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Representation Schemes for Investigating

Non-linear Processes

by

Donald DeVorkin

ABSTRACT

The work is concerned with systems of ordinary
differential equations. A framework is developed in
which a statistical approach to the analysis of the
equations is natural. One seeks the correlations of
the solution in terms of the correlations of initial
conditions and/or forcing functions. General representation
schemes are developed for this purpose. It is shown
that general schemes can converge for arbitrarily large
but finite time. In some special cases, all-time repre-

sentations are obtained.
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INTRODUCTION

(0.1) Preliminary Discussion

At the present time, we are able to enjoy the results of extensive

successful application of linear methods to science and engineering.

This is not to Bay that even essentially linear problems necessarily

yield to the developed analytical methods of mathematical physics. One
example of what is meant is that we can solve Laplace's equation analyt-
ically in only very special coordinate systems. Nevertheless, since we
can solve many linear problems, we are sometimes able to deduce general
properties for a class of problems, suggest meaningful experiments, and

obtain successful engineering methodology.

The situation for non-linear problems is not nearly so satisfactory.
Some very special problems have been thoroughly treated, but for the most
part, analytical methods have been available to English readers only since
our introduction to the Russian School by Minorsky (1947). Since then,
although numerous books have appeared, the analytical methods available
to us at the present are found to be substantially those in Minorsky
(1947). These methods have one common aspect: The equations must, right
to begin with, be in some sense nearly linear in order that the methods

apply.

In this thesis, we will attack certain classes of non-linear problems

from a different point of view. While one of the results is of a quasi-

linear nature, the rest are truly non-linear in character. These results



contain their own inherent limitations, and hence will channel the kinds

of physical problems to be considered.

0.2) The Statistical Viewpoint

Wiener (1958) developed a means for synthesizing a class of non-

linear networks. We can characterize this class by the properties:

a) Bounded inputs give bounded outputs.
b) At the present time, the output does not depend on

the nature of the input acting at the infinite past.

For linear networks, one has become used to the impulse as a probe.
That is, we often characterize linear networks by their impulse response.
Wiener shows that for his class of non-linear problems, Brownian motion
is a suitable probe, and that one can synthesize these systems when in
possession of the Brownian motion response. One describes Brownian motion
by its statistical properties and what is really required for the synthesis

procedure are input-output cross correlations.

Let us try this sort of thing for a linear systea

o0

y(t) = fh({—‘T)'x(‘T)J’T

- o0

where 1(({) is any representative member of an ergodic ensemble,
av

and [' h (t) I dt exists and < o<

-00
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e oni e

Then

y(d) x(t + o) = f h(t=T) x(T)x(@k+a)dT

The bar denotes ensemble = time average.

For the case where the ensemble is white noise

C(T, t+a)

o

[ht-T)§(T t+a)dT

-of

h(-0)

X (t+0) x(T)

\a(t) x(t+T)

To obtain h (*L) , any ergodic ensemble of functions whose

auto-correlation is a delta-function would suffice. Since the average

\a'('t ) X (t +q~) can be taken as well over time as down the

ensemble, only one representative member of the ensemble need be

required.

For the linear system, the higher order moments of the input can
be left arbitrary. The Wiener theory for non-linear synthesis suggests
Brownian motion, all correlations must be specified and there is no
arbitrariness at all. Schetzen (1962) has shown that if a non-linear
network uses up to n-th order products of the input, then a suitable

probe is a representative member of an ergodic ensemble whose first



2n correlations are the same as for Brownian motion, but whose higher
order correlations are arbitrary.

Through the above ideas, which are primarily coricerned with network
synthesis, we can get a look at a fundamental issue in analysis. To do
this we need only to add something about the nature of a Brownian motion
ensemble. Each member of a Brownian motion ensemble is continuous and
defined over all time. Now let { (t) be a continuous function defined
on an interval of length L. . Then almost every member of the ensemble
approximates { (t) arbitrarily closely on some interval of length l_
In a sense, a Brownian motion ensemble is very large. To delineate what

is meant, we construct a very simple ensemble.

Let there correspond to the o{ th member of a Brownian motion
ensemble, a function ‘(‘-“ (‘t) = C , & constant independent of o

Our new ensemble has as many members as the Brownian motion ensemble, but

displays no variety of form. The greater the variety, the more an ensemble

will resemble Brownian motion. Then from above, as a network employes
higher and higher order non-linearity, the variety of form displayed by
an input must become greater when it is required that the response of the
network to the input be capable of characterizing the behaviour of the

network.

We are led to the idea that for a system which makes use of all
orders of non-linearity in the input, every input-output situation must
be analysed as a special case when deterministic statements are required.

Hence, we shall in this work, attempt analysis ammenable to statistical

ik i e i i e o i . it S A S AR s A ¢



description of the output or solution in terms of statistics of the

input.

(0.3) Differential Equations

The non-linear systems which shall concern us here will be
supposed given by a differential equation or by a system of differential
equations. Accordingly, in this section we mention a few standard
ideas of use in dealing with ordinary differential equations. To begin,
consider the linear system of N equations

4X = AW)x +f ()

where X and { are column n-vectors and A 1s an nxn matrix whose

elements may be functions of 'h , and M— is a column vector whose

Jdt

components are 3%

let B be any nxn matrix. We define

B _ B 8 , B, ...
e = I+7+ 7 +3F"°

where I is the identity matrix. If the elements of B are all

finite, then the series which defines each element of the matrix €

converges absolutely.

B

A
Note that in general eAe #+ eBe unless A and B



commute. For the case AB =B A

A A+08
CAeB = eBe = e( )

These statements are deducible directly from the series definition of

E‘_A . 8ince A commutes with (-— ,\),

I

-A A (A=A
e e e

It will be a help later on to have at our disposal, the Jordan
Cannonical Form for matrices (Friedman, 1956). However, since the state~

ment of the theorem is rather involved, we will here state a simple case.

Let A be any nxn matrix whose |} eigenvalues are all distinct.

Then there exists the decomposition of A

A= EDE™

where D is a matrix all of whose elements off the principal diagonal
are zero, while the elements of the principal diagonal are the N distinct
eigenvalues of A . The columns of E are the right eigenvectors

-1
of A . The rows of E turn out to be the left eigenvectors of A .

Let 't be & scalar, and A a constant matrix. Then

eA*'- I+A|!i+%%+--~

""""



‘where At is a matrix each of whose components are those of A

multiplied by t

One can define a derivative as follows:

ﬁ-eAtg -d-[I..._A_‘_:...._A_a_t.*.‘....J

¢ ] 21
_ At AR

= (A 55+ S+ J
- AeAt

The Jordan Cannonical Form allows a simplification of represen-

tation for the matrix €

i A = EDE™

_
eA - eEDE
- -t ~-1)%
= I + _t_“_E. +~ le::_) + .
o- ’--‘ y
- FIEy EDE', EDET L EOET
_ D P dr-
—E[I+-'-!-+-a!+3!—+-]f

S8ince the eigenvalues of A are assumed all distinct,



This is a simple and convenient form of & It particularly is useful

in handling ordinary differential equation systems which we now take up.

First, consider the single n-th order equation

d"x  _ 4" 'x dx ]
d{'n -.'F[d"—tn-l"")cT_E)x

The function on the right can of course be non-linear. let

dt d+
dn—l,x = Xn = Axn-‘
Atn-—‘ d'b



We now have a system of equations

dx, _
T = P, %, 00 x0)

d %X,
dt

!
r
)

1]
»
v

By the change of variables introduced, the single n-th order equation
is transformed into a system of n first order differential equations.

However, it is not always possible to transform the first order system

dx, _
L (e )
%%‘_’L = gn(xc)"°)x“)

into a single n-th order equation of the form

d"x (dn-lx dx )
4 x _ L., dx g
£ ¥ de dt ]

For this reason, it will be preferable to work with systems of first

order equations.



Let A be an nxn matrix whose components are constants independent

of time. The linear homogenecus system

d* 'K(O) ] x.°

is solvable as

At At
2 (t) = e X, since from above :;it (e xo) =

At .
= Ae Xo = Ay while &A() = 1

so that X (O)= _I Xe = ’ko , the arbitrary initial condition vector.

For A still a constant matrix and "' (‘t) a vector, a partic-

ular solution to the inhomogeneous linear system

dx  _ .
el A:c + £(¢)

v = |

[~

& - °T) -
Q_A(b T«F(‘T)d ]

where the integration is carried out on a term by term basis of the

ALt -T)-( ('T) Note that X () =O. Tat

n-vector, €

4'e I (t) is indeed a particular solution can be calculated directly

- 10 -



The complete solution which reduces to an arbitrary vector ‘X °

at “baO is thus

4
At At -
() = e txo+ ge( *’;(fr)yr

-]

Consider next the system of first order non-linear differential

equations

S—_E:' = A'X. + 'Q‘('X—)'t)

where A is again a constant matrix and '? ('K,‘t) is a vector

vhose components are functions of “t and the components of x .

It is also supposed that ’K(O) = ‘Y, . Then from above

t
x(t) = e_M'x,+JeA(t- e [x(M) T]1dT

It will be convenient later to use this equivalent integral equation
formulation. But so far we have dealt only with systems whose linear

part has constant coefficients.

Por the linear system of {1 equations

dx _
vl A(t)x

it is known from the theory of ordinary differential equations ‘that over
any finite time interval, there exists "\ independent solutions which

can be arranged as the columns of the nxn matrix H (t) , and that

- 11 -



any solution can be expressed as
X le) = H(E) y,

Further, the inverse of H ({:) exists for all t in the interval.

H )™ « (o)

x (t)

\éo

H (%) H™'(0) % (0)

In an analogous manner, the system

i{- = A&)+ £ (x,%)

% (e) = H(e) W' () x(0)
+ H(t) rH"(q-)(-'[x(‘T))’r]d‘T

o
When -G (1 ) ‘k> does not depend on X , the integral equation

becomes that patticular solution to the linear inhomogeneocus system

_j_:_ = A®) e + £&)

which reduces to 'K(O) st t=0.

- 12 -
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(0.4) All-Time Representations and Volterra Functionals

A functional is & mapping of a function space into the real line.

Let us take the function space to be the set X of continuous functions
& (t) with [(& <t < b] . Then to every & (t) , is made

to correspond a real number F [g' Lt)] , called a functional.

We call an expression of the form S K (t) -@ (‘E) cH:

& regular linear functional on the function space X . K((:) is

fixed and assumed continuous. A regular ho-oguoul functional of n‘:h

degree is defined analogously as:
b b

g -{K(t‘,---,-tn)nc(t.)o o k(kn) 4%, - d¥b,

Let Fn [-F ] be a regular homogeneous functional of nth

N
degree. Then the form z F [{:] is called a functional
n
(o]

polynomial. For the usual familiar polynomials, we have the following

important representation (or approximation) theorem of Weierstrass as

stated by Apostol (1957).

Let ‘Q be real-valued and continuous on a closed interval

[o_) b ] . Then given any E "> © , there exists a polynomial

-13 -



(which may depend on € ) such that
“\' (E) - P(t>| < € gor every 't in [CL, \9] .

The extension of this theorem to functionals was already known
in 1910 by Frechet, and in all probability only shortly after that by
Volterra. We will state the functional polynomial approximation theorem,

but must first discuss continuity for functionals.
Let X be the function space defined above. Further, suppose
& metric defined on X ; the distance between ‘(’ ((:) and g (E)

is denoted by “# - C\ H . Then a functional F— on X is continuous

at “Q i for any € 7 C , there exists a g (" ) C") such that

lF[H- F‘[c}]|<€ whenever ”‘r‘%“ < (-

The extension of the Welerstrass theorem to functionals is stated

in Volterra (1959). However, the statement there is loose, and we will not

directly quote him.

Let the function space X be as defined above; and, let there be

a8 metric on X such that any homogencous regular functional on X is

continuous. Further, suppose that with respect to the metrix on x ’

F L‘{- l is any continuous functional, and that C is a compact

set in X . Then given any € > O , there exists a functional

- 14 -



polynomial p L~(— J (which may depend on €& ) such that t
F[‘F] - P['('-]l< € torann £ wm C

It is seen that functional polynomials possess the same repre-~

sentation qualities for functionals as do polynomials for ordinary

functions.

The Stone-Weierstrass theorem is an abstract general statement
which contains the above theorem as a special case. Appendix C makes
use of the Stone-Weierstrass theorem. For the time being, let it be
sufficient to say that Brilliant's (1958) topology, used in conjunction
with the Stone-Weierstrass theorem, indicates that there may be a class ]

of functionals, occurring commonly in practice, which can be represented

)
by functional power series of the form P [{. ]
z n
N=0

c

vhere P, [‘F] = g.--(K ['E.,“'bt"]‘

=2 -0 t,2-00
..{'({,.>....(.(f,,) dt, - dta

The difference here is that the functions {' (t) of the function space
X are now defined over the infinite interval (—oo < 't < O]

As mentioned earlier, Wiener (1958) has given a procedure for obtaining the

kernels in the integrals of a related scheme when such a representation

- 15 -



exists. There are certain fundamental unresolved difficulties — even
when the representation exists — which may be somewhat relieved with

the tools developable with the insertion of Brilliant's (1958) topology
into the Stone-Weierstrass theorem. We will pursue these lines firther
in the third chapter. Although many useful non-linear operators may be
representable by a Wiener type scheme, we shall here deal with problems

for which nothing so nice exists as a uniforaly convergent over X
functional power series representation when 'F (‘(’.) in X is defined

over (-ao< "-, < O] . Our interest lies in non-linear ordinary

differential equations of the kind

d -
J{_ = £ (x,+)

where X 1is an n-vector, and 'F is an n-vector whose components are

in general non-linear functions of ‘t and the components of X .

For simplicity, let the equation take the form

ff— = $(x) + ¢ ()

where % (‘t) will be some prescribed function of time and ’X..) {-‘- )

and % are one-vectors. Now in addition, let the equation’

dx _
T = £ ()

- 16 -



possess two asymptotically stable limit points, ’Y_' and ')LJ_ ( ’K'

and ’Xa_ are one-vectors). Associated with X is a region R

and with 'Xa. a region Ra such that if X ({‘) is in R, for

some | , then X (‘t) stays in R, forair t >T and asymp-

totically X (t.)-—»\ x‘ ; the same situation obtains of course for

Rl . The two regions are clearly disjoint.

We suppose the process to have been going on from minus infinity
until now, and that there is a functional power series representation

for £ = now = O . The initial conditions at -oo are supposed fixed

independent of the forcing function t& (ﬁ) S ¢ 4 éif = F(’l) <+ (‘&LL)'

then
o

(@) = Ko + [ K g d¢

-00
o

+_§c _ngi (‘b,,'t_\>%(t') q(t,)dE, dt + -

where Ko is a constant. This is the functional power series. Also

it %E' = F-(b&) + "\ ('t) ) , then we must be able to write

y©) = Ko+ [ K ® wit)de

+ g g K-&('E.).ta)h(t.)h(t*) dt,d + -

-00

oo
= Z K [h] in an obvious notation.
n
=]

-17 -




There exists an e such that an 6 — neighborhood about the asympto-~
tically stable limit point 1. is contained in R, , and an € -

neighborhood sbout X, 1s contained in R,~ . Also, there exists

an N(G') such that
M
I’K(O,'{:)—' 2 Kn“]l < € for all
o

M > N and all 'G of the function space.

¥e nov choose special forcing functions. let () drive
the solution X (€) into region R, at time -] and then turn off;
e, 9 ()= 0O tor t> T . simttariy1et h (L) drive
X (-b) into R.l at £ = T and then turn off. It is necessary

here to take C} (E) and \'\(Q bounded so that by having 'T far
enough in the past and requiring that all individual integrals exist we
can have e

| -x@) | <« F

]

|x@— kgl < =

1Zk[3]] < 5

- 18 =



I’X.‘— \3(0)| < %
N
|~a(°) —Z km[h] <

PRSI

This implies that K, 1s within € of both X, and X, which is

w|m

the required contradiction. It is to be noted that in any individual
problem, we may not be able to choose parameters, forcing functions,
etc. as required above. However, there will be some not at all patho-
logical equations for which we can proceed in the above fashion. This
is all that is needed to invalidate functional power series expansions
as & general approach. Yet, for certain statistical investigations,
one is reluctant indeed to give up functional power series schemes;

for the forcing function appears in products with itself and drawing
averaging bars yields output correlations in terms of input correlations
directly. Hence in the remainder of the paper, we shall pursue certain
areas where the special, but nevertheless important, situations allow
of a representation in a form particularly suited to statistical

investigation.

(0.5) Content and Form of the Thesis

The introduction itself is to serve two main purposes. The first

of these is to introduce the reader to the problems and limitations

- 19 -
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involved in attempting to obtain general solutions of non-linear equa-
tions. These difficulties have caused the author to adopt certain points
of view, For example, the discussion on the statistical approach in
section (0.2). This, and certain ideas stressed in the introduction,
should serve to orient the reader's point of view sufficiently to obviate
the need for re-stressing in the remainder of the paper. So that again
by way of example, it will be supposed throughout the body of the thesis

that the reader is himself capable of drawing ensemble average bars in

order to obtain statistics as any given situation does or does not require.

The second major purpose of the introduction is mathematical in
nature. Here it is hoped that a reader not already adequately prepared
will gain some mathematical ideas and manipulations to serve as background
for the thesis. Much of this material perhaps need not be explicitly used
in reading through the body of the thesis. Nevertheless, it may prove
valuable background, especially should the reader wish to use the results

on his own problems.

Chapter I deals with a pertubation procedure. The method is in-
herently quasi-linear in nature. However, it does give an important area
for which an all-time representation is possible. Chapters Il and 111
give results which are truly non-linear in character. The general state-
ments will here hold for only an arbitrarily large but still finite length

of time. Of course from section (0.4) this is to be expected.

In Chapter 1I, a condition is given, the satisfaction of which

allows of approximate solutions which converge uniformly over all time.

- 20 -
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This restriction is simply that for any finite initial conditions, and
zer; forcing function, the system damps asymptotically to zero. Under
this condition, Chapter II gives an all time representation scheme for
analytic systems without forcing. When the condition is not fulfilled,
the scheme converges uniformly over any arbitrarily large but finite

time interval.

Chapter 11l presents a finite time representation scheme for
analytic systems with forcing. The difficulties of an all-time Volterra

expansion are again considered.

The physical problems discussed have been included only to illus-
trate applicability of the abstract statements. In each case, the problem
is briefly set up. It is hoped that later work will carry out the indi-
cated procedures and obtain physically significant results.

One further remark about the examples. Field problems of the kind
dealt with here are formulated by partial differential equations. These
represent a non-denumerable infinity of equations. However, we shall
always suppose that high frequency effects are negligible and that for
physical ﬁurposes we could approximately represent the problem by a finite
dimensional mesh space, or by say a finite number of Fourier coefficients.
The reader can suppose that any infinite space is approximable by a finite
one, so that Fourier transforms of probabilistic functions necessarily
exist. However, the theory of formal Fourier representations (Lighthill,
1959) can be invoked should an infinite space and rigorous approach be

desired.

- 21 -



Finally, proofs which are unduly long, complicated, or mathemathical
have been relegated to the Appendices. The Appendices themselves are mathe-
matical in nature. Terms and ideas which are standard are there used without

elaboration.



Chapter 1

1.1) An Asymptotically Stable Limit Point Theorem

It has been very common to attempt pertubation solutions about
a linear solution. For the most part, when this is done in the liter-
ature, the convergence of the procedure is simply assumed. In this
section, we present a pertubation procedure for a class of problems

whose convergence is given in Appendix A.

The basic system with which we shall deal here is given by

the equation
a.1 j’f = Ax + GO + Hf6, 2 (B)]+ 9,
x(0) = x,

In this equation, all quantities are continuous functions of time.
x({-,) and 8 (t) are n-vectors. A is a constant nxn matrix

and G (‘h) is a time dependent nxn matrix. H [{'. ) x (e)] is

a8 vector whose components are each a polynomial in the components
o2 X . These polynomials are at least of second degree; thero‘ is no
linear dependence on the components of X . The coefficients in the

polynomials are bounded functions of time.

There is a condition on A . It is that the eigenvalues of

A all have negative (not zero) real parts. This condition in physical

- 23 -



terms is simply that the system have linear friction. We will come back
to a discussion of the terms in the equation later. Now we wish to state
a8 theorem which provides a means of solution of (1.11) under certain cir-

cums tances.

We use the notation ” Q “ to denote a scalar which equals

the largest magnitude of any of the components of ﬂ whether .(2 be a

vector or matrix.

Theorem 1

For equation (1.11), there exist positive numbers R, , G , and

% , each > O such that if

x| < R

” C"(*') < C:l for al1 t

"3&) < % for all t

then the equation can be solved by the following successive approximation

scheme:
x, ({:) is the solution to

Q.

xl
t

= Ax, + qt) , x,(0) = %,

a.

while for n = |

- 24 -



éﬁ_ = Axn, + G Xa + HE, 2] + 90,

Knr (©) = X,

The successive approximations converge to the solution ‘K (E) uniforaly

over all time.

This theorem is proved in Appendix A. A more general statement
appears at the end of Appendix A with the above theorem as a special
case. In practice, the applicability of the hypothesis of the general
statement will be too hard to determine. The case presented here will

be useful in many applications.

We return to the requirement of the negativeness of the eigen-

values of /\ Under this condition, the linear equation
dx

aay — = Ax + %(t)
de

whose solution is

At

' t
a1y x(t) = e x, +SQA(£_T)%(‘T)dT

0

basically controls the situation for the non-linear equation (1.11)

subject to the smallness requirements of the theorem.

Let us examine the solution to the linear problem (1.12). For

simplicity we suppose the eigenvalues of /\ not only negative but

- 25 -



t
also distinct. Then € can be written in the fora

At -
e =BeDtB'
\ O« - O
vhere D is a diagonal matrix O AN, = O\, and s

time independent. ©O O « * A

(1.13) becomes
x(t) = BePtB ¢, + fBe.D“"T’B"%("r) 4T
Deine y(t) = B x(t)
4o = Bx, = B'x(0) = y(o)
6" [g)] = h(¢)

This produces

f pt-T
e

o

1.14) %(e) - eDt%°+ )h ('T')d"l’

Or, on a component basis

1
o wilt) = €Ny + fe""“‘"”hl('r).rr
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From this and the condition X"_ <0 , We obtain the bound

9 < [yl + g oo (1w @]

By choosing bounds for the initial conditions and the forcing function

small enough, we can keep 3(1‘.) uniforaly bounded ll‘lll\lll as we wish

over all time. This implies the same thing for x({z) = B a(e) .

Changing (1.13) to

(.18) %f-’ = Ax + G‘“’)'x + q (%)

does not alter the situation as long as & ('b) is bounded small
enough over all time. This can be proven separately from, but in the

same way as, the theorem stated above and is proven in Appendix A.

Now we have the feeling that as long as a linear solution stays
small, it ought to be a good first approximation to a non-linear equa-

tion. And indeed, the theorem shows this to be true.
For the equation (1.11), the vector point X (&) = O is

a solution for % (t) =0. A = O 1s called a limit point.
But actually in our problem, it can be shown (Coddington and Levinson,

1985) that under the conditions of the theorem (smallness of X, ,

G(t) , ane %(“l:) ), should %(€)=O for a11 t > &, |

then each solution tends asymptotically to O . The requirement

sy

e et tne, w



of >\-L <0 is essential here. X = O 1is further designated

as an asymptotically stable limit point.

The theorem which we have discussed here, proceeds &long much the
same lines as many stability or asymptotic behavior theorems, (Coddington
and Levinson, 1955; Lefschetz, 1957; Birdgland, 1961). It is presented
here for a number of reasons. Firstly, the theorem as presented here is
in a form particularly useful for application to physical problems. But
secondly, asymptotic behavior theorems require the forcing function to go
asymptotically to a constant. We do not require this for the theorem here,
and hence are led to a somewhat different theorem. This has been done
because we have in mind statistical problems. To illustrate this, we go

back to the successive approximation scheme.

n J“rnn =
(1.16n) ol Az, + GE)xa+ H[t,xa] + q(t),

Y S ((3) = ‘1L° ) nz \

This is equivalent to

t
Koot (8) = PP, + X A0 () xa (74T
]

(1.17n)

o

t t
- Ry Alt-T)
+(e“" T)H['T, -x,,('T)JJ T+ s e 3(’1’)47
The first approximation is °

t
At Alt —T)
aamnny %, (k) = € X, +1 e
©

c,)("’) 4T
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8ince H [T) ’X—n] is a polynomial in the components
of g 4 n the successive approximations will produce components of
X neet in terms of products of the components of X, and % (’t) .
For instance,

xl(o) xa (O) %\ (‘T'. ) % ' CT..) %q. (‘T;)sr(‘t,) could be

one such term.
Products like x-‘(‘t) 'lj (‘t + X) are approximated uniformly

over time and over all properly bounded initial conditions and forcing

functions. Hence the nth approximation, taken over an ensemble average,

gives /Xaan 'li (6 P in terms of ensemble

averages like ‘X, (0) ’X_;(O) 3 ' ('T") 4 ('T'a_) %., ('T;) Qs (T‘) .

'K-L((:)n ’X} (t"’)\)n converges to Z" (t) ’X.é"('tf)\)

uniforaly over all time and all sufficiently bounded ensembles of

initial conditions and forcing function.

In this way, one successively approximates the output statistics

in terms of the input statistics. A special but important situation

presents itself immediately. Suppose that C: (t): O and H['t)' 7(]

is not explicitly a function of t . H [(:)‘X.] = H (‘L) .
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~ Suppose further that all input statistics are stationary. Then all output

statistics will also be statiohary as <t —> ©O . That is, a statistic

ke XL®) (& F )

will go to a definite limit, dependent on A , as v —) o0.

(1.2) Viscous Incompressible Two-Dimensional Water Waves

As an example of the possible application of the foregoing theorem,

we here set up an approximate viscous incompressible water wave theory.

There is however a serious approximation into which we are forced
right from the beginning. It is that we will try to describe the problem
in terms of a scalar potential. This procedure would of course be correct
in the inviscid case. In fact, special stress combinations will produce
curl free motion, and in these cases the problem can be formulated by the
scalar poten;ial. It is felt by the author that there are difficulties
with the classical viscous linear problem (Lamb, 1932; Handbuch der Physik,
1960). The classical methods do not give the same results as those obtained
here for the linear problem forced by a special curl free motion producing
stress configuration. Hence at a later time, it is hoped that the classical
method for the linear problem, as well as the procedure below, will be

checked by machine computation.
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The defense of an approximation such as we use here must ultima-
tely rest on the fact that it can actually be carried out, and that at
least the form of the results is more or less what one would expect.

It will be easily seen that as the viscosity goes to zero and the ampli-
tudes become infinitessimal, the procedure yields the correct linear

inviscid model.

Let the depth of the water be infinite at é_ = - 00 . '-}: o)
is the mean value of the surface. The lateral dimension is X . There
is no dependence on la,

If WL stands for the velocity along the 2 -axis and « the
velocity along the 3 axis, the incompressibility of the fluid intro-

duced into the equation of continuity gives

Qe

u Jw
i Py =0

(1.21)

@

The force equations are

él"'.. w o w_'h‘. —3 _Li? 2
(1.22a) m + v + n Fx 7 3% +vVu

&

and

dw Swoo L wdw _ LR W
(.220) S+ U-é_x + el F} 7 95 +<V

where P is pressure, /J is density, and F‘K and F.é’ are body

forces in the A and 2, direction respectively. Yy~ 1is the coefficient
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of viscosity and assumed small. In particular, these equations hold not

only throughout the fluid, but ulso at the surface.

The kinematic condition at the wave surface requires that a particle
on the surface remains on the surface. If "] ('L) t) is the de-
viation from the mean of the amplitude of the surface motion

R wol _ o =
M’L&x w =0.

(1.23)

There are two other conditions on the problem. They are the stress
conditions normal and tangential to the boundary surface. These will be

determined ultimately from the stress-rate of strain relations.

(1.248) Pé} = -P + AP v g—;

(1.24b) P"Z = rY (&1 %;)

(1.24c) Pesx = -P 4+ a/o.\/%

To obtain the required relations, we pick an arbitrary point on
the wave surface and draw two sets of rectangular axes each of whose

origins is located at the point. The first set of axes are horizontal
and vertical 'X,—é,—axel respectively. The second set of axes are drawn

/ '
such that the ‘X -axis is tangent to, and the 5-axu is normal to

the wave surface at the chosen point. If 6 is the angle between



- sem——

'
the X- and % - axes, then

ﬂ = tan® > O
K

for small enough angles. ’7 itself is not allowed large. The con-

dition tan O % © is a smoothness condition on '77

Remembering that P,x Pgl. , and using the transformation

relations of Cartesian Tensor Analysis (Jeffreys, 1931), we have after

neglecting terms with factors of squared and higher orders in 9 R

. . _ 97
(1.25a) Pé'é P%} A 3% P,,_}f

(1.38b) Psu," = P},L + Q:;% ‘735 - P'u)

We 8till do not quite have the relations we want. By expanding
in a Taylor series and retaining only through second order non-linearity,

(1.25a,b) become respectively

(1.26a) P}B’ = - Pl}__:,’ + ALY 2=
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(1.26b)

(1.38a,b) are the required stress relations.

We will first take up the case of zero boundary stress. From (1.26a)
we obtain the pressure at the surface in terms of the velocity components

and the amplitude ’)7

It is assumed that neither "7 nor the velocity components or

their derivatives are large. Also - is very very small. Our major

approximation then is that P r! will be not quite but nearly equal
X

to zero. We will come back to this later; but in the immediately following

d:licunion, (1.26b) will be dispensed with entirely.

At this point we introduce the scalar velocity potential ¢
W =-— ) W= — =
ox 93

The force equations (1.22a,b) become
a a
(3 - SGE)- 163D
|

-‘-’3"“ [8774.;5‘:]
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To obtain this we have used F = — 9rod [1, 7 wntte

a
v ¢ = O from the incompressibility of the fluid.

This relation holds throughout the fluid, and in particular

at the surface. With the aid of (1.26a) we obtain through second

order non-linearity

20|

PR

- e (2],

(1.38) S{;-o étaa
O 3¢
- M
3”1 + v s 3'w-o- v _,Igao
¢ 37
i J‘Laé 3-031 = O

In (1.28), consider the operator defined by

Y]
Jt

2
3e0" Oty

Y

3=°

99
= (I+’7 ’:—}) ot '3=o

Bere I is simply the identity operator. Now if the operator

[,'7 5—}- ] is in some sense small enough, then the inverse

of the operator ( I+

1986)

J

93

) » can be obtained as (Friedman,



o\ Pl o P

Without hesitation, we make the smoothness assumption that

[_Q_] is a bounded operator. Then since ﬁ has already
o

1} d
been supposed very small, the operator ( 1 o s—— can be

inverted as described.

Again through second order, (1.28) becomes

3¢ l
i

(1.29) — I

ot

- S [GE) GV, e 2,

Ny 2 J

3¢

/.
"Wama3|3~ a -0

In terms of the potential ¢ , the kinematic condition (1.23)

through second order is given by

(1.30) é—/,z + é-@

L1/
It é; O

320 31

N ML
S3ilsecl = 5%

3:0
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We have now cnly to set

and substitute in (1.29) and (1.30). Notice that Va¢’ ('k) x, }) = O

which is the incompressibility requirement.

(1.29) goes over to

‘”) -%nu + 2vk ¢k

(1.31)

,,H‘”[Q ko) -le te-0] 6 4. d e

+ AV §|["| $, M-y 34
-w(fer- el 0 e 42 = O

And (1.30) transforms into

I 4 1| Gy + fa‘é,-n,_,_ )

1.32) d+,

[Q(\‘ 2) b Me-p 44 = O
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(1.30) and (1.32) are in the required form for the theorem to apply,
except that they represent an .nfinite number of equations. For the eigen-
values of the linear part are

N o= -vk Y@V ) -4lgk
&

The cut-off frequency

for R is not large. As discussed in section (0.5) of the Introduction,
for any given numerical problem, only a finite number of equations would
be used. Hence we can suppose that for any practical purpose, the succes-

sive approximation scheme given by Theoream I will converge uniformly over

a1l time and suffictently sman1 7] (0, 7L> we (0, %, 3) :
It is to be noted that in any practical problem, we must’ be able

to find a k.>O such that setting ¢k"o for Ikl>k|

is a reasonable approximation. Then since

Ig—il -f|k| ¢ue,“"‘e"'"}4k|
e,

s ( “tl “’ul dh
Y ™

we will have -é—- uniforaly bounded. This substantiates the

LN

inversion of the operator (I + 'ﬂ 0 3 ) as carried out above,

and allows A to be approximately - V“a t .L V l%'kl )



- i R e

8till neglecting for a moment the boundary condition (1.26b),
let us take P;'}‘ small but not identically zero in (1.26a),

and investigate the linear problem.

The linearized equivalent of (1.31) and (1.32) with

(1.34) ﬂ" + |k|¢k

I
O

Suppose that we solved this linear problem, and then substituted
the results into the linear approximation for the boundary condition
(1.26b). It is the condition which we have neglected so for, and would

lead to the requirement on Pé' x! =X Pé“ that
_ (S 4
P x =LV (J‘)L + o3 )
Hence for any small enough Pé}’ , there exists a Péx-

such that the linearized motion is curl free and given by a scalar

potential. But the same can be said for the non-linear problem.

We equate the left hand side of (1.31) to = ,T" Pg's' <k> and
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solve this equation together with (1.32) by means of Theorem 1I.
Substitution of the result into (1.26b) gives the condition on Fz;'ﬂt'

such that one has potential motion, and hence has actually solved

the problem.

Although only a very restricted class of problems can be handled
in this way, the method may furnish some clues about the non-linear

relation between the wave spectrum and the input energy spectrum.
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Chapter 11

(2.1) An Initial Value Problem

We will now turn our attention away from pertubation procedures

and obtain a truly non-linear result. The problem under consideration

[P

is

(2.11) jj% = + (¢, %) , x(e) = x,

where “G (t) 'L) is an n-vector. The components of 'F‘ are each

analytic functions of “‘t ) 'y_. y ° ‘Y i 2 over some rectangle R) !
lt] < T
| il € Ry ;L=

)A)”""V\

This means that for any fixed point in R each component of ‘{' is

an analytic function in each variable taken one at a time.

Note that we require in addition ‘(- ({ )O) = o . There is
no forcing function for (2.11).

For the solution to (2.11), we will obtain a representation
theory. The proof depends upon two major known theorems. The proof

itself is an immediate result of the statement of these theorems.

The first theorem needed is due to Poincaré (Lefschetz, 1957).

One result of this theorem as applied to (2.11) is as follows:
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let € and R be defined as sbove. Let B be a rectangle

of initial conditions defined by

L = ‘)Q)“'“

O=|1l)|< B; £ R,

We suppose that the 81 have been so chosen that if 'X,(O) originates ;

in B , then the solution for O < t < d= T remains in R .

e

Then about each point in B , there exists a neighborhood N (’X,.)

such that each component of the solution is an analytic function of

[N

{)«'0) 1”:.) + ')1‘0.«. tor O t < d

o o ot

The second theorem we require is a result from the theory of

several complex variables (Bochner and Martin, 1948). First let us

define the rectangle c‘ x B as
o=stl<d
Os|'¥~1|< B{ ) 'L=|,2)“',n

Then we can state the theorem as:

Theorem 11

If a function of several complex variables is amalytic in each
variable separately at each point of a rectangle such as d x B

above, then the function is analytic simultaneously in all variables

over the whole rectangle.
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The theorem means that the function can be represented as a
multiple power series in the N+ | variables. Each component of the

solution to (3.11) is given by
t f, ('
@13 ki (t) = écp,- o Pag Fil0) s e FalO) Tk

This series converges absolutely and uniformly over any closed rectangle
such as 0O = |£l = C < J

OSI'X—llS A; < B; ) t=1,3,--0n
contained in d X B

An analytic function of several complex varisbles has many of
the properties of a function of a single complex variable. For instance,
the partial derivative with respect to any variable can be found by
changing the order of differentiation and summation. The resulting
series is also absolutely and uniformly convergent over the same closed
rectangle as the original series. The same holds for any number of
partial derivatives. Further one can sum over all indices simulta-~

neously, or sum over one index completely first.

Let us return to (2.12) as & form of solution for (2.11). S8Since

order of operations like summation and differentiation is inmaterial,
and ‘K(o) = 0O implies ’L(ﬁ) = (0 , we can represent the solution

to (2.11) as
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aw A= Z C; O30 +J§ ; (44924, 0)%0)

L 2L G010 140)

<+ - - -

At t =0 this becones

() = 2 Cilo) o) + X 3: (12,0 14,00)

N n n .
\_ t
4}2. e E G )4, 0100 24,(0) +--
S8ince the relation must hold for all X in B . We obtain

(2.14) C: (0) =] ) C; (0> =0 y t#y
C“L(O) = C&,MS(O) =--+-=0

)
When we solve for the (s , (2.14) will be the initial conditions.
Now in (2.11) since “‘(’t, 'L) is analytic, and 'C('E)O) =0

we can also represent '& (t ) ‘x.) as




.18 {.(¢,x) = Z{' (E)ts(‘:)

"
D DX ENATING

S U b !
+§‘§.‘1 i OBOLORB+

We use (2.15) for ‘\' (t, 'K-) and (2.13) with the conditions (2.14)
for ’K@) in (2.11). The resulting equation must hold for all 'L(o)

in R . This determines that

(2.151) f‘: ('; (t) = Z'ﬂ' (¢) C* (t> \znxed

L-l;z 5,0
CR(O): , (+k
Cy (o) = |

(2.152) A

‘ =~ 4 Fy
:!T Ck.‘; = z {'} (f) Ck.i,_
+

BTITRS P
+ 212 ‘G{-"&z.(t) Ch Ct , Rk, fixed
}‘%l 2l ¢ FX 'L._|1,.,,',,

Cln ()= O
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Ji Q““ aRs Z-‘ (&) C"“;“ls

(3.183) ' 2
' ‘1-
+.1-2\-g\ (0 (:t' oy Ry
+;g§f‘ M‘()C C C
muhundknnd k, sre fixed; ¢t = LAy n

L8

C..uﬂ,’(o) = 0.

d ¢ _ S .i $

(:.;:n) i+ Cn,...un - 32__'{* ({) C‘h'
+ 3;.--'k-.(t) )

\t.,-o-,hn fixed ,

\.=\1 t,n

('k.. -»(0)=0

L
where %‘ . (t) is a forcing function vhich dopond. at moat
.c - 0 n

»
on C $ already determined.

We wish to emphasisze a feature of (2.15n). In terms of the
.
unknown Ch.---hn the equation is linear. We can rewrite




. o = <o -

PITS

(3.15n) as an operator equation

(3.16n) L(C‘h."ﬂln(ﬁ)) = %;.“'k,,(t) ) '(.:l,.;nn

Cj\z.m ., (0)=0

where L. is a linear operator. The important thing is that L. does

not depend on N . Hence in any given problem, one determines the

inverse to L. only once, and then operates each successive step

-\
with L on the already known forcing function. When the coefficients
of the linear term in the expansion for 'G given by (2.18) are constants,
the inverse operator is particularly simple. In this case, (2.16n)

becomes

d ¢! TR ’~
(2.17n) d—tc".“‘“ = ‘Z.'{"Ck'...h,‘ + 3’\...-!,,(‘&) )
n>1 )

R,,.. ) Rn fixed

La1,3,00, n
C:.mh(O) = 0

The solution to (3.17n) imn vector form is

+
(£ =)
(2.18n) ck.u-k.. (t) = ge-‘. * Awi v ten (M) 4T

n>l 'Y
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where C R, e R and %"" cor Ry, are n-vectors whose

[
components are C tee R and ) respectively
LY " AW, o0 R ;

.
"" is a matrix whose components are +

¥

(2.2) Conservative Two-Dimensional Vorticity

We here follow lLorenz (1953). The motion is assumed incompressible
and confined to the x - 3 plane. Hence the velocity components can be

obtained from a stream function 4’ .

-~

Velocity in the X direction = WU = -

e a,lo
< oF

Velocity in the \3, direction = V =

<
nr

Taking the curl of the force equations (1.22a,b) we obtain the
vorticity equation
Ay dV._a ¥ v

Y _a 2
ot ,)3V$L_a—{v3§

(2.21) @

It is supposed that there are no boundaries. The equation holds over

the whole plane. Hence we represent ‘f by
o 90

Y (t,r,y)= f f ¢ ()™ e ™ dman

-0 =g0



e ot R .

This leads to

(2.221)
%fm_.\ = ([ (2228) (644" Yy by, dedg

Since \I" (tlfx, \J) is a real function, ann = ‘P

-"\,—ﬂ

where the bar denotes a complex conjugate. Taking the complex conjugate

of (2.221)
(2.222)
ém - d “vn@-n v 1 )
* ( j(—,——;;-!)(? +9) ¥opogq Voom,q-n dpdq

~oc * a0

The total energy in the field is

L - i‘ﬁ?f{[u(t,g)]u[v('x,\é)]l} dxdy
-E.E-[(m% 0*) Yoo 4. ddn

The change of E with time is zero since the system is con-

servative.
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(2.23) — =

I= g ((m"-l-nt)[‘km'..\%i::g + wmn'ﬁ W—m,- ]dvh dn

- OF ~gb

We shall however, be interested in the quantity

Emn({:\f-(w\"*ﬂ‘)\}'mnq':\ a (m? +n") You ¥ -

which is the energy density over time.

let us return to the fundamental equation (2.221). This equation

is of the form required by Theorem II, except that it is an infinite

systemn. Ve again adopt the attitude that in practice, a finite system

approximation is adequate.

scheme of Theorem 11.

Hence we solve (2.221) by the recursive

S0 as not to confuse letters, let q/m,, (C) = Amn .

Then the scheme indicates the representation for w..,.,. (t)

«K

b= cj;;ce) Ao dods

(2.24) ~od o0

I’C,‘.‘_,p.q,_ \ f"‘MAPtq’;J "’Aﬂ.:.-l-...

|
The initial conditions on the C § are obtained from the requireament

that "Pm,. (O)S Amn

~ 850 -



mA

am Com (0 = §(me)§(aq)

mn

Ct-q-em ©) =0

Cmn | (C)-_: O

Py £3ps Prcis ete.

Putting this into (2.221) gives first

™ () =0

(2.261) d't 4

Hence

() = Slme) §a)

The next equation obtained is

(2.62) —J— C"! th( ) =

- f e(ms-nr)(r’--H‘) C"‘ﬂ C"fn-s A de

(m“"l‘\') ' ?Lﬂ,l—

=00 ~eo

mn
Taking account of the initial condition C ( ) =

P prguts

and (2.271), we obtain as solution to (2.262)
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mn
(2.272) C P9 P29 (t) =

- (£8.m00)EEe D) G, ptpa) §lnqitq.) ¢
(m2+nt)

We proceed in the same way to

had

d (™ jx [ drd
— = b I
(3.363) dt CP.'»'{. Pa‘;;Pstp(e) o Ceo r
. .(ms-nr)(r‘-#s‘) m-fins rs """""]
& (mten?) [CP ‘\-C?ﬂpfl‘h Cf"qt"‘-‘hc?l'}n
with the initial condition that C:‘:..q; (C) = O .

The solution to this is (2.273).

(2.273) Cp:...q, () =

" (tmg,=ne) (ei+a}) (P4 97) [(m-p)qa=(a-q.00d
= 3— (mah\t) [(M"(’.)l _._(n_%.);]

¢ ((m=p, 0t p) S(n—q0 9.+ ‘;3)}



-

iy A i 5 gt il

It is easily seen that all of the (: 3 will combine to give,
for fixed initial conditions, a Taylor series type expansion over time.
This is because the original equation (2.221) had no linear term on

the right hand side.

Now the scheme (2.24) will converge uniformly over t and A P4

for bounded t and bounded Apct . (This is strictly true when only

a finite number of /"S are used). But a Taylor series does not often
converge rapidly. Nevertheless, the scheme (2.24), when used to obtain

the energy density, will perhaps be useful in studying the stability of

statistically described flows over s small but finite time interval.

The reader is again refered to lLorenz (1953) who initiated there the

instantaneous stability problem.

The convergence problem being as it is above, we turn in the
next section to a dissipative system where this difficulty is overcome

in a definite sense.

(2.3) Non-Conservative Turbulence as an All-Time Problem

We envision a two-dimensional viscous fluid extending over

A

[—wsx oL

- Qac = :} < oo

(The three dimensional problem would follow in the same way as below).

The basic force equations have been given in section (1.2) as

equations (1.22a,b). We will use
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Ou , you, wdu o _ L P 2
(2.31a) 3t + 3x 3 s; = P 3x +VV u

&__w__ _..5“" 2 _—aw = - —‘ o £ 4+ Vv Vlw
@3 57 + 4 ‘m+"".’5 P Sg

The quantities in (2.31a,b) are defined as in (1.22a,b). The equations
(2.31a,b) are the same as (1,33a,b), except that the external field has

been deleted.

In addition, we still have the equation of continuity.

(3.33) 3.% + g? =0

This is the same as equation (1.31).

By manipulating (3.31a,b), and using (2.32), we obtain

am - - v'P - (g_:)‘+ (%)\ g du dw

93 9x
At this point we introduce Fourier coefficients.
P = { S P,.m !.me Q.mb dmdn
-0 ~ub
a0 @0 . ‘
w = ( S UM euwxeu‘s dm dn
-%0 -2
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A similar expression obtains for W

There are no boundaries in the problem. Hence the operator is

easily inverted in the Fourier domain. (2.33) implies

(2.3¢0) —;,L- Pren = [ I'("‘"’ Wes Umar,n-g drds

(m‘*i' n?)

+ g ((‘:’:::\)')W!‘S m-£,n-s At'cls
—-00 -0

+ 2f (35 U Woron aeds
“® -0
Bquations (2.31a,b) go over to

(3.38s) é;%ﬁ" + ff‘tyrurs Um-r,n-s +.“unwn~r.ﬂ’]lﬂls =

*-.

"_i;':.‘ - m" n* Umn
A2 Pon =V ()

(3.38b) -"‘—d%-'.’-"‘ +-‘S-[.[i,pum_,.’n_s <|- LS ch-c-,n- ]Wrs drds=

= ——.-L—r-\- mn"'\f(“‘""nt)w""\

Pum is expressed in terms of u..,. and \k'.m.

through (2.34). Teking (2.34) into account, the linear approximation



¥

to (2.35a,b) 1is

d U

= --\/(mJk +n"")

Lonn

(2.36a) At
(2.36Db) i\'—‘/"-‘-" = = V(m*+ nt) \/‘/m.\

dt
The solution to (2.36a,b) is of course

Unn(8) = eV 5 0 (o) |

mt \\L' .t-
Waa(®) = Y W (o)

We will not do so, but could here go through the same procedure

as in section (2.2), and indicated by Theorem II.

It is perhaps possible to see by inspection however, that unlike
the preceding problem, we will here not get (for fixed initial conditions)
powver series in time. Rather, we will obtain a series whose terms are
constants or damping exponentials. Hence (2.35a,b) with (2.34) are dif-
fusion type equations. This is because we have deleted any external field

such as the gravity field.

It might at first be supposed that because we have to deal only
with damping exponentials, that the representation scheme of Theorem II
would in some way converge uniformly over all time. This is unfortunately

not true in general. There exist not at all pathological systems such that
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with initial conditions fixed, each term in the representation series

will be a damping exponential; but the series will not converge as

4L — oo

However, in our present case, we have a special situation. The
non-linear terms are conservative, while the linear term is dissipative.

The total energy continuous decreases and asymptotically goes to zero.

This implies that for arbitrary e > O , there exists a S(E)> O

such that

mex U, (8)]] < §(€)
and ,:;*[lwm(t.)[] < §(€)
implies ‘.u,.m (f) < € for all t > 4. |,

and I \,\/wm (‘t) < € tor a11 © = to

In addition, |U... (t) and |Wmn (4:) | —> O

It is shown in Appendix B, that there then exists a ‘T (R, e)

such that for any R>0 and € > 0O

me[ U @) | JWo, )] = R
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implies m":-: [lumn (t)l ) I\r‘/m‘ ({7) l] < €

for a11 t > T (R,G)

Since for any R and e/l and CT (R)e/a) , there exists
an Gi/:L approximation to the solution uniformly over all initial con-
ditions bounded by r2 and 't bounded by "F‘ , setting the approximate

<
solution equal to zero for 't > gives us a representation scheme

which converges uniformly over all time at a rate dependent only on the

bound on the initial conditions.

Once again, the special property of the above system is that any
bounded initial starting configuration damps to zero asymptotically.
Other systems satisfying the conditions of Theorem II, while at the same

time displaying this property, can be handled in the same way.

Batchelor (1960) has suggested that in homogeneous turbulence,
the velocity correlations become Gaussian as t —» o< regardless
of the form of the initial distributions. We mention this as suggestive

of at least one experiment to be undertaken with the above results.
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Chapter III

(3.1) Equations with Forcing Functions
Over an Arbitrary Large But

Finite Time Interval

In the preceding chapter, the equations had analytic right-hand
sides, but were without forcing functions. This chapter retains the
condition of analyticity while allowing the equations to possess a

forcing term. Our basic system in this chapter will take the form

dr _

(3.11) Te = Ax +§f(xt) + g (%)

where A is an nxn matrix, and X, 'F and a, are n-vectors.

‘? has no linear dependence on ‘X . Also, if ‘F (O,f) were

not equal to zero, we could incorporate this term of ‘F into q,

Hence we explicitly assume -c (O)'E) = O . On a component basis,

we can write ":' as

eaan (%) = 4 @) g+ 450, O 0,
oo ®) ey

wherein we have employed the summation convention that any repeated

index is to be summed unless otherwise specified. This convention

will be in effect throughout the chapter. We have supposed ; to have

a finite number of terms for convenience.
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We are going to introduce a representation scheme which is to hold

over any finite time and for at least some large class of forcing functionms.

The scheme is essentially that of Volterra Functionals. We have already

made mention of Volterra Functionals in the Introduction,

We will proceed formally at first. Statements about convergence

will be made later. The proofs are mathematical and left to Appendix C.

Consider the simple first degree scalar equation

(3.13) .aa_"'_ + ok bx® + %(’f)
Jt

(3.13) is equivalent to
t —
(@149 x(t) = e'“tx, + J et ')[b'x‘(‘T)‘p c&('T")]d‘T
0

If 'x.(t) is representable by Volterra Functionals

x() = K, + [ K,(,T) g (T)dT

(3.15) °
+t
T m) gy g () dTa T+ - -

At t=0, ’k(O) '-‘-K,(-o) = Ko . It is clear

that K, (t) is a solution to

(3.16) é—»:f;(-{:-} + akK (k) = b[Ko (4:)]:\) K,(0) =,
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In what follows, we adopt the attitude that P(o(i) is already
determined. This can be done by the methods of the preceding chapter,

or by any other means.

We put (3.15) into (3.14). This is to hold for all (%(t) in
some large class, 80 we equate kernels of like homogeneity across the

equation. In this way we obtain

+ -
—alt-T)
o( K,(t,T) q(T)dT = !e (t Tq(maT
€ ¢! '
+ 2 [ f e bk, W) K, (*':T)‘im‘”‘“"

K (t,T)=0 tor T>t.

This is satisfied by setting

K,@t,T) = e -7

(3.171)

t

-alt-t') ' '
+ b fe t K@) K, {,T) 4t
(1- acts here only as a parameter.

(3.171) can be solved analytically over any finite interval
(Volterta, 1959; also Kolmogorov and Fomin, 1957). The method is
simply successive approximations which are shown to converge uni-

formly over the time interval.
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In the same way, we obtain next

+ ,
- = ') ' ) /
K (T, ) = [ e T kT k(¢ dt

(3.173) °

e /
+ b fe?a(*--t )K. (tl) KJ (t",‘T.)‘T;) c“:/

)
°

K;(*‘-;"'.,"’;) =0 for ‘T.)"b or T,>t.
fT-

. and ‘TL act as parameters. We have again the same sort of linear
integral equation for Kz as for K, . Notice that when K, ({:) = O ’

we obtain K. and K; directly. Ko('t)z O when ‘L(O): O .

The expression for K 3 is no more involved.

+ . , ,
Kg ('t ,’E,T:.,T;) = b g Q-“(*-t )Ku(t )'“')K:-(tl)'r;- ,'T.) dt
(3.173) °

<
+ db (e—d&-t ) () Ka(*I)T)Ta;rTs> dt’

°
- >
KB({:,'T'.)’TL;T;‘J = 0 tor T.,T,_ or 'Ts t.
Ve will not do any more of this, but rather go on to the more
general problem covered by equation (3.11).

The equivalent integral equation formulation for (3.11) is
t

can 1 = €2, + f At '*'){4 [*(t'),t‘lao-%(e)} Jt!
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P A W

We use (3.18), but first set € = Bk-¢)

to obtain on a component basis

sy ) = Big (ke + By E-t) g5 ()

t .
+ By (6-¥) 4] ()%, )0 ()t + 0 4

t .
+fB'.¢(t -t')?:mk @) %, ) - x, (€)dt]
»o ] ~
where it is understood that a repeated index is summed.

We now form a functional representation scheme for ’/L;_ ({:)

The repeated index summation convention continues in effect.

t

() = lK. (t) + (lK.k (‘t,’}') I (CT)A‘T

(3.1201) &

+ RN, T M) g () § () 4T AT,

[

+ o« o

In the same way as the first example, the introduction of (3.120i) into

(3.191) leads to
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(3.1211) “K:'(t,"r) = B . (t-T)

t

+2 [ Bij (£ =€) s @)K, @K (') dt’
‘0

+3 f B‘ﬁ'(t -1.) G;tm ('tl) LK‘, (fi)MKe (t‘l) “K.K (U)'T)d{'

+ o - - 4
.t ]
é‘ ' ¢ . Qu-u ' e‘ k ! 3 [}
+ n jegskt-t')h...z,n(t ) Ko (L) -- Ko(t') K. (t"’?')clt
o
Lk . -~ .
where K| (-t , ‘“’) = QO for -t
with kK and ' fixed and =0, 2, % | Kk and T
can be considered parameters. (3.1211) is a system of linear integral
equations. These can be solved by successive approximations. The theory

for this is essentially the same as quoted before (Volterra, 1959).

Ko("i) is the solution to (3.11) when there is no forcing

L v
function 3 Lf) .  We must suppose Ko (f) already determined.
Again, if necessary, this can be done through the method indicated by

Theorem II. Notice that if '7(‘(0) =0 , ‘Kc ®) = 0O and

R
"(. (f') rT) can be obtained from (3.1211) directly.
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Kh e U:) f]") ﬁra.)

We next determine

cann KM@, TN =
f et @) KT K m) o
t

+3 B‘}(f-t)ﬁ*“(t)e‘r( )K" (1) K ) e
t

+---+"(”')(Bt3(t e){* W),

. ana(g). ; -Q"“‘K.(i') ""K‘h' ({-')'7.') "K:“(t')’r;).lt'

t

+ S (& - t)&" () ) B T, T) A

¢

t

R | A O L

’ ) k° ({.) ot e K"(t‘) Q‘K:.kl (t') ;Tl) (T‘_) d ¢

8

K,k
where K *

(k’r”‘.)—o for ,T—.>torrT;_>t.
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Notice again that 1f the 7, (O)= O , then ‘Ko () = 0)

L w, K ~ s t, k
and K. "(t, T,, T',_) can be determined directly. Also, both h"
LN
and K,_ are obtained by inverting the same linear operator when
l‘ .
K.. ({) * O for all L . Thus even for this very complicated

and general case, one tan see that to obtain any order kernel,

L K ® ' kf\
n , the same linear operator is to be inverted independent

of ™

"k,

L
We will not write out the expression for K5

or the higher

order kernels. Ome proceeds in the same way as above, but of course obtains

increasingly more complicated and tedious expressions.

t
Let us consider Ko(t) in greater detail. As already mentioned,

¢ “ 4
K ° (E) is the L component of the golution when the forcing

function n-vector %_(‘(:): QO . As such, by the previous chapter, K o(f)

is expandable as
(3.122) LK',('t) = iL:)(*-)'lj ©) + lL-}-i:(ﬂ"’f"L‘i‘(o)

+ow L o ®r,0) - )
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‘The expansion converges uniformly over all bounded time and initial

conditions. If the problem is non-linear, then correlations down
an ensemble involving the solution components will, at least formally,
be given in terms of ensemble averages of products of initial position

components and forcing function components.

The legality of the formal procedure employed above is given
by Theorem III below. In order to state this theorem, we first define
& phase space. The apace is an+l dimensional. A point in the

phase space is given by the components

(%@, %n(0), 40, -+ -, gat), ¢ )

t

where %1 % he unless (I%t("\)-h(’l’)[d‘T'O-
o
The differential equation (3.11) can be thought of as an operator which

assigns to each point of the phase a real number.

Asubset dx A x (5 of the phase space is the set of all

points such that

osts=sd
"X;(O>|S AL , L:\,Q,---,n
lqi @ Is G, L=1,a,..-,n

Now we can state the theorem.
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Theorem III

For arbitrary but finite d s A , and (5 , the representation

scheme (3.110i) converges to the solution of (3.11) uniformly over

dx A x G

The proof is in Appendix C.

(3.2) More About All-Time Representations and Concluding Remarks

In Chapter II, the simple condition that an unforced system damp
asymptotically to zero allowed an approximation scheme to converge uni-
formly over all time. Here, where we are specifically interested in
systems with forcing functions, we are unable, at least at this time,

to obtain any corresponding result.

The Introduction shows that if an unforced system does not damp
asymptotically to but one limit point, then the same system with forcing

cannot in general have an all-time Volterra functional representation.

Unfortunately the converse is not true. Consider the system

‘suggested by Professor Edward N. Lorenz.

dx.
d+

P
(3.21) - x, - x,; +£(¢€)

dx - - X, + % %
de
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When {‘(E) is set equal to zero, (3.21) can easily be

manipulated into

(3.22) "i‘ f;(tiz"' 'X—:) = - (’tnl + 'X-:)

s

From this it follows that every solution of the unforced system damps

asymptotically to zero.
However, when {'(E) = 2 , the points (’l.= ', Ko = l)
and ('x, = l) X, = — I) are stable limit points. The point

(xi=3,%, = O) is an unstable limit point. The behavior of

the system at + = O° ig discontinuous with respect to initial
conditions, and hence an all-time representation which would converge
uniformly over all time and arbitrarily large but bounded forcing
functions and initial conditions is beyond our grasp at the present

time.

Nevertheless, it should be emphasized that those cases where
statistically stationary forcing functions actually produce asympto-
tically stationary solution statistics for some definite initial
condition, are approachable by the finite time representation scheme

of section (3.1) on a computational basis,

Suppose then, that computationally after some finite time, we

are able to obtain a reasonably good estimate to the steady statistics
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of the solution for a stationary forcing function and a particular initial
condition. Now each state of the system within the finite time interval
can be considered a new initial condition with the same stationary ensemble
of forcing functions. Hence for each point on the finite-time traJectory;
and now considered as an initial condition, the stationary ltatiltiés are

in all cases the same.

The theory for all-time representations of systems with forcing
functions i8 admittedly not yet at a stage at which one is satisfied.
However, it is hoped that by machine experiments, the above theory will
enable one to mark of those sections of a phase space which under an ergodic
ensemble of forcing functions are transformed by the differential equation

operator within themselves.

The effort involved in such a project must of necessity be great.
Even for problems of the kind considered in Chapter II, where the theory
is more developed, any practical problem will require considerable labor.
This is an unfortunate, but certainly to be expected, aspect of non-linear
analysis. Non-linear problems can present difficulties which do not exist
for linear problems. We shall perhaps, simply have to bhecome used to paying

more for results in the non-linear case.
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Appendix A

The equation first in question is of the form

(A1) :JdT" = Ax + G, 6)x + G,(t) f(x) + g )

where 1(&) and CSU:) are n-vectors, G. (‘E) and G),.(t) are
continuously time dependent nxn matrices, A is a constant nxn matrix,
and ‘F(’K) is an n~-vector whose components are second degree or higher

order polynomials in the components of x .

At £=0 , %(0)= 1%, 1s the necessary initial condition.

(Al) is equivalent to

x®) = ek, + ge,"“"ﬂc,,(fr)m('r)ar

(A2) c
t

1 A RGP EY ) P P SRS

¢

We are supposing that ')(,(L) = 0O is an asymptotically stable

limit point. Hence the eigenvalues of A all have negative real parts.

Al-T)

A(t=T
Every term of e is of the form b?.

Ye—my"

where, the real part of A is negative (Lefschetz, 1857). Each such
A

term is bounded and absolutely integrable.
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We use “ ” to denote the norm of a vector or matrix,

Unless expressly stated, the norm of a vector or matrix will be taken

to be the maximum of the component magnitudes.

Then

t
Lu'\ - A(‘t-(r)ll t
t — o S n € dT exists, is finite,
G
and we denote it by H

The nature of g (") indicates that there is a region about

the origin defined by lr ')L” < R , such that for X in this

region, “":('x)“ = F and

| (x) =f ()] = Lz -,

2
where in addition, F 50 as R and | — O with R
F is the bound for ‘F(l) and L_ is called a Lipschitz constant.

- ®* .
We next must set up a particular normed space. Let C (b)

by
be the set of continuous n-vectors, ¢ (‘t) ; oh a closed interval

X,
[O St < d.] . That is, each component of ¢’ (t) is a con-

\¥ .
tinuous function of time on [O) d] . The norm of ¢’ (f‘) will be

taken as the greatest magnitude of any component for any t in [O) cl] .
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[¢*@l = wi{wlietoll]

‘-
We make the additional restriction that for ¢ ({-) to belong to

the set C'* (\3) »

[¢*©] = v <R

*
With this, C (b) is a complete metric space (Kolmogorov and

Fomin, 1957).

x o
We wish to show that when d) (t) is substituted into the

right side of (A2), we have a contraction mapping. A mapping m of

a metric space X into a metric space Y is said to be a contrac-

tion mapping if for all X, and X, 1in X ,
M) - Mm@l = «lx= %l

where X  is a positive number < |

Consider the mapping defined for lO _<.. t SC‘]
t
At -

* At
k) = e x,+ fe
(A3) é

G, (T)$*(T)dT

+ +
+ IQ.A& - T’)G’LCT){_ [¢)k ('T)] IT + IQA((’- -T)ﬁ ('T)J T

(-]

»
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| R T -t

+

+ [ A, L] sl

o

wien 12 = e H{IGH+ NG 67 ¢70

vhere “Q'Y n = ts;:"[o)d] I:" GY(G) ”] )y ¥ =) and 2

Then for ll G‘ H < \:\T'F’ and “ C:':x.H

simply bounded, there exists an R forcing L(R) to be sufficiently

small so that n> H [“ G,“ + L” Cﬁ;.“] < \ . Hence, (A3) is

a contraction mapping.

%
We next show that this mapping takes C (b) into itself.

'
From (A3), at the time ‘t ,
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%
%
#

I = oA el + o el

s (N6, F 4

3

+ nft“e Bl 4]l ds

o lg = e [ q ]

As mentioned above, there is a bound B such that

||eA{ H = B for all 'Ll in [O Sf'<9°)

Thus “ ‘f*(k')“ = nBil 2| + nH ”3“

+wHlIGb + [ 6] F]

Since F—-)O as b& , for ”Xull , HGo“ and “g-“

%
small enough, there exists b such that Il q’) (tl)” < b

]
for all '(’_ . This shows that the image of the contraction mapping

fS *
given by (A3) on C (l>> 1810 C (b) for some b  with

suitable restrictions on the initial conditions, the matrix C—|| (*2’)

and the forcing function % (f) .
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There is a contraction mapping theorem (Kolmogorov and Fomin,

1957) which ways that if m is a contraction mapping of the complete
*
metric space C (b) into itself, then the equation ¢) = 7’7 [¢)]

possesses a unique solution. Further, ¢ can be found by successive

Ck
approximations. That is if is any element of (b) , and

we define

b =mld] | =mig] = m[¢] e
¢]

then ¢) rl;'T»oo ™m n [

This means that for (A3) we can define

X(E) = Ma, + (e.k(*_'r)cé('r)d‘T

and recursively obtain .

@ = Mg [TTem (1) AT

o
<t

+ [eA(t -T)C‘)L(T>"'[nx (‘T)] d7T + s‘eA&—ﬂ%(‘T) dT

The successive approximations approach ’X.(t) , the solution vector,

uniformly over [O) J] . That is, for any € there exists an

N(E) such that for a11 n = N (€)
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T

H X () "‘“7(-('6)”<G for all t in [O) A] .

C*(b
Finally, although the functions in ( have been supposed

defined only on [O) Cl] , the conditions shown sufficient to insure

*
(A3) as a contraction mapping of C (\)) into itself have none of !

them been depz=ndent on Cl . Thus the successive approximations converge

to the solution vector uniformly over all time.
One generalization follows easily. It has been required of

Cn 2 (E ) only that each component be bounded over time. 1f equa-

tion (Al) is replaced by
an L= Ar+ 6 ®)x + GO ()
+Gy) 6, (x) + o -+ Ga(E)Fa(r) 4 q(¢)

where each G)\ , Gp3 ) o e ey Gn is bounded uniformly over

time, it is clear that the above results are still valid.

The vector sum

cq;,\ (‘t)‘ca ('l) +0-+ G, (tN:n (_’X-) can be coambined

into the single vector H [“t' ) x (f) .l . Each component

of H ['{7, 'X] will be a finite polynomial of degree 2 or greater
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in the components of 9 , and the coefficients will be uniformly bounded

functions of time. With this, (A4) becomes

= Ar + Gz + H[E, %] + 948

(AS)

43

Another generalization can be obtained. Consider the linear equation

»e) ﬁ:— = B x +ql(t)

If the solution to (A6) is bounded for every bounded initial condition -X
and every bounded (3 L‘e) , then the same kind of results as obtained
above hold for

dz

(A7) cx
de

Bl)x + H[E, 2] +4¢)

We will not go through a proof, but simply state a result which allows one

to use the contraction mapping method as before.

(A7) is equivalent to
+

sy X&) = X (&) x + X(-t){x"(*r)H[T, x(M)]dT

[J]

+ X &) th_'(T)% (T)dT

©
where X (&) is the solution matrix for (A6) with 9 (t) set equal

to zero.
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Under the condition that (A6) give bounded solutions for bounded

forcing functions, Bellman (1948) has shown that

t
S " X ({> X-‘(‘T')” A T 1s bounded for all t ,

[

and that ,t‘:‘_f;w“ X (‘E)“: O . This last implies of course
that ” X (f)” is also bounded for all time since XL'E) is

continuous.

The contraction mapping method goes through as before, and we

are now able to summarize our results in the following theorem.

Theorem
If for equation (A6)
(A6) dx . BE)x + g(f)

dt

every bounded forcing function (3 ((:) , with bounded initial con-

ditions X o, , produces a bounded solution, then there exists

an R >0 anda %70 suchthatfor” ﬁ¢|'< R and
-« 4

” ‘}f(t)“ < %- for all t , the equation (A7)
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(A7) —j—f— = BWx + H[e, x] + % (+)

can be solved by successive approximations. The approximations are

determined by the linear equation

(A9) A_AI(M,’K) = B) anx + H[l-, nx] + %(t)

with % () = %, ; and X (t)
converges uniformly over all time to the solution X Lt) .

A special but important case arises when B“ﬁ is a constant

matrix plus a pertubation time dependent matrix.

If the eigenvalues of A all have negative real parts, there exists

a CJ > O such that for “ C;| (‘(:) ” < GI every solution of

(A10) jl-t& = Axr + GHE)x + %,(t)

is bounded for bounded %(t) and %4, ; &nd hence the hypothesis

of the theorem is satisfied.
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Appendix B

Asymptotically Stable Systems

We will deal with a system

(B1) f:-f = & ("ﬁ,t)
wvhere X and 'F‘ are n-vectors and ‘F(O,'E.) = O . FRurther,

it is supposed that the solution 'L(‘t) to (Bl) is asymptotically

stable.

Let R be an arbitrary but fixed bound on the initial conditionmns.

That is .

[x @l = ™= [l 2] = R

Then the set S(R) of initial conditions defined by ” “L(O)" <R

is compact.
Let {) be any point in S (R) . By supposition, there exists

a %(P, S/A) such that the trajectory originating at F

at T = O 1s within g/a of zero for all t > 'T'(p, S/;L) .

By known results (Lefschetz, 1957), there exists an open neighborhood

N(‘D ) S/; ) with the property that all points ('t in N(e) S/9~>
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at t = O are within S/a , at £t = ‘T , of the trajectory

originating at p . Hence all cl in N(?) S/;) are within

s of zero at ‘t = 'T
For each point P in S (RS there exists such a neighbor-

hood N ( e S/a) . 8ince S(R) is compact, a finite number

of these neighborhoods cover 5 (R) . It follows that for arbi-
trary S =>C and R >0 , there exists a 't, (S, R)
r|l= R,

such that all trajectories <« (€) , with I

end up uniformly ” K(’t)“ < g for a11 t > t, .
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Appendix C

The fundamental equation with which we deal is

dx

Cl —_— = +

1) o £(x,t) + 90

where X , ~? , and 3_ are n-vectors. ‘; (K)t) is analytic
in (’L,,.. °) L t ) . However, we will assume for convenience
that the form of the i."' component of ‘f is

[
.

(c2) Fi(e,t) = {'; (t)’li, +‘§'3.'3,(f)"‘;.7‘-j;
oo+ ‘c‘;,---in(t)“‘j.""‘ju

For (C2), and the rest of Appendix C, the summation convention applies.

L, R
For bounded time, the {ﬁ' (‘(:), ces 4&' - 8,\ (t) are bounded

functions of time.
<
The problem is defined over the finite time interval [OS.'b "J]-

It is assumed that over [O ) d ] , bounded forcing functions produce

bounded solutions to (Cl). Let C:| be the bound for % ({T) , and
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R the bound for % (t) . That is,

< 24 ]
|

[|")L;_ (t)l] < R for all

- —
0

(" n

y e,
when [| SL(‘c) l] =G for all [of + = A]
L = l) vee,n

There is then a bound F_ for {- (“X—) 't> .

[H.‘-L(x)'{:)l] = F for all [Ostsd]

L':l)v")

and all lgs(t) | = G

9 - \) . & o ) (2]
Further, there exists a Lipschitz constant L such that"

G- filw] < L lge- g ol

(a}

at any t 1n [O) cl] and all %X , B. bounded by R

Now (Cl) is equivalent to

@ x(e) = %o+ [$[x(),T]dT+ (g(MLT

5 o

We wish to show that the right side of (C3) defines an operator which is

continuous on a certain topological space to be defined later.
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Consider first the quantity [x(t) —y (+,) ] , where \a(t.)

is defined by
t, t,
@ y(e) =y, +£{[3(‘r),fr] 3T 4 (e

Let, for definiteness, t‘ =t . Then with the above defini-

tions of bounds, the following inequality will hold.
e e) - gbec.)[ = %) - 4 ()]
t, )
+ IS[;;;(T)-u;(fr)J {7

+L r;;’x [‘ \‘“ (t) - ‘Ki(&)l]‘:. + (F' +C1)(E - i:,)

(C5)

(C5) suggests a topology for the space of forcing functions. We

say that \'\(f) is in an €& neighborhood of 1 ({-) if and only it
b

[ {lgem -wm)am ] < e

for all L and any [_&) \o] in the fundamental interval rO) d_l .

*
Actually, this is a well known topology, and is called the weak topology

U
induced on L [O) A ] . It is also a known result thsat the set
)
of a11 L [O, d] integrable functions, (;3 (E) , for which

‘31&) ‘ = G for a11 £ in [O)c\] and a11 U
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is a compact set under the weak‘I topology defined above. (Dumford and

Schwartz, 1958; corollary IV 8.11).
We return to (C5) and restrict 'tv to be in [C) )\] where
AL = x < | . Notice that since u; (€, ) 18

continuous on [O) cl—J , it is uniformly continuous there.

Now let an arbitrary E' > C be chosen. Then there exists § >0

such that l 3‘. () — 3&(#.)] < €, for all ¢
vhenever I'E - {‘.l < § . Hence for lt - {’:.‘ < S

and all t in [O) d J , and with

xi(0) - yi )| < €,
+,
for all L , and | [[3; (T) - "\. ((T> A(TI < 6; for all \ ,

. o
and 811 t, 1n [O) ‘t] ,

(B yole)] < Bressbr(fa@))

max
then H

which 18 < € for €.) e.a_) €4 and S chosen small enough. AS €, €

and G 3 do not depend on t

We can break [C, d ] into a finite number of overlapping

intervals each of length no greater than )\ . The immediately preceding

analysis can be produced on each sub-interval. All this implies that

&




for arbitrary € > O , there exists 8 S (G) such that

I 'X-._(t) - B;_(‘t‘.) I < € for all L at any <t
in [O) d ] whenever

(Céa,b,c) |‘X—u ©) — 3; (O)l < § for all

4 l{’_tll < S
" (g -l <

for a1l L and all © in [O, 3] .

The product space S defined as the set of (2n+l)-vectors

(t, 2., - -, 2.9, g, y T 3n)

is given the topology indicated by (Céa,b,c). This is a product
topology on a product space. Hence the set dx A X G of

points in S such that
o< t =d

I’)L; (o) | < A for all L

[A

G for all L
and all € in [o) d]

|ga L’C)|

is a compact set under the product topology defined.
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It is an immediate consequence of Brilliant's (1958) results that

the Volterra functional polynomials

are continuous on S with respect to the product topology defined
through (C6a,b,c). Since d x A X C‘l is compact, and since it

is clear that the functional polynomials separate points of 5 , by
invoking the Stone-Weierstrass theorem, we can conclude that the

solution to (Cl) can be approximated uniformly over d X A X C‘l

by a finite system of Volterra functional polynomials.
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