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BAYES DECISION THEORY:

INSENSITIVITY TO NON-OPTIMAL DESIGN

Gordon R. Antelman

CHAPTER I.

INTRODUCTION

1.1 Summary

This report presents for several fixed sample size decision problems

upper bounds for r s(n )/rt(no0) and r(n)/r(no), where n is the Bayes optimal

fixed sample size, r t(n) is th. expected terminal opportunity loss for a

sample of size n, rs(n) is the expected sampling loss, or cost, for a sample

of size n, and r(n) = r t(n) + rs(n) is the total expected opportunity loss

for a sample of size n. For one of the main problems considered here,

Raiffa and Schlaifer [1] give a nomographic procedure for finding n0; for

several others they give explicit formulas for n . Equations from which

n can be determined explicitly or numerically are given here for those pro-

blem which have not been considered elsewhere. Generally speaking, the

upper bound on r(n)/r(n0) shows that r(n) is insensitive to n. The upper

bound in conjunction with expressions for n can be used to show that r(n)o

is insensitive to the use of the wrong prior distribution or the wrong cost

parameters.

All of the problems considered here have four common properties: only

fixed sample size procedures are considered, terminal opportunity losses

are a function of only one process parameter, prior distributions are con-

tinuous, and terminal opportunity losses and sampling losses are additive.

All of the finite-action problems considered are on the mean of a Normal

process. The estimation problems considered involve Bernoulli, Poisson, or

Normal processes and, except in one case, quadratic terminal opportunity

losses. For the non asymptotic results, conjugate prior distributions are
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assumed. a/ Throughout the report, "loss" will refer to "opportunity loss.'.'

This investigation started from a conjecture of Schlaifer's. For the

two-action problem on the mean of a Normal process of known variance with a

Normal prior distribution of the process mean, linear terminal utilities

(which result in linear terminal losses), and proportional sampling costs,

Schlaifer conjectured that r(n)/r4n) < '(1/)(n/n0 + n 0 7n) if n >.o.

inequality will be referred to as "Schlaifer's inequality." In an unpub-

lished note, I. R. Savage proved that Schlaifer's inequality holds for the

problem of estimating the mean of a Normal process of known variance with a

Normal prior distribution of the process mean, quadratic terminal losses,

and proportional sampling costs. In Section 2.4 (Theorem 2.4.1) it is

shown to hold for the two-action problem for which it was conjectured.

Another inequality, related to Schlaifer's inequality and true for all of

the problems considered for which Schlaifer's inequality is true, is that

rt(n0) > rs(no). This will be referred to as the "optimal loss partition

inequality .'

Heuristically, the optimal loss partition inequality and Schlaifer's

inequality are true for the two-action problem which gave rise to Schlaifer's

inequality, as well as many other fixed sample size decision problems, be-

cause rt(n) approaches, in the "right way," a function a/n (a > 0) as n

increases. Thus, for rs(n) = bn(b>O),r(n) " a/n + bn. It is easily shown

a/ For the definition of "conjugate," see [1, p.4 7]. The conjugates of
the Bernoulli, Poisson, and Normal (known variance) processes are beta,
gamma, and Normal distributions respectively.

b/ In [2, p.546 ], Schlaifer states that it can be shown that the inequality
holds. From personal communication with Schlaifer it was learned that
the inequality was based on numerical evidence and had not been proved
analytically.
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that if f(n) = a/n + bn is minimized by n , then a/n° = bn and f(n)/f(n =S000

(l/2)(n/n + nan). The first equality corresponds to the optimal loss parti-

tion inequality; the second equality corresponds to Schlaifer's inequality.

Furthermore, the analysis of f(n) above generalizes to: if g(n) = a/n +

bn (a,b,at > 0) is minimized by no, then a/no = (P/a)bn and g(n)/g(no) =

a (n) + P -2 . For many decision problems for which r(n)

approaches a function a/na as n increases, and rs(n) =_bno, it will be shown

that rt(no)> (/a) rs(n)and r(n)/r(n) < a 2 + P i

These inequalities will be referred to as the "generalized optimal loss parti-

tion inequality" and the "generalized Schlaifer's inequality."

In Section 2.3, certain general properties of r t(n) are assumed and a

condition (Condition I, Section 2.3) on r t(n) is given and shown to be suf-

ficient for the generalized optimal loss partition inequality (Theorem

2.3.1). A second condition (Condition II, Section 2.3) on r t(n) is given

and it is shown that Conditions I and II are sufficient for the generalized

Schlaifer's inequality (Theorem 2.3.2). The inequalities are shown to hold

for particular problems by verifying that Conditions I and II hold for the

particular problems. This is done in Section 2.4 for several two-action

problems on the mean of a Normal process with differing terminal and samp-

ling loss functions and differing assumptions about the process variance,

It is done in Section 2.5 for several quadratic terminal loss estimation

problems and one linear terminal loss estimation problem.

The two-action problem on the mean of a Normal process of known vari-

ance with linear terminal losses is reconsidered in Section 3.2 with

Normality of the prior distribution relaxed to continuity. This problem

-3-



has not been considered elsewhere. The asymptotic (cost parameters varying

so that n tends to w) optimal sample size is derived and it is noted that
o

the generalized optimal loss partition inequality and the generalized

Schlaifer's inequality are asymptotic equalities. The asymptotic form of

r t(n) is also considered for constant terminal losses, i.e., the hypothesis

testing formulation, and quadratic terminal losses. In Sections 3.3 and

3.4, the asymptotic results of Section 3.2 for two-action problems on the

mean of a Normal process are extended to several-action problems.

1.2 Discussion

The insensitivity of total expected losses to a non-optimal design is

most easily illustrated for the two-action problem on the mean of a Normal

process of known variance with linear terminal losses, proportional samp-

ling costs, and a continuous prior distribution of the process mean. In

1 1/4
Section 3.2 it is shown that no = (ktD o0b)/2hks )2 + O(k /k) , where k t

and k are cost parameters, h - is the process variance, and D (b ) is the

density (assumed positive) of the prior distribution at the breakeven value

of the process mean p. Also, Schlaifer's inequality is an asymptotic

equality. If D (p.) or kt/k s is wrong by a factor of 4, the indicated n

will differ asymptotically from the true n0 by a factor of 2, and r(n) for

the indicated n will differ asymptotically from the true r(n0) by a factor

of (I/ )(2+1/2)-I - 1/4; if Do(pb) or kt/k. is wrong by a factor of 2, the

asymptotic difference in total expected losses is approximately 6%.

For the two-action problem stated above, it is sometimes convenient in

terminal analysis, i.e., deciding which action is best after observing a

sample of fixed size, to assume a diffuse, or "informationless," prior dis-

tribution. For purposes of determining the optimal sample size, the

-4-
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assumption of a diffuse prior distribution is definitely not "information-

I less." Raiffa and Schlaifer [i, p.121] note that for the two-action problem

above, with a Normal prior distribution, a prior variance which is large

relative to the process variance"...represents a great deal of relevant in-

formation, since it amounts to an assertion that p is almost certainly so

far from the breakeven value Lb in one direction or the other that a very

I small sample can show with near certainty on which side of Lb the true .

actually lies." In fact, from (5-45b) of [1, p.121], it is easily seen that

for a sequence of Normal prior distributions with a common mean and variances

Iapproaching o, n approaches 0 for any fixed cost parameters and process

variance. Thus, it is not surprising that n is asymptotically proportionalI obto (Do0( B))'2.

In [3], Guthrie and Johns derive asymptotic formulas for Optimal (Bayes)

fixed sample sizes for two-action problems of accepting or rejecting a

finite lot of size N. They assume the items in the lot can be characterized

by independent and identically distributed non negative (and hence, non Nor-

Imal) random variables with a certain type of exponential distribution -
including the binomial. Poisson, negative binomial, and gamma distributions

- with mean 4. Two classes of prior distributions of L are considered: es-

sentially, priors continuous in a neighborhood of b' the breakeven value of

&, and priors which are "discrete around Pb'" For fixed sample size n,

termirl losses are linear in L and sampling costs are proportional to n.

Guthrie and Johns find that no, the optimal sample size, is asymptoticallyII
proportional to Ni for continuous priors and asymptotically proportional to

ln N for discrete priors. The asymptotic optimal sample size for two-action

problems on the mean of a Normal process of known precision derived in

I
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Chapter 3 can be shown to be analogous to the results of Guthrie and Johns

for continuous priors.

It can also be shown from the results of Guthrie and Johns that for the

problems which they consider, as n approaches w, r t(n )/rs (n ) approaches

1 for continuous prior distributions and 0 for discrete prior distributions.

Schleifer [4] has shown, for the two-action problem on the mean of a Normal

process of known variance with proportional sampling costs and a two-

point prior distribution of the process mean, that r t(n )/r s(n ) approaches

0 as n approaches w. It is clear that for fixed sample size two-action

problems with linear terminal losses and proportional sampling costs, the

asymptotic behavior of r t(n )/r (n ) depends critically on the form of the

prior distribution near the breakeven point. The reason for this difference

is discussed in Section 2.4.5. It is also noted there that for the two-

action problems being discussed, an "indifference region" about the break-

even point has the same asymptotic effect on r t(n )/rs(no) as a discrete

prior distribution. Chernoff has noted in [5] that for the optimal .(Bayeo)

strategy for sequentially testing the simple hypothesis H : 9 = 0 againsto 0

the simple alternative HI: 9 = 9I , on the basis of observations on inde-

pendent and identically distributed random variables with density fi(x)
under Hi. i = 0,1, r t(no/rs(no) approaches 0 as n approaches o, where

n now denotes the optimal expected sample size and sampling costs are

assumed proportional to the sample size. This result holds as the per unit

sampling cost approaches 0, for any non unitary (two-point) prior distri-

bution and positive terminal losses. The problem of finding the optimal

(Bayes) sequential. procedure for the two+actiop. problem o the-meanz of IoNor-

mal process of known variance with linear terminal losses, proportional

-6-



sampling costs, and a continuous prior distribution is now being studied by

Chernoff [6,71. It is not yet known how r t(n )/rs(n0) behaves for this pro-

blem.

Some numerical work, not included in this report, indicated that for

both the optimal fixed sample size procedure and the optimal sequential pro-

cedure for the two-action problem on the mean of a Normal process of known

variance with equal terminal losses for wrong actions, proportional samp-

ling costs, and a two-point prior distribution, the ratio of the loss for a

wrong action to the per unit sampling cost must be extremely large to make

rt(no)/r (n0) as close to 0 as, say, .10.

-7-
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CHAPTER II.

EXACT INEQUALITIES

2.1 Introduction

In [2], Schlaifer presents the solution to the following two-action

decision problem.

Assume that the prior distribution of the mean i of a Normal process

of known variance is Normal and that the terminal utilities of the two

actions are linear functions of L. If the cost of a fixed size sample is

proportional to the sample size, what is the optimal (Bayes) fixed sample

size? c/

Schlaifer conjectured 4/for this problem that, if n > 0o

r(n)/r(no) 9 (1/2) (n/n +no/n) (2-1)

where

n = arbitrary fixed sample size

n = optimal fixed sample size

r(n) = expected total opportunity loss (expected op-

portunity loss from wrong decisions plus cost (2-2)

of sampling) for a sample of size n.

The inequality (2-1) will be referred to as "Schlaifer's inequality."

Several remarks concerning general assumptions and terminology in the

problem above and those to follow are necessary. First, "loss" will al-

ways refer to opportunity loss, or, regret. Hence, since the cost of a

c/ The solution, to a problem equivalent to this problem, was first given
by Grundy, Healy, and Rees [8]. The most complete exposition of the
problem is given in [1].

d/ Of.footnote b, page 2.

-8-



sample of size 0 is 0, sampling cost equals sampling loss. Second, it is

assumed throughout the report that

r(n) = rt(n) + rs(n) (2-3)

where r(n) is defined in (2-2) and

rt(n) = expected terminal loss (loss from wrong decisions)
(2-i)

for a fixed sample of size n

rs(n) = expected sampling loss for a fixed sample of (2,5)
size n.

Third, throughout the report, only fixed sample size procedures are con-

sidered. Fourth, "expected" in the definitions of r(n), r t(n), and rs(n)

refers to an expected loss, prior to observing a sample of size n, as-

sociated with the optimal terminal action posterior to observing the sample.

Finally, it is shown in [1] that if terminal and sampling utilities (and

hence losses) are additive, minimizing expected total loss is equivalent

to maximizing expected total utility; all of the analysis here is in terms

of losses.

In an unpublished note, I. R. Savage proved that Sc-laifer's in-

equality is true for the problem of estimating the mean of a Normal process

of known variance, given a Normal prior distribution of the process mean,

quadratic terminal losses, and sampling costs proportional to sample size.

Subsequently, the author proved that Schlaifer's inequality is true for

the problem for which it was conjectured (Theorem 2.4.1) as well as several

other two-action and estimation problems with sampling costs proportional

to sample size. Another inequality, used here in the proof of Schlaifer's

inequality, is that r t(n ) > rs(no) , i.e., for the optimal sample size the

expected terminal loss exceeds the expected cost of sampling (Theorem 2.4.1).

-9-



This will be referred to as the "ptimaJ loss partition inequality."

Heuristically, the optimal Ioee partition inequality and Schlaifer's

inequality are true for many decision problems with r (n) = bn (b > 0) be-

cause r t(n) approaches, in the "right way," a hyperbola a/n (a > 0) ok.

increases. It is easily shown that if f(n) = a/n + bn, where a and b are

positive constants and n is a positive variable, is minimized by no, then

a/n = bn and f(n)/f(n ) = (1/2) (n/n + n /n). The first equality cor-

responds to the optimal loss partition inequality and the second to

Schlaifer's inequality. Furthermore, the analysis of f(n) above generalizes

to: if g(n) = a/na + bnP , where a and P are positive constants, is mini-

mized by no * then a/n0 = (P/a) bno and

na n ' + P no
g = 0 n) a+P n

This suggests, for problems in which r t(n) approaches a function a/n as n

increases and rs(n) = bnP, a "generalized optimal loss partition inequality"

r t (n0) > (a/) rs(n o) (2-6)

and a "generalized Schlaifer's inequality"

r(n) -i a P + n o if n > 0. (2-7)
r (1n) a+ P no a + 0 n

For all of the problems considered in this Chapter, a prior distribution

conjugate to the process is assumed. For all but one of these problems,

the generalized optimal loss partition inequality and, if no > 0, the

generalized Schlaifer's inequality, with values of a and p dependent on the

problem, are shown to hold (with several minor exceptions) for all values

of the prior, process, and cost parameters.

-10-



The one problem for which the generalized inequalities are not necessarily

true provides additional insight into the general behavior of n and r(n).

A summary of the exact solution to the two-action problem for which

Schlaifer's inequality was conjectured is given in Section 2.2. In Section

2.3, two general conditions on r t(n) are given. The first is shown to be

sufficient for the generalized optimal loss partition inequality and the

two together are shown to be sufficient for the generalized Schlaifer's

inequality. These two conditions are verified for several two-action pro-

blems on the mean of a Normal process of known or unknown variance in

Sections 2.4.1 - 2.4.4. In Section 2.4.5, it is shown that neither of the

generalized inequalities is necessarily true for the two-action problem on

the mean L of a Normal process if terminal losses are 0 throughout an "in-

difference region" about the breakeven value of i. The two conditions on

r t(q) are verified for several estimation problems involving Bernoulli,

Poisson, and Normal processes in Section 2.5.

2.2 The Optimal Sample Size for the Two-Action Problem on the Mean of a

Normal Process of Known Variance with Linear Terminal Losses, Pro-

portional Sampling Costs, and. Normal Prior Distribution of the

Process Mean.

This section sunmarizes the complete exposition of this problem pre-

sented in [1]. The notation closely follows tha; of [1); in particular,

tildes denote random variables.

Let

= mean of a Normal process generating independent random

variables Xl, x, ... , each Normally distributed (2-8)

with mean 1i and variance 1/h

-11-



fN(xlp,h) = (h/27r) e -(h/2)(x.) 2  
(2-9)

fN*(x) = fN(xlO,1) (2-10)
x

FN(xIL h) =1 fn(tlg,h)dt , GN(xi.,h) = 1 - F.(xl.,h) (2-11)

FN*(x) = FN(xIOl) G G,(x) = GN(XIO,1) (2-12)

prior density of fN(,Im'.hn.) (2-13)

A = action space = (a1 ,a2] (2-14)

ut(ai, p) = terminal utility of action ai if ; obtains

= K +ki i = 1,2 (2-15)

'b = breakeven value of = (K1 - K2)/(k2 - kl) (2-16)

kt = terminal loss constant = Ik2 - k1l (2-17)
r(n) ff expected sampling cost for a sample of size n

= k sn, k 8 > 0 (2-18)

rt(n) = expected terminal loss for a sample of size n (2-19)
r(n) = expected total loss for a sample of size n

r (n) + r(n) (2-20)

If m', the mean of the prior distribution of a is s b

r (0) = k(-% (m, hn')dp

=kt(hn')'i LNO (D') 
(2-21)

where

D' = (hn') 11b " m'1 (2-22)

L. (D') =, (X - D') fN*(X)d = fN*(D') - D' GN*(D'). (2-23)



I

If m' > b

r rt(0) k t(b - 4) fjj(Vl',hn')d,

but this again reduces to

rt(o) = kt(hn') iN(D'). (2-21)

Since r(O) = rt (), (2-21) gives the expected total loss of the optimal de-It
cision without sampling (the optimal decision is to take the action for

j which ut (a ,m') is greater).

If a sample of size n is taken, the posterior distribution of P is

I fN(4Im", hn") (2-24)

where

no = n' + n, m" = (n'm' + nm)/n", m =-(/n) X V (2-25)
X~ 1

In this case, the optimal decision is to take the action for which

ut(ai,m is greater andthe expected terminal loss posterior to the sample

is given by (2-21) with double primes replacing the single primes. Since

the optimal decision posterior to a sample of size n depends only on the

mean of the posterior distribution of P, the prior expected terminal loss

I of an optimal decision following a sample of size n can be calculated from

the prior distribution of the posterior mean, i.e., the distribution of W"

- (n'm' + ni)/n". For m's Lb or m' > Pb' this prior expected terminal loss

I is given by

r t(n) = rt (0) - (hn*)' LN.* (D*) (2-26)

I where

n* = n'n"/n, D* = (hn*)i 14b - m'1. (2-27)

Thus, the expected total loss, prior to observing m, of an optimal decision

f following a sample of size n is, from (2-18), (2-21), and (2-26)

-13-



r(n) = rt (n) + r (n)

= kt (hn')2- LN*(D') - kt(hn*)- 2 LN*(D*) + ksn. (2-:.8)

The optimal sample size, n , is the value of n (assumed to be a continuouso

non-negative variable) which minimizes r(n), given by (2-28) for n > 0 and

by (2-21) for n = 0. Charts are provided in [1] and [2] for determining n0

for given h, n', D', kt, and ks.

2.3 Sufficient Conditions for the Generalized Optimal Loss Partition

Inequality and the Generalized Schlaifer's Inequality

Two ad hoc conditions on r t(n) are presented below. Assuming certain

regularity properties of r t(n), Theorem 2.3.1 shows that the first condition

is sufficient for the generalized optimal loss partition inequality and

Theorem 2.3.2 shows that the two conditions together are sufficient for the

generalized Schlaifer's inequality. Theorem 2,3.3 will prove convenient in

applications for verifying the first condition. These results will be uti-

lized in proving the optimal loss partition inequality and Schlaifer's

inequality for the problem of Section 2.2 and the generalized inequalities

for the other problems which will be considered.

The regularity properties of r t(n) assused throughout this Section are

(i) rt(n) is a strictly decreasing-function of n, n > 0. (2-29)

(ii) d2 rt (n)/dn2 exists and there exists an n1 9 0

such that d2r t(n)/dn2 0 for n > nl, n > O.

These two properties, along with rs(n) = ksno, guarantee that either n 0

0 or n is unique and positive. In the latter case, n > n . No attempt0 0

will be made here to formally characterize decision problems for which

rt(n) has properties (i) and (ii). Informally, the generality of (i) is

-14-
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Iobvious. Its assumption rules out, for example, problems for which rt(n) is

I infinite for some or all n, problems for which the prior probability is one

that a certain action is preferred, in which case rt(n) is identically zero,

I and problems with definitive observations, in which case rt(n) is identically

zero for all n > 1. Property (ii) is stronger. It implies that rt(n) is con-

I cave for n between zero and n1 and convex for n > nl, where n, might be zero.

I An intuitive reason for this behavior of rt(n) for the problem of Section 2.2

is given in [1] and in [2]. (Note: for pu-poses of analysis, n is considered

to be a continuous variable.)

For all of the problems considered in this Chapter, including the one

I for which the generalized inequalities are not necessarily true, properties

I (1) and (ii) of rt(n) are easily verified. They also hold for many two-action

problems involving discrete prior distributions for which the generalized

inequalities are not necessarily true.

The first ad hoc condition on rt(n) is

Condition I: dnart(n)/drn > 0, some a > 0, n > 0. (2-31)

Theorem 2.3.1. If rs(n) = k no, Condition I is sufficient for the

generalized optimal loss partition inequality rt(no) > (1/a) rs(no). (Note

that if Condition I holds for a particular a , it holds for all a > ao" The

inequality is sharpest for the smallest a for which Condition I holds.)

Proof: If n0  O, the theorem is trivial; hence, assume n > 0. From

Condition I

nodrt(no)/dn + Cxrt(no) > 0. (2-32)

Since n0 is a stationary point of r(n) = rt(n) + rs(n)

A - - .kn I  n re(no)- (2-33)

-1 -



Substituting (2-33) in (2-32) yields -r s(n ) + ar t(n ) > 0, or
rt(nO) > (/) rs(ns t).

Corollary i. If r (n) is convex, nondecreasing, and approaches 0 as n

tends to 0, Condition I is sufficient for the inequality ar t(n ) > r (no ).

Proof: If n 0= , the conclusion is again crivial; hence, assume

n > 0. Let n2 be the unique root of ar t(n) = r s(n) and define r (n) =

(n-1 r(n2 ))n. Then i (n) = rs(n ) and from the assumptions on rs(n)

rs(n) f ( i) s(n2) for n ! ( ) n,. (2-34)

Letting n denote the value of n which minimizes r t(n) + r (n), the theorem

gives 0r() > s  o), or equivalently, no < n2 # Now, for n _ n2 ,

r(n) a rt(n) s s(n) (from (2-34))

>r (- ) +~ i )0 (since n0 < n2) (2-35)

Z r (o) + r (no) (from (2-34.).

Therefore, no < n2  which implies the conclusion.

Corollary 2. If rs(n) = 0 for n m 0 and K + k8 n for n > 0, Condition

I is sufficient for the inequality a r t(n ) > 0 ks n. If r (n) = 0 for

n = 0 and K + v (n) for n > 0, where v (n is convex, nondecreasing, and5 5 S

approaches 0 as n tends to 0, Condition I is sufficient for the inequality

ar t(no ) > vs (no0).

The second ad hoc condition on r (n is
t.

Condition II: - ( W -( < 0 ,someO >0, n > O. (2-36)

Theorem 2.3.2. If r (n) = k sn , Conditions I and II together are suf-
5 . 5

ficient for the generalized Schlaifer's inequality r(n'/r(n ) s (c/(a +

(n/n0) + ( /(c + a)' (n/n)a, where n0 > 0 and a is the smallest value of a

for which both conditions are true.

Before proving this theorem, the role of a in the inequality will be

-16-
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discussed. In Section 2.1, the generalized inequalities were suggested for

problems for which r s(n) = ks n and r t(n) approaches a/n as n tends to o.

It is not assumed in either Theorem 2.3.1 or Theorem 2.3.2 that r t(n) ap-
atI proaches a/na, but only that Conditions I and II hold for some a. As noted

I after Theorem 2.3.1, the generalized optimal loss partition inequality is

sharpest for the smallest a for which Condition I holds. If r t(n) approaches
a

a/n o, the smallest a for which Condition I holds is a * The same situation

is true with respect to the generalized Schlaifer's inequality. Clearly,

I if Condition II holds for a = a, it holds for all a a 0 and
O' 0

ILemw 2.3.1. . For fixed P, no and n (n 4 n), (a/(a + 0)) (n/no)

+ (P/(a + P)) (n0/n)a is an increasing function of a. (Note that for n = of

I (a/(a + 0)) (n/no)3 + (0/(a + P)) (no/n)a = 1 for all a and A.)

Proof: Let r = a + 0 and x = n /n. It is s8tS forwadto-bmO . at

ILj + n o~) + ( ia) P.-2 xa (x-l + ,)
i 0 (2-37)

I The conclusion will follow if, for all r > 0 and x > 0 (x 4 i)

x - 1 + *r ln x > 0. i2-38)

I Now, for any T > 0

6 (x r - 1 +nln x) = rx - I (I - x-T) (2-39)

is 0 only if x = 1. And

2 (x-r -1+r lnx)x= 1 = r-2 (x'(r+ 1) - 1)x= 1
C- 2 (2-40)

Therefore, x - 1 + rlnx >0 for all r > 0 and x > 0 (x 1 1).

1 Proof of Theorem 2.3.2: Let ! = 1(a + p)-1 na r(n) and d +

00(0 + 0)'-1 n6o r(no). Then cno-a + dn60 = r(n) and (r(n1))-l (cn - 0  + dup )

-17-



= a ja~ + (no) a.(21)
a++

Hence, the conclusion of the theorem is equivalent to

r(n) - rt(n) + r,(n) g cn + dno

or

rt(n) - cn- a 5- dnP - rs(n) = (d-ks)n. (2-42)

From Condition I and Theorem 2.3.1, rt(n ) + rs(n o ) > (0/a)r,(no + r (no),

or

a(a + - r(no) > rs(no) . (2-43)

Therefore

d = a(a + 0)-l n- r(n) > n- r(n b (2-44)0 0~o 0o asno 0

and, from (2-42), the conclusion of the theorem is equivalent to

rt(n) - cn
q(n) = (d-k1)nI. (2-45)

From the definitions of c and d, q(no) 1. It will be shown that

q(n) 6 1 by showing that

dq(n)/dn > 0 for n I n. (2-46)

Let q'(n) = dq(n)/dn and r' (n) = drt(n)/dn. It is easily shown that q'(n)

may be written as

q'(n) = [(d-kS)naV+l-1 [(a+1 r;(n) + Oksn0" ) +

3(nart(n) - nart(n))]. (2-47)

From Condition I

n 0rt(no) - nrt(n) Z 0 for n no . (2-48)

Hence, from (2-48) and (2-47), (2-46) will certainly be true if

i+' rt(n) + 1ksno av Z 0 for n N no. (2-49)

Since n is a stationary point of r(n), r' (no) = -Ok no 3- and the left

hand side of (2-49) is 0 for n = n . Hence, (2-49) will be true if, for

-18-
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Iall n >0

or, if, for all n > 0

I d(r0 ()) < 0  (2-50)

which is Condition II.

Corollary 1. If rs(n) = 0 for n = 0 and K s (Ks  > 0)

g for n > 0, Conditions I and II are sufficient for the generalized Schlaifer's

inequality.

Proof: Let r (n) = k 8no. Then n 0 also minimizes F(4) = rt(ri + F (n)

and i(n) = r(n) - Ks. From the theorem, r(n)/;(n0) < (c/(c*)) (n/ao)0 +
( /O ))(no /n)'O , &nd

r(n) ;r(n) + Ks  <7(n) (2-51)

r(no) F(nO) + K. r(no)

Ssince F(n) > (n).

Corollar7 2. If re(n), rs(n), and 7(n) are defined as in Corollary 1

and n - 0 and o = the value of n which minimizes 7(n) is > 0, then Condi-

tions I and II are sufficient for the inequality

Proof: Since r(n) = 3:(n) + Ks and (n) I (no) < (a/(O+P)) (n/no)O
+ (p/( --p ) (3 /n)c'

= Ks r(no) . n+a

7K07 F~ I07r a+ iS- _ 0 Io f _ o

I -19-
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Theorem 2.3.3. If Condition II is true and dr t(n) /dn = o(n-I)

then Condition I is trues for the same a for which Condition II is true.

Proof: As n tends to o

5 nrt '(n) + art(n) 0 (2-53)

by the second part of the hypothesis and regularity property (i) (2-29).

Now

d(nrt'(n) + art(n)) /dn = n' d(na+l rt '(n)) /dn < 0 (2-54)

by Condition II (2-36). Hence

nrt '(n) + art(n) = n1 d( n rt(n)) /dn > 0 (2-55)

which implies that Condition I (2-31) is true.

2.4 Two - Action Problems on the Mean of a Normal Process

2.4.1 Process Precision Known, Linear Terminal Losses,

Sampling Costs = K + k no, e/s 5

Normal Prior Distribution of Process Mean

This problem, specialized to the case of sampling costs proportional

to n, is the problem summarized in Section 2.2 and the problem for which

Schlaifer conjectured Schlaifer's inequality. The proofs of the generalized

inequalities for the problenwof this subsection involve dr t(n)/dn and

d2r t(n)/dn2  ; since they are quite complicated, they will be calculated

first. It will then be shown that r t(n) has properties (i) and (ii) and

that the generalized inequalities are true for this problem (assuming

K = 0 for the partition inequality).

e/ In Sections 2.4 and 2.5, r (n) - 0 for n = 0 and K. + k no for n < 0 is
abbreviated to r s(n) = Ks f ksno. a

-20-



ILema 2.4.1. For r t(n), as given b 25)blw

r'(ni) = dr (ni) k tf N*(D*) no(-6t --- n- t (2-56)

d 2r t(ni) -nn n'D* 2 (r~

rt (n =-ni 27'nx (2-57

IProof: From Section 2.2

r r (n)= k t(hn')-2 L*(D') k kt(hn*) 2 LN*(D*) (2-58)
where

I* = n 'x"/n , ni' = xi'4-i D' = (hn')2  1 b - m'I (2-59)

Now(h*' 4 - m'I ,LN*(D*) = fN*(D*) - D*GN(D*)

-n* n dn* - 2 no u~ i~Isn

dD* _ D* dD* _ -D*i no' n'D* ( -odn* K* di 2n'n"l '2- = - (2-60)IdL%*(D*) = GdLN*(D*) 
__________)

HeceD* GN*(D*) dxi - - - 2-n n

Ikt F1  dLN*(D*) d*- I'
r rt (n) _7- dxi- + dn LN*(D*j

k = n T, xioD*GN*(D*) +1

h ( n2n n 2n'i" r

ktfN*(D*) n

I Next



dfN*(D*) n dn-2  , dn" - 2
rt"(n) r t) *) dn + -n I n" d }

tI(~ 1  n D* ?fN (D*) ___ ,31
r n) 1 2n"n 

3n "

2
4n+n' -n'D*- - r ' (n) 2~

t 2n"n

Lema 2.4.2. rt(n), as given by (2-58), has properties (i) and (ii)

Proof: From (2-56), property (i) is obvious. From (2-57), since
2

rt t(n) < 0 , r t (n) has the same sign as (4n+n'-n'D* ). From the

definitions of D' and D* (2-59)

(4n+n' -n'D*2) . (1/n) (4n2+nn ' (1i_& ) - n' 2 D2) (2-61)

which is 0 for

n (n [ (I-D2) (16 D2 + (1-Dl 2 )) (2-62)

From (2-61) and (2-62) it is clear that r t(n) has property (ii).

Theorem 2.4.1. The generalized optimal loss partition inequality

and the generalized Schlaifer's inequality, both with a = 1, are true for the

two-action problem on the mean of a Normal process of known precision with

linear terminal losses, sampling costs = k 8n and a Normal priors

distribution of the process mean.

II
Proof: From Theorems 2.3.1 - 2.3.3 it suffices to show that rt (n) - o(n - )

-22-
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and that Condition II is true. From (2-59), as n n*-+ n', and

D* --4D' . Hence, from (2-56)

I rt'(n) = o(n"I) (2-63)

I Condition II requires that d(n rt'(n))/dn < 0, or, for a = I

n(nr" (n) + 2rt' (n)) < 0 (2-64)
tt

g From Lemma 2.4.1

nr t"(n) + 2r t'(n) = rt'(n) (n'D*2 -n'-4n)/2n" + 2'

I = rt '(n) [(nD*2 + 3n')/2n"] (6)I
which is negative since rt'(n) is negative. Hence, Condition II holds

for a = 1; it is easily shown that it does not hold for a < 1.

Corollary. If rs(n) = Ks+-s(n) where s(n) = ks n, then

I crt(n) > Ps(no) and the generalized Schlaifer's inequality is true

with a 1. If n minimizes r t(n) + 7 (n) and is > 0 while n = 0

r n __ ( fa. + (2-66)
r( ) af. o -7 +

gwith a 1.

Proof: The first statement follows from Corollary 2 to Theorem 2.3.1

and Corollary 1 to Theorem 2.3.2. The second statement follows from

Corollary 2 to Theorem 2.3.2.

2.4.2 Process Precision Unknown, Linear Terminal Losses, Sampling Costs = Ks+k sP

Normal - Gamma Prior Distribution of Process Mean and Precision.

In this subsection, it will be shown that the generalized optimal loss

I partition inequality (if K5=0) and the generalized Schlaifer's inequality,
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both with a = 1, can be extended to this problem if the prior mean of 0

is finite. The distribution theory for this problem is given in [1] and is

summarized below. Methods for finding the optimal sample size for the case

of 0 = 1 are given by Schleifer [4].

Let

= mean of a Normal process of unknown precision h

prior distribution of (;, R) = fNr (V, him', v', n', v')

= fN LIm', h n') f r2 (hlv', v') where

fT(hlv', v') = (r( v,)) " -1-hv ' (hIv ' v ,)iv 1+v 'V

(2-67)

- w< , m' <o, h>0; v', n> 0, v' > 1.

(The prior marginal mean of is finite only if V1 > 1.)

The definitions of A, u t(ai, 4), Abl kt and fN(plm' , hn) are given

in Section 2.2.

If m' < 4b

r,(n ) .- r t(0)  v vt(n )  (2-68)

where

rt (0) = k t J(P-%) fs(V m', nt/vI, V,) dp (2-69)b

CP

vt (n) = k /(m"-.b) fsIImt, n*/v', v')dm" (2-70)

f S(pIm, n/v. v) = (vi'/B(i.kv)) IV + (n/v)( -m) 2] -(V+l) (n/v)' (2-71)

B(j, v) = beta function of arguments j and f V

and n*, " W, and m ae defined by (2-25) and (2-27).
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Let

D" = (n'/v') 4b-m'I, D* = (n*/v') I%-m'l (?-72)

I Then rt(O), given by (2-69), can be written

rt(0) : kt(v'/n' 2 Ls*(D'Iv') (2-73)

I and vt(n), given by (2-70), can be written

vt(n) = kt.(v'/n*) 2 Ls*(D*lvI) (2-74)

where

LS*(DIv) = ((v+D2)/(v-1)) fs*(D lv) - D s*(DIv) (2-75)

fs*(DIV) = f (DI0, 1, V) (2-76)

I Gs*(DIv) = IfS*(tlv) dt (2-77)
I D

If m'> b' (2-68), (2-73), and (2-74) are unchanged. Hence for any m'

1 1Srt (n) = kt (v'/n')2 Ls*(D'Iv') - k t(v'/n*)2 Ls*(D*jv') (2-78)

I lemima 2.4.3. For rt(n), as given by (2-78),

tr'(n) = - k t 2 n-rn v- 1 fs*(D*lv') (2-79)

r ti n) t 1 2 (V'1 *I r t (n) = rt (n) .n (n'D*7 2 ( v--) n' - 4n (2-80)

I

r-25 -



Proof: From (2-78)

r t(n) k k (v/n' )2 L s*(D'IV') - k t(V/n* )2 LS*(D*IVS) e

Now*

dn - dn T= n -

dD*(n*/v')2jl.L-M'j) =n'D*

d f s * ( D * l v I )d . V v I + +

d D*(7-)(V+D*2)-l(V+, -Y D* D*f*(D*lv)

dGs*(D*ivl) f 
(2-81)

dD* - S*(D*Ivt)

d s * ( D * IvI ) C V ' D 2 f * D l ' * S ( ~ v

d v'+D* D*GS*(*IvI

4s(*v)(D*v) (VrT - -v + D) G G(D*IvI)

Therefore =-G*DiI

rt ( ) k Vol n*- dLS*(D*Ivf) + L (~ v ) d *i

Lt~fl n -k~ +S*(D*vI

k " n-r *S*(D*Iv9) - 0 ID~ * (DI
t~~~ ('+ n2 fs)*(D*IvI)lv

+ no 1 1 v'+D*
2

nn-TwT- fs*(D*Iv)



I
I

AndI r"(n) r r'(n) (e'n d(n'/2n"n) + (n j d(n/n"n)i
t t n r- dn n d

I dfS*(D*IV') +V'l1 d(V'+D#2 )/(v'-1)~
fS*(D*IV ' ) dn JD*2 dn

I n"+n n' n'D* 2 (v'+1) 2n'D* 2

r - rtt(n)( 77 n+ n + '2n"n(v'+D*' ) 2n"n (v '+D*)

r '(n) 2n n'D*2 (+ ) - ): Tn-n 7T - )-n-
I

Lemma 2.4.4. If v' > 1, r t(n),,as given by (2-78) has properties

I (i) (2-29) and (ii) (2-30).

.Proof: Property (i) is obvious from (2-79). From (2-80), since

r '(n) < 0, rtu(n) has the same sign as

I 4n - n' - n'D*2 ((v'+D* 2)/(v'-l)) (2-82)

I_
From the definitions of D* and D' (2-72), D* = D'(n*/n')2  Substituting

this for D* in (2-82) and rearranging gives

(.2(V,.l))-l [4(,_ ).3.., (D', %,D , -v, +1)n.2n., Dt2(2D,1+V, )...3,4., . (2-83)

By Descartes's rule of signs, this quantity is 0 for exactly one positive

j value of n if D' 0 ; if D' = 0, it is positive for all n > 0. In either

case, it is clear that r t(n) has property (ii).

Theorem 2.4.2. The generalized optimal loss partition inequality

Iand the generalized Schlaifer's inequality, with C = 1, are true for

the two-action problem on the mean of a Normal process of unknown precision
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'I

with linear terminal losses, sampling costs = k np, and a Normal - gammas

prior distribution of the process mean and precision with finite prior

marginal mean of the process ; (v'>l).

Proof: The proof of this theorem parallels exactly the proof of

Theorem 2.4.1. From (2-79) and (2-81) it is easily seen that r t '(n) = o(n').

Also from Lemma 2.4.3.

nr; "(n) + 2r '(n) rt t(n) (' 2(+D* 2) - n'-4n+4n"t t 1

rt (n) /n  / v'+D 2 +
S( - (v'D*2 1-1) +3n')

which is negative since V'>l and r '(n) < 0.

Corollary. The corollary to Theorem 2.4.1 holds without change.

2.4.3 Process Precision Known, Quadratic Terminal Losses,

Sampling Costs = K + k no, Normal Prior Distribution of
s s

Process Mean with Mean m' = Breakeven Value Ab of Process Mean.

This problem has not been considered elsewhere. The assumption that

ml = 1b makes the problem quite specialized but results in a simple

expression for r (n); for m' b r (n ) is more complicated. The

problem does provide an example of a situ~tion.,for vhich.th4p gneralized

inequalities are true for an a A 1.

The notation closely follows that of Section 2.2. In particular,
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and r(n) be defined as in (2-19) and (2-20) and, for the moment, let

rs (n) = ks n
B  Assume that action aI is preferred if 4 < 4b and action a,

is preferred if > b ' and that the terminal loss if 4 obtains is

0 if 4 < (>) b and a (a2 ) is taken

I (2-85)
k t(P _ 4 b )2 otherwise (kt > 0).

Without loss of generality assume that b = 0.

In Section 2.2 and subsections 2.4.1 and 2.4.2, rt (n) was written as

the difference between rt (0) and the prior expected terminal loss of

taking the action optimal under the prior distribution following a sample

of size n. In this subsection it is convenient to write r t(n) in the

more easily interpreted form

Srt (n) = rt(n, m) D(m) dm (2-86)

I where

r t(n, m) = expected terminal loss of an optimal terminal

I decision posterior to observing a sample mean of m (2-87)

from a sample of size n.

Dm(m) = marginal density of m for a sample of size n. (2-88)

J Raiffa and Schlaifer [1, Chapter 4] show that the two forms of rt (n)

are equivalent.

I 'It is alio shown in'[l] that

W 17 D (m)=^f N(m[m, hnu = "nm O, hn) (2-89)I
where

n = n'n/n". (n" = n'+n) (2-90)
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Hence, from (2-24), (2-85), and (2-87)

COk 2 fN(pIm", 
hn")d p if m"< 0

r t(n'm) - 0o( - l

kt i2 fN( Im", hn")di if i" > 0

where, as in (2-25), md" = (n'm' + n m)/n" = nm/n" (since m' - pb = 0).

Since d" < 0 if and only if m < 0, (2-86) becomes, using (2-89) and (2-91)

0 CO

r t(n) I f k tp 2 f N ( im!, hn") f N(mI10, hn U) d.L dmn

- : 0

+1 f t,2 fN(,±I. hn") fN(inIO, hnu) d4. dmn (2-92)0

o -co

CO 0

=2k t fof t2 :(k i 1, hn") f N (M) 0, hn u) d4. din.
0 -

1
Letting D'= (hn")2 mo", it is straightforward to show that

0

f 2fN(PIM", hn") dp = (hn")-  [(1 I+D" 2)GN*(D") - D"fN*(D")] • (2-93)

Hence 00

rt(n) = 2kt(hn")'l J [(l+D"2 ) GN*(D") - D"fN*(D")]fN(mlO,hnu)dm

0

and,:.letting x = (hnU) m and

p = p(n) = (n/n') (2-94)



I
I

D" reduces to px and rt(n) may be written

rt (n) = 2k t(hn")' 1  [(l+p 2x2 ) GN*(pX) " pxf,(Px)lfN*(x)dx

1 (2-95)

= 2kt (hn")' (11+12+13)

where

1 = GN.(px) fN0(x) dx (2-96)

0

12= 1p 2x2 GN*(px) fN*(x) dx (2-97)

1 13 =Jpx fN*(Px) fN*(x) dx . (2-98)
00

IIt is well known that

I = 1/4 - (27r)" tan-1 p = (2T) "l tan- 1 p_ (2-99)

and it is easily shown, by transforming to polar coordinates, that

12 = p2(T)-i [ r p(l+p 2 )-i - tan-1 p). (2-100)

It is also easy to show that

13 = pn'/27rn" . (2-101)

Using (2-99) through (2-101) in (2-95), rt(n) reduces to

rt(n) = (k t/hn') (- r - p(l+0)- 1 -tan-1p) (2-102)

Now

dp/dn = l/2an' , dr t(n)/dp = -2k trhn'(l+p2 )2  (2-103)

and rt (n) reduces to
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rt'(n) = -kt/irhpn"2  (2-104)

From (2-104), regularity property (i) (2-29) is obvious.

Also, rt"(n) reduces to

rt "(n) = -(1/2) (1/n + 4/n") rt '(n) (2-105)

from which regularity property (ii) is obvious.

Theorem 2.4.3. The generalized optimal loss partition inequality

and the generalized Schlaifer's inequality, both with a = 3/2, are

true for the two - action problem on the mean of a Normal process of

known precision with quadratic terminal losses, sampling costs = k no,
S

and a Normal prior distribution of the process mean with mean m' = b"

Proof: From Theorems 2.3.1 - 2.3.3, it suffices to show that

11

rt' (n) = on), and that Condition II holds with a = 3/2. From (2-94)

and (2-104) it is obvious that rt' (n) = o(n 1 ).

Condition II, with i = 3/2, is dn5/2 rt'(n)/dn < 0 , or equivalently

nr "(n) + (5/2) rt '(n) < 0 (2-1o6)tt

Using (2-105)

nrtI'(n) + (5/2) rt (n) = 2n'rt (n)/n' (2-107)

which is negative since rt '(n) is negative.

Corollary. The corollary to Theorem 2.4.1 holds with 61 1 replaced

by a = 3/2.
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2.4.44.:- Process Precision Known, Simple Terminal Losses (0 for correct

action, I for wrong action), Sampling Costs = K + k n , Normal PriorS S

Distribution of Process Mean with Mean m' = Breakeven Value Pb of Process

Mean.

The analysis of this problem is very similar to that of subsection

2.4.3. In fact, if the second line of (2-85) is replaced by "l,otherwise,"

the discussion in subsection 2.4.3 applies without further change through

(2-90). The expressions in (2-91) and (2-92) apply with the "ktgi2" factor

replaced by "I," i.e.,

00

rt(n) = 2 ,f fN(plm!', hn") fN(m O, hn u)ddm (2-108)

0 4W

It is easily shown that (2-108) reduces.to

rt (n) = 2f GN*(px)fN*(x)dx (2-109)

0

where, as in (2-94), p = (n/n')2 . Hence, from (2-96) and (2-99)

rt(n) = w- tan- P-1 (2-110)

Now, it is straightforward to show that

r t'(n) = -(27rpn")- 1  (2-111)

t"(n) = -rt.'(n) (1/2n + 1/I,')) (2-112)

from which it is clear that r t(n) has regularity properties (i, (2-29) and

(ii) (2-30).

Theorem 2.4.4. The generalized optimal loss partition inequality

(if K5=O) and the generalized Schlaifer's inequality, both with a = 1/2, are
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true for the problem of this subsection.

Proof: From Theorems 2.3.1 - 2.3.3, it suffices to show that

rt,'(n) = o(n " I) and that Condition II is true. The former is obvious from

the definition of p and (2-111). Condition II requires that

d ' n))/dn < o. For a

d(n3/2rt'(n))N/dn = n2[n(-rt'(n)) (1/2n+l/n")+(3/2)rt'(n)] (2-113)

from (2-112). and this reduces to

d(n/rtt(n))/dn = rt'(n) (n'n) /n" (2-114)

which is negative since r 'n) is negative.

Corollary. The corollary to Theorem 2.4.1 holds wirh c - 1 replaced

by C =

2.4.5 The Problem of Subsection ;'.4.4 with aR r egion

about b

If the terminal loss function of the last subsection is changed to:

terminal loss if p obtains equals

if P is< c and aI is taken

I >-c and a is taken

I otherwise

where c is a positive constant, then

-c

rt (n) fd fN (Im", hn")fN(mlO, hnu)dpdm (2-115)

0 -W

Standardizing (2-115) results in
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00

rt (n) = 2] FN*-p(c jh-)+ X) fN*(x)dx (2-116)

0

Hence

Srt (n) < F (-pq(hn* '2/. (2-117)

Since pq(hn* /O (l±)

rt (a) = o(n ) (2-118)

for.any fixed a > 0I the
It is noted in Chapter 1 that if a/n + bn is minimized by nos then

a F;
a/n 0 = (F/a)bn 0 For the problem of this subsection with any 0 > 0, it0 0

is. clear that rt(no)/r (no) approaches 0 as n tends to infinity, which

will take place if K 0 and ks tends to 0. Hence the generalized optimal

loss partition inequality with any fixed 2 and j is not necessarily true.

It can be shown that for any fixed a, the generalized Schlaifer's

inequality can also be false.

The contrast between the results of this subsection and the results

of subsections 2.4.1 through 2.4.4 illustrates that for the type of two-

action problems being discussed, asymptotic results depend critically on

whether or not the terminal loss function is 0 throughout a neighborhood

of 4b "

2.5 Estimation Problems

2.5.1 Quadratic Terminal Losses, Sampling Costs = K +k n'5 5

In this subsection it will be shown that the generalized optimal
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loss partition inequality (if K =0) and the generalized Schlaifer's

inequality, both with a = 1, are true for several fixed sample size

tudratie tpru A los estifation problMA eAMIGNOL: Lu

Section 6.3 of [1]. Results will be given here only for the case

K =0 . The corollaries to Theorems 2.3.1 and 2.3.2 are again5

applicable and give inequalities for the case K >0s

Let

w = parameter being estimated (2-119)

= "sample size" (the reason for this definition (2-120)
will be clear from a reading of the problems below)

w'= prior variance of 0 (2-121)

V"= "(j) = prior expected value of the posterior
(2-122)

variance of M following a sample of size C1

It is shown in [1] that if the terminal loss of estimating w by a is

k t(a-)2 where kt>O, then rt(q) = kt '"(ri). Hence, if rd(j)=ks

where k >0 and P>O

rk) = kt() + . (2-123)

For all the problems considered here, Raiffa and Schlaifer [1] give

expressions for the posterior expected value of w, which is the optimal

estimate of w, expressions for W-/', and optimality conditions for

the case P = 1 from which %o, the optimal sample size, can be determined.

The optimality conditions for %o can easily be extended to the case

3 1. It is assumed in [1] and will be assumed here also that d' is

finite.
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The estimation problems for which Theorem 2.5.1 below proves that

the generalized inequalities are true, along with some necessary

jresults from [1], are as follows:

(1) Let w be the parameter p of a Bernoulli process and assume that

the prior distribution of C is a beta distribution with parameters

jr' and n'-r i. Let the experiment be the observapion of n (n=q)

trials and let r denote the number of successes observed. Then the

I posterior distribution of M is beta with parameters r"=r'+r and

n"-r" where n"=n'+n. The optimal estimate of w is r"/n" and

9V = n'n".

I (2) Let w be 1/p and the process and prior distribution of be as in

(1). Let the experiment be the observation of the process until

I r(r=n) successes occur and let n denote the number of trials necessary.

The optimal estimate of w is (n"-l)/(r"-l) and

W"/% ' = (r'-l)/(r"-l). For t' < , r' -mist be > 2.

(3) Let y be the parameter % of a Poisson process and assume that-the

prior distribution of M is gamma-1 with parameters r' and t', i.e.,

f Ti Mr', t)C 6-wt' wr . Let the experiment be the observation

of the process for a time t (t=n) and let r denote the number of successes

observed. Then the posterior distribution of M is ga-n-a-1 with

parameters r'r'+r and t"=t'+t. The optimal estimate of w is

r"/t" and = t'/t".

(4) Let w, the process, and the prior distribution be as in (3) but

assume the experiment is the observation of the process until r(r=n)

successes occur. Let t denote the time necessary for this. The
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optimal estimate of w is again r /t' and w"/' = (r'+l)/(r"+l).

(5) Let w be 1/k where X, the process, and the prior distribution

of X are the same as in (3) and the experiment is the same as

in (4). The optimal estimate of w is t"I/(r"-l) and

'"/' = (r'-l)/(r"-l). For ' < c, r' must be > 2.

(6) Let w be the mean of a Normal process of known precision h

and assume that the prior diftribution of M is Normal with

mean m' and precision hnt. Let the experiment be the observation

of'a sample of n (n=q) and let m denote the sample mean. Then

the posterior distribution of M is Normal with mean m" and

precision hns where n" = n'+n and m" - (n'm'+nm)/n". The optimal

estimate of e is m" and n/n/' =n

(7) Let w be the precision h of a Normal process of known mean g and

assume the prior distribution of r is gamma-2 with parameters V'

and v', i.e., f (wlv', v') CC eAihV'v' hiV'-l . Let the experiment

be the observation of a sample of V(v=) and let w = v'17 (xi-P).

Then the posterior distribution of C is gamma-2 with parameters

V"1 = V'+v and v" = (v'v'+Vw)/v". The optimal estimate of w is i/v"

and w3/' = (v'+2)/(v"+2).

(8) Let w be 1/h where the process, prior distribution of h, and the

experiment are the same as in (7). The optimal estimate of w is

vlv"/(V"-2) and S"/d' = (V'-2)/(v"-2). For S'<c, v' must be > 4t.

(9) Let w be the mean i of a Normal process of unknown precision h

and assume the prior distribution of (;, R) is Normal-ga-n with

parameters m', v', n', and v' (see(2-67)). Let the experiment be
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I
I

the observation of a sample of size n (n=j) and let m, ry", and n" be
S2 - I

defined as in (6). Let V" = v'+v-1 and v"=(v'v'+n'm' +vv+nm2-n" ' )/v"

I Then the mmrginal posterior distribution of is fs( m", n"/v", V")

(see (2-71)), the optimal estimate of w is d" and 8"/' = n'/n"

S(10) Let w be h or 1/h and the process, prior distribution of ( , K), and

experiment be the same as in (9). The optimal estimate of w and the

I expression for ;"/W' is the same as in (7) for w = h and the same as

I in (8) for w = 1/h.

For each of the 10 problems above, W" is of the form

S (+C)/(I'++c) (2-124)

where c is an integer between -2 and +2. Note that in the problems

with c < 0 (2, 5, 8, 10), q'+c > 0 by the assumption that ' < .

Hence, by (2-123), for each of these problems

r t() = k t'(j'+c,/()'t+rj+c) (2-125)

Since 1'+c > 0 and

(I) = drt(1)/dq = -kt '(r'+c)/(1'++c)e- (2-126)

r t(1) has regularity property (i) (2-29).

Since 1'+c > 0 and

rt"(n) = d2rt(I)/d 2 = 2k t'(9'+c)/(j'+ +c)3 (2-127)

r t(q) has regularity property (ii) (2-30).

Theorem ..5.1. The generalized optimal loss partition inequality and the

generalized Schlaifer's inequality, both with a = I, are true for all estima-

tion problems with rs () k q' for which rt(r) can be written as in (2-125),

provided that n'+c > 0. For the 10 problems above, '+c > 0 if Z' < )
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Proof:- As usual, the theorem will be proved by shoWing that

rt'(TO = o(- ) and that Condition II is true. The theorem then follows

from Theorems 2.3.1 - 2.3.3. From (2-126) it is obvious that

rt'(q ) = o(') Condition II, with a = 1, requires that d(q'rt'(i))/dq < O,

or

q2rt"(q) + 2nrtl'(I) < 0 . (2-128)

From (2-126) and (2-127)

I2rtie() + 271rt'(T) = 2jrt'() (T'+c)/(n'+1+c) (2-129)

is negative since rt'(n) is negative, and the proof is completed.

Theorem 2.5.1 proves that for each of the 10 problems above,

r t( ) > rs(%). Because of the simplicity of the expression (2-125)

for rt(1), this can be improved upon. Since 1o is a stationary point of

r(q) and rt'(q) = - rt(q)l(,],+Q+c )

r t(,qo)/(n'+n0o+c) -- rs (o= 0 rs(no)/qo (2-130)

or

rt(o) = 3rs(%o) + Bks 0- 1(q'+c) . (2-131)

2.5.2 Estimation of the Mean of a Normal Process of Known Precision,

Linear Terminal Losses, Sampling Costs = K + k nB, Normal5 5

Prior Distribution of Process Mean..

This problem, with a = 1, is considered in Section 6.4 of [1] and

sumarized below. Let
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I
I V mean of a Normal process of known precision h

the prior distribution of a be fN(ijm', hn')

j the terminal loss of estimating t by a

k (a-4) if p < a, k >0

k (p-a) if ±> a, k > 0
-- U

As in the last subsection, results will be given here only for the case

KS = 0. For rs(n ) = k n where k > 0

r(n) = (k 0 + ku)(hn")'7f (c*) + ksn (2-132)

where n" = n'+n and c* is defined by

I FN (c*) = ku/(ko+k) • (2-133)

The optimal sample size n is either 0 or the unique root of

n" = (2k ) [(k+ku) fN*(c*)]2/3. (2-134)

From (2-132), it is easily verified that

rt'(n) = -r t(n)/2n" (2-135)

rt"(n) = 3rt (n)/4n' (2-136)

from which it is clear that r t(n) has regularity properties (1) (2-29) and

I (11) (2-30).

Theorem 2.5.2. The generalized optimal loss partition inequality

(if K =O) and the generalized Schlaifer's inequality, both with a = 1/2,"S

Iare true for the estimation problem of this subsection.
Proof: By (2-132) and (2-135) it is obvious that rt (n) = o(n').

Since, from (2-135) and (2-136)
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n r " ( n )  + ( 3 / 2 ) r t ( n ) = 3 r 3() n n ) ( x i )
t . n" nif-I 4n!" 2 (217

Condition II is true. Hence, by Theorem 2.3.3 , Condition I is true, and

by Theorems 2.3.1 and 2.3.2, the generalized inequalities are true.
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Chapter III

Asymptotic Equalities

3.. Introduction

j In this chapter, several finite-action problems on the mean of a Normal

process are examined under the assumption of an absolutely continuous (with

{ respect to Lebesque measure) prior distribution of the unknown process para-

meters. Because of the relatively weak assumption concerning the prior

distribution, only large sample results are available.

It is shown in subsection 3.2.1 that for the two-action problem

on the mean of a Normal process of known precision h with linear ter-

minal losses, the expected terminal loss rt(n) associated with a proposed

sample of size n is asymptotically proportional to n . In subsection

3.2.2 it is shown that for the same two-action problem with quadratic ter-

f minal losses, rt(n) is asymptotically proportional to n"3/2. '. le same

problem with constant terminal losses is considered in subsection 3.2.3; in

this case, rt(n) is asymptotically proportional to nl/2. These simple

asymptotic forms for rt(n) make it easy to derive asymptotically optimal

sample size formulas for simple sampling cost functions (Theorem 3.2.2).

The generalized optimal loss partition inequality and the generalized

Schlaifer's inequality become asymptotic equalities.

The results of subsection 3.2.1 are extended to finite-action problems

on the mean of a Normal process of known precision with linear terminal

utilities in Section 3.3. In Section 3.4 it is shown, under quite general

conditions, that if h is unknown the results of subsection 3.2.1 hold with

the prior conditional value of h 1 given p = %b (the breakeven value of

replacing h-l.
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3.2 Two-Action Problems on the Mean of a Normal Process of Known

Precision with an Absolutely Continuous Prior Distribution of the

Process Mean

Some of the notation employed in this section was defined in Chapter 2;

for ease of reference, it will be repeated here.

Let

A = action space = {a,. a2) (3-1)

= mean of a Normal process of known precision h

generating independent random variables xl, x2 , (3-2)
-i

m = mm = n E x (3-3)

D o() = prior density of L (3-4)

DI(g) = Dl(lIm) = posterior density of w (3-5)

Dc (mIp) = conditional density of m given I (Normal

with mean p and precision hn) (3-6)

Dn(m) = marginal density of _ I Do(I) Dc(m1 )dV (3-7)
OD

m' = mean of the p o rior distribution of (3-8)
m" -- me" = mean of the posterior distribution of (3-9)

(m) be defined by mn = 4 nm) (3-10)

tN(xIM,H) = (2I'r) (1/2) e " (H/2)(x'M) 2  f* (x) = fN (xO, 1) (3-11)

x
(xIM, H) J, fq(tIM H)dat F x,.( '10, 1) (3-12)

GN(xIM, H) = 1 - F,(xlM, H) , G (x) - Gj (XIo, 1) (3-13)

rt(n) = expected termina.l lo_ . prior tc cbserving mn, of

an optimal decislor fcllowi.ng a Bample of size n (3-14)



II
rs(n) - cost, or expected cost, of a sample of size n (3-15)

r(n) total expected loss of a sample of size n

= rt(n) + r(n) (3-16)

13.2.1 Linear Terminal Losses

This subsection is concerned with the case of linear terminal

utilities, which result, in the terminology of Raiffa and Schlaifer I], in

I linear terminal losses. To make this precise, let

u(ai, p) = terminal utility of action ai if p obtains

I =K + k , i = 1, 2 (3-17)

ILb = breakeven value of p = (K1 - K2)/(k 2 - kl) (3-18)

kt = terminal loss constant = jk2 - k1l (3-19)

The terminal loss if p obtains is 0 if the correct action is taken

and kt p-LbI if the wrong action is taken. It is easily seen that for

J given kt, h, D0 (p), n, and m, one action is optimal if m" < % and the

other action is optimal if m" > %b"

IThroughout Section 3.2 rt(n) will be expressed in the form used

in Section 2.3 rather than the form used in Sections 2.1 and 2.2, viz.,

rt(n) = T rt(n, m) Dm(m) dm (3-20)

where rt(n, m) denotes the expected terminal loss of the optimal

action posterior to observing mn For linear terminal losses

f k( -k Dl(4lm)a4.  , if m" <

rt(n, m) ' (3-21)

fkt( Ab )-l(pm)diM"
-45-



The following assumptions are made about Do(W):

(i) m' -_ p Do(p)c < ® (3-22)

(ii) D0 (%) > o (3-23)

(iii) D0 "(I) = d2 Do( )/d4 2  exists and is continuous (3-24)

throughout a neighborhood of %"

To simplify the notation slightly, assume, without loss of

generality, that

kt = 1 h = 1 0. (3-25)

To shorten the proof of Theorem 3.2.1, several lemmas will be proved

first.

Lemma 3.2.1. 4n(m) is finite and a strictly increasing function

of M.

Proof: The proof which follows is very similar to the proof of

Theorem 3.1 of [3] and incorporates an easy extension of the inequality

on page 43 of [9].

Since
oo

D(inm) = f D (I)fN(mI , n)dg > 0
in a) 0

and f p Do(AL)d4 is finite by assumption (3-22)
-00

CD

= 0 (i) fN(ml, n) (Dm(m))'ld;A < a).

To show that 4n(m) is strictly increasing, consider +n(m2 ) - 4n(ml)

where mI < m2 . Let fN(miig, n) be abbreviated to fi(I) , i = 1, 2.

Then, since
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D1(IIM2 ) . D1(.,I, 1 ) D ,1 .) f2 (,A)

D (m2 ) f, (JA)

and

%(m2) a) f2 () D(AIm)

DMmlj) "-o f 1 60)

in(m2) " +(ml f) g Il D1 (Im 2 )d. - f Dl ¢ I, )
CDZ % "m ) f2 g I

= -iL pD 1(glm1) I f(T)
% (M) CD13 f2 (P Di(pl.~ )dj]d4,

BmF f p D1 (&jm 1) [ f2 (;A

and this will be positive if the integral is positive. Now, letting

ri f f 2 (Ai) / f1(GAi) and Dij - Dl(p ilm j )

f; D1 (jiml) L-Tf - f 2 D(j Il)d*

00 CO

" l D11 rl dpl- -4iDu " _f r 2 D2 1 (2(ID

C OD OD ) CD
m-C ji D1 rld4A D d - f p, D1 1 dpA1  fr D dI

2 'A2 _00 0 22

-f~ f p1,(r, - r2) D11 D21 %. d _f _f p2C2 - rl) D21D11 djA2dAl
00 -CD OD O

(1) .(1/2) f f (l - ;) (rl - r2 )] D D21 (* 2

and the expression in brackets is positive for p1 0 A2 since fN(amA, n)

has a monotone likelihood ratio. Hence, since D0 (p) is not a unitary
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Il

distribution, the expression (1) is positive and *n(m2 ) - +n(ml) is

positive.

To simplify the proof of the next lemma, three preliminary lemmas

will be proved first.

Lemma A. For fixed E > 0 and M> 0 , and any k > 0

f Do(p ) fN(v!J/n, n)d = o(nk). (3-26)

Proof:

00 0

& E
O(n1/2 e-(l/2)nC2, Do 0(g)) = o(n-)

COD

since f g Do(p)d4A < aD by assumption (3-22). Similarly
-0

k
f p D0 ( I (gl,/n, n) dp = o(n').

Lemma B. For fixed E > 0 and i > 0, and any k > O

f ll 1 :,(pMl/n, n)t = o(nk). (3-27)
II~>

For a = 0(n " ) and fixed i > 0, and any k >0

f V(g - a)i fN( .la, n) dg = o(nk). (3-28)

IgI>E

Proof: Letting x = n1/2( - /n) and C! = nl/2(E- M/n)

p f( I Wn, n)4 = (xn1/2 + N.M)± f .(x)dx

=O(n4/ r x~ f (x)dx)

= o(n-)
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I

since = 0(n I /2) and

fT . (x)dx =(') , ± =0

I -I.l ,f (E' + (i-i , OD 1-2 (.x , i>2.

Similarly

-E Icf ;A I .(pjM/n, n)dla = o(nk).

The second part of the lemma follows easily from the first part.

SLemmaC. For & > 0 and a = O(n- l

I -IAka)2 f (pla, n)dt = 0(n - 3/2) (3-29)

Proof: Since a = O(nl), a ( [-6, E ] for n sufficiently large.

-a (p[a, n)d i f = -a)3 f (ga n)dp + f a(g-a) f (I l a , n)djta Na N

and letting x = nl/2(p-a), the right side of this equality is less than

3/2 t 3  1 c (x)dx + n'1 al I x f ( x ) dx

which is 0(n-3/2). Similarly

f P(A-a) 2  (ILIa, n)dp = o(n'31)
-IE

and the leima follows.
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;I
The next lemma has been proved by Guthrie and Johns [3, Theorem 3.3]

for certain types of exponential distributions (not including the Normal

distribution) with mean 4 and a prior distribution of p satisfying

assumptions (3-22) - (3-24).

Lemma 3.2.2. nl(0) = - DO (0) / n Do(0 ) + o(n ) (3-30)

where D- (0) - d D (1A) / d i evaluated at 0.0 0

Proof: It will be shown first that +nl(O) = 0(n 1 ) by showing
n

that there exists an M> 0 and an N > 0 such that for n > N

(1) +n (-Mn) < 0 < 4n(M/n)

Since n(m) is strictly increasing by Lemma 3.2.1, (1) is equivalent to

-M/n < +nl(O) <W n, or, 41(0) = 0(nl).

Consider

(2) +n(Wn) = (Dm(Mn))" f IA D (L) f (M/n4, n)dj .
"D 0 i

+n(M/n) has the sign of the integral in (2). and; fior a.y ; ,z ,

OD 

p

f p Do(W)f (/nlg, n)dp = f p Do(ji)f (pjWn, n)d4i + o(n" )-O - N

by Lemma A. By assumption (3-24), for some = (p) such that I I < 6

E
f I Do(p)i 1(gI Wn, n) dp = (Do(0) + g D" )f (p I Wn, n)dL

= D (O)[_f p %.(IWn, n)dc& - f gE,(I/n, njdA] + f D '(f)fff4L/n , n)d
0 D I4c W£nd(4) I:

- DO() (H/n + o(n "I ) + fP D (f)f 3 (pI Wn, n)d by Lemma B. From assumption
f p

(3-24) it also follows that £ can be chosen such that IDo (C)l is bounded,

say by K, on [-E,E]. Note that K is independent of M. Hence

I g 2 D' (Vf) 3 (pIWn, n)dp I < K f p f (pM/n, n)j
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(K 'QK100 42 f N(pIN/n, n)du A 2f>e GuMn, n)d4i]

-K [ n' 1+ (n/) 2 + o(nl

I by Lemma B again. Therefore, from (3) - ( )

(P) £N(Mnjp, n)_4 > Do(O)(Mn + on'-l n- + (Wn)2.o(nl )ho(n-i)

which is positive for n > N if M and N are sufficiently large since

Do(O) is positive by assumption (3-23). A similar argument shows that

I 4n(-M/n) is negative for n > N if M and N are sufficiently large.

Hence +;1(0) = 1(n-l).

It will now be shown that -1 (0) %- D(O)/n Do(O) + o(nl)
4n0 0

To simplify the following expressions slightly, temporarily let a = i

I It follows from Learn 3.2.1 that a is unique. Therefore, since Dm(a)> 0,

a is the unique root of

0 p.4 D 0() f,(alp, n)4u

;1 D0(pA) f,(alg, n)dpu + f pu D 0 (p) f N(alPA, n)du

I By assumption.(3-24), E can be chosen such that D (p) is bounded on

I [- E ]and then from Lemmua B

Ipf>ep DO(p) f,(alo, n)4l - o(n .

Hence

(6) 0 = 1 D0(p) fN(alp, n)4t + o(n1)

I 1From the first part of the lema, a = O(n " 1 ) . Thus, for any fixed 6)

it n is large enough, a [-E,t J, and by assumption (3-24) Do(p) can be

expanded about a so that (6) can be written as
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o - I(D (a) + D' (a) (¢-a) + 1/2 D" ()("a)2) fN(alp, n)dlo(n" )

- Do(a) f p f,( Ia, n)dIL - I p n)dp)

* D'(a) .. ( ¢.-a) fN( Ia, n)4  P (gj,¢-a) f¢ (pla, ( )d)

+ 1/2 P _)2 f,(pIa, n)d

= Do(a)(a+o(n-1 )) + Do(a)(nl + o(n'l)) + o(n " )

by Lemmas B and C. Therefore

(7) 0 = aDo(a) + n"I D(a) + o(nl).

0

From assumption (3-24) again, Do(a) and DI(a) can be expanded about 0 ,

for n sufficiently large, so that (7) becomes

0 - a(D(O) + a DI (k)) + n-1 (D,(O) + a D"('Z) + o(n1))

where II < lal < E for i-1, 2. Therefore, since a = O(n1 )

0 = a DO() + n " D'(O) + o(n
")

or

a = 41(0) -D;() / n Do(O) + o(n1 ).

Lemma 3.2.3. ?' xi F(-x)dx a 2 4/2 r (2-) / (2) 1/2 (1i+) (3-31)

for 0 = 0, 1, 2,....

Proof: Successive integrations by parts with u = F., (-x) and

dv xidx (i-O, 1, 2, ...) and, in the resulting integrals of the form

f Xef (x)dx where j>1, with u -1x and dv-xf (x*d

give 2 (2 )1/2(i+) , even

fx ( F j )2 F , i odd.
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For i odd , an application of the duplication formula for the gamma

function establishes the lemma.

Lemma 3.2.4. For fixed E > 0 and i > 0, and any k > O, if

a = O(n-" ) then

4F (aJ4, n)4lg = (n-k

-e k

Proof: Since

4 (4)i GN,(aII, n)4i= p F,(-alp, n)4

and

f g F (lat lp, n)dp > ogF,(al L, n)d4L

it will be assumed that a > 0 and it will be proved that

fI FN(alp , n)p - o(nk

Let M > 0 be such that for n sufficiently large, a < M/n

Then

(1) f i F,(algL, n)dp 00 ,(/ , ~~
zF (Mn I I, n)d

and letting x = nl/2(l - 4/n) and 6' = n1/2(E- M/n)

f p FN(W/nIIp, n)dlp =Tn-/(n/ + 1 l)i F (-x)dx

= o(n "(ixl)/ Tx± F (-x)dx)

So(n )

since successive integrations by parts show that 2 i F ,(-x)dx is a

linear combination of f (i') and -'), and 6' =O(n1/2)
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Theorem 3.2.1. For the two-action problem on the mean p of a

Normal process of known precision h with linear terminal losses and

an absolutely continuous prior distribution of p satisfying assuzptions

(3-22) - (3-24)

rt(n) = kt D0 (%) / 2 hn + 0(ktn 2 ) (3-33)

where kt L the terminal loss constant defined by (3-19), DO(Pb)

denotes the prior density at lb the breakeven value of p , and n

denotes the sample size.

Proof: For k t = h = and b = 0 ,(3-26), the theorem is that

rt(n) = Do(O) / 2n + O(n 2) . From (3-21) and (3-25)

rt(n) = rrt(n, m) Dm(m)dm

where

p Dl(pIm)dp if M, < 0

rt(n, m) DiCglm)= if " > 0

-b n--

Since m" < 0 if and only if m < l(O) by Lemma 3.2.1, rt(n) can

be written -1 )

(1) rt(n) =f f g DI(jAjm) D (m)d4dm + 1 (-.)Dl(pjm)D (m)dj#dm.

_W 0 ~ ~ (0) aM

Substituting (D (m)) 1 Do(p) fN(ml, n) for D1 (pIm) in (1) and inter-

changing the order of integration, which can be Justified by Fubini's

theorem, gives

rt (n) -j f p (D (m))'%Io(jA) f,(m1, n) Dm(m)dm dIA
0 -0D

o 00 1-0
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00 0.
O 0() 0l ) N, n)l +f ¢(-p) Do(p) l(4(o)lp, nd4A.

The theorem will be proved by showing that rt(n) , as given by (2),

can be written

rt(n) = 2 Do(O) ODp (I, n)4L + 0(n-2)

=D 0 (0)/2n + 0(n"2)

since, letting x = n1/2 and using Lemma 3.2.3

OD 1C
fop F(oIp, n)4A = n x F.-x)dx = 1/4n

As a first step towards establishing (3), from (2)

rt(n) = + I- + (p Do(P) FN(+1(O)IA, n)dj + (P)Do()GN(n(O)jA,n)d4

where

I = . 0Do(P) Fi.(4nl(O)lp, r.)dA

I- = 4 (-p) D0 (g) GN(4n (O)IIL, n)d4A

Since _f D (p)dc4 exists and 4nl(O) = O(n 1) by Lemma 3.2.2, for any

E>O and k > 0

OD 11/2+-1()D
f p, Do (p) F N (,lo)Ip, n)d4 < Yn/(n(O) - D 0 (p)dp

O(F,..'-En )] = o(n k )

and similarly

.- 1 k
Do (-)D(p) G (+- ;o) A, n)4L = o (n')

n- (5)



Hence

(4) rt(n) = + + I- + o(n- k )

Now, by assumption (3-24) there exists an C > 0 such that I+  and

I- can be written

I + - tp[Do(0) PDoI(0)+I/2 P2 I ( Cl)] [FN (0 1p, n)+FN(+,nl(O)14,n)-F,,(OI;An)]dpA

0 +p'o)l2 2

= f(-)D o (O)+pDo (0)+l/2p 2D ( 2 )[GN(0 I,n)+G,(4n (0)Ip,n)- (OIp,n)]d4

-6

where I 6l , i=1,2. Let

I+ +) I +  + + + I-= I-f+I +I-+I
I1 + 2 +3 1 2 • I+13 + 4

where

I- u Do(O) FN(Olp, n)d;

i f p2 D'(0) FN(Ojp, n)dM

I + (1/2) 3 () Fl(0Jp, n)dL

I =I (1(2) IAD NOp, n)dFp . )4
I3 0
+ t

14 f0 p Do(p) [FN(4n I ( 0 ) JIA a) - FN(O, n)]d4

and I1  through 14 denote the corresponding integrals of the analogous

partitioning of I

Since

(6) .- ,4 %(01A, n)d = (-) FN(0 ,I n) d . 1 1, 2, .. ,

it follows that

(7) 1+- M I I+ I
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I
I

Thus, from (3) -(7)

1t (n) -2. i. 4 + 4+11 + o(nk)

%8) / 2n + f3 + l + 1 + 4 + ,.('k)

It ns to beshown that + " ,)  - 0(n 2 )

I Consider first 1*By assumtion (3-21.), a neW be chosen such that

Do-( 1) 1-102, Is bounded by M, say, throughout the interval

I [-E(, E](.

I 111 <3 /2 N tir3 F1(01a, n)dIA <1/2 M4 r p3 F2(011L. u) dp

_ 1/2 M-2 40 x3 F (X)dx

I- 1./2 m7 2 (3/8) (by J 3.2.3)

=0 (n-2 )

(i0) 1-i 12 M-2(3/8) - o(n-2 ).

Co+drnx 14Ij . By assumpt ion (3-25) .TadI-cnh

I vwritten

1- tp4Do(O) + M, D'(('3)][F(1(o)I n) i oF .DI

1z "4 (-p)(D 0 (0) +. Do((4)] (C,,(+,(O)I p n)- %0o1p, -) 0

J where
IfI < E, in 3,40. Since

F , €,1(O)jp., n,) - F,,(Ol., ni) - Gj,(o0A, x -n)
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i/n ILD(O(F(+'O)iz n)n

=D (O)I.l [FN(4c1 (0)14, n) - FN (0IIL, n))4t1

=D0,(0) (-1 (0))2/ 2

O(n-2

by Lemma 3.2.2

Hence

+ 2 p -'3 F (nO)ji, n) -F (o1lp, n)4ldj

-e

Letting H denote a bound on ID'I( )I for If

E 2 4(0)I1 2
I+~ +4 I- 2M fn( ,n)dt dlp + 0O(n )

n 2o~ 2
< 2H fo - p4 fNCplt, n)d4A dt + O(n )

(i)= 2H n+'O (n1l + t 2 )dt + 0(n2)

= 2H (n-l jn4V1(O)I + (1/3)14.1(0)1') + O(n-2)

= 0(n -)

b , Lemma 3.2.2.
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I
I From (8) - (11)

rt(n) = Do(O)/ 2n + O(n 2

It is not difficult to show that for the general problem

rt(n) = k t Do( b) / 2hn + O(ktn'2) .

Theorem 3.2.2. For rt.(n) = kt D(%b) / 2hn + O(ktn- 2 )

and r (n) = ksn, the optimal sample size n = n (kt) satisfies

no = (kt Do(%) / 2hks)l/2 + O(kt1/4) (3-34)

where kt tends to infinity. In general, if rt(n) = akt/na

+ O(k t / n0x I ) where a > 0 and re(n) = k. nO, the optimal sample

size n satisfies0

no (askt/ ks) I /(G+ ) + o(ktl/(a")) (3-35)

where kt tends to infinity.

Proof: The second part of this theorem (3-35) is applicable to

the problem of this subsection if Q is set equal to 1; if 0 also

I equals 1, (3-34) gives a stronger result. The result (3-35) will also

be utilized in the following subsections and will be proved first.

Let R =0 (kt) = (Qakt/ Sk s ) where ) = (a + p)-i and let

E (kt) = n no Then

r r(Ro 0 rt(n)+ r(R.

I =akt(aakt / Oks) + k s (aakt / Oks)"' + O(ktl'(Ol))
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The frist two terms on the right side of (i) are positive and O(kto)

while the error term is 0(kty(0'l)). Now suppose no = n0 (kt)

-O(kt+ ) where t+ E > 0 and consider

r(n) = akt / n(% + k nP + 0(kt / no1 +1)

(2) = O(ktl''-'O) + O(kt 0'+0) + O(kt i ' ( 6+ I ) ( Y+ S)

= O(kt' ) + O (kkttp(+'l)) + l) ) .

If S > 0, the second term on the right side of (2) is positive and

of larger order of magnitude than r( 0 ); if 9 < 0, the first term on

the right side of (2) is positive and of larger order of magnitude than

r( 0). Since n0  is the optimal sample size, h = 0 and n0  and

n are of the same order of magnitude.

To show that e = o(kt ) it will be shown that u = u(kt)

= 0 /n ô approaches 1 as kt  tends to infinity. Consider

0 t(31
r(n) " r( ) = akt/no + kn - a/fP - k +o

(3) = (at/no)(l/u' - 1) + k 5 op (uP - 1) + O(kt c . ))

=8n0 s-i+ (up-l)] + 0(ktV (JB l))

since nt/o 0 (/C) ksno 0 It is easily shown that the expression

in brackets in (3) is positive if u 0 1. Hence, if u does not

approach 1, then for any K > 0, r(n0 ) - r(JR0) is positive for in-

finitely many values of kt greater than K, contradicting the optimality

of n0 . Therefore u(kt) approaches 1 as kt tends to infinity,
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E (k t ) o(kt), and the second part of the theorem is proved.

I For the special case of the first part of the theorem, U - = 1,

I (kt Do(%/ 2hks)l/2 , and

r(n) = ks^ 2 /n + ksn + O(ktn2 )

A 2, A 2
S(k 6/n) (n _ n) + 2kn 0 + O(ktn)

From the proof of the second part of the theorem both n and n are
O(ktl/2) and hence

(n) k P n + E + 2kn + 0(l)

r() = 2kSn ° + 0(l)

Iand
r(n) r(n°) = k 6 2 / (no +E) + o(1).

Since = o( o 0 r(n) - r( o ) is positive for kt  sufficiently lage

Iuless n 0o( 1/2) = O(kt1/4). QED.

I For the problem of this subsection, it follows easily from

i Theorems 3.2.1 and 3.2.2 that if r(n) = kno

rt(n O ) = rs(no ) + o(ktP/(l+P)) (3-36)

and, if n = O(no )

I r(n)/r(n) = (¢/(+)) (n/no)o + (0/(+0)) (ne/n) + o(l), (3-37)
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i.e., the generalized optimal loss partition inequality and the generalized

Schlaifer's inequality, both with a = 1, are asymptotic (kt -+ o)

equalities.

3.2.2 Symmetric Quadratic Terminal Losses.

In this subsection it is assumed that action a1 (a2 ) is pre-

ferred to action ta2 (a,) if g < (>) jb and that the terminal loss is

0 if the correct action is taken and

kt (,A _ L)2 ) kt>o0 (3-38)

if the incorrect action is taken. Assumptions (3-23) and (3-24)

concerning D0((p) are retained and (3-22) is strengthen6d to

O

(i')- )o) exists (3-22')

Theorem 3.2.3 below is analogous to Theorem 3.2.1 and shows that

for the problem of this subsection rt(n) is asymptotically proportional

to n.3/2 . The proof of Theorem 3.2.3 will be simplified by first proving

several lemmas. The first of these lemmas is more general than necessary

for Theorem 3.2.3; it will also be used in subsection 3.2.3.

Lemma 3.2.5. Let Li(g) , i= 1, 2, denote the terminal loss

of action ai if p obtains; and assume that L1 (ji) and L2 (p) are

such that the integrals below exist (for symmetric quadratic terminal

losses this follows from assumption (3-22')). If Ll(p) is 0 for
CD

pL <0 and non decreasing for p > 0, then 4 L1 (Ig) D1 (Ilm)d4L is a

non decreasing function of m. If 2() is non increasing for p < 0
0

and 0 for p > 0, then f L2 (p) Dl(pgm)dp is a non increasing function
-00

of m.
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Proof: Considr ! L (p)Dl ]m)d . Using the notation and

the trick of lemma 3.2.1, it can be shown that h(p)Dl(lm2)dA

S" 46L(A)DI(jIm)d is positively proportional to

(1) (1/2) { f f hl)(rl-r 2 )DllD2 1 dlp4 2+f f LJ(0 2 )(r 2 -rl)DlD 2 ,1 dpld 2

+ f f (L1(pl) - Ll(G. 2 )) (rI - r2 )DllD21 d id+ 2 }

where Qi = quadrant i. From the assumptions on L.(JG) and the monotone

likelihood ratio of fn(m ,n), it is easily seen that (1) is non nogative.

[ Note that if Ll(g) is positive for some p > 0, (1) is positive and

f L (p) Dl(p)jm)d is strictly decreasing in m . The other half of the

lemma is proved in the same way.

F Lemma 3.2.6. There exists a unique mb(n) such that

00 2 02£ p Dl (plm)dc - , (Dl(1Im)d < (>) 0 for m < (>) rb(n) (3-39)

and mb(n) = O(nl

Proof: The existence and uniqueness of mb  follow from the theory

of monotone likelihood ratio procedures [101. They could also be deduced

from leima 3.2.5. To complete the proof of the lemma it will be shown

that there exists an M > 0 and an N > 0 such that for n > N

00 20 2
(1) f P 2Dl(gIN/n, n)d4 - p 2 DI(pIN/n, n)dp > 0

0 -00

and
G02

(2) f A2 Dl(pI-J/n, n)d - f p D( I-M/n, n)dp <0.
0 -cc

Consider (1).

00 20 2
f p Dl (pI /n, n)d4 - f L Dl(plIn, n)dp
o -C

(3) = (Dm(/)) [n 1  r A2 Do()f .(pI/n, n)4- 0 ID( ( IN/-,n)d ]M0 N@ f"

will be positive if the quantity in brackets is positive.
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ii

By assumption (3-24), the quantity in brackets in (3) may be written as

S2  0 2
p Do(O)fN(p ln, n)d - f 0 Do(O)fN(L4Wn, n)dp

4) + 9 1Do(Al)f,(p~n, n)d - E gDo()fN( LjWn, n)d
o 00

where < E for i = 1, 2. From an easy extension of Lemma A, the

third line of (4) is o(n-k ) for any k > 0. Letting H denote a

bound on ID'(GL)I for I < , it is straightforward to show that
00

Do(6l)f (ILl~n, n)dp - f I' 3 Do( 2)fN(.Ln, n)dA I = O(Hn'
No 0

It is also easy to show that the order of magnitude of the first line

of (4) is exactly Mn"3/2. Hence, since the first line of (4) is clearly

positive, the entire expression (4) is positive if M is sufficiently

large.

Lemma 3.2.7. For E > 0 and a = O(n " )

92 o /V (F,,(agL, n) - F(i(OgI, n)]dp + f 2 [G,(al, n) - G.(Ojg, n)Jdt=O(n - /2)

(3-40)

and

I 1 3F,(aIl, n) - Ft(Ol, n)]dp I = o(n5/2). (3-41)

Proof: From Lemma 3.2.4, replacing C by w and - e by

- cM in (3-40) or (3-41) adds terms of o(n-k ) where k is any

positive number. Hence, for (3-40) it suffices to show that

( )P t2(F,(a I., n) - F,(OI ., n)] d4. + A [ ,(alj, n)-GG(Ojp,n)]dpfo(n'/)"

-64-



L Ietting =anl/2 and x n n1/2 (a-

f a- ,-1/2)2 -N*x 1/2d
(2 P?2F,(a jp, n)dl~ = f( n F*xn d

03/ - Y

n'/2U (Y-~x)2 F *(x)dx + f (Y-xK) F *(x)dx]I and3/

I(3) f p Naji n)dp = n f ((-X) 2 %*(x)dx = n3/ f Yi'g' -~
-D1/2 a'

Letting x = -n L

I(4) 7D P2FN (0~ n) d;L = 02 f~~ x =-~x

I From (2) - (4), the left side of (1) may be written

In3/2 -~~Y 2 () 2 + OD)2 () + YX2O nn0(x d+Y'-x) (Y'-x)2xFN*(-x)dx-2 x FNt*(-x)dx]

+ y2 0ODO 2FN*(-x)dx - 2 b'f xF,,*(-x)dx + f x 2 *(-x)dx - 2 f x Fg*(-x)dx]

()=n- 3/2[(2Y2 00o Y 2Y
F * (-x)dx _f(Y'-x)2 F N*(x)dx - 2 f x F1*(-x)dx]

and the equality (1) will be true if the quantity in brackets in line()

Iis Onl)
I Since (=O(n1/2)

212f F*(-x)dx = O(n )

Integrating by parts twice

j /x2 F,*(-x)dx = (y'~3)~*-' (Y2/3)f*(Y) +(23f 0f()

= O(n3/2) (- -+ O(r 1 (o)fe(y))



and, letting X be such that for large n < Mn-i/2

n(f,*(O) - fX*(Y)] = O[n(. - e'l/2

< n (l - eW n 00Z (.-1'1(t12)j / J! nJ'l < oo
J=l

Hence, fN (O) - f1 (Y) = O(nl ). It remains to be shown that

f (y-x) F .(x)dx O(n" )

and this follows easily since

jf 2
If (Y-x)2 Fe(x)dx I < 2111 f dx I = o(Y)= O(n-').

This establishes (3-40).

To prove (3-41), it suffices to show that for a > 0

j 43[F1 (aj, n) -F(01p, n)]4L = O(n"5/2)

since

I I P3rF,(al4, n) - F(0I., n)]d _<jP 3 [%(Ialjp, n)-F%(olp, n)]cW

Now

1 3[F(ali, n) - FR(Op, n)]dp = i. f,(t4A, n)dt d

0 0
n3/2 O 1/2)3 f *(x)dx dt

and this is easily seen to be O(n-5/2)

since a - o(n - 1 ) and j x3 f,(x)dx - 2 f=,(o).
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Theorem 3.2.3. For the two-action problem on the mean p of

a Normal process of known precision h with symmetric quadratic terminal

losses and an absolutely continuous prior distribution of V satisfying

assumptions (3-22'), (3-23), and (3-24)

rt(n) = (4,13 Vr2--- )(ktDo(%Lb ) / hn3/2) + 5(ktn52) (3-42)

where kt  is defined by (3-38) and jb denotes the breakeven value

I of P.

Proof: As for Theorem 3.2.1, the proof is given for the case

of b = 0, kt = h = 1. From Lemma 3.2.5, it follows that there exists

j a unique mb(n) such that action a, is preferred if m < mb and

action a2 is preferred if m > mb. Hence

(i) rt(n) = 1% 00 +o o

-t~n f p LDl~pm)Dm(m)cdm + f p'2D1(glm)D (m)4Ldm

Proceeding exactly as in the proof of Theorem 3.2.1, (1) can be written as

(2) rt(n) =I + + I- + cp2 Do(p)Fj(mblp, n)dt 2Do(g)G (=bjpn)d

where

I+ =p 2 D(p)F (mbj L n)4ti

0 2
I-= f P Do()F(mb Ip, n)d-s

Since D p 2 Do(p)d. exists by assumption (3-22') and mb(n) = 0(n " )

by Lemma 3.2.6, the last two integrals on the right of (2) are o(n k)

for any I > 0 and k > 0 by Lemma 3.2.4.
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'I
Expanding D0 () in I +  and I' and partitioning the resulting

integrals as in Theorem 3.2.1 gives

I= p 2D(O)F,(Ojp, n)dI , I- = p 2 Do(O)GI(OI, n)4lp

1 04 04

+1 =(1/2)L p D (CI )FI(0 i1 p n)dc~ , I- =(1/2) g D"(f 2 )CW(Ojg, n)4A
-E

4 = p PDo(p)[FI(mb, n) - %(O, n)3dji

I4 =_ 2 Do(¢)[C(%1i, n) - C(O1p, n)]dli

NOV, Ii =Il and

2'_ = 2 D0 ( ) p Flt(J , n)dlp + o(n' ) (by Lemma 3.2.4)

-2 D (O)n3/2 (

-2 D 0 (O)n / 2 f" (2)/3 V-r + o (n ) (by Lemma 3.2-3)

= (4/3 'Ff') (D (0)/n3/2) + o(nk- )

Again I+ = -If and by the same type of argument as was used to derive
2 2

(9) and (10) in the proof of Theorem 3.2.1

I I3+ 3 I = 0(n-5/2)

Finally, letting H denote a bound on IDo(E) 1 for II <
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I
+ = 2[Do(0) + pD'o(C3 )] [FN(mbIp, n) - FN(OI., n)]dL

I f [Do(0) + p)D(F 4 )] [G (mbl, n) - GN(OI , n)]dp-e

0D_(0) [F(mb Ip, n) - F, (OI, n)] + f p2[GN(mbIL, n) - G,(Oi , n)]d]
o -E

S+ 2 H f 13 [F (Imbl I , n) - FN(O1, n)])4
0

I o (n "DI 2)

I by Lemma 3.2.7. For the general problem it is easily shown that rt(n)

is as given by (3-42).

I For the problem of this subsection, if rs(n) = ksn

no = [(2/Tr)1/2 (ktDo(%) /I hks)]1/ (3/2) + o(ktl/( +3/2)) (3-43)

by Theorem 3.2.2. Using Theorems 3.2.2 and 3.2.3, it can be shown that

the generalized inequalitiesjwith a = 3/2, become asymptotic equalities.

3.2.3 Constant Terminal Losses

I In this subsection it is assumed that action a1 (a 2 ) is pre-

ferred to action a2 (al) if p < (>) p.b and that the terminal loss

I is 0. if the correct action is taken and kt (kt > 0) if the incorrect

action is taken. A similar problem with a Normal prior distribution

I was considered in subsection 2.4.4 and there kt was fixed at 1. This

could be done here also, but then, for asymptotic results concerning

no (assuming rs(n) = ksn), ks would have to tend to 0. For

consistency with the rest of Section 3.2, the terminal loss constant

here is chosen to be kt, for asymptotic results it is assumed that

kt tends to infinity, and ks will be thought of as fixed. The
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crucial cost parameter, of course, in all of the problems considered

so far is kt/k. It is also assumed that Do(p) satisfies assump-

tions (3-23) and (3-24) and that 4b = 0.

Lemma 3.2.5 holds for the problem under consideration and, as

in the last subsection, there exists, for fixed n, a unique mb(n)

satisfying

ODO

Dl(p±m)d4 -. _ Dl(plm)dp < (>) 0 for m < (>) rb(n).

Furthermore, a proof analogous to that of Lemma 3.2.6 shows that

mb(n) = O(n l). Then, corresponding to Theorems 3.2.1 and 3.2.3.

Theorem 3.2.4. For the two-action problem on the mean g

of a Normal process of known precision h with constant terminal

losses (kt for an incorrect action) and an absolutely continuous

prior distribution of p satisfying assumptions (3-23) and (3-24)

rt(n) = (2/1T)/2 (kt Do (b)/(hn)i/2] + 0(ktn-3/2). (3-44)

Proof: Assuming pb = 0 , rt(n) can be written, as in the

proof of Theorem 3.2.1 as

6 0

rt(n) = kt Do(%)F)(mblI, hn)4t +_j kt Do(%)c (mbIlL, hn)d*

+ f kt D0 (%b)Fj,(mbjg, hn)d4 +j kt DO(Pb)c(mbI14, hn)dg.

Using arguments very similar to those in the proof of Theorem 3.2.3,

it can be shown that

rt(n) = 2J kt D 0 (O)Fg(O Il, hn)d.A - o(ktn

ktD0 (O)(hn'll2 ,(-x)dx + (ktn32
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The theorem follows since FN,*(-x)dx = (2,)" /2 by Lemma 3.2.2.

For the problem of this subsection, if rs(n) = ksno

no = [' /h)/2 (kt D 0 (%) / k)] 1/(o1/2) + o(kt 1/(1/2) (3-45)

by Theorem 3.2.2. Using Theorems 3.2.2 and 3.2.4, it can be shown that the

I' generalized inequalities, with a = 1 / 2, become asymptotic equalities.

3.3 Finite-Action Problems on the Mean of a Normal Process of Known

Precision with Linear Utilities and an Absolutely Continuous

I Prior Distribution of the Process Mean

The asymptotic results of subsection 3.2.1 can be extended to general

finite-action problems on the mean of a Normal process with linear utilities.

For simplicity, only the three-action problem will be considered explicitly.

Le0

I A = {al, a2, a3) (3-46)

I ut (ail, ) = Ki + kp , i=l, 2, 3 (3-47)

rct (a,, P) = terminal loss of a, if obtains

= max (ut (ail ut (ai, 9)), i=l, 2, 3 (3 =4 8 )

% = (K1 -K 2 ) (k2 -k l ) , % 23 
= (K2 -K 3 )

I (k3 -k 2 ) (3-49)

kt12 = I k2 - kI kt2 3 
= I k3 - k2  . (3-50)

The rest of the notation used below is defined in Section 3.2. In

particular, note that rct (ai, p) defined in (3-48) is the conditional

(on p) terminal loss of action ai while rt(n) defined in (3-14) is
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the expected terminal loss, prior to observing m, of an optimal decision

following a sample of size n.

It is assumed that k1 < k2 < k3  and "b12 < "b23 . These as-

sumptions guarantee that the problem is nondegenerate (each action is

strictly preferred for some values of p) and index the actions so that

a1  is preferred if p < N12, a2  is preferred if N12 < P < N23,

and a3  is preferred if i > N23" Of course, Nl2 is the breakeven

value of g between a, and a2 , and "b23 the breakeven value of p

between a2 and a3 . With regard to Do(g), the prior density of p,

it is assumed that (3-22) holds and that (3-23) and (3-24) hold at both

1bl2 and %23'

Theorem 3.3.1. For the three-action problem on the mean p of a

Normal process of known precision h with linear utilities and an

absolutely continuous prior distribution of p which satisfies as-

sumptions (3-22), and (3-23) and (3-24) at N12 and %b23

rt(n) -(kt2 Do(N12) + kt23 Do(Lb23 ) ) / (2hn)'+ O(kmn ) (3-l)

where km =max (k2 kt23).

Proof: From the assumed linearity of the terminal utility functions

ut (ai, g), the optimal terminal action following a sample of size n

resulting in a posterior mean m" depends only on whether m" < Mbl2

(a1 optimal), b <s" < 3 (a2 optimal), or i" > 3 (a3 optimal).

From subsection 3.2.1, Lema 3.2.1 holds and Lemma 3.2.2 generalizes

easily to 4-1 G(%1) = ll - D' (-/D U .~ 1  n

3 = 3 " Do(% 23) / n Do .(po 3) + o(n'l). Fdr the theorem being

proved, only the fact that +n +%o2)1% an+ 0(n' an

9. + os) needed.
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Now, from (3-47) - (3-50) it is easily shown that

0 P < Lb12

I rt(aA, {kt2(v'-%2)' %l2 12 " < %23 (3-52)

k tl2( '%12) + kt 2 3 ( - %23 ) , ' > %23

j kt12 (1b - '1 P 54l
r rct(a2' 0)- %12 P 11< 23 (3-53)

,kt2 3(p-%23 ) %23

r ct (a 3 , I t23(%23 - ) %12 %23 (3-4)

o0 - %23.

And

rt(n) = f rt(n, m) Dm(m)dm (3-55)
-W m

where, for values of m such that ai is optimal

0

rt(n, m) = rct(ai, P) D1 (.lIm)d (3-56)

Action a,, for example, is optimal if and only if m" < P12, and

by Lema 3.2.1, m" < %12 if and only if m < *.1(%12). Hence, the

contribution to rt(n) from values of m such that a, is optimal is

given by
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f f rct(al, V) Dl(Vim)p Dm(m)dn
-00 -00

4n1%l2~ Wo 00
f [ f ktI2(g-bl 2 )D(p Im)d + f kt 2 3 (g-"b 2 3 )DI(pIm)d4]Dm(m)dm

-O 'bl2 LbP3

from (3-52). The complete expression for rt(n) can be indicated by

a1 OD al oo a2 bl
rt(n) _ j +f f + f f

"M 1 -o b2 al'°

(3-57)
a2 00 00 bl M b2

f f + f + f f
a b2  a2 -00 a2 - D

where ai = +l(%,i,i+l) and bi =

In each of the six double integrals in (3-57), the integrand is determined

by the index of b; if bi appears as a limit of integration the

integrand is

kt,i,i+1  I - 'bii+l I Dl(Im) DM(m). (3-58)

Combining the second and fourth double integrals and the third and fifth

double integrals on the right side of (3-57) givesa1 r CDb1  20o b
rt(n) =f + f + f + f f (3-59)

- 1o a1 -o -00 2 a2 .o

Applying Theorem 3.2.1 to the first two double integrals and again to

the last two double integrals on the right side of (3-59) establishes

the theorem.
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The discussion above clearly generalizes to the nondagenerate

p-action problem. If the actions are indexed so that the index of the

optimal action never decreases as p increases

p-12

rt(n) - (ia~ l ktii+1 Do(%bii+l)) / (2hn) + O(kmn 2 ) (360)

where kt,i,i+l, %,ii+l' and km are the obvious generalizations of

the notation used in the three-action problem.

From Theorem 3.2.2 it follows that the optimal sample size n

for the p-action problem being discussed with ra(n) - kan satisfies

p-1 koJ , ,i+l)) / (2h k 1)l/2 + O(k 1/4). (3-61)
ii t,i,i+l ') 1 1 k

Asymptotic optimal sample sizes for the p-action problem with r (n)=k an

also follow from (3-60) and Theorem 3.2.2.

The analysis of this section can be extended to other loss functions

but the details will not be given. Roughly, with mild restrictions on the

rates of increase of the terminal loss functions, the first order terms

making up rt(n) depend only on the terminal loss functions of "second-

best" actions in neighborhoods of the breakeven points. If, for example,

these losses are all constants, for large n, rt(n) will be asymptotically

proportional to a weighted sun of these constants divided by n1/2 where

the weights are the prior densities at the breakeven points.

3.4 Finite-Action Problems on the Mban of a Normal Process of Unknown

Precision with Linear Terminal Utilities and an Absolutely Continuous

Joint Prior Distribution of the Process Mean and Precision

In this section the results of subsection 3.2.1 and Section 3.3

are generalized to the case in which the process precision is unknown.

Only the two-action problem is considered explicitly.
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Let Do(p, h) denote the joint prior density of (4, ') and

Do(pth) the prior conditional density of ; given h. It is assumed

that assumptions (3-22) - (3-24) hold for D0 (Plh) for all h > 0 and

further, that a neighborhood of (pblh) exists such that (3-24) holds

uniformly in h and that the second negative mnt of the;Margina1 prio.?

distribution of; h is finite.

From the proof. ofTheorem 3.2.1 it is easily shown that
/

rt(nh), = kt Do(%Ih) / 2hn + 0(kt(hn)2). (3-62)

Hence, if D0 (h) denotes the marginal prior density of h and D(%1

the marginal prior density of X at jb

00
rt(n) = j Do(h) rt(nlh) dh

= (kt/2n) Oh 1 D (h)D (%Ih)dh + 0(kt t(n)- 2 (h)dh)

(kt/2n) j h 1l D (h)Do(;%h)dh + O(kt 2)

= (kt/2n) 0h-1 D(hi) Do(%)dh + O(ktn 2)

(kt/2n) D0 (%) Eo(h 1 l%),+ O(ktn- 2 )

where

CD 1E 0(h'llpb)  jh hlb= g -1 Do(hI%)dh

denotes the prior expectation of the process variance conditional on

Thus, for the asymptotic form of rt(n) and hence, the asymptotic

optimal sample size, Do(% b ) Eo(h 2 llpb) is a certainty equivalent for the

joint prior density D0 (IA, h).
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I
Addenda to

BAYES DECISION THEORY:

j INSENSITIVITY TO NON-OPTIMAL DESIGN

Gordon R. Antelman!
1. Pages (i) and (ii) are reversed. (Amended- disregard)

1 2. P. 1, par. 1. A general formulation of a class of decision prob-

lems, which includes all of the problems discussed here, is given

by Raiffa and Schlaifer [1, Chapters 1 and 4]. The terminology,

and to a large extent, the notation used in this report follows

that of [i].

1 3. P. 1, 1. 10. Replace "which have not been considered elsewhere."

I by "discussed here but not elsewhere."

4. P. 4, 1. 2. Insert "(Theorem 3.2.2)" after "derived".

5. P. 4, 1. 4. Replace the sentence "The asymptotic form ... " by

"The asymptotic form of r t(n) is also considered for symimetric

I quadratic terminal losses (Section 3.2.2) and for constant terminal

I losses, i.e., the hypothesis testing formulation (Section 3.2.3)."

6. P. 4, 1. 4 of Sec. 1.2. Replace "a continuous" by "an absolutely

I continuous."

7. P. 4, 1. 5 of Sec. 1.2. Insert "as (k t/k ) tends to infinity,"

I after "it is shown that."

8. P. 5, 1. 11. After "variance." insert "(The analysis referred to

treats n as a continuous variable; from a practical standpoint,

one observation would be required in the limit.)"

9. P. 6, 1. 12. Concerning "The reason for this difference is dis-

I cussed in Section 2.4.5." and the following sentence, see also
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!
j point 22 of this addenda.

10. P. 6, 1. 4* (a star superscript is used as an abbreviation for

"from the bottom of the page"). Replace "non unitary (two-point)"

by "two-point (non unitary)."

S11. P. 7, 1. 4. Replace "indicated" by "indicates."

j 12. P. 8, par. 2. This two-action problem is stated in terms of

linear terminal profits, rather than utilities, in [2].

13. P. 8, last par. All of the problems discussed in this report are

phrased either in terms of utilities or in terms of opportunity

I losses and in every case it is assumed either that total utility

is the sum of a terminal utility and a sampling utility or that

total opportunity loss is the sum of a terminal opportunity loss

1 and a sampling loss. It is shown in [1, p. 84] that if terminal

utilities and sampling utilities are additive and the utility scale

I is chosen such that the sampling utility of a sample of size 0 is 0,

total opportunity losses can be written as the sum of terminal op-

portunity losses and sampling losses, or costs of sampling, where

the costs of sampling equal the negative of the utility of sampling.

14. P. 12, eq. (2-11). Replace "f n(tIjh)" by "fN(tip,h)"

15. P. 13, eq. (2-21). Replace "(hn')b " by "(hn')-i.''

1 16. P. 13, eq. (2-26). Replace "(hn*)-1 " by "kt(hn*)-1."

117. P. 14, eq. (2-30) and the two sentences following (2-30). As it

stands, the sentence following (2-30) is not true. However, (2-30)

Ican be weakened to

(ii') d2 rt(n)/dn2 exists, n > 0. (2-30')

and Theorems 2.3.1 - 2.3.3 still hold, and it can be shown that

regularity properties (i) and (ii') and Conditions I and II
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I
I guarantee that n is either 0 or unique and positive.

18, P. 18, eq (2-44). Replace "b" by "k ."

19. P. 20, Theorem 2.3.3. Following is a restatement of Theorem 2.3.2

and an expanded and corrected proof.

Theorem 2.3.3. If Condition II is true for a = a > 0 and

I rt(n) = o(n-1 ), then Condition I is true for a = 0o.

I Proof: Since rt(n) is an expected terminal opportunity loss

and terminal opportunity losses are necessarily non negative, rt(n)

is non negative for all n > 0. By regularity property (i) (2-29),

I rt(n) is strictly decreasing for n > 0. Therefore C0 rt (n) decreases

to a non negative constant, say c, as n -#w. Since nr'(n) -#0 as

n -#- by hypothesis,

I nr (n) + aort(n) c

I as n - m.

Now
-a a +1

d(nrt(n) + aort(n))/dn = n 0 d(n 0 rt(n))/dn

iand this is negative for all n > 0 by Condition II (2-36). Thet-

fore, nrt(n) + aort(n) is positive for all n > 0 since it has .-

Inegative derivative and approaches a non negative constant as n -#.
~Since

Sinc 1-a a
nr (n) + aort(n) = n 0 d(n 0 rt(n))/dn

a
it follows that d(n 0 rt(n))/dn > 0 for all n > 0, which is

Condition 1 (2-31) for a = a 00

20. P. 20, 1. 1 of footnote e. Replace "n < 0' by "n > 0."
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21. P. 22, 1. 2 of proof of Lemma 2.4.2. Replace "rt (n)" by rt n).1

22. P. 35, Sec. 2.4.5. To illustrate the similarity of the results

of this subsection and the results for two-action problems with

discrete prior distributions, consider a two-action problem on the

mean p of a Normal process of known precision h with linear terminal

losses, sampling costs = ksn, and a discrete prior distribution of

5. For simplicity, assume that the mean of the prior distribution

is 0, that 'b = 0, and that h and kt, defined by (2-17) are both 1.

Let Do(i) denote the prior probability that 5 = i and let Dl(pim)

denote the posterior probability that , = i given an observed

sample mean m.

From (2-86) - (2-88)

(1) rt(n) = f rt(n,m) Dm(m)dm

and in analogy with (2-91) and the sentence following (2-91)

E 4i Dl(pilm) if m < 0

(2) rt(n,m) Pi

(- L) Dl(pim) if m> 0.

Substituting (2) in (1) and replacing D (1±ilm) by

D(i) fN(mkLin)/Dm(m) yields

0
r (n) E p piDo( )f fN(mbin)dm + E )D (jL)', mlnd

t i > 0 1 -W Pi < 0b 0!.qmWind

(3) E 9iD0 (pi) FN*(-pi
4f ) + Z (-4,) DO(gi) GN*a-Vtni4 )

> 0 Pi < 0

from which it can be seen that r t(n) decreases exponentially fast
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as n increases. As a result of this, it can be shown that if

k -#0, so that no -#oo, rt(no)/rs(no) -0. This conslusion can

J easily be generalized to constant or quadratic terminal losses

and can also be generalized to the case in which the mean of the

prior distribution + b"

r In summary, for these two-action problems, discrete prior

distributions or continuous prior distributions and an indifference

region about b result in rt(n )/r (n ) -40 as n -#o while for

continuous prior distributions and no indefference region about Pb

rt(n 0 )/rs(n 0 ) approaches a positive constant as n0 -. The former

result rests on the "tail behaviour" of the Normal distribution

(see, e.g., (3) above or (2-116)), the latter result depends on

the "central behaviour" of the Normal distribution (see, e.g., (2-109)).

23. P. 43, 1. 3. Replace "Lebesque" by "Lebesgue."

24. P. 46, 1. 1. Replace "The following ... " by "For given Pb' the

following "

25. P. 51, 1. 4. Replace "o(n-l)" by "o(n)

26. P. 51, 1. 2*. Insert "c" between "a" and "[-E."

27. P. 52, 1. 3*. Replace "(2 " by ."

28. P. 54, 1. 1*. Insert "D (m)" before "dindg."

29. P. 60, 1. 1. Replace "frist" by "first."

30. P. 64. Underline "Lemna 3.2.7."

31. P. 71, title of Sec. 3.3. Insert "Terminal" after "Linear."

32. P. 76, 1. 4. Replace "(blh)" by (

I
I -V -


