with velocity Cpe

Consider for illustrative purposes some shear potential represented

as

: R
v = ‘/; G(t - N cosh u2) cosh u, du,

Since the incident wave strikes the shell at time t = O, the shear wave front
must also reach the boundary at this instant in order to satisfy boundary

conditions. Thus at t =0

R cosh Uy = R
and for any time later
R cosh u2m =R + tc2

using the same reasoning as for the outgoing dilatational wave. We can express

the above equation in non-dimensionalized form as

cosh u2m =1+ ch
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where

is a constant relating the velocities.

Again since Uy is a variable of integration we can write

coshu, =1+ kc 4

2
where { as in the case of the dilatational wave is the new variable of
integration vith limits O to 7. In terms of this variable the integral is

now written as

TG('T{I-C+T -;)&c (l+kc§) 14

0 sfa_g kc (3'10)

l+2

¥ =

Note that the shear wave starts from the z axis at time <t =-l/kc which is
earlier than for the dilatational wave since it travels at a slower speed
(with fictitious material within .he shell) and must reach the boundary at
time equal to zero. The numerical integration of equation (3-10) is
accomplished in a similar method to that which was done for the dilatational
potential. The result can be expressed as

(1-1)

v= Z [AMm " Gyt By Qg Gi-m+l] (3-11)
n=0

where AMm and mm are weighting factors identical to those derived previously,

and Qm for this particular integral is

Ve, - O+ kt)
k.

¢ m
2

Q, =

1+

The expression for Qm is again dependent on the form of each integral considered.



For an illustration of the variation of the F and G functions with time,

see Figs. 11 and 12.

3.3 BSolution of the Basic Equations

The equations of motion for the shell are solved by an iterative
procedure known as the Newmark Beta Method (5) with which values for the
potential functions, and the accelerations, velocities, and displacements
of the shell are determined.

In general the method consists of using a step-by-step integration
technique over successive time intervals assuming a specific variation of
acceleration during each interval. If we assume that at time T = (i-1)At all
values of potential functions, accelerations, velocities and displacements
are known, the method becomes that of determining the corresponding values
at a time 1 = iAr. For an assumed linear variation of acceleration over each
interval the equations of interest are

. 3 A‘[ . X
Gy =%t T G e )

. Fayy .
N NPT A i ol C NI A N
. . DT - . (3-12)
Ba,t =Bniaa v T By gy v By y)

2
: 4t o0
Bot =Bu i v OB v (2B, + B

)

vhere n denotes the mode and i the time. Note that in the above equations

and B

the velocities and displacements are expressed in terms of an n. {1’
,i-

i-1
H
acceleration camponents which generally are unknown.

Values for the acceleration components at time 1 = iAT are assumed

and the velocities and displacements determined from the above equations; then

by use of the boundary equations to determine the values of the potential
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functions, values of the acceleration components can be computed from the
equations of motion. The computed values are then compared with the assumed
values and if they agree or are within an arbitrarily established tolerance,

the step is completed; if not, the values of an and En 1 Just computed are
’ -

i
L
taken as new assumed values and the cycle repeated until the criterion is
satisfied. A detailed discussion of the procedure follows.

The equations of continulty &t the boundary at time 1 = 1At are

given in equations (2-49) and are rewritten here in the form

I

iAr
an’i = Pln(Ol) + _/; Q,ln(Fo,Fl,...Fi; GysGy 5 ...Gi) ag

(3-13)

iAT
3n,1 = P2n(91) + f Qan(Fo,Fl,...Fi; Go,Gl,...Gi) at
0

where Pln and P2n denote functions related to the particle velocities in the
medium at the boundary due to the incoming stress wave; their values may be
determined directly at any time. The integral expressions denote the con-

tribution due to the outgoing waves. All values of F and G are known except
F1 and Gi which are to be determined from the above equations. These equations

are now written isolating the unknown values of F and G terms

.

iAT
°‘n,1 = Pln(Ol) + f an(Fo,Fl,...Fi_l; GO,Gl,...Gi_l) at
fa\s

At (3-14)
¥ j; U (Fy ) oFy5 Gy )50y) A
iAT
én’i = P2 (6,) + L Q2 (F,Fy, . e Fy 15 Gyy0ppe-2Gy ) At
At

+ A Qan(Fi-l’Fi; Gi_l)Gi) d;
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The integrals with limits AT to 1AT are evaluated using the numerical
technique described in a previocus section.
The next step is to assume values for an 4
2

tangential components of acceleration of the shell, from which velocity and

and En 1’ the radial and
2

displacement components are determined using equations (3-12). With these
values known, equations (3-14) vecome effectively two equations with the two
unknowns, Fi and Gi’ vhich can then be determined.

The equations of motion are given in equations (2-53) and are here
written in the form

.dn,i = Nl(an’i; sn i) + P3 (el) + y/\ Q)n orFyse e Fys Go,Gl,...Gi) at

(3-15)

Bn,i N2(an’i; pn,i) + Pun(el) + ‘/; th(Fo,Fl,...Fi, G, Gl,...Gi) at

from which the acceleration components a and En i are now computed. If
’

n,i
the computed values agree or are within an arbitrarily established limit of
the assumed values, the step is completed; otherwise the computed values are
used as the assumed values for the next cycle of iteration.

The procedure described above requires that all parameters at 1 = 0
be known, including the initial values FO and Go. Initial values of velocity
and displacement of the shell are srocified to be zero. From the short-time

approximation presented in Section 3.7 initial values of acceleration and Go

were determined to also be zero, and the values of Fo to be the following

T QE -1 n=20
F = —¥;- y (3-16)

2(-1)™1 n=1,2,...

The short-time approximation also indicated that the radial acceleration

1/2

components near 1T = O varied as T and the tangential components as 15/2;
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thus to improve the accuracy of the calculations, equations (3-12) for the

first step in time were modified to

o

2 .
= 3 1 Bn,l n,l

(3-17)

=3

2 d
@ - §°‘ Bn,l n,l

Without this modification, the results for the first step cannot be brought
into acceptable agreement with the short-time approximation.

The n = O mode is simplified somewhat because it has no tangential
component of displacement, and contains only the dilatational component of

the potential functions.

3.4 Stresses of the Shell and Medium

Solution of the equations of motion yields modal values of the
functions F and G, and the modal acceleration, velocity and displacement
components of the shell. The stresses in tie shell are determined directly
from the displacements using equations (2-55) and (2-56).

Stresses in the medium at any radius and time are determined using

equations (2-57). They are here written in the fom

g rG:A‘ - ,,Z:o [sn(el) + ‘/: T (F)ag + _/: W (c) ds] (3-18)

where Sn(Ol) represents the stress due to the incoming wave and the integral
terms that due to the outgoing waves. All are functions of both radius
and time. Consider the stresses in the medium for any radius equal to r at
time v = iAt = 1i/N.

9, (Fig. 7) is now determined from the equation

9, = arc cos % (1 - i/N) (3-19)
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and takes on values from

91 =z for 1 =0
to
- > r
o = for'r=(1+R)

The integral terms must be recomputed for each radius and time considered.

As an example consider the integral

r
cp=fF(t-—coshu)du
0 ¢y 1 1

and let 1 = %L - 1, where kr = R/r, represent the nondimensionalized time
r

after 1 = O required for the outgoing dilatational wave front to reach the
radius r being considered. Then for 7 < Ty the integral is equal to zero,

and for T > 7 the maximum value of (r cosh ul) can be written

r cosh Wy =T+ t'cl
or
cosh Uy = 1+ krt'
where t' = T-Tr represents the time after the wave front has reached the

radius r. We express cosh u, as

cosh u, = l+ krg

where { is the same variable of integration as was used previously. The

integral is then expressed in terms of { as

F( 141 -L) Vk_

——ﬁ (3-20)

The numerical method of integration used is identical to that described
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earlier for the integral at the boundary, with the result that the same
weighting factors AMm and BMm are applicable. Note, however, that the limits
of the integral are now O to 1'; also the multiplying factor Rm for this

particular integral becomes

vk
R = 3
m
k
1+ rCm
2

By a similar analysis, the integral of the shear potential

- r
v = j; 6t - 3-2- cosh u2) cosh u, du,

can be put in the form

T! G( - k_l + T' - ;) ‘Jkrkc (l + krkcg)dg
v - ) e — (3-21)
JE 14+.X¢

2

where

' =T =7
rs

For the potential ¥

1,1
Trs T X ('i- - 1)
c 'r
The weighting factors AMm and mm remain the same but the multiplying factor
an for this particular integral becomes
_ Jkrkc 1+ kkl)

krkc gm

2

%

1+




3.5 Time Dependent Stress Wave

The problem considered thus far has dealt with an incoming stress
wave with a step distribution in time. The results obtained for the step
wave can be used through the application of Duhamel's integral to find values
for the response of a shell and medium to incoming waves with any time
variation. As an example, & stress wave which decays exponentially with time
(Fig. 8) according to the following equation is considered

ok —
T

0

o (x) = o (1 - =) e (3-22)

0

To represents the time at which the stress wave decays to zeroc and k is a
parameter which is related to the shape of the curve. Stresses at any time
equal to 1At can be found by the application of Duhamel's integral, here

written in the form

4% 4g_(1)
o) = a(1e0) + [ B o (ame) g (3-23)

L is defined to be that stress resulting from an incoming step wave of
amplitude 0 in equation (3-22). In the numerical analysis, the time
dependent wave is approximated by a series of rectangular sections as illu-

strated in Fig. 8.

3.6 Description of the Computer Program

The problem was programmed modewise for a high speed digital
computer (CDC 1604) using Fortran language, and considering only the first
three modes. Input data consist of the following pareameters:

(1) The time intervals at which computations are to be performed,

expressed as the number of intervals required for the incoming wave to travel
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one radius (one-half transit time). The degree of accuracy achieved is
dependent on this parameter, the smaller the interval the more accurate

the results. However, the machine time required for a given number of transits
of the incoming wave varies inversely as the square of the interval size ap-
proximately, thus some sacrifice in accuracy is necessary to reduce the time

of computations required.

(2) The total time over which the computations are to be performed,
expressed as the total number of time intervals to be considered. Generally
speaking, all values seemed to have reached their asymptotic (static) values
within ten transit times of the incoming wave across the cavity.

(3) The ratio of the moduli of elasticity, ES/E, where ES is the
“plane strain" modulus for the shell and E the modulus of elasticity of the
medium.

(h) The mass ratio, ps/p, where P is the mass of the shell and p
the mass of the medium per unit volume.

(5) Poisson's ratio of the medium.

(6) The ratio of the thickness of the shell to its radius. When
considering a shell whose area, A, and moment of inertia, I, are not directly
related to the thickness, A and I must be specified separately.

(7) The amount of additional mass within the shell expressed as a
fraction of the mass per unit surface area of the shell.

(8) The number of radii to which stresses in the medium are
desired.

(9) The time intervals at which output data are desired.

(10) The angular increment at which output data is to be computed.

Because of symmetry only values between O and 180 degrees need be considered.
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Additional input quantities in the case of the exponentially
decaying stress wave are T and k, parameters which define the duration and
shape of the stress pulse, respectively.

Qutput data consist of the acceleration, velocity, displacement,
and stress components of the shell for specified angles and times; and the

stresses in the medium for specified radii, angles and times.

3.7 Short-Time Approximation

As a check on the accuracy of the machine solution for short times,
the boundary equations and the equations of motion were solved approximately
by making a series expansion of all pertinent functions in terms of time as
the independent variable. Although the following discussion is limited to the
case of the incoming dilatational wave, the basic principles are the same for
either of the types of wave considered.

The expressions for the velocities and stresses in the medium
around the boundary due to the incident wave all have been written thus far
in terms of 91, the position angle of the wave. In terms of nondimensionalized

time 1, all functions of 91 can be written in terms of T using the following

relations
cos 91 =1 -1
sin91=~/?1-[l-%r-3l§12-...] (3-24)
91 = JE; [1 + f%'T + 7 12 + ...]

The integral values representing the effects of the outgoing waves
are alsc expressed as functions of t. The following example will illustrate
the technique uscd to accomplish this. For example, consider the transforma-

tion of the integral
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P = f F(t - 2= cosh u,) du,
0 1

As was shown in Section 3.2, cosh uy in the integral varies in value for any
given time v from 1 to 1 + 7. It is convenient for purposes of analyzing the

integral to represent the variable cosh u, as follows
cosh u; = 1 + wr (3-25)

where T is now a fixed value in the integration and w is defined as tue

variable of integration whose value ranges from O to 1. The function
R
F(t = = cosh u,) = F(-1 + 1(1-w))
¢y 1

is expanded in terms of a power series as

F(-1 + 1{1-w)) = Fo + Z 7111(1-«»)i (3-26)
i=1

where 7 4 are unknown coefficients of the series. Since

JE[ wi

du, = 1-T+-§§(m)2+...]dw

1 oda

the integral can now be written as

. =JL§\/;lft[F°+n1(l-w) + ] [l --“i-t-+ ] dw

from which after performing the indicated integration
Nor 4 1 2
P = 21[F°+1(3 71-3F°)+'r (... ] (3-27)

The integrals which represent the effects of the outgoing shear
wave can also be transformed in somewhat similar manner. Consider for example

the integral
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Vv = 'G(t--R-coshu)coshu du
c 2 2 2
0 2
c2 tcl
In this case cosh u, varies from 1 to 1 + kK ¥ where kK = —=and 1 = ——=,
2 (o] ¢ ¢y R
Therefore we write
cosh u, = 1+ wkCT (3-28)

where w is now the variable of integration ranging in value from O to 1 in

the integral. The function
a(t - R cosh u ) =a6(- EIN 1(1-w))
s 2 kc

is expanded in terms of a power series as

G(- -kl—c + 7(1-w)) = G, + z ei-v:i(:L--m)jL
i=1

where €, are unknown coefficients of the series. From equation (3-28)

du

v 2k k
5 = J:l-l-TwT+l(wkT)2 ]dw
2

The integral written in terms of the variable w is now

v =J-—IJ_—:—T— Alé [Go + el'r(l-w)+...:| [l + .I;i_w:+ ...] [l + wkc'r] dw

and performing the integration

v = JZkT[T(QG)+1 (= —l—kc Go)+13(... ] (3-29)

15 “97 10

The same basic technique is applied to all the integrals so that now tae
effects of both the incoming and outgoing waves can be written in terms of 1.
Substitution into the continuity equations and the equations of motion yield

the following for any mode
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® 1
. . 1-5
Q= Z fli(F,G)'t
i=
R 1 - %
B = z f2i(F,G)'r
i=1
(3-30)
© 1
.. . 1-3
a + zli(a,a) = Z f}i(F,G)T
1=1
) 1
. . i-3
B+ 12,(x,B) = Z fh, (F,G)7
i=1

where ﬂi’ f21, f)i, and fhi are coefficients which contain certain elements

F,G

o’ 9o’ 71 and € of the potential functions; 21 and 22 are known functions

of the displacements.
To solve the above equations, the displacement components of the

shell are expressed as Frobenius (8) type series

Lo

a = Z pi1_c+:|.
i=1
0

B = Z qiTc+1

i=l

(3-31)

where Py qj, and c¢ are unknown coefficients. Substitution into equations

(3-30) results in the following set of equations

® % 1
{1 - =
Z p, (c+i) - gCHi-1 Z fli(F,G)'t 2
i=1 i=1
® L) i - i
z q + (c#i) - o=l Z f2, (F,G)t 2 (3-32)

i=1 i=1
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@ ] [d § 1
. Lo , ¢ p!
Z p, - (c+1)-(ersa1) - 18 Z £1(p,,q)7"" = Z £3, (R0 2
i=1 i=1 i=1

® L ol i 1
Y a Get)eeren) - R ) pa(p,a i s ) mmo)e 2

i=1 i=1 i=1

The coefficient ¢ is now determined by inspection. Then through a step by
step process which involves the equating of coefficients of like powers of r,
values of Pys Qs 71, and €, are determined. The following equations are then
used to find values of the potential functions, and the displacement components

of the shell.

1l
L]
(o}
+
MS
~
[%%
-
[rs

F(x)
i=1
G(1) = G, + Z eiri
i=1
[ ] (3'33)
a(r) = }: D, ct+i
i=l
Ba) = ) gt

Velocity and acceleration components may be determined by differentiation of

the above expressions for the displacements.
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CHAPTER' IV

4 DISCUSSION OF RESULTS

4.1 General

Results of computations performed to determine the effect of the
various parameters are discussed in this chapter.

Although equations presented throughout the study have been written
to include an infinite number of modes, the greater part of the actual calcu-
lations performed and presented here are the results obtained considering only
the modes n = 0, 1, and 2. It is important to note that during envelopment of
the shell by the plane stress wave, a Fourier series representation of the
incoming wave is objectionable in that the series at this stage is slowly con-
vergent, thus necessitating a large number of modes to accurately represent the
plane wave. However, after passage of the wave across the cavity, the Fourier
expansion of the incoming stresses around the boundary results in coefficients
of all modes except n = O and 2 becoming idencically equal to zero for the
plane dilatational wave, and coefficients of all modes except n = 2 becaming
identically equal to zero for the plane shear wave. Therefore, stresses due
to the outgoing waves in modes corresponding to those of the incoming wave
whose coefficients become zero must also eventually vanish at long times. The
limited study conducted for modes greater than n = 2 indicated that the
maximum effect of the higher modes occurs within one transit time of the
incident wave and rapidly decays, thus contributing relatively little to the
maximum response of the shell which occurs after several transit times.
However, for determining the early time response of the shell and medium,
the higher modes are significant and should be considered in further extension

of this work.
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In the tables and figures to be discussed, quantities given in
non-dimensionalized units are defined by equations (2-36) and (2-50). Stresses
are given in units of the absolute value of the amplitude (Iopl or lasl) of the
incident wave; a negative stress means a compressive response to an incoming
compressional (Fig. 1) or a positive shear wave (Fig. 2). The physical
properties of the shell relative to those of the medium, as well as the nature
of the incoming wave are indicated on the graphs. Unless otherwise stated,
the shell is considered to be an unstiffened one so that its cross sectional
area and moment of inertia are related to the thickness as given by equations
(2-52). Except where indicated, there is assumed to be no additional mass
within the shell. Numeral subscripts denote the mode number.

The shell and medium have been assumed to exhibit linearly elastic
behavior throughout their stress histories, which for the practical problem
does not permit evaluation of any spalling or non-elastic effects.

Values of stresses given are in addition to those which exist prior
to the arrival of the incident wave. For the elastic case, the effect of
prior stresses such as those resulting from the overburden may be taken into
account by merely adding them to stresses caused by the incident wave.

For clarity of presentation and because of the impracticability of
including sclutions for all possible permutations of the parameters involved,

the discussion in this chapter is limited to a few representative cases.

4.2 Modal Response of the Shell and Medium

Figures 11 and 12 illustrate the shape of the modal components of
the dilatational and shear potentials obtained in the solution to a typical
problem. It appears that a singularity occurs at one transit time in the

case of the F functions resulting in the slight irregularity of the curves at
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this point. Since computed alues of stresses were determined to be rather
insensitive to relatively large varlations in values of the ¥ and G functions,
the effect of the irregularity would seem to be slight.

Figures 13 through 20 show modal acceleration, velocity, displace-
ment and stress components for the shell and stress components for the medium
at the boundary, as they vary with time. Static values shown were computed
using the method given in Appendix B.

The high accelerations computed near the beginning are not truly
representative of the actual case, since they are the result of assumptions
made earlier in deriving the equations for the shell. The shell was repre-
sented by a line describing its mliddle surface which permits no variation in
accelerations, velocities, and displacements of particles through the actual
thickness. Also, no provision was made for refraction of the incident wave
through the shell lining. These limitations restrict the applicability of
the solutions to a shell whose thickness is small relative to its radius.

The n = 1 mode is primarily a transiational cne which accounts for
the rigid body translation of the shell after it has been enveloped by the
incident wave. Thus, it can be seen that the velocity components for this
mode approach constant values equal to the velocity of the medium behind the
incident wave front, and displacements grow without bound reaching a straight
line variation with time. Note that the stresses contributed by this mode
reach their peak values within one transit time and quickly damp out,
approaching zero asymptotically. For the incident shear wave, the n = O mode
is also a rigid body movement which accounts for rigid body rotation, and
contributes little to the stresses.

Modal quantities obtained are coefficients of Fourier series;

therefore, the total response or effect is determined by adding the coefficients
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multiplied by the appropriate sine and cosine terms for any desired angle.
Figures 21 through 24 show the time variation of stresses in the shell and
medium for various angles when the first three modes are summed. The maxi-
mum stress in the shell for any angle may be determined by adding the bending
stress to the hoop stress. This is indicated in Figs. 21 and 24 by the
dotted line above the hoop stress.

Figure 25 is given to illustrate the relative magnitudes of the
hoop stresses in the shell and medium for several thicknesses of shell. This
also shows the effect of varying the relative thickness of the shell on the
hoop stress in the medium. The dotted line indicating the hoop stress in
the medium for an unlined cavity was obtained from the report by Paul (6).

Figures 26 and 27 show how the relative thickness of the shell
affects the radial and shear stresses in the medium.

As was discussed earlier, stresses in the medium for any radius
can be determined by reevaluating the integral terms which represent the
effects of the outgoing waves, and adding them to the Fourier expansion of
the incident wave. Figure 28 shows the modal and total radial, hoop, and
shear stresses which were computed for a time equal to 10 transit times.
These values are compared later with the static stresses, but on this figure
the static stresses do not differ by more than the thickness of the lines,
and therefore are not shown. The time variation of the radial and hoop
stresses in the medium for various radii are shown in Fig. 29 for the incident

dilatational wave, and in Fig. 30 for the incident shear wave.

4.3 Short-Time and Asymptotic Comparisons

A method for obtaining a solution to the problem which is ac...ate

for very short times (1 << 1) was presented in Section 3.7. This was desirable
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to validate the machine solution and to determine the effect of the size of
time interval selected. The results for a representative problem are shown

in Figs. 31 through 33 for the incident dilatational wave, and in Figs. 34
through 36 for the incident shear wave. Four terms of the series representing
the F and G functions, and three terms for other quantities were used in the
short-time solution.

As can be seen from the graphs, good agreement was obtained for
very small values of time, somewhat shorter time being obtained for the shear
wave as compared to the dilatational wave. The shorter time results from the
nature of the forcing functions (Egs. 2-19 and 2-32) which indicate a more
rapid rise in the incoming stresses for the incident shear wave.

Within the range of time for which the short-time solution is valid,
decreasing the size of time interval for each step of the machine solution
resulted in closer agreement between the two methods, as is to be expected.

It also indicated that the stresses and displacements are not as sensitive to
variations in the interval size as are the F and G functions.

At the other end of the time scale, i.e., at a relatively long time
after passage of the incident wave front across the cavity, another check on
the accuracy of the machine solution 1s afforded by the asymptotic approach
of all values to the static results. Figures presented thus far have shown
that the static condition is approached well within ten transit times.

The time interval used in the machine solution affects the stability
of the results for long times. This is indicated in Fig. 37 which shows the
variations in computed values of the displacement components for mode n = 2
at relatively long times, for different time irtervals. N represents the
number of time steps required for the incident wave to travel a distance equal

to the radius of the opening, and 1/N defines the interval size. Note the
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smaller graph which shows the percentage difference between the computed
values at ten transit times and the static values.

As the interval is decreased the machine solution at long time
approaches the static solution more closely. Below a certain size of time
interval, there is little difference in the results, which indicates asymp-
totic convergence to the correct solution. For this particular problem,

N = 30 seems to be “critical® in that for N < 30, wide variations in computed
values occur. As the mode number increases, the "criticel” value of N in-
creases rapidly, and the requirements of computer storage and calculation
time become decisive factors which make impractical the study for long times
of modes much larger than 2. The interval size selected for all problems
solved (exclusive of the study to determine the effect of the interval size)
was set equal to 1/40 (N = 4O) of the half transit time of the incident wave.

For the static case, only the modes n = 0 and 2 yield values other
than zero. Table 1 compares values of shell stresses and displacement com-
ponents in these modes obtained from the computer solution to a particular
problem at a time equal to 10 transit times, with the static solution. Most
pairs of values differ by less than one percent. Comparable agreement of
stresses in the medium at various radii are shown in Table 2. Values in
Tables 1 and 2 were obtained from the solution to a problem whose parameters
were: Tp = k.o, qp = 3.0, Ny = .05, and v = .25.

Although the figures and tables presented above were for a particular
problem, the discussion given is applicable to all problems which were solved.
Changing the physical characteristics of the shell and medium within the range
of values studied had hardly any effect on the degree to which the long time
machine solution and the static solution agreed. Also, the absolute value of
all quantities which should asymptotically approach zero became less t..an

.00005 in each case well before ten transit times.
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4.4 Effect of Parameters

Studies were conducted to determine the effect of each of the

following parameters:

5 7 =8
"E " E PP
N, = L v =v (medium)
t °R

for an unstiffened shell without additional mass. Since it was impractical
to take intc account all permutations of the above parameters, a basic shell
where

g = 4.0 n, 3.0

M, = 05 v =.25

was considered from which each parameter was separately varied to determine
its effect on the resulting stresses and displacements. Calculations
performed were only for the case of the incident dilatational (P) wave.

Of particular interest was the determination of the maximum dynamic
stresses and displacements (not including rigid body translation) due to the
incident stress wave. Tablés 3 through 6 compare the maximum values obtained
in the machine solution with the static solution. "DLF," termed the dynamic
load factor, is defined as the factor by which the displacement or stress
produced by op applied as a static load should be multiplied in order to obtain
the maximum dynamic value. Figures 38 through 4l are given to graphically
illustrate the variations in stresses and displacements, both static and
dynamic, in the range of parameters considered. Stresses are given in units
of Iapl and displacements in non~dimensionalized units defined by equations

(2-36) and (2-50).



b— et

Table 3 and Fig. 38 illustrate the effect of increasing the
relative thickness of the shell. The range of values selected for nt is
probably much greater than is practical or justified by the assumptions of
the analysis, and was considered only to determine the trend of the results.
As Ny is increased, displacements and hoop stresses of both the shell and
medium decrease; however, the bending stress of the shell and the radiel and
gshear stresses in the medium at the boundary increase. Figure 25 shows the
time variation of the hoop stress in the shell and medium for various thick-
nesses of shell, including the case of the unlined cavity.

Increasing Q) results in a rapid increase in the displacements and
stresses of the shell and a much lower rate of attenuation of the hoop stress
in the medium. See Fig. 39 and Table k.

Table 5 and Fig. 40 show that the parameter np has no effect on the
static results but does affect the dynamic response. Increasing np increased
the maximum response in both the medium and shell.

Figure 41 and Table 6 show that within the range of Poisson's ratio
for the medium considered, as v increases displacements and stresses in the
shell decrease, with very little additional reduction of the medium hoop
stress.

Additional mass within the shell was shown to contribute relatively
little to the overall response. This is mainly due to the simplifying assump-
tions which were made in deriving the equations of motion to account for the
additional mass. Figure 42 shows the effect of the presence of additional
mass equal to 4Oy times the mass of the shell on the dynamic response of a
particular shell. Additional mass decreases the displacements and increases

the dynamic stresses in mode n = 1.



61

4.5 Response to Time Varying Incident Wave

The results obtained from a solution to an incident wave with a step
variation in time was shown to be useful by upplication of Duhamel's integral in
determining the response to any time varying stress wave. The case of the
exponentially decaying wave was considered, the results of which are
illustrated in Fig. 43. Substantial reductions in the maximum stresses can
be expected as the duration becomes smaller. In Fig. 4i4 is shown the effect
of a linear rise in the amplitude of the incident wave. Note that for a
wave with & linear rise followed by a step variation in time, very little

decrease in maximum stresses occurred.

4.6 Comparison with Previous Work

Baron (1), using a different method of analysis, investigated the
dynamic response of two shells with different physical characteristics sub-
Jected to an incident plane dilatational wave. Figures 45 through 49 compare
his results for the modal values of stresses and displacements of the thin
shell, with results obtained by the method of solution given in this study.
Similar results were obtained considering his so-called stiff shell. Although
the shape of the response curves can be considered similar in the two reports,
the magnitude of the dynamic response in Ref. (1) scems consistently higher
than in the present report, and the long time results asymptotically approach
values higher than the static solution. The following table compares the
maximum modal stresses, for Poisson's ratio of 0.25,obtained in the two reports,
and also shows values for the static case. Stresses are given in units of
|op|. The bending stresses for the stiffened shell cannot be compared directly
since d, the distance from the neutral axis of the shell to its extreme fiber,

is not stated in Ref. (1).
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Thin Shell Stiff Shell

Maximum Stresses Maximum Stresses

Ref. Current Ref. Current
Quant. Mode (1) Work Static (1) Work Static
% 0 -4.79 -k.56 -4.10 -4.79 -4.08 -3.67
%0 2 4.69 4,11 3.67 3.42 3.20 2.95
% 0 0.043 0.043 0.03%9 0.55 4.084 3.674
9y 2 0.140 0.137 0.122 1.70 13.29d 11.894

k.7 Conclusions

Conclusions drawn from the results of the analysis are:

(1) The method which has been presented is practical for effective
computation of the dynamic response of a cylindrical shell embedded in an
elastic medium when subjected to plane dilatational or shear waves. The
solution presented herein is believed correct since it was checked by independent
methods at short and long times.

(2) Peak stresses and displacements in both the medium and shell
occur sometime after the transit of the incident wave across the cavity; of
the problems solved, both the average and mean time at which the peak values
occurred was equal to 3 transit times. The dynamic effect measured in terms
of the ratio of the maximum stresses and displacements to the static values
varied within a relatively small range. The average value of this ratio was
1.12 and the mean, 1.11. Thus, for the cases considered at least, the maximum
stresses and displacements to be expected for a particular situation can be
roughly approximated by determining the static values and by multiplying them

by a factor of 1.1.
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(3) The largest stresses in the shell occurred for a relatively
thin liner in a medium with a low modulus of elasticity, low mass density,
and low Poisson's ratio. The greatest reduction of the hoop stress in the
medium &s compared to the unlined cavity results from a relatively thick
liner in & medium with low modulus of elasticity and high mass density.
Additional mass within the shell has relatively small effect on the dynamic
stresses.

(4) The practical value of tunnel linings to reduce the maximum
stresses in the medium depends on the several conditions mentioned above, and
on the magnitude of the incident stress wave. Under favorable conditions,
reduction of stresses on the order of 30 percent or more is possible. However,
for materials such as granite, smaller reductions can be expected for steel
liners of practical size.

(5) Certain assumptions made concerning the behavior of the shell
have limited th applicability of the analysis to relatively thin liners.
Future studies of the behavior of thick shells would indicate the effect of
the approximations used herein. The analysis has also been based on the
assumption that the behavior of both the liner and medium is linearly elastic
at all times. Perhaps a more desirable condition would be one in which some
inelastic behavior is permitted to take place in the medium surrounding the
shell or in the shell, or one in which some inelastic energy absorbing medium
such as cinders or foamed plastic surrounds the shell. As a subject of future
study, it is recommended that the behavior of thick shells, and thin shells

surrounded by some energy absorbing layer, be considered.



64

BIBLIOGRAPHY

Baron, M. L., and Parnes, R., Diffraction of a Pressure Wave by an
Elastically Lined Cylindrical Cavity in an Elastic Medium, The Mitre
Corporation, Bedford, Mass., December 1961.

Flugge, W., Stresses in Shells, Springer-Verlag, Germany, 1960, pp. 478.

Kolsky, H., Stress Waves in Sollds, Oxford: Clarendon Press, 1953.

Lamb, H., Hydrodynamics, Dover Publications, New York, 1945, pp. 296-301,
503-505, 52k-527.

Newmark, N. M., A Method of Computation for Structural Dynamics, Journal
of the Engineering Mechanics Division, Proceedings of the American Society
of Civil Engineers, Vol. 85, No. EM3, July 1959.

Paul, S. L., Interaction of Plane Elastic Waves With a Cylindrical Cavity,
Ph.D. Dissertation, University of Illinois, 1963.

Robinson, A. R., Structural Effects of a Shock Wave Incident on a
Cylindrical Shell, M.S. Thesis, University of Illinois, 1953.

Spiegel, M. R., Applied Differential Equations, Prentice-Hall, Inec.,
Englewood Cliffs, New Jersey, 1958, pp. 263-270.

Timoshenko, S., and Goodier, J. N., Theory of Elasticity, McGraw-Hill
Book Company, Inc., New York, New York, 1951, pp. 58-80.




APPENDIX A

65

DERIVATION OF THE EXPRESSIONS INVOLVING THE POTENTIAL FUNCTIONS

A.1 General Form of the Potential Function

The dilatational potential function must satisfy the wave

equation
fg+;§o;+l_a_29=l_£9
5r2 r or r2 692 ci 8t2

(A-1)

¢ in the case of the incoming dilatational wave is an even function of @ and

thus can be expressed as a cosine Fourier series

P = Z fn(r,t) cos né

n=0

(a-2)

where fn is a function of r and t representing the modal coefficient of the

potential function. By substitution of the above expression into equation

(A-1) we obtain the equation that must be satisfied by fn.

3t 3t 2 3Pt
n,l._n_n . _1_'n
2 r Sr 2 'n 2 2

or r cy ot

The general solution of fn is assumed to be of the form
n
£ =r Rn(r,t)

Then Rn is some function of r and t satisfying

2 2
9 Rn _ c2 [a Rn . (2n+1) aRn
1 -8r2 r dr

(A-3)

(A-k)

(A-5)

Ir Rn is a solution it can be shown that the corresponding equation for

Rn+1 is satisfied by

dR
n
Jr

28 Lo

n+l

(A-6)
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By repeated application of this result it can be shown that equation (A-5)

is satisfied by

R, = (% g;) Ro (A-7)

where Ro is the solution of

2 2
) R 5 [8 R, BRO} (4-8)

— =c, |—=+ =
32 1|52 " ror

The solution to this equation for the case of a wave diverging from a center

is

» r
R = \/; F(t - EI cosh ul) du, (A-9)

For the proof of this, see Lamb (4). Therefore, the coefficient f, of the

potential function is written as

[+ -]
£ = n(i 2 )n u/‘ F(t - == cosh u,) du (A-10)
nTr J, c] 1 % -

For modes O, 1, and 2, this can be written

o ~./; F(§l) duy

H
[}

]
"

o
1 '
1= - ) \/; F (§l) cosh u; du,

(-] -]
L[ 2 1 (.
f, =5 U/\ F (§l) cosh®u, du, + = ‘/“ F (gl) cosh u, du,
¢y 0 1 %0

where primes indicate the derivative of the function F with respect to its
argument. Note that the expression for the n = 2 mode contains derivatives
of two different orders. It is convenient to express the function fn in

terms of derivatives of a single order which may be done through integration
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by parts. For the n = 2 mode we then wish to change the second integral to
an integral involving the second derivative of the function F. Integrating

by perts gives

Yim Yim 1m
JP gdn = §'n] - JF n-dg
0 o) 0
where
£ = F'(¢,) n = sinhuy
at = - §I F“(gl) sinh u; duy dn = cosh u, du,
Thus
°.° r w 2 ulm
fo F'(§)) cosh u du = < fo F*(8,) sinh®u du, + {F (&) sinh ul]o

The second term can be shown to equal zero since for its lower limit

sinh u, = O; and for its upper limit, F' is the integral of the function Fn
at the wave front which under the assumed initial conditions, does not exist.
Therefore, the coefficient of the potential function for the n = 2 mode can

be written as
[
-1 T
£, =5 ‘/‘ F'(t — cosh ul) cosh 2u, du) (A-11)
cl 0 1

By a similar process the coefficients of the potential function for any other

mode can be reduced to the form

[ -]
n ~
f = 1) ‘/ F'(t - & cosh u,) cosh nu, du (A-12)
n n c 1 1 1
¢y 0 1

The shear potential function must satisfy the wave equation

$*§gg=:—' (A-13)
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¥ in the case of the incoming dilatational wave must be an odd function of 6

and can be represented as

0

V= }: gn(r,t) sin né

n=1
and proceeding exactly as in the case of the dilatational potential the

general expression for the coefficient &, is found to be

° (A-14)

o«
= S:ilz 6™t - & cosh u,) cosl a
g, = - S o sk nu, du
s 0 2

A.2 Velocity Terms

The equations for the velocity components of a particle on the

boundary due to the outgoing waves are

> (A-15)

The components of velocity and the potential functions are expanded in series

as

cos nf

c.
[}
e

o]
~~
g ]
-
ct
S”

né

<o
i
o
=
—~~
]
-
ct
~
1]
[
o]

© (A'l6)

CcOs n@

B =)
1l
a
=]
~~
)
-
ot
g

sin no

<
[
m
=
—
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ct
~
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Substitution into equations (A-15) gives

62f Bgn
a (out) = 24+2
n §r§t r ot

of g

. n - _'n n

bn(out) TTT S T Arat
The expressions for the couefficients fn and g, are given in equations (A-12)
and (A-14). Using these in the above equations and by the application of

integration by parts we get the following velocity terms

0
n
. g-l? C N2 .
an(OUt) = " ol ‘/; F (ﬁl) cosh u; cosh nu; du,
1
o0
(-1)" ‘/7 n+2
+ ! o G (52) sinh u, sinh nu, du,
2
o (A-18)
- _ (-1 n JF n+2 ,
b (out) = - ol J, F7°(8)) sinh u; sinh nuy du)
1
n o«
g-l! - n+2
* D! h/; G (52) cosh u, cosh nu, du,
2

A.3 Stress Terms
Stresses in the medium due to the outgoing waves are written in

series form as

-]
°.. = Ej An(r,t) cos n@
n=0
®
2
Opg = 24 Bn(r.t) sin no (A-19)
n=1
x®
999 = EZ Cn(r,t) cos né
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By substitution into equations (2-10} the coefficients An’ Bn’ and Cn are

expressed in terms of the coefficients of the potential functions, fn and g,

agfn N Bgn ng
A (out) = (A + 2u) [‘g:z" "I T ";2‘]
+ l‘: afn + E - -rf- f -n agn
r {or r &y r 'n r
2
f g 2 og
2n n 2n n n 1 n
Bn(OUL) ) P[m r or ;2 fn Bre T2 % + T or ] (A-20)
of 2 g -
y oM o no oo o
Cplout) = =5 [5?- Fr & T Y R J

Again, using the equations for fn and g, given earlier we can write the above

coefficients finally as

o
n
- L) g oo A 2
Ah(out) = A=ts F (§l) cosh nu, [p + 2 cosh ul] du,
c C -
1
o
e
{-1) & n+2
- 1 ' i
5 \/\ G \52) sinh 2u, sinh nu, du,,
c C
2
[ 4]
¢ n
-1 n+2 .
) p E o osi i
Bnkout) ~= F'" %/ sinh 2u) sinh nu, du,
c 0
1
w (A-21)
1\
-1 n+2 .
- el ! }
g J/‘ G .§2, cosh nu2 cosh 2u2 du2
c 0
2
o0
!
-1) n+2 A 2
Cn(out) :.Lj;£§f u/‘ F77(8 ) cosh nul[: - 2 sinh ul} du,
C 0 -
1
B oo
+ Jtéﬂ o Gl 1&2) sinh 2u2 sinh nu,, du2

€2
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APPENDIX B

STATIC SOLUTION

B.1 Dilatational Wave

The static solution presented here is based on the application of
the theory of stress functions presented by Timoshenko (9). Under static
conditions, it can be assumed that at large distances from the boundary of
the cavity the state of stress in the medium is equal to the stress field in

the medium behind the front. In polar coordinates this is

l+y l-y
= u (=¥ - (== 0
rr ( = ) o ( 5 ) o, cos 2
o (v
79 = ( 5 ) % sin 26 (B-1)
4y 1-v
g = (-——2 L (——2 ) o, cos 20

ap is the stress in the medium in the direction of wave propagation and ;bp
is the stress parallel to the wave front. ;, derived from the assumption

that there is no strain parallel to the wave front, is equal to

Vo= = -
vV o= 15 (B-2)

It can be seen from equations (B-1) that the n = O and 2 modes describe
exactly the free field stresses. Therefore, the unknown stresses at the edge

of the cavity can likewise be expressed in terms of these modes

g
rr

- Po - P2 cos 26

(B-3)

[+]

ro 32 sin 26

where P, P2, and 82 are the unknown modal components of stress acting at
the boundary. These same stresses must act on the shell. Thus the boundary

stresses in the medium and shell can be illustrated as shown in Fig. 9.
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The equations of equilibrium in the medium under plane strain

conditions are satisfied by the following expressions for the components of

stress

_1a, 1%

rr r 5; r2 892
1 30 123%

2% TE® (B-4)
3%

0,, = =

6 =

where § 1s the stress function in terms of r and 6.

B.11 n = 0 Mode

The general solution of the stress function for the n = O mode is

given by Timoshenko as
2
l=Klogr+ Mr

from which can be derived the stress components

k
o =—§+2'1
r

rr

arg =0 (B'S)
k

096=--2-+24
r

The coefficients K and M are determined from the states of stress at r = =

and r = R

K = R® [(112”-"—-) o, - Po]
- (B-6)
M= - (EE!) op

For the conditions of plane strain, the strains are



where

(&

x
E
-5 [099 -y arr] (B-7)

modulus of plane strain
l-v for the medium

Displacement components are found by suitable integration of the following

equations for the strains in the medium

7r9

_

= o3

31E (-0
- L, v ¥

T rT¥TIXT

Displacements in the medium for the zero mode are

u
R

S
R

The corresponding

compressive force

where

u
=
R

v
S
R

)
1
=
!
<

SR (5-9)

displacement components of the shell with an exterior

P_ are found in Flugge (2) to be

s (B-10)

modulus of plane strain
s for the shell
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The unknown stress Po is now determined by equating the radial displacement

components, to get

(1+v) o

R
E R
IV---K+1+V]

(B-11)

After Po is determined, stresses in the medium at any radius can be found
using equations (B-5). Equation (B-10) gives the displacement of the shell;

and the hoop and bending stresses of the shell are, respectively

(B-12)

B.12 n = 2 Mode

The general solution in terms of a stress function @ is given as

2

N = [kr2 + M + N] cos 26
- T

from which the stress components in the medium become

Oppe = = [2K + é% + E%] cos 20
- r r
g0 = [QK + é%] cos 29 (B-13)
r
M 2N
0o = [21( -3 - —2] sin 20
- r r

Coefficients are determined as before from the states of stress at r —» «

and r = R

(B-1L4)
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M -
M = %_[ﬂ_l_e-_vla -P2-2s2]
2
R
N = 'é'[ -v)a +P2+Se]

The displacement components of the medium at the boundary can be expressed

as
- 2(2-v)8
u _ 1 |,z (5=v) 2 9
R - [Q(V-l) ¥ 25 P, + 3 ] cos 2
(B-15)
Yoo Ll |oay) -22v)p L0V | sin 2
R 3 2 3 2
and the corresponding components for the shell are
1-11;= F-—QR—B--fg-ﬁ-] cos 26
=3[ "=
° s Es
. (B-16)
v i 3 S 3
8 _|_2 R R 2 /(R R
-l <rgf+a&>+§s(;ﬁ+;ﬁ] sin 26
s

The unknown boundary stresses P2 and 82 are determined by equating the dis-
placement of the shell and medium at the boundary. The hoop and bending

stresses in the shell are then found from the following equations

PR 2SR
(2 -
3

(2P +8 ) cos 26

g ) cos 20

66
(B-17)

9sB © 121

Displacements of the shell and stresses in the medium can be determined using
equations given earlier in the discussion. Total static stresses and dis-

placements are merely the sum of the modal values for any angle.



B.2 Shear Wave
The free

include only the n

g
rr

ur9
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field shear wave stresses expressed in polar coordinates

= 2 mode

o sin 26
]

g, cos 20

= -g_ sin 26
8

(B-18)

where 9g is the amplitude of the incoming wave. The static solution is

obtained exactly as in the case of the dilatational wave except for the

interchange of sines and cosines resulting from the difference in geometry.

The resulting equations are

a. Displacement components

| o
|

v
= .
R

b. Shell

9 =

qu

>
32 R

+ -
9E I 18EI

- 3
P2 R

J sin 26

(T2 @ ,r,%
g I A = ‘121
s
Stresses
PR 25
-[BA_--"_}K—] sin 26
3
tR
- 5% (21>2 + sz) sin 26

c. Medium Stresses

[}

- (2A + é% + &g) sin 26
r r
6C 2D

-(2A-_E-—2-) cos 20
r r

6C
(2A + =F) sin 26
o

(B-19)

R
+ K)] cos 26

(B-20)

(B-21)
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as
A=--2—
Rh
C = z L-}as + P2 + 282]
2
R
D'T[QOS-PQ-SQ]

7

In the machine program, the n = O mode is purely rotational and

thus we get a static value of tangential displacement.

as follows
o Lk, .12
Yot 2 'xy 2 M
Yy - @ =L 35
R =~ rot 2

This is calculated

(B-22)
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til.:al/ﬂ
. Dev. From Dev. From
Mode Quant: BStat. Mach. S8tatic Mode Quant Stat. Mach. Static
0 -, 4000 4,006 .15% 2 -0 4,613 b.599 .39
0 -“ “ow 5.006 015 2 p 3.&5 3-8% 0”
0 719 100 .00 .00 2 Cee 3.077 3.1 1,20
2 Jsb 346 L34S .29
* Stresses given 1in units of |Gp!
Displacements defined by Eqs. (2-50) and (2-36)
SEEAR VAVE .. o -
Dev., From
Mode Quant. Stat. Mach. Static
o} [} 5.000 4,996 .08%
2 o. 13.840 13.930 .65
2 @ 11.5351.539 .03
2 -COpp 9.232 9.249 .9
2 Osb 1.038 1.085 .67
TABLE 1

COMPARISON OF STATIC AND MACHINE VALUES FOR MODAL RESPONSE OF TNE SEELL
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DILATATIONAL WAVE time = 20 R/c)
10R 20R 3.0R LOR
Mode | Quant? | Stat. Mach.| Stat, Mach. | Stat. Mach. | Stat. Mach.
0 | - O 200 .200| .5% .SS1| .615 .616| .638 .639
0 [ -Cee | 1.133 1.135 3 .785| .78 .T20| .696 .697
2 | -Gy -.153 -.155| . 2| .226 .229| .2 .273
2 Ove | .37 .312| .28 .b29| .38 .386| .363 .366
2 Coo | 872 .868] .367 .368| .30 .3e2)| .335 .337
* Stresses given in units of 6
SHEAR WAVE time = 20 R/c2
10R 20 R 3.0 R LOR
Mode | Quant. | Stat. Mach. | Stat. Mach. | Stat. Mach. | Stat. Mach.
2 Ovy -.M60 -.455| .332 .331| .675 .6T8| .81 .815
2 Ove 921  .913| 1.283 1.286 | 1.151 1.15% | 1.090 1.092
2 | -Op 2.616 2.636 | 1.101 1,108 | 1.020 1.022 | 1.006 1.009
TABLE 2

COMPARISON OF STATIC AND MACEINE VALUES POR MODAL STRESSES IN THE MEDIUM




| oy (507) N | Obew (%0°)
- " | statac Max. DE'J taf J‘__suuc Max, | MF | ta
Ol -9.21  -10.12 1.0 3.2 -2.49 273 1.09 3.13
05 -7.08 - 7.7 1,09 2.8  -2.00  -2.19 1.09 2.8
0 -5.5% - 6.5 1.0 2.25  -1.67  -1.8s 111 2,25
A5 -4.60 - 5.21 1.3 225  -1.45  -1.65 1.13 2,25
0 3.9 - b,52 11k 2,25 1,30  -1.5%0 115 2,25

f 1* Otb (%0°) | Trrm(90')
; ) ")t Static Max. Dir ta S‘utic_J. Max nr ta
[ }* .01 .10 A1 11 333 -.09  -.16 1.0 3.25
| , .05 A3 .50 1.1 3.25  -.35  -.39 111 2.88
| .10 .83 9% 1,13 3,00 -.55 - .63 1.1k 2.5
15 1.18 1.3 115 288 -.68 -.79 117 2.%
20 1.5 1.76 118 288  -.75 -.91 121 2.%

& (0°) B (45°)
Mt | stavte Max. | D2 | ta | Static Max, | DF | te
01 -9.65  -10.64 1.0  3.12 b.67 5.23 112  3.7%
.05 -8.61 -9.5% 1.10 3.00 3.85 5.33 113  3.%
20 -T7.76  -8.62 1.11  2.76 3.33 3.82 115  3.25
15 -7.15  -8.00 1.12 2.88 3.02 3.55 1.8  3.25
20 6,66 - 7.5 1.13 2.88 2.80 3.37 1.2 3.38

* Ratio of Max. to Static f Tiwe 1. transit times at vhich Max. occurs

TABLE 3

EFFECT OF RELATIVE THICKNESS OF SHE .
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tio of Max. to Static

Gons (50°)__ ] T Ceamin®
Me | sratte Max., | D | W | st Max. | DIF | ta
2 -416 - b.ST 120 276  -2.27 -2.501 111 2.76
[ -« 7.08 - T.Th 1.09 2.88 -2.01 -2.19 1.09 2.88
6 -9.33 -10.11 1,08 2.76  -1.81  -1.97 1.08 2.76
10 <12.57 -13.b1  1.07  2.76  -1.55  -1.65 1.0 2.76
16 -15.72  -16.47 1,05 2.88  -1.31  -1.37 1.05 2.76

Os o Crvam (90° )
Me | statie ) u)u]I_x_n{ J‘ ta _lLsm.{:mT mx. | mr | ta
2 .23 26 1.2 3.25  -.21 - .23 113  3.12
4 45 50 1.1 3.25 - .35  -.39 111 2.88
6 .6h .11 l.11 3.12 - 47 -~ .51 1.10 2.76
10 1.01 1.2 1.0 3.12 - .63 - .68 1.08 2.62
16 1.53 1.68 1.09 3.12 - .78 - .83 1.06 2.62

o (0%) B _(45°)
Me | statte L ax, | P | ta | Statte Max, | DI? | ta
2 - 4,60 - 512 1.1 3.00 2,14 2.43  1.13 3.62
b -8.61 -9.5 1.0  3.00 3.85 %33 113 3.9
6 -12.22 -13.37 1.09 2.88 5.32 5.96 .12 3.3
10 -18.65 -20.20 1.08 2.88  7.92  8.82 1.1 3.2
::h -27.11  -29.15 1.08  3.00  11.h1  12.6k 1.11  3.12

7'11.. in transit times at vhich Max, occurs

TABLE 4

EFVECT OF RATIO OF MODULI OF ELASTICITY




Oves (90°) Ooow (90°)

e | statse wx. | m* | wf | static Mox., | MF |
1 -7.08 -7.67 1.08 3.00 -2.01 -2.17 1.08 2.88
3 " 7.T% 109 2.88 " -2.19 1.09 2.88
5 . -7.97 113 2.5 " 2,26 l12 2.%
7 " -8.3% 1.17 2.61 " 2.3 1.17 2.62
10 " -8.70 1.23 2.88 " -2.45 1.2 2.88

T (") | Grvm ()

"l [ statac Max, r | ty | Statte Max. Ny | ta
1 R A9 10 325 -.35  -.38 109 3.00
3 " .0 111 3.2% " -39 1.0 288
5 . 0 113 3.2 " - 125 2.88
7 " 51 1.5 3.25 " - 43 12 302
20 " 53 118  3.% " - M6 130 3.%

o (0°) F B_(45°)

e [ statae Max. Hr | ta | statsc Max. nr |
1 8.6 -9.33 1.09 3.00 3.8 27 111 3.5
3 " 9.0  1.10  3.00 " 833 113 3.%
5 " -9.68 1.12  2.88 " bbl 115 3.62
7 " -9.77  1l.1%  3.00 " bAS 106 2.76
20 " <9.95 1.16 2.62 " bT2  1.23  3.00

*Ratio of Max. to Static

ﬁ‘hﬁ in transit times at which Max. occurs

TARLE 5

EFFECT OF MASS RATIO




83
0"0;; o ! RUTENE f

V | static ""“Tl o' IIF swtie | j )58 4 ta
0 -8.33 -917 110 3.25 -2.08 -2.29 110 3.2%
A -T.96 -8.69 1.09 3.2 -2.06 2.4 1,09 3.12
2 -T2 -8.08 1.09 3.00 -2.02  -2.20 1,09 3.00
25 -7.08 -T.78 1.09 2.88 -2.01 -2.19 109 2.88
M o576 2675 1.7 3.2 <191 2.2 116  3.25
. Jsb (90° Ovr m(0°)

vV | static Max. DLF | ta | Static Max. nr | te
0 .61 69 1l.1b  3.25 - A2 - .07 2,23 3.00
.l .56 63 1.3 3.25 - .40 -k 102 2.8
.2 9 55 1.2  3.25 - .37 -1 111 2.8
.25 Y 0 1.1 3.25 - .35 -.39 11 2.88
- 27 31 1L 375 -.29  -.33 1.5 3.8
J * (0%) B_(45°)

Static Max. | DIZ | ta | Static Max. Ny | te

0 -10.33 -11.48 111 3.25 6.00 6.9 1.16 3.38
Q1 -9.88 -0.90 1.0 3.12 5.31 6.08 1.1k 3.38
2 -9.02 -20.03 1.10 3.00 b.b0 L,98 113 3.38
25 -8.61 -9.5% 1.0 3.00 3.85 .33 113  3.%
A 6.5 -T7.61 1.16 3.5 1.77 1.97 111 k.38

*Ratio of Max. to Static

TABLE 6

EFFECT OF POISSON'S RATIO

"n.lc in transit times at vhich Max. occurs
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Plane Dilatational Wave Pront at time ¢t = 0
Stresses Bebind Vave Front Shown in Both Rectangular
and Polar Coordinates

Plane Dilatational Wave Pront at time t>0
FIGURE 1
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Plane Shear Wave Front at time t =0
Stresses Behind Wave Front Shown in Both Rectangular
and Polar Coordinates

b 43

Plane Shear Wave Front at time t >0

FIGURE 2
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FIG. 3 DISPLACIMENT COMPONENTS OF THE SEELL

FI0. 4 DEFINITION OF POSITION ANGLE, @,
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PFIG. 5 GROMETRY OF A POINT SOUNCE ON THE = AXIS

Xy plane

P1G. 6 GEOMETRY OF MANY POINT SOURCES
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FIG. 8 TIME DEPENDENT STRESS WAVE
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FIG. 9 STATIC STRESSES ACTING ON THE MEDIUM AND SEELL
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