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BAYES DECISION THEORY:
INSENSITIVITY TO NON-OPTIMAL DESIGN

Gordon R. Antelman

CHAPTER 1I.

INTRODUCTION

i.l Summary

This report presents for several fixed sample size decision problems
upper bounds for rs(no)/rt(no) and r(n)/r(no), where n_ is the Bayes optimal
fixed sample size, rt(n) is th. expected terminal opportunity loss for a
sample of size n, rs(n) is the expected sampling loss, or cost, for a sample
of size n, and r(n) = rt(n) + rs(n) is the total expected opportunity loss
for a sample of size n. For one of the main problems considered here,
Raiffa and Schlaifer [1] give a nomographic procedure for finding n for
several others they give explicit formulas for n . Equations from which
n_ can be determined explicitly or numerically are given here for those pro-
blems which have not been considered elsewhere. Generally speaking, the
upper bound on r(n)/r(no) shows that r(n) is insensitive to n. The upﬁer
bound in conjuﬁctidn‘with expressions for n caé be used to show that r(m)
is insensitive to the use of the wrong prior distribution or the wrong cost
parameters.

All of the problems considered here have four common properties: only
fixed sample size procedures are considered, terminal opportunity losses
are a function of only one process parameter, prior distributions are con-
tinuous, and terminal opportunity losses and sampling losses are additive.
All of the finite-action problems considered are on the mean of a Normal
process. The estimation problems considered involve Bernoulli, Poisson, or
Normal processes -and, except in one case, quadratic terminal opportunity

losses. For the non asymptotic results, conjugate prior distributions are



assumed. a/ Throughout the report, ''loss" will refer to "opportunity loss."

Tﬁis investigation started from a conjecture of Schlaifer's., For the
two-action problem on the mean of a Normal process of known variance with a
Normal prior distribution of the process mean, linear terminal utilities
(which result in linear terminal losses), and proportional sampling costs,
Schlaifer conjectured that r(n)/r(noﬁ < (l/é)(n/n5‘+ nofn)'if o, >.0. E/f'lhié
inequality will be referred to as "Schlaifer's inequality.! In an unpub-
lished note, I. R. Savage proved that Schlaifer's inequality holds for tﬁe
problem of estimating the mean of a Normal process of known variance with a
Normal prior distribution of the process mean, quadratic terminal losses,
and proportional sampling costs. In Section 2.4 (Theorem 2.4.1) it is
shown to hold for the two-action problem for which it was conjectured.
Another inequality, related to Schlaifer's inequality and true for all of
the problems considered for which Schlaifer's inequality is true, is that
rt(no) > rs(no). This will be referred to as the "optimal loss partition
inequality "

Heuristically, the optimal loss partition inequality and Schlaifer's
inequality are true for the two-action problem which gave rise to Schlaifer's
inequality, as well as many other fixed sample size decision problems, be-
cause rt(n) approaches, in the "right way," a function a/n {(a > Q) as n

increases. Thus, for rs(n) = bn(b>0),r(n) = a/n + bn. It is easily shown

a/ For the definition of "conjugate," see [1, p.47]. The conjugates of
the Bernoulli, Poisson, and Normal (known variance) processes are beta,
gamma, and Normal distributions respectively.

b/ In [2, p.546], Schlaifer states that it can be shown that the inequality
holds. From personal communication with Schlaifer it was learned that
the inequality was based on numerical evidence and had not been proved
analytically,
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that if f(n) = a/n + bn is minimized by n_, then a/n° = bn_ and f(n)/f(no) =
(l/2)(n/n° + no/n). The first equality corresponds to the optimal loss parti-
tion inequality; the second equality corresponds to Schlaifer's inequality.
Furthermore, the analysis of f(n) above generalizes to: if g(n) = a/n% +

b’ (a,b,a, > 0) is minimized by n, then a/ng = (B/a)bni and g(n)/g(no) =

g B noa :
+ T+ B (E— . For many decision problems for which rt(n)

a (Il
o+ B ng

approaches a function a/na as n increases, and rs(n) = an, it will be_ shown

that r (n )> (B/) r (n)and r(n)/x(n)) < 775 (EO)B + 5o (;) , ifn >0.
These inequalities will be referred to as the ''generalized optimal loss parti-
tion inequality" and the 'generalized Schlaifer's inequality."

In Section 2.3, certain general properties of rt(n) are assumed and a
condition (Condition I, Section 2.3) on rt(n) is given and shown to be suf-
ficient for the generalized optimal loss partition inequality (Theorem
2.3.1). A second condition (Condition II, Section 2.3) on rt(n) is given
and it is shown that Conditions I and II are sufficient for the generalized
Schlaifer's inequality (Theorem 2.3.2). The inequalities are shown to hold
for particular problems by verifying that Conditions I and II hold for the
particular problems. This is done in Section 2.4 for several two-action
problems on the mean of a Normal process with differing terminal and samp-
ling loss functions and differing assumptions about the process variance,

It is done in Section 2.5 for several quadratic terminal loss estimation
problems and one linear terminal loss estimation problem.

The two-action problem on the mean of a Normal process of known vari-

ance with linear terminal losses is reconsidered in Section 3.2 with

Normality of the prior distribution relaxed to continuity. This problem



has not been considered elsewhere. The asymptotic (cost parameters varying
so that n, tends to =) optimal sample size is derived and it is noted that
the generalized optimal loss partition inequality and the generalized
Schlaifer's inequality are asymptotic equalities. The asymptotic form of
rt(n) is also considered for constant terminal losses, i.e., the hypothesis
testing formulation, and quadratic terminal losses. In Bections 3.3 and
3.4, the asymptotic results of Section 3.2 for two-action problems on the
mean of a Normal process are extended to several-action problems.
1.2 Discussion

The insensitivity of total expected losses to a non-optimal design is
most easily illustrated for the two-action problem on the mean of a Normal
process of knqwn variance with linear terminal losses, proportional samp-
ling costs, and a continuous prior distribution'of the‘process mean. In

% 1/4
= 2
Section 3.2 it is shown that n_ = (ktDo(ub)/Qhks) + O(kt/ks)

, where kt
and ks are cost parameters, h_1 is the process variance, and Do(pb) is the
density (assumed positive) of the prior distribution at the breakeven value
of the process mean p. Also, Schlaifer's inequality is an asymptotic
equality. 1If Do(pb) or kt/ks is wrong by a factor of 4, the indicated n,
will differ asymptotically from the true n_ by a factor of 2, and r(n) for
the indicated n, will differ asymptotically from the true r(no) by a factor
of (1/2)(2+1)2)-1 = 1fh; 1f D_(w,) or kt/ks‘ is wrong by & factor of 2, the
asymptotic difference in total expected losses is approximately 6%.

For the two-action problem stated above, it 15 sometimes convenient in
terminal analysis, i.e., deciding which action is best after observing a

sample of fixed size, to assume a diffuse, or "informationless," prior dis-

tribution. For purposes of determining the optimal sample size, the
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assumption of a diffuse prior distribution is definitely not "information-
less." Raiffa and Schlaifer [1, p.121] note that for the two-action problem
above, with a Normal prior distribution, a prior variance which is large
relative to the process variance'.,.represents a great deal of relevant in-
formation, since it amounts to an assertion that py is almost certainly so
far from the breakeven value My in one direction or the other that a very
small sample can show with near certainty on which side of My the true u
actually lies." 1In fact, from (5-45b) of [1, p.121], it is easily seen that
for a sequence of Normal prior distributions with a common mean and variances
approaching =, n approaches O for any fixed cost parameters and process
variance. Thus, it is not surprising that n, is asymptotically proportional
to (D ()2

In [3], Guthrie and Johns derive asymptotic formulas for optimal (Bayes)
fixed sample sizes for two-action problems of accepting or rejecting a
finite lot of size N. They assume the items in the lot can be characterized
by independent and identically distributed non negative (and hence, non Nor-
mal) random variables with a certain type of exponential distribution -
including the binomial, Poisson, negative binomial, and gamma distributions
- with mean y. Two classes of prior distributions of u are considered: es-
sentially, priors continuous in a neighborhood of By the breakeven value of
4, and priors which are '"discrete around pb." For fixed sample size n,
termimal losses are linear in u and sampling costs are proportional to n.
Guthrie and Johns find that n, the optimal sample size, is asymptotically
proportional to N% for continuous priors and asymptotically proportional to
In N for discrete priors. The asymptotic optimal sample size for two-action

problems on the mean of a Normal process of known precision derived in




Chapter 3 can be shown to be analogous to the results of Guthrie and Johns
for continuous priors.

It can also be shown from the results of Guthrie and Johns that for the
problems which they consider, as o, approaches «, rt(no)/rs(no) approaches
1 for continuous prior distributions and O for discrete prior distributions.
Schleifer [4] has shown, for the two-action problem on the mean of a Normal
process of known variance with proportional sampling costs and a two-
point prior distribution of the process mean, that rt(no)/rs(no) approaches
O as n approaches =, It is clear that for fixed sample size two-action
problems with linear terminal losses and proportional sampling costs, the

asymptotic behavior of rt(no)/rs(no) depends critically on the form of the

prior distribution near the breakeven point. The reason for this difference
is discussed in Section 2.4.5. It is also noted there that for the two-
action problems being discussed, an '"indifference region' about the break-
even point has the same asymptotic effect on rt(no)/rs(no) as a discrete
prior distribution. Chernoff has noted in [5] that for the optimal (Bayes)
strategy for sequentially testing the simple hypothesis Ho: 0 = Oo against

the simple alternative H.: © = 01, on the basis of observations on inde-

1
pendent and identically distributed random variables with density fi(x)
under H

i=0,1,r (no)/rs(no) approaches 0 as n approaches =, where

i’

n now denotes the optimal expected sample size and sampling costs are

t

assumed proportional to the sample size. This result holds as the per unit
sampling cost approaches O, for any non unitary (two-point) prior distri-
bution and positive terminal losses. The problem of finding the optimal
(Bgyes).sequential_procedure for the twos:action problem on'the:mean’ of WoNor-

mal process of known variance with linear terminal losses, proportional

-6-




sampling costs, and a continuous prior distribution is now being studied by
Chernoff [6,7]. It is not yet known how rt(no)/rs(no) behaves for this pro-
blem,

Some numerical work, not included in this report, indicated that for
both the optimal fixed sample size procedure and the optimal sequential pro-
cedure for the two-action problem on the mean of a Normal process of known
variance with equal terminal losses for wrong actions, proportional samp-
ling costs, and a two-point prior distribution, the ratio of the loss for a
wrong action to the per unit sampling cost must be extremely large to make

rt(no)/ra(no) as close to O as, say, .l0.




CHAPTER II.

EXACT INEQUALITIES

2.1 Introduction

In [2], Schlaifer presents the solution to the following two-action
decision problem.

Assume that the prior distribution of the mean u of a Normal process
of known variance is Normal and that the terminal utilities of the two
actions are linear functions of u. If the cost of a fixed size sample is
proportional to the sample size, what is the optimal (Bayes) fixed sample
size? e/

Schlaifer conjectured g/fbr this problem that, if n, >0

r(n)/r(no) s (1/2) (n/n°+n°/n) , (2-1)
where
n = arbitrary fixed sample size
n = optimal fixed sample size
r(n) = expected total opportunity loss (expected op-
portunity loss from wrong decisions plus cost (2-2)
of sampling) for a sample of size n.
The inequality (2-1) will be referred to as "Schlaifer's inequality."
Several remarks concerning general assumptions and terminology in the

problem above and those to follow are necessary. First, '"loss" will al-

ways refer to opportunity loss, or, regret. Hence, since the cost of a

¢/ The solution, to a problem equivalent to this problem, was first given
by Grundy, Healy, and Rees [8]. The most complete exposition of the
problem is given in [1].

d/ 0©f.footnote b, page 2.

.8-



sample of size O is O, sampling cost equals sampling loss. Second, it is
assumed throughout the report that

r(a) = £ (n) + £ (n) (2-3)
where r(n) is defined in (2-2) and

rt(n) = expected terminal loss (loss from wrong decisions)

(2-b)

for a fixed sample of size n

rs(n) expected sampling loss for a fixed sample of

(2¢5)
size n.
Third, throughout the report, only fixed sample size procedures are con-
sidered. Fourth, "expected" in the definitions of r(m), rt(n), and rs(n)
refers to an expected loss, prior to observing a sample of size n, as-
sociated with the optimal terminal action posterior to observing the sample.
Finally, it is shown in [1] that if terminal and sampling utilities (and
hence losses) are additive, minimizing expected total loss is equivalent
to maximizing expected total utility; all of the analysis here is in terms
of losses.

In an unpublished note, 1. R. Savage proved that Scrlaifer's in-
equality is true for the problem of estimating the mean of a Normal process
of known variance, given a Normal prior distribution of the process mean,
quadratic terminal losses, and sampling costs proportional to sample size.
Subsequently, the author proved that Schlaifer's inequality is true for
the problem for which it was conjectured (Theorem 2.4.1) as well as several
other two-action and estimation problems with sampling costs proportional
to sample size. Another inequality, used here in the proof of Schlaifer's

inequality, is that rt(no) > rs(no), 1.e., for the optimal sample size the

expected terminal loss exceeds the expected cost of sampling (Theorem 2.L4.1).




This will be referred to @s the "aptimal loss partition inequality."
Heuristically, the optimal loee partition inequality and Schlaifer's
inequality are true for many decision problems with rs(n) = bn (b > 0) be-
cause rt(n) approaches, in the "right way," a hyperbola a/n (a > 0) ss n
increases. It is easily shown that if f(n) = a/n + bn, where a and b are
positive constants and n is a positive variable, is minimized by n s then
a/no = bn_ and f(n)/f(no) = (1/2) (n/no + no/n). The first equality cor-
responds to the optimal loss partition inequality and the second to

Schlaifer's inequality. Furthermore, the analysis of f£(n) above generalizes

to: if g(n) = a/n” + an, where ¢ and B are positive constants, is mini-
mized by n_, then a/m® = (B/a) br® and
o ) o
o
@ _ _a [afP+ B _ (%
g no) T a+p n a+B n

This suggests, for problems in which rt(n) approaches a function a/n® as n

increases and rs(n) = bnﬁ, a "generalized optimal loss partition inequality"

r(a) > (B/a) r (n) (2-6)

and a '"'generalized Schlaifer's inequality"

em) s _a  [a\® + g [%) a0 >o. (2-7)
T(n,) a+p |n a+pg \n °

For all of the problems considered in this Chapter, a prior distribution
conjugate to the process is assumed. For all but one of these problems,
the generalized optimal loss partition inequality and, if n, > 0, the
generalized Schlaifer's inequality, with values of 0 and B dependent on the
problem, are shown to hold (with several minor exceptions) for all values

of the prior, process, and cost parameters.

-10-



The one problem for which the generalized inequalities are not necessarily
true provides additional insight into the general behavior of n, and r(n).
A summary of the exact solution to the two-action problem for which
Schlaifer's inequality was conjectured is given in Section 2.2, In Section
2.3, two general conditions on rt(n) are given. The first is shown to be
sufficient for the generalized optimal loss partition inequality and the
two together are shown to be sufficient for the generalized Schlaifer's
inequality. These two conditions are verified for several two-action pro-
blems on the mean of a Normal process of known or unknown variance in
Sections 2.4.1 - 2,44, 1In Section 2.4.5, it is shown that neither of the
generalized inequalities is necessarily true for the two-action problem on
the mean p of a Normal process if terminal losses are O throughout an "in-
difference region" about the breakeven value of u. The two conditions on
rt(q) are verified for several estimation problems involving Bernoulli,

Poisson, and Normal processes in Section 2.5.

2.2 The Optimal Sample Size for the Two-Action Problem on the Mean of a

Normal Process of Known Variance with Linear Terminal Losses, Pro-

portional Sampling Costs, and: Normal Prior Distribution of the

-Process Mean,

This section summarizes the complete exposition of this problem pre-
sented in [1]. The notation closely follows that of [1]; in particular,
tildes denote random variables.

Let

u = mean of a Normal process generating independent random
variables 3?'1, %., ... , each Normally distributed (2-8)

with mean u and variance 1/h

-11-




£y (xlu,h) = (h/om)? o ~(B/2)(x-)?

fN*(x) = fN(xIO,l)

FN(le!h) =:[m fn(tlﬂnh)dt ’ GN(xll-hh) =1 - FN(x,“sh)

\
FN*(x) = FN(xlO,l) s Gyy(x) = GN(xIO,l)
prior density of § = fN(ulm',hn')
A = action space = [al,aE]
ut(ai, W) = terminal utility of action a, if u obtains

=K +ky, L=1.2

Hp

ke

breakeven value of , = (Kl - Ko)/(kg - kl)

terminal loss constant = |k2 - k1|
rs(n) = expected sampling cost for a sample of size n
=kn,k >0
8 s
rt(n) = expected terminal loss for a sample of size n

r(n)

expected total loss for a sample of size n

rt(n) + rs(n)

If m', the mean of the prior distribution of § is = h

where

r.(0) =j ke (kuy) fy(lm', hn')du
Hp
= (), (01

D' = (hnl)% I“b - ml,

L, (o) f (x = D) £ x)ax = £,(0") - > o ('),

-12-
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(2-19)
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If m' > My .

r.(0) =f_: ke(by = B) £y (ujm',bn" )du
but this again reduces to

rt(O) = kt(hn')% I.N*(D'). \ (2-21)
Since r(0) = rt(O), (2-21) gives the expected total loss of the optimal de-
cision without sampling (the optimal decision is to take the action for
which u, (ai,m') is greater).

I1f a sample of size n is taken, the posterior distribution of § is

£y (u|m", ha'") (2-24)

where

n
n""=n'"+n, n"=(n'm" + nm)/n", m= (l/n)z: X, . (2-25)
i=1

In this case, the optimal decision is to take the action for which

qt(qi,ﬂ5 is greater andthe expected terminal loss posterior to the sample
is given by (2-21) with double primes replacing the single primes. Since
the optimal decision posterior to a sample of size n depends only on the
mean of the posterior distribution of {I, the prior expected terminal loss
of an optimal decision following a sample of size n can be calculated from
the prior distribution of the posterior mean, i.e., the distribution of @'

= (n'm' + n)/n". For m's Wy OF m' > T this prior expected terminal loss

is given by
e (a) = 7,(0) - () F 1 (0%) (2-26)
where
n* = n'n"/n, D* = (hn*)ir Iub -m'l. (2-27)

Thus, .the expected total loss, prior to observing m, of an optimal decision

following a sample of size n is, from (2-18), (2-21), and (2-26)

-13-



r(n) = rt(n) + rs(n)
=k (hn") 72 L (D) - K, (ha¥)™2 L, (D%) + k. (2+28)
The optimal sample size, n o is the value of n (assumed to be a continuous
non-negative variable) which minimizes r(n), given by (2-28) for n > 0 and
by (2-21) for n = 0, Charts are provided in [1] and [2] for determining n

for given h, n', D', k_, and ks.

t

2.3 Sufficient Conditions for the Generalized Optimal Loss Par¥tition

Inequality and the Generalized Schlaifer's Inequality

Two ad hoc conditions on rt(n) are presented below. Assuming certain
regularity properties of rt(n), Theorem 2.3.1 shows that the first condition
is sufficient for the generalized optimal loss partition inequality and
Theorem 2.3.2 shows that the two conditions together are sufficient for the
generalized Schlaifer's inequality. Theorem 2.3.3 will prove convenient in
applications for verifying the first condition. These results will be uti-
lized in proving the optimal loss partition inequality and Schlaifer's
inequality for the problem of Section 2.2 and the generalized inequalities
for the other problems which will be considered.

The regularity properties of rt(n) assumed throughout this Section are

(1) .gt(n) 18 & strictly decreasing.function of n, n > 0. (2-29)
(ii) dzrt(n)/dn2 exists and there exists an n, 2 0
such that dzrt(n)/dn2 §0forngmn, n>0.

p -

These two properties, along with rs(n) = ksn , guarantee that either n =

(2-30)

O or n, is unique and positive. 1In the latter case, n, >n No attempt

1
will be made here to formally characterize decision preblems for which

rt(n) has properties (1) and (ii). Informally, the generality of (1) is

-14-
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obvious. Its assumption rules out, for example, problems for which rt(n) is
infinite for some or all n, problems for which the prior probability is one
that a certain action is preferred, in which case rt(n) is identically zero,
and problems with definitive observations, in which case rt(n) is identically
zero for all n > 1. Property (ii) is stronger. It implies that rt(n) is con-
might be zero.

cave for n between zero and n, and convex for n > n,, where n

1 1
An intuitive reason for this behavior of rt(n) for the problem of Section 2.2
is given in [1] and in [2]. (Note: for purposes of analysis, n 1s considered
to be a continuous variable.)

For all of the problems considered in this Chapter, including the one
for which the generalized inequalities are not necessarily true, properties
(1) and (11) of rt(n) are easily verified. They also hold for many two-action
problems involving discrete prior distributions for which the generalized
inequalities are not necessarily true.

The first ad hoc condition on rt(n) is

Condition I: dnart(n)/dn >0, some @ >0, n > 0. (2-31)

Theorem 2.3.1. If r_(n) = ksnB, Condition I is sufficient for the
generalized optimal loss partition ineguality rt(no) > (B/a) rs(no). (Note
that if Condition I holds for a particular ao, it holds for all a > ao. The
inequality is sharpest for the smallest a for which Condition I holds.)

Proof: If n, = 0, the theorem 1s trivial; hence, assume n, > 0. From
Condition I

nodrt(no)/dn + art(no) > 0. (2-32)
Since n  is a stationary point of r(n) = rt(n) + rs(n)

ar,(n )/dn = - aksnoﬁ’l = -ﬁn;l r (o). (2-33)

-15-



Substituting (2-33) in (2-32) yields -Brs(no) + art(no) > 0, or
ry(n)) > (/@) r (n ).

Corollary 1, If rs(n) is convex, nondecreasing, and approaches O as n
tends to O, Condition I is sufficient for the inequality art(no) > rs(no).
Proof: If n, = 0, the conclusion is again trivial; hence, assume

0, > 0. Let n, be the unique root of art(n) = rs(n) and define E.(n) =

-1 -
(n2 rs(ne))n. Then rs(ne) = rs(nz) and from the assumptions on rs(n)

(2-34)

Letting ﬁo denote the value of n which minimizes rt(n) + fs(n), the theorem

WA

rs(n) (2) Es(ne) for n s (2) n..

n

gives art(ﬁo) > Es(ﬁo), or equivalently, ﬁo <n Now, for n2 n

2° 2°
r(n) 2 rt(n) + Es(n) (from (2-34))
> rt(ﬁo) + Es(ﬁo) (since ﬂo < n2) (2-35)

z rt(ﬁo) + rs(ﬁo) (from (2-34).
Therefore, n, < n2, which implies the conclusion.
Corollary 2. If r,(n) =0 forn -0 endK_ + ksnB for n > @, Condition
1 is sufficient for the inequality ¢ rt(no) >B ksng. 1f rs(n) = 0 for
n=0and K + vs(n) for n > 0, where vs(n§ is convex, nondecreasing, and
approaches O as n tends to O, Condition I is sufficient for the inequality
art(no) > vs(no).

The second ad hoc condition on rt(n} is

d na+1drt(n)
Condition II: ey 5 <0 ,somea>0,n>0,. (2-36)

Theorem 2,3.2, If ts(n) = k.n", Conditions T and II together are suf-

ficient for the generalized Schlaifer's inequality r(n\/r(no) s {a/(a +B))

(n/no)B + (B/(@ +8)) (n /n)%, where n_ > 0 and a 1s the smallest value of a
for which both conditions are true.

Before proving this theorem, the rcle of @ in the inequality will be

-16-
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discussed. In Section 2.1, the generalized inequalities were suggested for
problems for which rs(n) = ksnB and rt(n) approaches a/n” as n tends to .
It is not assumed in either Theorem 2.3.1 or Theorem 2.3,2 that rt(n) ap-
proaches a/na, but only that Conditions I and II hold for some . As noted
after Theorem 2.3.1, the generalized optimal loss partition inequality is
sharpest for the smallest & for which Condition I holds. If rt(n) approaches
a/nao, the smallest @ for which Condition I holds is ab."The same situation
is true with respect to the generalized Schlaifer's inequality. Clearly,
if Condition II holds for o = ao, it holds for all o = ao and

Lemun 2.3,1, . For fixed 8, n_, and n (n # n_), (a/(a +8)) (n/n )P
+ (B/(a +B)) (no/n)a is an increasing function of . (Note that for n = n

(a/(a +8)) (n/no)B + (B/(a + B)) (nO/n)a =1 for all g and B.)
Proof: Let y = + B and x = nO/n. It is straightforwvard to.show. that

) o’ n P B iR et Br'g X (x7V-1 + ¥inx).
Sl fn] e |
(2-37)
The conclusion will follow if, for all y > O and x > 0 (x # 1) ’
xT _14+yInx>o. (2-38)
Now, for any v > O
3 (xT.-14fnx) =1t (1-xT) (2-39)
1s O only ?: x=1. And
F oty o= 1) - 1)
ox (2-b0)

-¥¥>o.

Therafsre, x 7 - 1 + ylnx >.0 for all vy > 0 and x > 0 (x # 1).

Proof of Theorem 2.3.2: Let ¢ = p(a + B)'1 ng r(no) and d =

)-1 nB r(no). Then cno'a + dnﬁ = r(no) and (r(nc'))'1 (cn-a + dna)

ala + B o

-17-




o Y+ _p_ [P)% (2-41)
a+p B a+B |n
Hence, the conclusion of the theorem is equivalent to

r(n) = rt(n) + rs(n) s en @+ anf
or
rt(n) ~en® s af - rs(n) = (d-ks)nB . (2-42)

From Condition I and Theorem 2.3.1, rt(no) + rs(no) > (Bﬁd)rs(no) + r.(no),
or
ale+8) " e(n) > r (n) . (2-43)

Therefore

-B

d=a@+p)" 0P x(n) > n

rs(no) =b (2-44)

and, from (2-42), the conclusion of the theorem is equivalent to

q(n) = ————— = 1. (2-45)

From the definitions of c and d, q(no) = 1, It will be shown that
q(n) £ 1 by showing that
dq(n)/dn 20 fornjn . (2-46)
Let q'(n) = dq(n)/dn and ré (n) = drt(n)/dn. It is easily shown that q'(n)
may be written as

q'(n) = [(a-k ¥ (0™ r1(n) + B 0 MP) 4

(0] (0
B(n r (n ) - nr (n))]. (2-47)
From Condition I
ngurt(no) - nart(n) 2 0 for n ; n - (2-48)
Hence, from (2-48) and (2-47), (2-46) will certainly be true if
o¥1 ri(n) + gaksno"“"3 20forngn . (2-49)

Since n is a stationary point of r(n), r; (no) = -Bk.nos'1 and the left

hand side of (2-49) is O for n = n_ . Hence, (2-49) will be true if, for
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alln >0
4
dn
or, 1f, for ell n > 0O

(nmlri'; (n) + Bksnomﬁ) <0

& @™t () <o (2-50)
which is Condition II.
Corollary 1. If r (n) =0 forn = 0 and K, + k o® (K 2 0)
for n > 0, Conditions I and II are sufficient for the generalized Schlaifer's
inequality.
Proof: Let ?s(n) = anB. Then n  also minimizes r(n) = rt(n) + ;s(n)
and r(n) = r(n) - K . From the theorem, ﬂn)/?(no) < (of (o)) (n/no)ﬂ +

(8/(#8)) (a /)%, wna

lin) =. ;(n) + KB < ;(n)

- <= (2-51)
r(n) T(a)+ K, ~ T(a) '
since r(n) > ?(no).
Corollery 2. If r (n), ;s(n), and r(n) are defined as in Corollary 1

and n =0 and Eo = the value of n which minimizes r(n) is > O, then Condi-~

tions I and II are sufficient for the inequality

(@) 2
2 < 1:%0) *:(23 [aga (ﬁﬁ)ﬁ i (é) a] -(2-52)

Proof: Since r(n) = r(n) + K, end r(n) / ;(Ho) < (a/(n8)) (n/ﬁ.o)B
+ (8/(#8)) (8 /n)*

r(n K ;(Eo) r(n
CofE ORE Ol

< Ks +?(H°) [a (_n)B + _B (no)o]
r{0) r(0) a+p \o, a+Bln
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Theorem 2.3.3. If Condition II is true and drt(n) /dn = o(n'l)
then Condition I is true, for the seme a for which Condition II is true.
Proof: As n tends to «
, nrt'(n) + art(n) 90 (2-53)

by the second part of the hypothesis and regularity property (i) (2-29).

Now
d(nrt'(n) + art(n)) /dn = n ™ d(ﬁ1+1 rt'(n)) /dn < 0 (2-54)
by Condition II (2-36). Hence
nrt'(n) + art(n) = nlJa d(nQrt(n)) /dn > 0 (2-55)

which implies that Condition I (2-31) is true.

2.4 Two - Action Problems on the Mean of a Nermal Process

2.,4.1 Process Precision Known, Linear Terminal Losses,

Sampling Costs = Ks + ks nﬁ, E/

Normal Prior Distribution of Process Mean

This problem, specialized to the case of sampling costs proportional
to n, is the problem summarized in Section 2.2 and the problem for which
Schlaifer conjectured Schlaifer's inequality. The proofs of the generalized
inequalities for the problem:of this subsection involve drt(n)/dn and
dzrt(n)/dn2 ; since they are quite complicated, they will be calculated
first, It will then be shown that rt(n) has properties (i) and (ii) and
that the generalized inequalities are true for this problem (assuming

Ks = O for the partition inequality).

¢/ 1InSections 2.4 and 2.5, r (n) z0 for n = 0 and K_ + k, n° for n <0 1s
abbreviated to rs(n) = K, ksnB.
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where

Lemma 2,4,1, For rt(n), as given by (2-58) below,

IS s LA fsfggﬁffl (2o, f )
" (a) - da:;g) . un+n;n;nn-p*2 (d:§<n> ) (o7
Proof: From Section 2.2
2 (n) = ey (")F 1 (0") - ke (o) E 1 (W) (2-58)
w¥ = a'n, o= atn, D' e () |y - w]

Now

Hence

Next

(2-59)

D* = (hae)? by = m'| s Ly (D*) = £ (D%) - Dx Gyx(D¥) .

-+ 2 :
dn* n'? dn*"¢ 1/ n g n' =1 gi )E
dn T "R * d@m. T 3 n'n" n 2n™ n"n
2
dD* . px dD* D n' n'D* (2-60)
dn¥ T, Ea¥ ’ dn T " mTa" F T " B
dLh*(D*) dLN*(D*) n'D*GN*(D*)
dp¥ = - *(D*) ’ = L
dD N dn en'n
k d D* -3

r' (n) = o _tf:, 1 i‘: + dL* 2 LN (D*)

t u2 n*§ dn dn *

n"n
- 2n" ha'"n

2]~



3
* -4 =
r "(n) = £,' (n) | Epe(0%) T N n"é an °
t t fN;(D*) dn dn dn
L
™ D% £ (D%) ! 3/2
=t "(n) 1 2 N%* _ n? _ L"T
t L.fN*(D*) Zn'n o3l o572
2
_ r. ' (n) bn+n'-n'D¥*
N t P 2n'n *

R - O
Lemma 2.4.2. r (n), as given by (2-58), has properties (1) and (11)
((2-2)).andf(2-309).
Proof: From (2-56), property (1) is obvious. From (2-57), since
r.'(n) <0, r_ () has the same sign as (hn+n'-n'n*2). From the

definitions of D' and D* (2-59)
(ban' - a'D* ) = (1/n) (ka2 (1) - D7) (2-61)
which 1s O for

n= (n'/8) [- (1-0'2 s (16 D% + (1-D‘2)2) %]. (2-62)

From (2-61) and (2-62) it is clear that rt(n) has property (ii).

Theorem 2,4,1. The generalized optimal loss partition inequality

and the generalized Schlaifer's inequality, both with a = 1, are true for the
two-action problem on the mean of a Normal process of known precisioen with
linear terminal losses, sampling costs = ksnB, and a Normal prior

distribution of the process mean.

]
Proof: From Theorems 2.3.1 - 2.3.3 it suffices to show that r (n) = o(n-l)
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and that Condition II is true. From (2-59), as n =» o, n* =» n', and

D* —» D' . Hence, from (2-56)

r,'(n) = o(n”ly . (2-63)

Condition II requires that d(no""1 rt'(n))/dn <0, or, fora=1

n(nrg (n) + Eré (n)) < 0. (2-64)

From Lemma 2.4.1

(n'D*E-n’-hn)/En" + 2l
" (2-65)

nrt"(n) + Qrt'(n) rt'(n)

rt'(n)!:(n'D*2 + 3n')/2n"]

which is negative since rt'(n) is negative., Hence, Condition II holds

for @ = 1; it is easily shown that it does not hold for a < 1.

_ = = ~ B
Corollary. If ts(n) = Ks+rs(n) where rs(n) = k,n", then

art(no) > B?;(no) and the generalized Schlaifer's inequality is true

with ¢ = 1, 1If Ho minimizes rt(n) + ?s(n) and is > O while n =0
R . ,_\a—
SORPRTR 1 R R (0-66)
r(o) = r(o r{o) o+ = a+ n |
.o 0
witha = 1,

2522£: The first statement follows from Corollary 2 to Theorem 2.3.1
and Corollary 1 to Theorem 2.3.2, The second statement follows from
Corollary 2 to Theorem 2.3.2.
2.4,2 Process Precision Unknown, Linear Terminal Losses, Sampling Costs = Ks+ks
Normal - Gamma Prior Distribution of Process Mean and Precision.
In this subsection, it will be shown that the generalized optimal loss
partition inequality (if KS=O) and the generalized Schlaifer's inequality,

-23-
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both with & = 1, can be extended to this problem if the prior mean of i’
is finite. The distribution theory for this problem is given in [1) and is
summarized below, Methods for finding the optimal sample size for the case
of B = 1 are given by Schleifer [4].
Let

W = mean of a Normal process of unknown precision h

prior distribution of (}, ) = fNr (us B|m'y, v'y n', V')

fN(pIm', hn') fY9 (r]v', v') where

£ (hlv', v') - O%%-V'))'l e RNV gy B L gy
(2-67)
-wo<y, m'<ew, h>0; v', n™> 0, v'> 1.

(The prior marginal mean of §i is finite only if v' > 1.)

The definitions of A, ut(ai, u), Hy» k., and fN(pIm', hn') are given

t
in Section 2.2,

If m'< by
rt(n) - rt(O) - vt(n) (2-68)
where

®
€ (0) = k, J(u-ub) Eg(ulmt, nt/et, v1) ay (2-69)

b

®
vt(n) =k, n/(11:"-;.;.1)) fs(m"lm', n*/v', v')dm" (2-70)

b

tgtulm, 0w, v) = () [v + @men?] D am?E @)

B(%, %v) = beta function of arguments % and 3z v

and n*, n", m", and m are defined by (2-25) and (2-27).
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Let

D = (n'/v')% lub-m'l, D* = (n*/V')é Iub'm'l

Then rt(o), given by (2-69), can be written

r.(0) = kt(v'/n'}% LS*(D'|v')

and vt(n), given by (2-70), can be written

!

vt(n) = kt(v'/n*)g LS*(D*IV')

where

Loy (D]v) = ((v+D2)/(v-1)) £5x(D|V) - DG, (D]v)

£su(D]v) = £5(DJO, 1, V)

Gey(D]V) = “/?fs*(tlv) dt

D

(2-72)

(2-73)

(2-74)

- (2-75)

(2-76)

(2-77)

If m'> My, » (2-68), (2-73), and (2-74) are unchanged. Hence for any m' ,

i 1
rt(n) = kt(v'/n')2 LS*(D'IV') - kt(v'/n*)é LS*(D*IV')

‘Lemma 2.4,3. For rt(n), as given by (2-78),
%

, ' ' ' 2
' _ v n vV +D¥
Te (n) = - kt( n* ) 2n™"n Vo 1

2
. N}
rt"(n) = rt'(n) §lw (n'D*2 (2112:—

nn v

fs*(D*|v’)

(2-78)

(2-79)

)- n' - hn) (2-80)



Proof: From (2-78)

1 1 :
rt(n) = kt:(v'/n')2 Ls*(D'IV') - kt(v'/n"")2 Ls*(D*IV') .
Now *
4 1 1
dn%* _ i(n/n'n")ﬁ _ 1 a' 2
dn = dn T Zo" | n™n
dD* n*/v K. =m n'D¥*
dn = an b = Za"n
o)
df . (D¥|v") 3! 1y '
S d v Lpe2y-2(vi+1)) vi«l |y
T = e (e " yrvow? PEsa(OXIV)
. (2-81)
dGg  (D*|v ") '
¥ = - f5y(0xlv)
dL . (D*|v") s
* *
'&I_rg_-'— = d—g*'(%'% s*(D*IV') B D*GS*(D*I"')
1y [ 2D* D*(v'+1 o
= A.fs*.(D*tv')(v—'_T- - —i,-_lv = + n*) - Gs*(D*Iv )
- Gs*(D*lV') [ ]
Therefore
' 1 dL ., (D¥*|v') -%
= H "% S¥* 1y do¥
rt (n) = - ktv' <n* an + Ls*(D*IV dn
3 3
n n n 1
= - k! (;";r) Zaa Cgu(D*|v?) - (;";) B D*Gg(D¥[v")
2
n' 3 1  v'4+p*
*(m) =TT fs*“’*'v'9

1
2 ' ' 2

- v' n v'+D* el

= - kt (-——n*) s v fs*(D IV ) .




- D GEE SEE TEE T ) NN D N A UEN A GEm aEm .

et

And % %
" _ : /Qn"n d(n'/2n"n) n'n" d(n/n"n)
r(n) =t '(n) ' T @ I/ @
X .

af_ (D*¥{v') 2 W\
. 1 g% N A | d((v'+D# )/(V'-ln)
fs* D¥*|v dn 3,0*2 dn /

2 y

a i( ) n"+n . n' . n'D*z(v'+1) ) 2n'D* A

= T\ oM on''n

~= 2
2n''n(v'+D* )  2n"n(v'+D¥* )

s et <L fap(Y)
t 2n"n V- ¢

Lemma 2,44, If v' > 1, rt(n),_as given by (2-78) has properties
(1) (2-29) and (ii) (2-30).
- Proof: Property (i) is obvious from (2-79). From (2-80), since

rt;(n) <o, rt“(n) has the same sign as
bn - n' - a'D¥ ((vsD¥°)/(v'-1)) . (2-82)

1
From the definitions of D* and D' (2-72), D* = D'"(n*/n')S . Substituting

this for D* in (2-82) and rearranging gives
(na(v'-l))'1 [h(v'-l)n3-n' (D'h+v'D'2-v'+1)n2-n'25'2(2D'2+v')n-n'3D‘k1. (2-83)

By Descartes's rule of signs, this quantity is O for exactly one positive
value of n if D' # 0 ; if D' = O, it is positive for all n > O. 1In either
case, it is clear that rt(n) has property (ii).

Theorem 2.4.2. The generalized optimal loss partition inequality

and the generalized Schlaifer's inequality, with @ = 1, are true for

the two-action problem on the mean of a Normal process of unknown precision
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with linear terminal losses, sampling costs = ksne, and a Normal - gamma
prior distribution of the process mean and precision with finite prior
marginal mean of the process fi (v'>1).

Proof: The proof of this theorem parallels exactly the proof of

Theorem 2,4,1, From (2-79) and (2-81) it is easily seen that rt'(n) = o(n'l).

Also from Lemmh'E.h.3.

1

. r '(n) ' 2
nr "(n) + 2r '(n) = —%—ﬂ_- “'D*2<%T§2:'> - “"hn+hn">

fi
m{
=}
3
V]
T
<‘<
+
1O
| ¥
V]
N ———
+
W
=]
S———

which is negative since v'>1 and rt'(n) < 0.

Corollary. The corollary to Theorem 2.4.1 holds without .change.

2.4.3 Process Precision Known, Quadratic Terminal Losses,
Sampling Costs = Ks + ksnB, Normal Prior Distribution of
Process Mean with Mean m' = Breakeven Value [ of Process Mean,

This problem has not been considered elsewhere, The assumption that ,
m' = Hy makes the problem quite specialized but results in a simple
_expression for rt(n); for m' ¥.pb s rt(n) is more complicated. The
problem does provide an example of a situdtion .for which. the generalized
inequalities are true for an a £ 1,

The notation closely follows that of Section 2.2. In partiéular,

the ngtationo(2eB).titvough. (2414 ) wI1l be utilized. .Also;;let -Lrg(,n)

“ae vl alL s . 2 s [T T ' SO IO (;_"_L) e .
. -, oy NI AN RO Lo e, 2uen 20 A P AN
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and r(n) be defined as in (2-19) and (2-20) and, for the moment, let

rs(n) = ksnB, Assume that action al is preferred if u < My and action a.

is preferred 1if u > pB and that the terminal loss if u obtains is

0 if u< (>) u, and a (ae) is taken

b

(8-85)

2 .
| kt(p - “b) otherwise (kt > 0).

Without loss of generality assume that by = 0.
In Section 2.2 and subsections 2.4.1 and 2.4.2, rt(n) was written as
the difference between rt(o) and the prior expected terminal loss of

taking the action optimal under the prior distribution following a sample

~of size a. In this subsection it is convenient to write rt(n) in the

more easily interpreted form
oo

rt(n) = L/’rt(n, m) Dm(m) dm (2-86)

-00

where
rt(n, m) = expected terminal loss of an optimal terminal
decision posterior to observing a sample mean of m (2-87)
from a sample of size n.
Dm(m) = marginal density of m for a sample of size n. (2-88)
Raiffa and Schlaifer [1, Chapter 4] show that the two forms of rt(n)

are equivalent,

™It is alSo shown in [1] that

‘ v Dm(m)‘='fN(?[;',‘hnu). - £6@[0, hn ) (e-89)
where
n = n'n/n". (n" = n'+n) (2-90)
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Hence, from (2-24), (2-85), and (2-87)

]
j fktpz £y (p|m", hn")du if m* <0
o

rt(n,m) = o
f ktuz fN(pIm", hn" )du if o' >0
-00

{

(2-91)

where, as in (2-25), m" = (n'm' + n m)/n" = nom/n" (since m' = Wy = 0).

Since m"' < 0 if and only if m < 0, (2-86) becomes, using (2-89) and (2-91)
o
r, (n) = J/ Jf ke® £(ula", ha") £,(n]0, hn ) du do
< 0

© -0
+ff ktpz fN(ulm", hn"') fN(mlo, hnu) dp dm (2-92)
0 -

w o
= 2k, Jf JF usz(plm", hn") fN(mﬂ 0, hnu) dy dm,
[o] -00

1
2

Letting D" = (hn")2 m", it is straightforward to show that

[i2agtulats by aw = (ha)"E 114026y (") - DEg,(0")] . (2-93)

-0

Hence

£ (n) = 2k, (ha")} yf [(14D"2) Ggy(D") = D"Eyy (D) 1y (m]0, b Nam
(o]

and, letting x = (hnu)% m and

p=pn) = (n/n")? (2-9k)




-y Aty [ ] vy | L] [ ____ ] -—_—— ] L]

D" reduces to px and rt(n) may be written

o) = 2 () [ 1(1092) Gy(p) - Bty () ey ()an

1] -1
2kt(hn ) (11+12+13)

where
-]

1 k/” GN*(px) fN*(x) dx

o

-
#

@«

. 2,2
o ‘/rp x GN*(px) fN*(x) dx
o

[
"

13‘-9/ px fN*(px) fN*(x) dx .
)

It is well known that

I = /4 - (21r)'1 tan~! p = (Ev)'l tan"! p'l .

and it is easily shown, by transforming to polar coordinates, that

-1 -1 -1
I, = p?(2m)™" [4r - p(1+p®)™" - tan™" p].
It is also easy to show that

- ] "
13 = pn'/2m

Using (2-99) through (2-101) in (2-95), rt(n) reduces to

(k /mhn') (31 - p(1+9) " -can”lp) .

r,(n)
Now

dp/dn = 1/2an’' , drt(n)/dp = -2kt/Whn'(1+p2)2

and rt'(n) reduces to
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(2-96)

(2-97)

(2-98)

(2-99)

(2-100)

(2-101)

(2-102)

(2-103)




rt'(n) = -kt/7rhpn"2 . (2-104)

From (2-104), regularity property (1) (2-29) is obvious,

Also, rt“(n) reduees to

rt“(n) = -(1/2) (1/n + ¥/n") x,'(n) (2-105)
from which regularity property (ii) is obvious.

Theorem 2.4.3, The generalized optimal loss partition inequality

and the generalized Schlaifer's inequality, both with o = 3/2, are
true for the twe - action problem on the mean of a Normal process of
known precision with quadratic terminal losses, sampling cests = ksna,
and a Normal prior distribution of the process mean with mean m' = My
Proof: From Theorems 2.3.1 - 2.3.3, it suffices to show that
rt;(n) = o(n'l) , and that Condition II holds with a = 3/2, From (2-94)

and (2-104) it is obvious that rt‘(n) = o(n)l) .

Condition II, with @ = 3/2, 1s dn°/2 r,'(n)/dn < 0 , or equivalently
nrt“(n) + (5/2) rt:(n) < 0. (2-106)

Using (2-105)
nrt“(n) + (5/2) rt;(n) = zn;rt'(n)/n“ (2-107)

which is negative since rt;(n) is negative.
Corollary. The corollary to Theorem 2.4,1 holds with & = 1 replaced

by a = 3/2.




2.4.bg.,. Process Precision Known, Simple Terminal Losses (0 for correct
action, 1 for wrong action), Sampling Costs = Ks + ksng, Normal Prior
Distributian of Process Mean with Mean m' = Breakeven Value My of Process
Mean.

The analysis of this problem is very similar to that of subsection
2.4.3. In fact, if the second line of (2-85) is replaced by "l otherwise,"
the discussion in subsection 2.4.3 applies without further change through
(2-90). The expressions in (2-91) and (2-92) apply with the "ktpz" factor

replaced by "1," i.e.,

© o
rt(n) =2 JCJffu(p|m", hn") fN(mIO, hnu)dpdm . (2-108)
O &

It is easily shown that (2-108) reduces.to

L

re(m) = 2 [ Guulpr)gy(x)ax (2-109)

(o}

-

L ,
where, as in (2-94), p = (n/n')2. Hence, from (2-96) and (2-99)

rt(n) = T = tan " p . (2-110)

Now, it is straightforward to show that

r,'(n) = -(empn")7! (2-111)

rt"(n) -rtﬂ(n) (1/2n + 1/u%) (2-112)

from which it is clear that rt(n) has regularity properties (i’ (2-29) and
- (11) (2-30).

Theorem 2,4.4, The generalized optimal loss partition inequality

(1f ks=0) and the generalized Schlaifer's inequality, both with a = 1/2, are
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true for the problem of this subsection,
Proof: From Theorems 2,3,1 - 2.3.3, it suffices to show that
rt((n) = o(n°1) and that Condition Il is true. The former is obvious from

the definition of p and (2-111). Condition II requires that

d<xl+lrt"n)>/dn < 0. For a = 3,
d<b3/2rt'(n)>/dn = n%[n<1rt'(nz> (l/2n+1/n“)+(3/2)rt'(n)] (2-113)

from (2-112). and this reduces to

- 1
d(nz/“rt'(n)>/dn = rt'(n) (a'n)2/n" (2-114)

which is negative since rt"n) is negative.
Corollary. The corollary to Theorem 2.4.1 holds wirth @ = 1 replaced

!

by a =3 .

2,L,5 The Problem of Subsection .4.4 with ar irdifterence Region
about By

If the terminal loss function of the last subsection is changed to-:
terminal loss if u obtains equals
j,< ¢ and a; is taken

cif u o is
\ >-c and a, is taken

1 otherwise

where ¢ is a positive constant, then

© -C

/’Jl

r (nj =

. fN(ulm", hn")fN(mIO, hnu)dpdm . (2-115)

o
Standardizing (2-115) results in

T



ro() = 2 [ B Cople Mo x)) £, (x)ax . (2-116)
0

Hence

/
£ (n) < Fyu(-ps (e ). (2-117)

Since pq(hn*%ieo(n%)
r.(s) = o(n"%) (2-118)

for.any fixed 0 > 0 .

It is noted in Chapter 1 that if a/n” + bn" is minimized by n_, then
a/nJl = (B/a)bnoR . For the problem of this subsection with any g > O, it
is clear that rt(no)/rs(no) approaches 0 as n_ tends to infinity, which
will take placelif Ks = 0 and ks tends to 0. Hence the generalized optimal
loss partition inequality with any fixed @ and B is not necessarily true,
It can be shown that for any fixed &, the generalized Schlaifer's
inequality can also be false. .

The contrast between the results of this subsection and the results
of subsections 2.4.1 through 2.4.4 illustrates that for the type of two-
action problems being discussed, asymptotic results depend critically on

whether or not the terminal loss function is O throughout a neighborhood

of My -

2.5 Estimation Problems

2.5.1 Quadratic Terminal Losses, Sampling Costs = Ks+ksnﬁ

In this subsection it will be shown that the generalized optimal
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loss partition inequality (if Ks=°) and the generalized Schlaifer's
inequality, beth with 0 = 1, are true for several fixed sample size
quadratie terminsl loss estinmation problems eomsisdered in .

Section 6.3 of [1]. Results will be given here only for the case
Ks=0 « The corollaries to Theorems 2.3.1 and 2.3.2 are again

applicable and give inequalities for the case Ks>0 .

Let
w = parameter being estimated (2-119)
n = "sample size" (the reason for this definition
(2-120)
will be clear from a reading of the problems below)
Y= prior variance of & (2-121)
)

w"= Bﬁ(q) = prior expected value of the posterior
(2-122)
variance of i following a sample of size §.»
It is shown in [1] that if the terminal loss of estimating w by a is
i
kt(a-w)2 where k >0, then rt(q) = ktw"(n). Hence, if ré(n)=k81F

where ks>0 and B>0
r(n) = kS + kP . (2-123)

For all the problems considered here, Raiffa and Schlaifer [1] give
expressions for the posterior expected value of w, which is the optimal
estimate of w, expressions for 8‘/5‘, and optimality conditions for

the case B = 1 from which To? the optimal sample size, can be determined.
The optimality conditions for 1, can easily be extended to the case

B # 1. It is assumed in [1] and will be assumed here also that ¥' is

finite.
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The estimation problems for which Theorem 2.5.1 below proves that
the generalized inequalities are true, along with some necessary

results from [1], are as follows:

(1) Let w be the parameter p of a Bernoulli process and assume that
the prior distribution of & 18 a beta distribution with parameters
r' and n'-r'. Let the experiment be the observakion of n (n=n)
trials and let r denote the number of successes observed. Then the
posterior distribution of & 1is beta with parameters r'"=r'+r and
n"-r" where n"=n'+n. The optimal estimate of w is r"/n" and
3"/5" = a'/a" .

(2) Let w be 1/p and the process and prior distribution of P be as in

. (1). Let the experiment be the observation of the process until
r(r=7n) successes occur and let n denote the number of trials necessary.
The optimal estimate of w is (n"-1)/(x"-1) and
SIS = (r;-l)/(r"-l). For 3' < w , r' mst be > 2.

(3) Let y be the parameter \ of a Poisson process and assume that the
prior distribution of & is gamma-1 with parameters r' and ti, i.e.,

1] 1
W "1, Let the experiment be the observation

£, (ulr, t')ox Ut
1
of the process for a time t (t=n) and let r denote the number of successes
observed. Then the posterior distribution of & is gamma-1 with
parameters r'=r'+r and t"-t'+t. The optimal estimate of w is
£"/t" and 3"/ = £'/t".
(4) Let w, the process, and the prior distribution be as in (3) but

assume the experiment is the observation of the process until r(r=q)

successes occur., Let t denote the time necessary for this. The
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optimal estimate of w is again r™/t" and §"/&' = (r'+1)/(z"+1).

(5) Let w be 1/\ where A, the process, and the prior distribution
of : are the same as in (3) and the experiment is the same as
in (4). The optimal estimate of w is t"/(r"-1) and
/8 = (r'-1)/(r"-1). For ¥' < w, r' must be > 2,

(6) Let w be the mean u of a Normal process of known precision h
and assume that the prior dirtribution of & is Normal with
mean m' and precision hn'., Let the experiment be the observation
of a sample of n (n=n) and let m denote the sample mean, Then
the posterior distribution of @ is Normal with mean m" and
precision hn® where n" = n'+n and m" = (n'm'+nm)/n". The optimal
estimate of « is m" and 3"/Y' = n'/n" .

(7) Let w be the precision h of a Normal process of known mean u and
assume the prior distribution of ¥ is gamma-2 with parameters v'
and v', 1i.e., fra(w|v', v') & e-ihv'v' hév"l . Let the experiment
be the observation of a sample of v(v=7) and let w = v'lz(xi-p)z .
Then the posterior distribution of § is gamma-2 with parameters
V"' = v'+v and v" = (v'v'+ww)/v". The optimal estimate of w 1is 1/v"
and 3"/3' = (v'+2)/(v"+2).

(8) Let w be 1/h where the process, prior distribution of g, and the
experiment are the same Qs in (7). The optimal estimate of w is

v/ (v"-2) and S"/S' = (v'-2)/(v"-2). For ¥'<, v' must be > L,

(9) Let w be the mean u of a Normal process of unknown precision h

and assume the prior distribution of (§i, h) is Normal-gamma with

parameters m', v', n', and v' (see(2-67)). Let the experiment be
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the observation of a sample of size n (n=7) and let m, m", and n" be
defined as in (6)., Let v'" = v'+v-1 and v"=(v'v'+n'm'2+VV+nm2-n"m"2)/v" .
Then the murginal posterior distribution of I is fs(ulﬁ', n"/v', V')

(see (2-71)), the optimal estimate of w is m" and &"/3' = n'/n"

(10) Let w be h or 1/h and the process, prior distribution of (fi, ﬁ), and
experiment be the same as in (9). The optimal estimate of w and the
expression for 8"/5’ is the same as in (7) for w = h and the same as
in (8) for w = 1/h,

For each of the 10 problems above, &" is of the form

B = 3 (n'+e)/ (n"+mre) (2-12k)
where ¢ is an integer between -2 and +2. Note that in the problems
with ¢ <0 (2, 5, 8, 10), n'+c > O by the assumption that ' < w .
Hence, by (2-123), for each of these problems

r (n) = k&' (n'4c}intente) | (2-125)
Since n'+c > O and

rt'(n) = drt(n)/dn = -kté'(n'+c)/(q'+n+c)2 (2-126)
rt(n) has regularity property (i) (2-29).
Since n'+c > 0 and
r."(n) = dzrt(n)/dnz = zktm'(n'+c)/(q'+mc)3 (2-127)

rt(n) has regularity property (ii) (2-30).

Theorem 2.5.1. The generalized optimal loss partition inequality and the

generalized Schlaifer's inequality, both with @ = 1, are true for all estima-
tion problems with rs(q) = kng for which rt(q) can be written as in (2-125},

provided that n'+c > 0. (For the 10 problems above, n'+c > 0 if &' < o )
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Proof:" As usual, the theorem will be proved by showing that
rt'(n) = o(q'l) and that @ondition II is true. The theorem then follows
from Theorems 2.3.1 - 2.3.3. From (2-126) it is obvious that
rt'(q) = o(n'l). Condition II, with @ = 1, requires that d(nzrtf(n))/dn <0,
or

'qzrt"(q) + Eqrtf(n) < 0. (2-128)
From (2-126) and (2-127)
PP "(n) + 2ne,'(n) = 2nr, (1) (nt4e)/(ntemee)  (2-129)

is negative since rt'(n) is negative, and the proof is completed.
Theorem 2.5.1 proves that for each of the 10 problems above,
rt(qs) >8 rs(qg). Because of the simplicity of the expression (2-125)

for rt(n), this can be improved upon. Since T is a stationary point of

r(n) and r,.'(n) = - r (n)/(n'+n+c)
r (n,)/(n'+ng+e) = r ' (n)) = Br (n )/, (2-130)
r.(n,) = Br(n) + Bksnos'l(n‘+c) . (2-131)

2.5.2 Estimation of the Mean of a Normal Process of Known Precision,
Linear Terminal Losses, Sampling Costs = Ks + ksnB, Normal
Prior Distribution of Process Mean..
This problem, with B = 1, is considered in Section 6.4 of [1] and

summarized below. Let

f
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4 = mean of a Normal process of known precision h
the prior distribution of [I be fN(ulm'g hn')
the terminal loss of estimating p by a

ko (a-p) 1if p<a, ko >0

ku (p-a) 1if B2 a, ku>0

As in the last subsection, results will be given here only for the case

K. = O, For r_(n) = k n where k_ > 0
s s s

s
2(n) = (k, + k )(ha") 2E e (c*) + k n (2-132)

where n" = n'+n and c* is defined by
FN*(c*) = ku/(k°+k“) . (2-133)

The optimal sample size n is either O or the unique root of
0 -1 a3 T
n" = (2ks) [(ko+ku) fN*(c Y1572, (2-134)

From (2-132), it is easily verified that

-rt(n)/en" (2-135)

()

r,"(n) = 3r,(n)/kn"™ (2-136)

from which it is clear that tt(n) has regularity properties (i) (2-29) and

(11) (2-30).

Theorem 2.5.2. The generalized optimal loss partition inequality

(if Ks=0) and the generalized Schlaifer's inequality, both with a = 1/2,
are true for the estimation problem of this subsection.
Proof: By (2-132) and (2-135) it is obvious that rtf(n) = o(n-l).

Since, from (2-135) and (2-136)
4]l




3 =3n'r (n
ar7(n) + (32, 1(a) = St ( LI 1)= 3n ()

s
n" k"

(2-137)

Condition II is true. Hence, by Theorem 2.3.3, Condition I is true, and

by Theorems 2,3.1 and 2.3,2, the generalized inequalities are true,
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Chapter III

égzgpgptic Egualities

3.1 Intreduction

In this chapter, several finite-action problems on the mean of a Normal
process are exeamined under the assumption of an absolutely continuous (with
respect to Lebesque measure) prior distribution of the unknown process para-
meters. ‘Becausé of the relatively weaek assumption concerning the prior
distribution, only large sample results are available.

It is shown in subsection 3.2.1 that for the two-action problem
on the mean p of a Normal process of known precision h with linear ter-
minal losses, the expected terminal loss rt(n) assoclated with a proposed
sample of size n 1is asymptotically proportional to n'l. In subsection
3.2.2 it is shown that for the same two-action problem with quadratic ter-
minal losses, rt(n) is asymptotically proportional to n'3/2; Tﬁéléame
problém ﬁith constant terminal losses is considered in subsection 3.2.3; in
this case, rt(n) is asymptotically proportional to n-l/a. These simple
asymptotic forms for rt(n) make it easy to derive asymptotically optimal
sample size formulas for simple sampling cost functions (Theorem 3.2.2).

The generalized optimal loss partition inequality and the generalized
Schlaifer's inequality become asymptotic equalities.

The results of subsection 3.2.1 are extended to finite-action problems
on the mean of a Normal process of known precision with linear terminal
utilities in Section 3.3. In Section 3.4 it is shown, under quite general
conditions, that if h 1s unknown the results of subsection 3.2.1 hold with
the prior conditional‘value of h'l given ﬁ'= by (the breakeven value of ub)

replacing nL.
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3.2 Two-Action Problems on the Mean of a Normal Process of Known

Precision with an Absolutely Continuous Prior Distribution of the

Process Mean

Some of the notation employed in this section was defined in Chapter 2;

for ease of reference, it will be repeated here.

Let

A = action space = (al, a2}

(3-1)

4 = mean of a Normal process of known precision h

~

generating independent random variables X, ié, oo (3-2)

.1 n
mo= m =0 L X (3-3)
Do(p) = prior density of (3-4)
~

Dl(p) = Dl(ulm) = posterior density of (3-5)
Dc(m|u) = conditional density of ® given u (Normal

with mean p and precision hn) (3-6)

. ®
D (m) = marginal density of m = [ D (u) D (mlu)dp (3-7)
m -p © c
m' = mean of the prior distribution of J (3-8)
n" = mm" = mean of the posterior distribution of § (3-9)
¢n(m) be defined by m " = ¢n(m) (3-10)
X 2) -(B/2)(x-M)° ,
ty xE) = (ayzm)(/2) &R ey g a0, 1) (3-11)
x

FN(xIM, H) = L fx(th. H)4t » B (x) = F“(xIO, 1) (3-12)
Gu('le’ H) =1 - Fu(x[Mﬁ d) » Gpy(x) = Gy (x]e, 1) (3-13)

rt(n) = expected terminal loss, prior tc ciserving o, of

an optimal decisior fcllowing a sample of size n (3-14)

N
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rs(n) = cost, or expected cost, of a sample of size n (3-15)

r(n) = total expected loss of a sample of size n
(3-16)

rt(n) + ra(n) .

3.2.1 Linear Terminal Losses

This subsection is concerned with the case of linear terminal
utilities, which result, in the terminology of Raiffa and Schlaifer (1], in

linear terminal losses. To make this precise, let

u(ai, M) = terminal utility of action a, if u obtains

=K +kp ,1=1,2 (3-17)
M, = breakeven value of u = (Kl - Kz)/(k2 - kl) (3-18)
k, = terminal loss constant = |k2 - k| (3-19)

The terminal loss if u obtains is O 4if the correct action is taken
and Kk |u-u | 1if the wrong action is taken. It is easily seen that for
given k., h, D (4), n, and m, one action is optimal if m" < W, and the
other action is optimal if m" > Hy -

Throughout Section 3.2 rt(n) will be expressed in the form used

in Section 2.3 rather than the form used in Sections 2.1 and 2.2, viz.,
r,(n) = _Z: r.(n, m) D_(m)dm (3-20)

where rt(n, m) Jdenotes tne expected terminal loss of the optimal

action posterior to observing m - For linear terminal losses

[¢ 0]
“i k(v - w) D, (u|m)au , 1if m "<y
rt(n, m) = by (3-21)
J okl - ) Dy (ujm)an , ifm "> .
(¢ o]
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The following assumptions are made about Do(p):

(o o]
1) w' = J WD (W < (3-22)
o
(11) D (w) > o© (3-23)
(111) Do"(u) = d2Do(p.)/du2 exists and is continuous (3-24)

throughout a neighborhood of My

To simplify the notation slightly, assume, without loss of

generality, that
k, =1 , h=1 s = 0. (3-25)

To shorten the proof of Theorem 3.2.1, several lemmas will be proved
first.

Lemma 3.2.1. ¢n(m) is finite and a strictly increasing function
of m.

Proof: The proof which follows is very similar to the proof of
Theorem 3.1 of [3] and incorporates an easy extension of the inequality
on page 43 of [9].

Since ,

Qo
D (m) = _é; D (u)fg(mlu, n) du > ©
and ?o M Do(u)du is finite by assumption (3-22)
-
@ -1
¢, (m) = NG fy@mlu, n) (B (m))"au < .

To show that ¢ (m) is strictly increasing, consider ¢n(m2) - ¢, (=)
vhere m, < m,. Let fh(mi|u, n) be abbreviated to fi(u) , 1 =1, 2,

Then,,since
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D (u|m,) = D, (u|n,) fg‘:l_) fo(u)
L Y X

and
Dy (my) ® £,(u)
Dm(ml') ._°£ f]_(“) Dl(l‘lml)d“ )

@®
(=) - ¢ (m) -_I kD (ujmy)au - _z u Dy (]my Jap
() ()
Do [ Aw 2] @
Palmy) P D, (u|m) (“’ il (“’n(ul o du
BT -4 * B [ o 2 ]

and this will be positive if the integral is positive, RNow, letting

ry = L)/ £(w) ed D, = D (um,)

)

£, (1) o £,(k)

@ 2
_{OP D, (k|m;) W _(J; £ Dl(ulml)du]du

(e ]e] [0 o]
= By Dy Ty Gy - LDy Dy L T2 Dy Wy

@O ® @® m
“of WDy Ty Wy [ Dy S - [ o Dydwy [ow, Dy

-oo
(fnafo ( ) D du, du ?? ( ) D..D,.du.du
= pr-r = Wl = T
co w11 11 Doy by kg cp e 272 7T Tt

[+ ¥}

@
) = Q/2)_ ] & - k) (7 - 7)1 Dy Dy dy

and the expression in brackets is positive for Y ¢ By since f (nlu, n)

has a monotone likelihood ratio. Hence, since D (1) is not a unitary
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distribution, the expression (1) is positive and ¢n(m2) - ¢n(ml) is

positive.

To simplify the proof of the next lemma, three preliminary lemmas

will be proved first.

Lemma A. For fixed £> 0 and M> 0 , andany k> 0

| |£€u D (k) £ (M/n, n)au = o(n”%). (3-26)
"

Proof':
[o]0] a
é( uD () £ (|¥n, n) & < £ (€ |Wn, n) ef u D (u)au

- o@Y/? e"l/z’nfzg’ b D (Wa) = o(a™®)

since ?’ n Do(u)dp. < @ by assumption (3-22). Similarly
-0
-£ -k
J uDo(u)fN(ulM/n, n)du = o(n).
-® :

Lemma B, For fixed € >0 and 1 >0, and any k>0

| Iiéui £, (|Wn, n)au = o(n’¥). (3-27)
i

Por a=o(n'l) and fixed 1 >0, and any k >0

' Iz{eu(p - a) fy(ula, n) & = o(n™). (3-28)
n

Proof: letting x = nl/2(p, - M/n) and €' = nl/e(t: - M/n)
?) ui f (u|M/n, n)dp = ; (xn'l/2 -4-)(/}1):l £, (x)ax
£ N N

=02 P e (x)ax)
[ N

= o(n'k)




1/2

since £' = o(n’°) and
( GN*(E') » 4=0
o] i _ } , -
é‘xfw(x)dx = 11‘“‘,(5) , i=1
vi'l [} @ i-2
€ fN_,(E ) + (1-1) {, x fn*(x)d.x , i>2.

Similarly

-t

[ wh g (ulWn, nJaw = o@™¥),
Hm -
The second part of the lemma follows easily from the first part.
Lemma C. For £ >0 and a = 0(n™)
f hu-a)® 2 (ula, ndaw = o(a™3/2) (3-29)

Proof: Since a = O(n-l), a¢[-€, €] for n sufficiently large.

Now
; \ £ € o |
I { wk-a) g ula, n)au | = | J (u-a) fo(kla, n)au + [ a(u-a)" £ (u|a, n)ais|
: a , a N
and letting x = n'/2(u-a), the right side of tnis equality is less than

n—3/2f x3 rﬁ(x)dx + n'l|a| ZD X2 £ (x)dx

N
which is o(n'3/ 2). Similarly

2#(“-3)2 fe(ula, n)ap = 0(n'3/2)

and the lemma follows.
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The next lemma has been proved by Guthrie and Johns (3, Theorem 3.3] ‘
for certain types of exponential distributions (not including the Normal
distribution) with mean u and a prior distribution of satisfying
assumptions (3-22) - (3-24).

Lemma 3.2.2. ¢;l(o) = - D; (0)/n no(o) + o(n'l) (3-30)
vhere DY (0) = a Do(u) / 44 evaluated at p = 0.

| Proof: It will be shown first that ¢;l(0) = O(n'l) by showing
that there exists an M > 0 and a.n N> 0 such that for n > N
(1) ¢n(-M/n) <0< ¢n(M/n)
8ince ¢n(ﬁ) '1s strictly increasing by Lemma 3.2.1, (1) is equivalent to
-Wn < ¢=1(0) < W/x, or, $-1(0) = o(a”t).
Consider
@) 4,0m) = (O Wn))™ L b W) £ Wnlu, n)au .
&n(M/n) has the sign of the integral in (2). and, f.or._‘;&mr,/.'euz:q

vy

(3) ?u Dy (W)t (Wnlu, n)au = fu D (w)f (u|Wn, n)au + o(n™t)
-5 -¢ N
by Lemma A. By assumption (3-24), for some § = € (u) such that €l <e
13
L D Wink|Wn, n) 4 - _Zu (0,(0) + u B3 (£))2, (4|W/n, n)u

@® &€ 24
= DO(O).[_afDu 1y (1 |[M/n, n)au -|p1f££‘"f“(uwn’ n)du] + _F{ m D:,(§)fn_(ulu/n, n)dp
Y
- DO(O) (M/n + o(n-l) + f'p? D; (E)f"‘(p|M/n, n)du by Lemma B. From assumption
(3-24) it also follows ;.gat € can be chosen such that |D; (§)| 1s boundea,

say by K, on [-f,€]. Note that K is independent of M. Hence

'3 [ 3
| b2 Dy () £, (u|Wn, n)au | < K S 1 W, n)a
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(5) =K Efua £ (kW2 n)du - I“{”u?‘fl(ulM/n, n)du}
=K [ n %+ Wa)®+ o))
by Lemma B again. Therefore, from (3) - (5)
L 0,0 ty0¢nlu, n)an 2D, 0)0a + o)) - K@+ (Walro@™ ) ko(ae1)

vwhich is positive for n >N if M and N are sufficiently large since
DO(O) is positive by assumption (3-23). A similar argument shows that
én(-M/n) is negative for n> N if M and N are sufficiently large.
Hence ¢;l(0) = O(n'l).
It will now be shown that ¢7(0) = - D1(0)/n D_(0) + o(n™t).
To simplify the following expressions slightly, temporarily let a = ¢;l(o).
It follows from Iemma 3.2.l1 that a i1s unique. Therefore, since Dh(a)l> o, .
& 1is the unique root of
@
0=[nD fy(alu, n)au

fef“ D (k) £ (au, n)au + lu{”“ D (k) fy(alu, n?du g

By assumption.(3-24), € can be chosen such that Do(p) is bounded on
(-€, €] apnd then from Lemna B
-1,

Iu{>e i D (u) £ (alu, n)au o(@™) .

Hence
f -1

(6) 0= w D (k) fy(als, n)au + o(n™") .
From the first part of the lemma, a = O(n'l) . Thus, for any fixed € ,
if n 1is large enough, a [-¢, ¢ ], and by assumption (3-24) Do(u) can be

expanded about & so that (6) can be written .as -
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0 = fu@,(a) + D) (a) (u-a) + 1/2 B (E)(u-a)?) gy (alu, mdawwola™)
-£
[ o]
= D_(a) (_c{ou fy( ula, n)du - |“{>£ p fy(n]a, n)du)
‘(a) ([ (ula, 2)a - [ ulp-a) £ )
+ Do(a) (_£ p(p-a) Ty Hi8, |M|>€“ p-a N(pla, n)du)

+ 1/2 fu(u-a)z £ (kla, n)du

= Do(a)(an»o(n'l)) + IJ")(a.)(n'l + o(n’l)) + o(n'l)

by Lemmas B and C. Therefore
(7) 0= a.Do(a.) +1nt Dé(a) + o(n'l).
From assumption (3-24) again, Do(a.) and Dé(a) can be expanded about O ,
for n sufficiently large, so that (7) becomes
0 = a(D(0) + a DI(E)) + n”* (D3(0) + & DI(E,) + o(a™))
where lgil < |a] < € for i=l, 2. Therefore, since a = o(n"?)
0 =aD(0)+ n~t D!(0) + o(n™)
or

a=¢-2(0) = -Dy0) / nD,(0) +o(a™).
lems 3.2.3. | &t B, (xax = 22 G/ (em™? (141) (3-31)
Lemms 3.2.3. [ xR,

for 1= 0,1,2, ... .
Proof: Successive integrations by parts with u = F", (-x) eand

dv = xtdx (i=0, 1, 2, ...) and, in the resulting integrals of the form

Txd 2 (x)ax vhere 3>1, with u=x"1 and dv=x ¢ (x)x
) N* N*

i
give 21'/2 r (1—;2) / (@ )1/2(1+1) , 1 even

®.1
fox FN’(-x)d.x = 1ol

r(1+1) / 2Tr‘(1—‘2'l) (i+1) , 1 odd.




For {1 odd , an application of the duplication formula for the gamma
function establishes the lemma.

Lerma 2)4 For fixed € >0 and { >0, and any k>0, 1if
a = O(n'l') then

Pul roaly, maw = oa™)
¢ (3-3)

_I (-w)t ¢y (alu, nlau = o(n™) .

Proof: Since
£ fo'e)
i i
o{ (-u)" G (alu, n)ap = [ u~ F (-alp, n)du
- N N
and
[o o] i o0 i
[w F (la] |u, n)au > [ u” F (a]p, n)du
£ N € N
it will be assumed that & > 0 and it will be proved that
00
i -k
Efp Fu(alu, n)du = o(n™") .
Let M> 0 be such that for n sufficiently large, a < M/n .
Then

[« 0} 4 o0 1
(1) Efu Fy(alw, n)au < é{u Fy(M/n | u, n)au

and letting x = nl/e(u - M/n) and ¢ = nl/a(e- M/n)

(fnui Fy(Wnlu, n)au Z’n'l/a(xn'l/2 + mh)? F.*(-i)dx
3 Ti

= O(n'(i+l)/2 (jpxi F _(-x)dx)
€ *

o (n'k)

since successive integrations by parts show that ZD xi F#*(-x)d.x is a

linear combination of 'fn*(e') and Fr(-e’), and g' = o(nl/e) .
‘ I
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Theorem 3.2.1. For the two-action problem on the mean p of a

Rormal process of known precision h with linear terminal losses and
an absolutely continuous prior distribution of p satisfying assumptions , - |,
(3-22) - (3-24)
() =k D(w)/2m+ o(ktn"2) (3-33)
vhere k :is the terminal loss constant defined by (3-19), Do(p.b)
denotes the prior demnsity at Hys the breakeven value of pu , and n
denotes the sample size.
Proof: For k =h =1 and u =0, (3-26), the theorem is that

r,(n) =D (0) / 2n+ 0(n"?) . From (3-21) and (3-25)

rt(n) = i rt(n, m) Dm(m)dm
where
L J
éu Dl(ulm)du. ifmy <O

rt(n, m) =

_CZ (-u) D (k|m)as  1rmp > 0

Stnce m? < O if and only if m < ¢7°(0) by Lemma 3.2.1, r,(n) ecan
be written -1 | |
i)

@) 2@ = J 7 uD(n) D (mudn + ?1(0) I (D, (u[m)D, (m)ouem.
'n

.4

Substituting (Dm(m))'l Do(u) fN(mlu., n) for Dl(plm) in (1) and inter-
changing the order of integration, which can be justified by Fubini's

theorem, gives

-1
w 4o ©) -1
r,(n) = £ _£o (D (m))""D (u) £g(m|p, n) D (m)dm du

o o0 1
@ « | (-u)(Dy (m))™" D (k) £ fm|w, n)am au
-OO *-l(o) ..
n
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00 -1 [o) -1
= {1 Dy(w) Fy(677(0) [, n)au + [ (-u) B () G4 (0)]u, n)an.

The theorem will be proved by showing that rt(n) , as given by (2),

can be written

a
ry(m) = 2 2,(0) [ E (O], n)auw + 0(n"%)

(3)

D (0) /2n + o(n"2)

1/2

since, letting x = n™"u and using Lemma 3.2.3

® 1@
fou F“(Olp, n)dy = n gx FN_!.’-x)dx = 1/4n .

As a first step towards establishing (3), from (2)

+ - @ -1 -t -4
r.(n) =1 + I + { u D, () E (4,7(0)]u, n)du +d (-p)D, ()G, (9,7 (0) |u,n)au
where

) ﬁu D (k) Fﬁ(d’;l(b)lu, r )y
- ° -1
I = -e[ (-u) D (w) GN(¢n (0)|u, n)ap
Since ?)p Do(p)du exists and ¢;1(0) = O(n'l) by Lemma 3.2.2, for any
-®
€>0 and k>0
© ©
[ b D, B ), m)u < P 0™ 2(672(0) - €)) JCEXBL

= O[FN.__._’-Enl/a)] = o(n™¥)
and similarly
F () p_(w) 6 (472 (0) Jaw = oa™)
_J} -u) D_(u N¢n | u, n)du = o(n™) .




Hence
(¥) rt(n) = T +1 + o™ .
Now, by assumption (3-24) there exists an &€ > O such that 1" and

I~ can be written
) ﬁu[Do(O)ng(O)ﬂ/e w2 Dg(§)1IF(o]u, n)+FN(¢;l(0)lu,n)-FN(olp,n)]du
I =_Z(-u)[Do(0)+ch',(0)+l/2u2D;(§2)][GN(OIu,n)+GN(¢;l(0) |k,n)-Gy(0]u,n)ldu

voere || <&, 1=1,2. Let

+ + +

() I'=1]+ T+ 3+, 1= I+ +I3+1
where

o ¢

1 = Lu DO(O) FN(OI“’ n)d“

rt £t 2,

o= Lr°Di(0) FN(OIu, n)du

)

13 = (Y2) [ v D3 () Fy(0lu, n)a

= [ wD W) (B 470) |u, n) - E(Olk, n)lau

M o ¥ Yo g\t H N ik

and Ii through I; denote the corresponding integrals of the analogous
partitioning of I” .
Since
1 1 f
(6) [ - ut gyloly, mlap = (1) [ O, n)aw , 11,2,
it follows that




e Mump GG IR D TE SN OED OB I OEN ) ) eE ey euems

L +
rt(n) = 21+ 13

3+ I; + o(n'k)

+ I: + I
(8)

+

-k
-no(o)/2n+13 ).

+II+I§+I;+o(n

It remains to be shown that I3+ Ip + ID+ X = o(n™%) .
Consider first 1; . By assumption (3-24), € mey be chosen such that
| B} (51” 1=1,2, is bounded by M, say, throughout the interval
[-6,€]. Hence

I <12 m fu3 Fy(oln, nMu <2/2 4 [ 43 Fy(Olu, o) au

=12 W2 f x3 7, (-x)ax
(9)

= /2 ma™ (3/8) (by Lemw: 3.2.3)
= O(n-a) .

By (6) and (9)

(20) 151 < 2 mP(3/8) = o).

Consider next I: + I; . By assumption (3-25). 1: and I; can te
written

7, = {ulo,(0) + u DYENIE (672(0)u, n) B (Ofu. n)law

I, -f (-»)[D (0) + u DI(E,)] [cu(¢;1(o)|p, n) - G (Olu, n)ldu
vhere

IE;] < €, 1= 3, 4. Bince

F,@;l(o)lu: n) - Fg(0lu, n) = G(0lu, ) - Gg(4: (0)|u, =},
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3 - - -
|{ uD°(0>[FN(¢nl(0)lu, n) - Fn(olu,n)ldutf(-u)no(O)[GN(énl(O)|n,n)-GN(o|u,n)]du
= 2,0 [ u Byl lu,n) - Fy(olu,m)lanl

14-1(0)|
[s0]
<) [ [ ylalt, nlaw o

D,(0) (¢;1(0))%/ 2

= O(n-2)
by Lemma 3.2.2
Hence
1+ 1 = § W0y 1, (10, m) - F(Olu, n)lan
= ] 42 036,16, (4720, )1 Gylolw, m)law + 0(?)
Letting H denote a bound on |D$(§)| for |§| < g

. e , 140
IIu + I, | _<_2M£ W L fy(t|u, nlat au + O(n'a)
14:2(0)] o
<2H [ [ fy(klt, n)du at + 0(n™®)
-
14:10)]
(11) = 2H (’n (n'l + t2)at + o(n™?)

= 20 (7 4;1(0)] + (1/3)14710)1) + 0(a”?)
= 0(n°2)

by Lemma 3.2.2.




From (8) - (11)
rt(n) = DO(O) / en + O(n-a)

It is not difficult to show that for the general problem
-2
rt(n) =k Do(p.b) / ehn + O(ktn )

Theorem 3.2.2. For r.(n) =k D (w )/ 2hn + 0(k,n?)

and ra(n) = k.n, the optimal sample size n = no(kt) satisfies

o]

n = (k, D (w) / 2uk Y2 + o, Y*) (3-34)

where k  tends to infinity. In general, if rt(n) = akt/na

+ O(kt / na*l) where a >0 and rs(n) =k, nﬁ, the optimal sample

size n, satisfies
n, = (ask,/px )Y (@B 4 o(x /(0 (3-35)

where kt tends to infinity.

Proof: The second part of this theorem (3-35) is applicable to
the problem of this subsection if @ is set equal to 1; if B also
equals 1, (3-34) gives a stronger result. The result (3-35) will also

be utilized in the following subsections and will be proved first.

Y
Let ﬁo = fi (k) = (aakt/ Bk,) where Y = (a+p)? and let

”~
t) =n -1n. Then

3]
—~
B>
(o]
~
[l

= rt(ﬁo) + rs(ﬁo)

1- Ya+l) ) .

ak, (cak, / eks)‘°r+ k, (o, / gk, )PY + olk,
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Y
The frist two terms on the right side of (1) are positive and o(kt‘3 )

While the error term is O(kty(e'l)). Now suppose n_ = no(kt)

= o(thq-S) where ¥+ § >0 and consider

o+l
r(no) ak, / ng + ksng + O(kt / ng )

(2) - O(ktl"’y'“g) + 0(, PHBE) 4 o 1o (@r 1) 4D,

o(ktar-as) . O(Rtenss) . o(ktX(ﬁ-l)-S(m-l)).

If § >0, the second term on the right side of (2) is positive and
of larger order of magnitude than r(ﬁo); if § <0, the first term on
the right side of (2) is positive and of larger order of magnitude than
r(ﬁo). Since n_  1s the optimal sample size, § =0 and n  and
ﬁo are of the same order of magnitude.

To show that £ = o(kt ) it will be shown that u = u(kt)

=n /ﬁo approaches 1 as k_ tends to infinity. Consider

a B a B ¥(g-1)
akt/no + koo - a.kt/ﬁo - k 8+ 0(k, )

r(no) -r(h) o

o]

(3) (akt/ng)(l/ua - 1) + ksﬁg P -1)+ o(ktx(ﬁ'l))

kA PL(p/a)(1/u®1) + (P-1)] + o(ktt(e-l))

since a.kt/ﬁo(x = (p/a) ka'io‘3 . It is easily shown that the expression
in brackets in (3) is positive if u # 1. Hence, if u does not
approach 1, then for any K >0, r(no) - r(ﬁo) is positive for in-
finitely many values of kt greater than K, contradicting the optimality

of n_ . Therefore u(kt) approaches 1 as k,_Z tends to infinity,

o t



- — -——— - L] ] ] [ ] [ L -_— ——— - w—— [ ] [} L____J [ ]

E(kt) = c(ktt), and the second part of the theorem is proved.

For the special case of the first part of the theorem, @ =8 =1,

1/2, and

r’;o = (&, D,y / 2uky)
r(n) = k8% / 0+ kn+ 0@k

= (ks/n) (n - ﬁo)g + 2ksﬁ° + O(ktn'g) .

- From the proof of the second part of the theorem both n, and n_ are

[o}

O(ktl/z) and hence
r(n) = ksaz/ (R, +€)+ 2k A +0(1)
r(ﬁo) = 21:360 + 0(1)

and
r(no) - r(ﬁg) = kg 52’/ (ﬁo +€) + 0(1).

Since € = o(ﬁo) , r(no) - r(ﬁs) 1s positive for k,  sufficiently large

unless € = o(ﬁol/e) = o(ktl/“). QED.

For the problem of this subsection, it follows easily from

Theorems 3.2.1 and 3.2.2 that if rs(n) = ksnB

r, () = B (n) + olic,” (1*F)) (3-36)

and, if n = O(no)

r(n)/r(n,) = (1/(1+8)) (a/n )P + (8/(148)) (m /n) + o(1), (3-37)
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i.e., the generalized optimal loss partition inequality and the generalized

Schlaifer's inequality, both with & = 1, are asymptotic (kt - )

equalities,

3.2.2 Symmetric Quadratic Terminal Losses.

In this subsection it is assumed that action a, (ae) is pre-
ferred to action :a, (al) if u< (>) W, and that the terminal loss is

0 1if the correct action is taken and
k, (u- )2 k, >0 (3-38)
t o "L R

if the incorrect action is taken. Assumptions (3-23) and (3-24)

concerning Do(u) are retained and (3-22) is strengthenbd to
© 2
(1') | »° D (s)au exists (3-22')
-

Theorem 3.2.3 below is analogous to Theorem 3.2.1 and shows that
for the problem of this subsection r, (n) 1is asymptotically proportional
to n'3/ 2. The proof of Theorem 3.2.3 will be simplified by first proving
several lemmas. The first of these lemmas 1s more general than necessary
for Theorem 3.2.3; it will also be used in subsection 3.2.3.

Lemma 3.2.5. Let L (u) , i=1, 2, denote the terminal loss
of action &

1
such that the integrals below exist (for symmetric quadratic terminal

if u obtelns: and assume that L () and L,(u) are

losses this follows from assumption (3-22')). If Ll(u) is 0 for

u <0 and non decreasing for u > 0, then j) Ll(u) Dl(p.lm)dp. is a

non decreasing function of m. If I.a(u) is non increasing for p <O
and 0 for p >0, then_oz La(u) Dl(p,lm)dp is a non increasing function
of m. |
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L3

®
Proof: Consider J I.l(p)Dl(u]m)du. . Using the notation and
- -}
the trick of Lemma 3.2.1, it can be shown that 6[ Il(p)Dl(ulmz)du
®
- a{ Ll(p)Dl(plml)d.p is positively proportional t?.

() (/2) (IQ ! Ll(ul)(rl-r2)DnDaldulduz«*Isz L, (y) (r,r, )D) 1D, kA,
| . ,

1
where Q, = quadrant i. From the assumptions on Ll(p‘) and the monotone

likelihood ratio of fn(mlp,,n) , it is easily seen that (1) is non negative.

Note that if Ll(p.) is positive for some u >0, (1) is positive and

Q0

/ Ij_(u) Dl(p.)lm)d,u is strictly decreasing in m . The other half of the
-}

lemme is proved in the same way.

lemma 3.2.6. There exists a unique m.b(n) such that
© 2 ° 2 ’ | |
J WD (klmas - | uD (wfm)an < (>)0 for m< (>) m(n) (3-39)
o -®

and mb(n) = O(n'l) .

Proof: The existence and uniqueness of m, follow from the theory
of monotone likelihood ratio procedures [10]. They could also be deduced .
from Lemma 3.2.5. To complete the proof of the lemma it will be shown

that there exists an M >0 and an N > 0 such that for n> N

T e ¢ 2
o -0

and

® 2 (o] 2
(2) [ wDy(w|-Mn, n)auw - [ u'D,(u|-Wn, n)au <o0.
[o) -

Consider (1).
® 2 ° 2
J wD (uIM/n, n)au - o{, D, (4|M/n, n)au
° -
(3) = 0,0/ [ P B )y (uWa, )ay - | WP
n 3 Dk l'l" n:nd“:“{ UDO(H)fl(“luln,n)d“]

will be positive if the quantity in brackets is positive.
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By assumption (3-24), the quantity in brackets in (3) may be written as

3
{,uano(o)f“(uln/n, n)dp - Z uano(o)fn(ulu/n, n)du
)+ £ wia, e - ] Wiy, m

[
+ E?’fno(p)f“(uwn, n)du - _ZuaDo(u)fN(ulM/n, n)dy

where IEil <€ for 1 =1, 2. From an easy extension of Lemma A, the
third line of (4) is o(n'k) for any k > 0. Letting H denote a

bound on [Di(w)| for |u| <€, it is straightforward to show that

| £pn € eyl mian - T W30y(E, )0y ln, ma | = 0Gmn ),

It is also easy to show that the order of magnitude of the first line

of (4) is exactly Mn'3/ 2 Hence , since the first line of (4) is clearly
positive, the entire expression (4) is positive if M is sufficiently
large.

Lemma 3.2.7. For € >0 and a =O(n”l)

3
[ W2 (Fy(alu, n) - Fy(olu, n)lau +_Z W2cy(als, ) - Gy(0lk, n)lau=0(n">/2)
(3-k0)

and

e
| £wiryalu, n) - Bylolu, n)lau | = o(a™/2). (3-42)

Proof: From Lemma 3.2.4, replacing € by ® and - € by
- © in (3-40) or (3-41) adds terms of o(n'k) where k is any

positive number. Hence, for (3-&0) it suffices to show that

(1) ?p,?[l'u(alu; n) - Fyu(Ou, n)ldu +-Z "2[0.(‘“*: n)'G.(OIu,n)]du-o(n'5/2)-
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Letting § = anl/? and x = nl/a(a - )
Pl (alu, n)a = { (s - xa"Y/2)2 Ryt ()0 2ax
(2) ©° -©
-2 ([ x ga (o v | ()? ma(adan)
-® -Y
and

2 32 ® 2 -3/2 P .2
@) [ Waylalu, maw =272 T (rxfaptin - 272 F i (oas.

Letting x = -n%/2,

) T wry(oln, man = ] wPoy(olu, m)au = n”Y/2 [ Ege(x)ax.
From (2) - (4), the left side of (1) may be written

-Y
a2 4 (PR (x)ax +_f (V-x)PFyn (x)ax + ;}° (Y-x)2Eygn (-x )ax-2 xR (-x )ax]
= n'3/2[1219°FN*(-x)d.x + 2Yj'°xFN*(-x)dx + ?oszN*(-x)dx + fY(Y-x)‘?FR*(x)d.x

't 4 4 ' -Y
,200 a (¢ o] 2 -2} 2
+ iff FN*(-x)dx - QY}' xFN*(-x)dx + J X FN*(-x)dx -2 g X FN*(-x)d.x]
Y

(5) = 1'1'3/2[2¥2 EOFN*(-x)dx +_£ (Y-x)2 F“*(x)dx -2 fszN*(-x)d.x]

and the equality (1) will be true if the quantity in brackets in line (5)

is O(n-l).
Since [ = O(n'l/a)
o) jDFN*(-x)dx = o(n'l).
Integrating by parts twice
| 4 2 3 ¥2
[ %" Fyn(-x)ax = (y7/3)Fu(-¥) - ( /3)f,,¢(Y)f (2/3) (£ (0) -1y (¥))

- o(n~3/2) - o(n}) + 0(£,#(0)-£,%(Y))
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and, letting M be such that for large n, |¥] < Ma™Y/2

n[fyw(0) - £ (¥)] = 0[n(1 - e"'a/a)l

<n (1 - e-na/en) = 'jo)é,)l(--l)‘j-l(ﬂa/2)‘j / 3! ! < o .
Hence, fN*(O) - fN*(Y) = O(n'l). It remains to be shown that
Y
[ (V%)% Fa(x)ax = o(a™)
-Y
and this follows easily since
Y Y
| § xR bax | <2lvl] {ax | = o(F) = o™

This establishes (3-40).

To prove (3-41), it suffices to show that for a >0
a -
7 Wiryelu, ») - Bylolu, m)law = 0@ /?)
since
00 3 K- 3
| { w(Fy(elu, n) - Fy(olk, n)jau | < J wIFy(le]lu, n)-Fy(0lu, n)ldu
Now
3 x-r 3 I
T wirg(alu, n) - Bgolu, m)lan = f [ w3 gy (slu, nlas o
N
=] ] w £,(]t, n) au at
[o Je)
a
- -3/2 1/2,3
n J?{‘ (x + tn7“) fuﬁ(x)dx dt
and this is easily seen to be o(n"5/2)

since a = o(n'l) and Tx3 fm(x)dx =2 ru,(o)‘.
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Theorem 3.2.3. For the two-action problem on the mean pu of

8 Normal process of known precision h with symmetric quadratic terminal
losses and an absolutely continuoue prior distribution of p satisfying

assumptions (3-22'), (3-23), and (3-24)
r,(n) = (5773 VEW M () / n¥/?) 4 0(en™/2) (3-42)

where kt is defined by (3-38) and Hy denotes the breakeven value
of .

Proof: As for Theorem 3.2.1, the proof is given for the case
of By = 0, kt = h =1, From Lemma 3.2.5, it follows that there exists

a unique mb(n) such that action a, 1s preferred if m<m and

1

action a2 is preferred if m > m . Hence

_ B0 5 ® o ‘
(1) r,(n) L[ D (u|m)D, (m)au am + Lo-bfo WZD, (u[m)D_(m)ay an.
Proceeding exactly as in the proof of Theorem 3.2.1, (1) can be written as
(2) r, () = 1"+ 1"+ FuD_(w)Fy(m |u, n)au + [ 12D (w)ay(m |u,n)
r.(n) =1 + +guouﬂmb|u,ndut0°fuou (@ lu,n)du

where

1t - f uaDo(u)FN(mblu, n)du
- ° 5
I =_£ WD, (k)G (m |u, n)du

®
Since oé ueDo(p)dp exists by assumption (3-22') and mb(n) = O(n-l)
by Lemma 3.2.6, the last two integrals on the right of (2) are o(n'k)

for any € >0 and k >0 by Lemma 3.2.L,
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Expanding D_(u) in I' and I and partitioning the resulting

integrals as in Theorem 3.2.1 gives

. (o]
- [P ool maw 3] - {0 (0)g(olw, mam

o+

I+ £ 3 t i O 3 '
2 = éu DO(O)F'(OIN) n)d# ) 12 '.g H Do(o)%(oll‘: n)au

£ h‘ (1] - ° h "
I =$l/2)(( b Dy (£ )Bg(Olu, nldu X =(l/2)_£ Dy (£, )G (0]k, nldu

w +

T £
b= [ D () [Fy(m |u, n) - Fy(0|u, n)lan
I, =_Z uaDo(u)[G.(mglu, n) - Gg(o]u, n)lau

Now,f{=1l and

217 = 2 D_(0) fpel?’(iﬂlp., n)ap + o(n®) (by Lemma 3.2.k)

i}

2 Do(O)n-3/2 oz x%‘"(%)dx_ﬁ: -0 (n'k)

2 Do(O)n-3/2 2 [ @)/372n +o@™™) (by Lemma 3.2.3)

u

(4/3VEF) (0 (0)/n¥/?) + o(@™) .

+ -
Agein. I] = -I

(9) and (10) in the proof of Theorem 3.2.1

and by the same type of argument as was used to derive

| 15+15 | - o2y |

Finally, letting H denote a bound on [D")(E)I for |B| <€



. £
L, + I, = [ WD (0) + ub' (€,)] [Fylm |u, n) - Ey(o]u, m)lau
+ 1 4210, (0) + uD(E,)] (Gylmylu, n) - Gy(olu, m)le
oy 0,
< DO(O)IIO. u (Fy(m |u, n) - Fy(olu, n)l + £ e [Gy(m |1, n) - Gy(0[u, n)ldp]
+2 8 fuiryllmy| I, ») - By(olu, )law

= O(n-5/2)

by Lemma 3.2.7. For the general problem it is easily shown that rt(n)

is as given by (3-42).
P
s

Y (043/2) o Y (843/2)) (3-43)

For the problem of this subsection, if rs(n) = k
n, = (/w2 (kD () / pik,)]

by Theorem 3.2.2. Using Theorems 3.2.2 and 3.2.3, it can be shown that

the generalized inequalities,with a = 3/2, become asymptotic equalities.

3.2[3 Constant Terminal Losses

In this subsection it is assumed that action al (a2) is pre-
ferred to action a, (al) if p< (>) w, and that the terminal loss
is 0. if the correct action is taken and Kk, (kt > 0) 4if the incorrect
action is taken. A similar problem with a Normal prior distribution
was considered in subsection 2.4.4 and there kt was fixed at 1. This
could be done here also, but then, for asymptotic results concerning
o (assuming rs(n) = ksnﬁ), k, would have to tend to 0. For
consistency with the rest of Section 3.2, the terminal loss constant

here is chosen to be kt’ for asymptotic results it is assuwed that

k, tends to infinity, and ks will be thought of as fixed. The
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crucial cost parameter, of course, in all of the problems considered
so far is kt/ks' It is also assumed that Do(p) satisfies assump-
tions (3-23) and (3-24) and that M = O.

Lemma 3.2.5 holds for the problem under consideration and, as
in the last subsection, there exists, for fixed n, a unique mb(n)

satisfying
® )
g Dl(p.lm)dp --cé Dl(p.|m)dp. < (>)0 for m< (>) m.b(n).

Furthermore, a proof analogous to that of Lemma 3.2.6 shows that
m (n) = O(n-l). Then, corresponding to Theorems 3.2.1 and 3.2.3.

Theorem 3.2.4. For the two-action problem on the mean u

of a Normal process of known precision h with constant terminal
losses (kt for an incorrect action) and an absolutely continuous

prior distribution of u satisfying assumptions (3-23) and (3-2k)

r () = (/)2 [k, D ()/ (m)/2] + 0(x,n™Y/2). (3-44)
Proof: Assuming W =0, rt(n) can be written, as in the

proof of Theorem 3.2.1 as
ro(0) = [ %, D (n, g (my i, mn)as + J k. D G, ) my I, mm)as
+ cfkt D, (b, JFyg (m, |w, bn)du ‘lfkt D, (i, )Gy (m, |w, Bn)au.

Using arguments very similar to those in the proof of Theorem 3.2.3,

it can be shown that
00 _3/2
rt(n) = eJ k, DO(O)Fn(OIu: hn)du + O(ktn )
-2k Do(o)(hn)'l/2 zor'..(-x)d.x + o(ktn’3/2).
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-1/2

®
The theorem follows since é FN*(-x)dx = (2n) by Lemma 3.2.2.

For the problem of this subsection, if r_(n) = kSnB
ng = [ /2rn)Y2 (e, D (n) / g x 1Y B2 L o Y (B41/2)) (35

by Theorem 3.2.2. Using Theorems 3.2.2 and 3.2.4, it can be shown that the

generalized inequalities, with a =1 / 2, become asymptotic equalities.

3.3 Finite-Action Problems on the Mean of a Normal Process of Known

Precision with Linear Utilities and an Absolutely Continuous

Prior Distribution of the Process Mean

The asymptotic results of subsection 3.2.1 can be extended to éeneral
finite-action problems on the mean of a Notmal biocess with linear utilities.
For simplicity, only the three-action problem will be considered explicitly.
Le .

(3-46)

A= {a, a8, a

17 Bpy 837

u, (8, ) =K +ku i=1, 2, 3 (3-47)

!

Tt (ai, u) = terminal loss of a, if u obtains

max (ut (aj’ M) - U (ai" u)), 1=1, 2,3 (3=48)

(k) - )/ (ky = dy) 5 g = (K - Kg) [ (kg - k) (3-49)

= | ky, - k

Hp1o

k

t12 k

1 | ’ t23

]

| kg -k, | . (3-50)

The rest of the notation used below is defined in Section 3.2. In
particular, note that T (ai, pu) defined in (3-48) is the conditional

(on u) terminal loss of action a

; vhile rt(n) defined in (3-1%) is
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the expected terminal loss, prior to observing m, of an optimal decision
following & sample of size n.

It is assumed that k1 < k2 < k3 and “b12 < “b23 . These as-

sumptions guarantee that the problem is nondegenerate (each action is
strictly preferred for some values of i) and index the actions so that

8, is preferred if p < Hp1p? 8, is preferred if Hp1o <u< ”b23’

and a3 is preferred if u > “b23’ Of course, “b12 is the breakeven

value of u Dbetween & and 8y)

between a, and a3. With regard to Do(p), the prior density of u,

1t is assumed that (3-22) holds and that (3-23) and (3-24) hold at both

Hp1p 804 Hyog.

and “b23 the breakeven value of pu

Theorem 3.3.1. For the three-action problem on the mean u of a

Normal process of known precision h with linear utilities and an
absolutely continuous prior distribution of p which satisfies as-

sumptions (3-22), and (3-23) and (3-24) at by, &nd Mo23

ro(n) = (kypp D (yyp) + kypy Dolings)) / (20m) + 0(kn” ) (-5

vhere k = max (k 10 1;23).
Proof: From the assumed linearity of the terminal utility functions
u, (ai, B), the optimal terminal action following a sample of size n
resulting in a posterior mean m" depends only on whether m" < Mp1o
n L1}
(a1 optimal), pyp S 8" < Mp23 (en.2 optimal), or m" > Mpa3 (a.3 optimal).
From subsection 3.2.1, Lemma 3.2.1 holds and Lemma 3.2.2 generalizes
-1 B -1

easily to ¢ (bp10) = Wyps - Dy (My10) /naD (pbla) +0o(n") and

‘%23) = Myo3 = Dylmyp3) / 0 D) (“b23) + o(n™!).  For the theorem being
roved, O the fact =
P , only the fact that ¢ ‘pblz Mp1o + o(n” ) and ¢ ("b23
= F‘b23 + 0(n” ) is needed.
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Now, from (3-47) - (3-50) it is easily shown that

Y o B S Hyo
Top (8, 1) = ey (uomy) o) - Hp1o S M S Hyp3 (3-52)
krp(byip) * Kppg(h - bps) K 2 Hpp3
rct(aa, M) = 0 “le SHS “b23 (3'53)
Epg(Hotyo3) ’ M2 Hoo3
kyp3(bypg = B) + Epyplinyy - 1) P
rct(‘3) u) = kt23(ﬂb23 - M) ’ “b12 S B S “b23 (3'5“)
0 ’ 2 g3
And
®
rt(n) =-c:>f rt(n, m) Dm(m)dm (3-55)
vhere, for values of m such that a; is optimal
@
rt(n, m) = [ rct(ai’ B) Dl(ulm)dp . (3-56)

=100

Action a,, for example, is optimal if and only if m" < L8Py, and

by Lemua 3.2.1, m" <, if and only if m < ¢;l(ub12). Hence, the

contribution to rt(n) from values of m such that a. is optimal is

1

given by
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®
x S Tet(ay, 1) Dy (k|m)a D, (m)dm
-1
9y () o0 ©
= _gp [ %p (i) (wm)du + [ koo (ki o2 )D, (|m)du]D, (m)dm
Mp12 Hp23
from (3-52). The complete expression for rt(n) can be indicated by
o Yo BN
ro(n) = [ é + [ [+ [ ]
- 1 ° b2 al-m
(3-57)
% w0 o °1 © %2
]« T + | |
1 b2 a2 ~00 5.2 -

- 4-1 -
here & = ¢ (b 4 g.q) end b= .

In each of the six double integrals in (3-57), the integrand is determined

by the index of b; if bi appears as & limit of integration the

integrand is

ke 1,141 e - Ho,1,1+1 | D) (4|m) D (m). (3-58)

Combining the second and fourth double integrals and the third and fifth

double integrals on the right side of (3-57) gives

al ® b 8.2 @D ® b2
r(n) = [ Z’l L L Ll L (3-59)

Applying Theorem 3.2.1 to the first two double integrals and again to
the last two double integrals on the right side of (3-59) establishes

the theorem.
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The discussion above clearly generalizes to the nondegenerate
p-action problem, If the actions are indexed so that the index of the

optimal action never decreases as u increases
T, (n) (1 Z) % 1,141 Do(by,q,442)) / (2BR) + O(icn” ?) (3-60)

vhere k , and kIII are the obvious generalizations of

t,1,1+41° Mb,1,1+41
the notation used in the three-action problem.
From Theorem 3.2.2 it follows that the optimal sample size n,

for the p-action problem being discussed with r' (n) = ksn satisfies

By = [(li)éi kt,1,1+1 Dc("'b,i,i-rl)) / (e ka)]l/a + o(kml/u)' (3-61)

Asymptotic optimal sample sizes for the p-action problem with rﬂ(n)=k‘nB

also follow from (3-60) and Theorem 3.2.2.

The analysis of this section can be extended to other loss functions
but the details will not be given. Roughly, with mild restrictions on the
rates of increase of the terminal loss functions, the first order terms
making up rt(n) depend only on the terminal loss functions of "second-
best"” actions in neighborhoods of the breakeven points. If, for example,
these losses are all constants, for large n, T, (n) will be asymptotically

1/2

proportional to a weighted sum of these constants divided by n vhere

the weights are the prior densities at the breakeven points.

3.4 Pinite-Action Problems on the Mean of a Normal Process of Unknown

Precision with Linear Terminal Utilities and an Absolutely Continuous

Joint Prior Distribution of the Process Mean and Precision

In this section the results of subsection 3.2.1 and Section 3.3
are generalized to the case in which the process precision is unknown.

Only the two-action problem is considered explicitly.
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Let Do(u, h) denote the joint prior density of (fi, &) and
Do(plh) the prior conditional density of { given h, It is assumed
that assumptions (3-22) - (3-24) hold for Do(plh) for all h >0 and

further, that a neighborhood of A(‘u.b|h) exists such that (3-24) holds

uniformly in h and that the second negative moment of the:marginal prior-

distribution of: h .1is finite.

From the proof.of,Theorem 3.2.1 it is easily shown that

4
r,(n[n),= k D (i, |n) / 200 + O(k, (an)2). (3-62)

Hence, if Do(h) denotes the marginal prior density of h and Do(u.b)

- the marginal prior density of U at My

oo
rt(n) é Do(h) rt(n|h) dh

(k,/2n) th'l D_(n)D_(u,|b)an + 0(k, f(hn)'ano(h)dh)

® -2
(kt/.?n)J h Do(h)Do(p.blh)dh + O(Rtn )

(k,/2n) [ D (b|w ) D (w )b + O(k.n"2)
t é [+] ""b o “'b t

(k,/2n) D_(1,) E (a™ lig,) + 0(k,n"?)

where

E (b ) = fn‘l D_ (5 [, )dn

denotes the prior expectation of the process variance conditional on
F=n.

Thus, for the asymptotic form of rt(n) and hence, the asymptotic
optimal sample size, Do("'b) Eo(h°l|p.b) is a certainty equivalent for the

joint prior density Do(p, h).
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1.

2'

Addenda to
BAYES DECISION THEORY:
INSENSITIVITY TO NON-OPTIMAL DESIGN

Gordon R. Antelman

Pages (i) and (ii) are reversed. (Amended:-disregard)

P. 1, par. 1. A general formulation of a class of decision prob-
lems, which includes all of the problems discussed here, is given
by Raiffa and Schlaifer [1, Chapters 1 and 4]. The terminology,
and to a large extent, the notation used in this report follows
that of [1].

P. 1, 1. 10. Replace 'which have not been considered elsewhere."
by "discussed here but not elsewhere,"

P. 4, 1. 2, Insert "(Theorem 3.2.2)" after "derived".

P. 4, 1. 4, Replace the sentence "The asymptotic form ... " by
"The asymptotic form of rt(n) is also considered for symmetric
quadratic terminal losses (Section 3.2.2) and for constant terminal
losses, i.e., the hypothesis testing formulation (Section 3.2.3)."
P. 4, 1. 4 of Sec. 1.2. Replace "a continuous" by "an absolutely
continuous."

P. 4, 1.5 of Sec. 1,2. Insert "as (kt/ks) tends to infinity,"
after "it is shown that."

P. 5, 1. 11, After '"variance." insert "(The analysis referred to
treats n as a continuous variable; from a practical standpoint,
one observation would be required in the 1limit.)"

P. 6, 1. 12, Concerning "The reason for this difference is dis-

cussed in Section 2.4,5." and the following sentence, see also
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10.

11.

12.

13.

4.

15.
16.

17.

point 22 of this addenda.

P. 6, 1. k* (a star superscript is used as an abbreviation for
“"from the bottom of the page"). Replace "non unitary (two-point)"
by "two-point (non unitary)."

P. 7, 1. 4, Replace "indicated" by "indicates,"

P. 8, par., 2. This two-action problem is stated in terms of
linear terminal profits, rather than utilities, in [2].

P. 8, last par, All of the problems discussed in this report are
phrased either in terms of utilities or in terms of opportunity
losses and in every case it is assumed either that total utility
is the sum of a terminal utility and a sampling utility or that
total opportunity loss is the sum of a terminal opportunity loss
and a sampling loss, It is shown in [1, p. 84] that if terminal
utilities and sampling utilities are additive and the utility scale
is chosen such that the sampling utility of a sample of size O is O,
total opportunity losses can be written as the sum of terminal op-
portunity losses and sampling losses, or costs of sampling, where
the costs of sampling equal the negative of the utility of sampling.

P. 12, eq. (2-11). Replace "fn(tlp,h)" by "fN(tlp,h)"

P. 13, eq. (2-21). Replace "(hn')¥ " by "(nat)E.»

P. 13, eq. (2-26). Replace "(hax)™¥ ¥ by "k (haw) H.n

P. 14, eq. (2-30) and the two sentences following (2-30). As it
stands, the sentence following (2-30) is not true. However, (2-30)
can be weakened to

(11*) dzrc(n)/dnz exists, n > 0. (2-30")
and Theorems 2.3.1 - 2.3.3 still hold, and it can be shown that

regularity properties (i) and (ii') and Conditions I and II
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18.

19.

20.

guarantee that n, is either O or unique and positive.

P. 18, eq (2-44), Replace "b" by "ks."

P. 20, Theorem 2,3.3. Following is a restatement of Theorem 2.3,2
and an expanded and corrected proof.

Theorem 2.3.3. If Condition II is true for O = o > 0 and

té(n) = o(n'l), then Condition I is true for a = o .
Proof: Since rt(n) is an expected terminal opportunity loss
and terminal opportunity losses are necessarily non negative, rt(n)

is non negative for all n > O, By regularity property (1) (2-29),

rt(n) is strictly decreasing for n > O, Therefore aort(n) decreases
to a non negative constant, say c, as n -, Since nté(n) -0 as

n - o by hypothesis,

1
nrt(n) + aort(n) -c

as n = w,

Now

< a +1
d(nré(n) + aort(n))/dn =n %d(n® r;(n))/dn

and this is negative for all n > O by Condition II (2-36). Ther:-

fore, nré(n) + aort(n) is positive for all n > O since it has .

negative derivative and approaches a non negative constant as n =,
Since

' l-ao ao
nrt(n) + aort(n) =n d(n rt(n))/dn

a
it follows that d(n ° rt(n))/dn > 0 for all n > O, which is

Condition I (2-31) for a = a.

P. 20, 1. 1 of footnote e. Replace "n < 0" by "n > 0.,"
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21‘

22.

P. 22, 1, 2 of proof of Lemma 2.4.2, Replace “rt(n)" by "r:(n)."

P. 35, Sec, 2.4.5. To illustrate the similarity of the results

of this subsection and the results for two-action problems with
discrete prior distributions, consider a two-action problem on the
mean yu of a Normal process of known precision h with linear terminal
losses, sampling costs = ksn, and a discrete prior distribution of
fi. For simplicity, assume that the mean of the prior distribution

is O, that by = 0, and that h and kt’ defined by (2-17) are both 1.
Let Do(pi) denote the prior probability that {i = p, and let Dl(pilm)
denote the posterior probability that {i = My given an observed

sample mean m.

From (2-86) - (2-88)

(1) rt(n) = jwrt(n,m) Dm(m)dm

and in analogy with (2-91) and the sentence following (2-91)

Zomy Dl(pilm) ifm<oO
g >0
(2) r(n,m) =
L (-p,) D (u,|m) if m> 0.
1/ 1\
g <0

Substituting (2) in (1) and replacing Dl(“ilm) by

Do(“i) fN(mlpi,n)/Dm(m) yields

n

0 . -]
r (n) “1); . uiDo(uil{ £y (mu, ,n)dm + . Z, (-ui)Db(uL)(§:in(m]wi.n)dm

(3)

[

“ii . gD () Foy(on m) + . 2<3 . (=) Do(ky) Gyy(-py )

from which it can be seen that rc(n) decreases exponentially fast
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23.
2k,

a5.
26.

27.
28.

29.
30.
31,
32.

as n increases, As a result of this, it can be shown that if

k =0, so that n_ =, r (n_ )/r (n_ ) 0, This conslusion can
] o t'*' o' 8' o

easily be generalized to constant or quadratic terminal losses
and can also be generalized to the case in which the mean of the

prior distribution # Hp -

In summary, for these two-action problems, discrete prior
distributions or continuous prior distributions and an indifference

region about p_result in rt(no)/rs(no) -0 as n e while for
continuous prior distributions and no indefference region about Hy»
rt(no)/rs(no) approaches a positive constant as n  -+®. The former

result rests on the "tail behaviour" of the Normal distribution

(see, e.g., (3) above or (2-116)), the latter result depends on

the "central behaviour" of the Normal distribution (see, e.g., (2-109)).
P. 43, 1, 3. Replace "Lebesque" by '"Lebesgue."

P. 46, 1. 1. Replace "The following ... " by "For given Hy o the
following ... ".

P. 51, 1. 4. Replace "o(n-1)" by "o(n'l)."

P. 51, 1. 2%, 1Insert "¢" between "a" and "[-E, €]."

P. 52, 1. 3*%. Replace "(2 )* " by "(2n)§ S

P. 54, 1, 1%, 1Insert "Dm(m)" before "dmdu."

P. 60, 1. 1. Replace "frist" by "first."
P. 64. Underline "Lemma 3.2.7."
P. 71, title of Sec. 3.3. Insert "Terminal" after "Linear."

P. 76, 1. 4, Replace "(pblh)" by "(ub)."
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