NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
PHOTOMICROGRAPHIC TECHNIQUE FOR MEASURING GRAIN DENSITIES OF HIGHLY IONIZED PARTICLE TRACKS IN NUCLEAR EMULSIONS

by E. V. Benton

U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY
SAN FRANCISCO 24, CALIFORNIA
ADMINISTRATIVE INFORMATION

This report covers a facet of the work authorized during FY 1961 and 1962 by the Bureau of Ships under RDT&E Subproject S-RO07 II 01, Task 0549, titled “Effects of Space Radiation.” Details of this work are found in the U. S. Naval Radiological Defense Laboratory FY 1962 Technical Program as Program D-1, Problem 3, entitled “Emulsion Studies for Evaluating Potential Radiation Hazards from Heavy Cosmic Ray Particles,” the objective of which is to conduct basic dosimetric studies aimed at determining the rate of energy loss (REL) of primary cosmic rays in tissue. Funds to support this work during FY 1963 were provided by the Bureau of Ships on Budget Project 10, Allotment 178/63.

ACKNOWLEDGMENTS

The author would like to thank H. H. Heckman for many stimulating and helpful discussions, and C. Dunia for his critical and pertinent suggestions.
ABSTRACT

A technique for rapid and accurate measurement of gap lengths of nearly saturated particle tracks in nuclear emulsions is reported. The method consists of obtaining photomicrographs of particle tracks with a superimposed image of a calibrated eyepiece-micrometer disc. The gap lengths are measured to an accuracy of 1/4 micron.
SUMMARY

This report describes a technique developed at NRDL for measuring grain densities of highly ionized particle tracks in nuclear emulsions. The method consists of using a microscope to obtain photomicrographs that yield the desired information.
INTRODUCTION

Nuclear emulsions are designed primarily to respond to charged particles. They differ from ordinary photographic emulsions in several ways. The important differences are: (1) they are much thicker, i.e., thicknesses vary from 10 to 3000 microns; and (2) the silver bromide to gelatin ratio is much higher in nuclear emulsions (4:1 by weight). As a charged particle traverses the emulsion, it loses its energy by the processes of excitation and ionization of atoms in the emulsion and, for electrons, by radiation of electromagnetic energy. For massive, highly charged ions, we are concerned only with the energy loss due to the ionization of atoms.

The number of grains per unit length of track that become developable is a function of the rate of energy loss of the particle. The energy can come from the original particle or from the secondary electrons which are produced in the process of ionization. Upon development, these emulsion grains become chiefly metallic silver while the other crystals of silver bromide are dissolved. A charged particle track in a nuclear emulsion is a series of roughly collinear, spherical grains. If the rate of energy loss of the particle is such that not every grain is made developable, then the distribution of distances between developed grains (gaps) is exponential, and is of the form:

\[N(\ell) = N_0 e^{-\lambda \ell} \]

where \(N(\ell) \) is the number of gaps greater than some \(\ell \), \(N_0 \) is the total number of gaps and \(\bar{\ell} \) is the mean gap length.

The grain density of a track in emulsion (the number of developed grains per unit length) can yield information with regard to the rate of energy loss of the particle which produced this track. This information can, in turn, be used to determine the velocity of the particle and, if its residual range is known, its charge (mass).
Grain density can seldom be measured directly by counting the developed grains. Usually it is necessary to obtain estimates of the true grain density indirectly.\(^3\)

One good estimate of grain density is known as \(g_1 = 1/\bar{L}\), where \(\bar{L}\) is the mean gap length.\(^2\) Another way to measure \(\bar{L}\) is to find the least-squares solution for the slope of the gap-length distribution, Eq (1). In cases where the rate of energy loss of the particle is very large, the mean gap length can be the order of 1/2 micron and less. The accurate measure of small distances done in a reasonable length of time becomes a problem which must be overcome.

DESCRIPTION OF EXPERIMENT

Insensitive Ilford emulsions (K.O, K minus 1, and K minus 2) were used in this experiment. The emulsions were 100 microns thick, 1 x 3-in. glass-backed plates. They were exposed to artificially accelerated beams of heavy ions of \(^{12}\text{C}\), \(^{16}\text{O}\), \(^{20}\text{Ne}\), \(^{40}\text{A}\) at the Lawrence Radiation Laboratory's Heavy Ion Linear Accelerator. Energies of \(10.4 \pm 0.2\) Mev/nucleon were obtained. The 3-in. dimension of each plate was positioned in such a way that the entering ions made a 5-deg angle with the plane of the emulsions. Exposed in this manner, all ions recorded on a single plate had essentially the same momentum. The track lengths varied from 100 microns for \(^{40}\text{A}\) to 200 microns for \(^{12}\text{C}\). Each track was divided into 10-micron intervals. This was done so that the rate of energy loss could be considered as essentially constant over that region of track. In actual practice the change of \(dE/dx\) over the interval from its median value was almost always less than 10 percent. Because of the exponential nature of the gap-length distribution, only gaps over certain lengths had to be measured; this length was chosen to be 1/4 micron, the limitation being the resolution limit of the optical system.

The conventional technique of measuring gaps in nuclear tracks involves the use of a filar micrometer, an instrument consisting of a special eyepiece to which is attached a micrometer-screw mechanism that moves a hairline over a fixed reticle scale. This technique proved to be inadequate for the following reasons: (1) the image of the hairline often appeared wider than the distance to be measured, (2) the process was extremely slow since the micrometer reading had to be recorded before and after each measurement, and later converted to microns,
(3) a companion eyepiece could not be found for use on a binocular-body microscope, and (4) there was no convenient way of subdividing the track into 10-micron intervals.

EQUIPMENT

Figures 1 and 2 show the equipment used. The equipment consisted of a Cooke, Troughton and Simms Universal microscope used in conjunction with a special tilt superstage, a variable length monocular tube, a Leitz Micro-Ilso photomicrographic attachment, two Leitz cameras and calibrated illumination system.

Microscope

A standard Cooke Universal microscope stand was used. It rested on a 1/4-in. thick lead plate placed on a 3-in. thick piece of foam plastic. The padding was used to minimize vibrations normally occurring in any building and those due to the operator. Since each movement is magnified several hundred times at the image plane, any vibration renders photomicrography almost impossible. The above arrangement was found very satisfactory chiefly because of the fact that the foam plastic isolated the microscope from outside vibrations and dampened internal noise, such as the shutter movement. It is preferable to mount the microscope in such a way that it moves as a single unit. The original monocular tube of the microscope was replaced by one whose tube length was variable. The optical tube length could be adjusted to any required value, making it possible to use various objectives.

Stage

A specially designed superstage was mounted on the regular precision stage of the microscope. This device was capable of rotation about the Z axis and, at the same time, permitted the plane of the emulsion to be tilted so that the track appeared flat in the focal plane of the objective. (Fig. 3.) Owing to the shrinkage in thickness of the emulsion on processing, it was possible to bring tracks with dip angles up to 6 - 7 deg into the focal plane of the objective.
Optics

Oil immersion optics of high numerical aperture were used throughout. Leitz aplanatic-achromatic N.A. 1.4 and a Bausch and Lomb achromatic N.A. 1.4 condensers were used and both gave satisfactory results. A Leitz 100X plano apochromat N.A. 1.32 and a Zeiss 100X plano achromat N.A. 1.25 objectives were found to be excellent for this purpose. Their chief limitation in emulsion work is that of rather short working distance (270 microns for the Leitz objective). However, since the original thickness of our emulsion was 100 microns, and the final thickness of the processed emulsions was approximately 40 microns, this limitation did not affect our work. Taking the shrinkage factor into account, the Leitz objective can be used satisfactorily with emulsions of original thicknesses of up to 600 microns. This is assuming, of course, that the plane of the emulsion would not be tilted.

Photomicrographic Attachment

A standard Leitz Micro-Tbso photomicrographic attachment was mounted on a bracket supported by a column attached to the microscope. (Figs. 1 and 2) By releasing a clamp on the support column, the Micro-Tbso could be swung into or out of position. The photographic eyepiece was a Leitz 10X periplan eyepiece in which was mounted a specially designed eyepiece micrometer disc (reticle). The eyepiece diaphragm was critically adjusted so that the image of the reticle was focused upon the image of the track. (Fig. 4.) The reticle was cut on a machine similar to the one used at LRL in Berkeley, California. The ruling was done on a sheet of optical quality No. 3 Corning coverglass. The scale ruling of 200 divisions was so designed that the image of the ruled lines had the spacing of 0.5 micron between lines at a magnification of 1460 diameters. A separate reticle had to be cut for each objective because of the deviation of actual magnification from that specified by the manufacturer. The calibration of the reticles was checked and verified by using a Bausch and Lomb precision stage micrometer.

Illumination

A standard Cooke light source was used, powered by a Kepco Model PR 15-10M regulated D.C. power supply (regulated to 1 percent). Because of the fact that the area of the image is a function of exposure, the light intensity at the film plane had to be constantly monitored. This was done with the use of a Photovolt M501 lightmeter. The Photovolt itself was kept drift-free by the use of a standard lamp.
Maximum resolution with given optics was obtained with the use of monochromatic green light.

Cameras and Film

A 35-mm Leica and a Leitz 9 x 12-cm Makam camera were used. The Leica was equipped with a standard 1/3-reduction lens. Fine grain Kodak Panatomic X film was used. The Makam camera had a special graphic back adapted to it so that either standard 4 x 5-in. holders or 4 x 5-in. packets of Polaroid film could be used.

Experimental Procedure

Upon alignment of the microscope, the 1 x 3-in. nuclear emulsion was placed into the holder of the tilting stage. The tilt of the stage was varied until the image of the track appeared flat in the field of view. At this point either the stage or the photographic eyepiece was rotated in such a way that the image of the reticle was superimposed on the image of the track. (Fig. 5.) Each of the above adjustments was simple to execute since most of the tracks appeared as approximately parallel lines. (Deviations caused by multiple scattering are usually small for heavy ions.) Before photographing, the operator checked that perfect Kohler illumination existed, that the numerical apertures of the condenser and the objective were approximately equal, and that the light intensity was correct.6,7,8

The shutter mechanism of the Micro-1bso was used exclusively. When used in conjunction with a Leica camera, the focal plane shutter of the camera was opened and remained so during the exposure. Focal plane shutters are not useful in photomicrography because of the vibrations which they create.

Each track was photographed in several sections. At the magnification of 1500 diameters, approximately 60 microns of track appeared on each photomicrograph with an overlap of from 5 to 10 microns on each end to permit interidentification between corresponding points of the track. (Fig. 5.) Two photomicrographs were necessary to record a complete Argon or Neon track and four for a complete track of Carbon. With this technique, the thickness of the reticle lines superimposed on the track images was reduced to the point where they no longer obscured the gaps to be measured and yet were clearly visible.
The advantages of this method are: (1) the calibration of the reticle remains constant and independent of shrinkage or expansion of film and the prints themselves; (2) in the process of developing the film and/or the prints, whatever happens to the image of the track also happens to the calibrated reticle lines; and (3) the speed with which grain density can be measured is increased significantly.

In this manner it was possible to take many thousands of photomicrographs and process them in a relatively short time.

EXPERIMENTAL PROBLEMS

Upon examination of Fig. 5, it is observed that the image of the reticle is sharp at the center of the field of view but becomes steadily more distorted toward the edge of the photograph. At the same time the primary image appears sharp at all points. This photomicrograph was taken with a 1/3 X reduction lens using the 35-mm Leica camera. The distortion of the reticle image did not appear when the Makem camera was used. (Fig. 6.) In this example both the image of the track and that of the reticle appear in focus throughout the field of view. Several different 1/3 X reduction lenses were tested, but all showed this peculiarity. This made the task of taking data off film somewhat more difficult and also reduced its accuracy.

During the investigation it was found that the sensitivity of the films used varied considerably from batch to batch. The variation was such for No. 52 Polaroid film that the reported ASA number had very little significance. This was less true of the Kodak Panatomic X film. It was found advisable, however, to run a calibration on each different batch of film.

DISCUSSION

In practice, the technique described herein proved both fast and reliable. It was found that a well trained operator using the 35-mm
Leica camera could average thirty photomicrographs per hour. This is assuming, of course, that the track density is high so that a minimum amount of time is spent in searching for an event.

The errors encountered in measuring g_1 can be separated into two categories: those arising from the statistical fluctuations in the gap-length distributions, and the errors introduced by the subjectivity of different readers. It was found that the statistical errors were usually smaller than reader errors. When grain density was of the order of 2 grains/micron and less accuracy was of the order of 10 percent, between 2 and $\frac{1}{4}$ grains/micron accuracy varied from 10 to 20 percent. Beyond $\frac{1}{4}$ grains/micron accuracy deteriorated rapidly.

As mentioned, a disturbing feature of this technique is the fact that when the 35-mm camera is used, the quality of the image of the reticle deteriorates steadily toward the edges of the exposure. On the other hand, the Makam camera offers the advantage of sharp clear images at all points, but has the disadvantage of slow speed due to the fact that cut film is used. It seems advisable to combine the desirable features of both cameras. With this in mind, a new camera is being built which will fit the back of the Makam and will use 100-ft rolls of 35-mm movie film. This will enable two hundred exposures to be made on a single roll with no further magnification necessary, and will offer a wide variety in the types of film (both positive and negative) which may be used.
REFERENCES

Fig. 1 Cooke, Troughton and Simms microscope with a Leitz Micro-Ibso photomicrographic attachment and a 35-mm Leica camera.
Fig. 2 Cooke, Troughton and Simms microscope with a Leitz Micro-Isao photomicrographic attachment and a Leitz 4 x 5-in. Makam camera.
Fig. 3 Tilting superstage.
Fig. 4 Measuring reticle for a Leitz periplanatic 10X eyepiece. Scale rulings of 200 divisions at 52 microns. Width of individual rulings is approximately 5 microns.
Fig. 5 A typical photomicrograph used in measurement of grain densities. Print made from a 35-mm Panotomic X exposure.

Fig. 6 A photomicrograph taken with Leitz Makam camera showing a sharp clear image of the reticle.
DISTRIBUTION

Copies

NAVY

1-3 Chief, Bureau of Ships (Code 335)
4 Chief, Bureau of Ships (Code 320)
5 Chief, Bureau of Medicine and Surgery
6 Chief, Bureau of Naval Weapons (RMMA-11)
7-8 Chief, Bureau of Yards and Docks (Code 74)
9 Chief, Bureau of Yards and Docks (Code C-400)
10 Chief of Naval Operations (Op-07T)
11 Chief of Naval Research (Code 104)
12 Office of Naval Research (Code 422)
13 Commander, New York Naval Shipyard (Material Lab.)
14-16 Director, Naval Research Laboratory (Code 2021)
17 CO, Office of Naval Research Branch Office, SF
18-27 Office of Naval Research, FPO, New York
28 CO, U.S. Naval Civil Engineering Laboratory
29 U.S. Naval School (CEC Officers)
30 Commander, Naval Air Material Center, Philadelphia
31 Naval Medical Research Institute
32 U.S. Naval Postgraduate School, Monterey
33 Commander, Naval Ordnance Laboratory, Silver Spring
34 CO, Naval Nuclear Ordnance Evaluation Unit (Code 4011)
35 Office of Patent Counsel, San Diego

ARMY

36 Chief of Research and Development (Atomic Div.)
37 Chief of Research and Development (Life Science Div.)
38 Deputy Chief of Staff for Military Operations (DGM)
39 Deputy Chief of Staff for Military Operations (CBR)
40 Office of Assistant Chief of Staff, G-2
41 Chief of Engineers (ENGMC-KE)
42 Chief of Engineers (ENGMC-DE)
43 Chief of Engineers (ENGCM)
44 CG, Army Materiel Command (AMCRD-AS-KE)
45 CG, Ballistic Research Laboratories
46 CG, USA CBR Agency
47 President, Chemical Corps Board
48 CO, Chemical Corps Training Command

15
49 Commandant, Chemical Corps Schools (Library)
50 CG, CBR Combat Developments Agency
51 CO, Chemical Research and Development Laboratories
52 Commander, Chemical Corps Nuclear Defense Laboratory
53 Hq., Army Environmental Hygiene Agency
54 CG, Aberdeen Proving Ground
55 Director, Walter Reed Army Medical Center
56 CG, Combat Developments Command (CDCMR-V)
57 CG, Quartermaster Res. and Eng. Command
58 Hq., Dugway Proving Ground
59-61 The Surgeon General (MEDNE)
62 CO, Army Signal Res. and Dev. Laboratory
63 CG, Engineer Res. and Dev. Laboratory
64 Director, Office of Special Weapons Development
65 CO, Army Research Office
66 CO, Watertown Arsenal
67 CG, Mobility Command
68 CO, Ordnance Materials Research Office, Watertown
69 CG, Munitions Command
70 CO, Frankford Arsenal
71 CG, Army Ordnance Missile Command

AIR FORCE

72 Assistant Chief of Staff, Intelligence (AFCIN-3B)
73-78 CG, Aeronautical Systems Division (ASAPRD-NS)
79 Directorate of Civil Engineering (AFOCE-ES)
80 Director, USAF Project RAND
81 Commandant, School of Aerospace Medicine, Brooks AFB
82 CG, Strategic Air Command (Operations Analysis Office)
83 Office of the Surgeon (SUP3.1), Strategic Air Command
84 CG, Special Weapons Center, Kirtland AFB
85 Director, Air University Library, Maxwell AFB
86-87 Commander, Technical Training Wing, 3415th TTG
88 Commander, Electronic Systems Division (CRZT)

OTHER DOD ACTIVITIES

89-91 Chief, Defense Atomic Support Agency (Library)
92 Commander, FC/DASA, Sandia Base (FCDV)
93 Commander, FC/DASA, Sandia Base (FC7G5, Library)
94 Commander, FC/DASA, Sandia Base (FCW7)
95-96 Office of Civil Defense, Washington
97-106 Armed Services Technical Information Agency
107 Director, Armed Forces Radiobiology Research Institute

AEC ACTIVITIES AND OTHERS

108 Research Analysis Corporation
109 Texas Instruments, Inc. (Mouser)
110 Aerojet General, Azusa
111 Aerojet General, San Ramon
112 Alco Products, Inc.
113 Allis-Chalmers Manufacturing Co., Milwaukee
114 Allis-Chalmers Manufacturing Co., Washington
115 Allison Division - GMC
116-117 Argonne Cancer Research Hospital
118-127 Argonne National Laboratory
128 Armour Research Foundation
129 Atomic Bomb Casualty Commission
130 AEC Scientific Representative, France
131 AEC Scientific Representative, Japan
132-134 Atomic Energy Commission, Washington
135-138 Atomic Energy of Canada, Limited
139-142 Atomics International
143-144 Babcock and Wilcox Company
145-146 Battelle Memorial Institute
147-150 Brookhaven National Laboratory
151 Carnegie Institute of Technology
152 Chance Vought Aircraft, Inc.
153 Chicago Patent Group
154 Columbia University (Havens)
155 Columbia University (NYO-187)
156 Combustion Engineering, Inc.
157 Combustion Engineering, Inc. (NRD)
158-162 Defence Research Member
163-165 duPont Company, Aiken
166 duPont Company, Wilmington
167 Edgerton, Gerneshausen and Grier, Inc., Las Vegas
168 Franklin Institute of Pennsylvania
169 Fundamental Methods Association
170-171 General Atomic Division
172 General Dynamics/Astronautics (NASA)
173 General Dynamics/Convair, San Diego (BuWeps)
174 General Dynamics, Fort Worth
175-176 General Electric Company, Cincinnati
177 General Electric Company, Pleasanton
178-183 General Electric Company, Richland
184 General Electric Company, San Jose
185 General Electric Company, St. Petersburg
186 General Nuclear Engineering Corporation
187 General Scientific Corporation
188 Gibbs and Cox, Inc.
189 Goodyear Atomic Corporation
190 Hughes Aircraft Company, Culver City
191-192 Iowa State University
193-194 Jet Propulsion Laboratory
195-197 Knolls Atomic Power Laboratory
198 Lockheed-Georgia Company
199 Lockheed Missiles and Space Company (NASA)
200-201 Los Alamos Scientific Laboratory (Library)
270-271 University of California Lawrence Radiation Lab., Berkeley
272-275 University of California Lawrence Radiation Lab., Livermore
276 University of California, Los Angeles
277 University of California, San Francisco
278 University of Puerto Rico
279 University of Rochester (Atomic Energy Project)
280-281 University of Rochester (Marshak)
282 University of Washington (Geballe)
283 University of Washington (Rohde)
284-287 Westinghouse Bettis Atomic Power Laboratory
288-289 Westinghouse Electric Corporation (Rahilly)
290 Westinghouse Electric Corporation (NASA)
291 Western Reserve University (Major)
292 Yale University (Schultz)
293 Yale University (Breit)
294 Yankee Atomic Electric Company
295-319 Technical Information Extension, Oak Ridge

USNRDL

320-350 USNRDL, Technical Information Division

DISTRIBUTION DATE: 7 December 1962
<table>
<thead>
<tr>
<th>Naval Radiological Defense Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNRDL-TR-591</td>
</tr>
<tr>
<td>PHOTOMICROGRAPHIC TECHNIQUE FOR MEASURING GRAIN DENSITIES OF HIGHLY IONIZED PARTICLE TRACKS IN NUCLEAR EMULSIONS by E.V. Benton 26 October 1962 21p. Illustr. 8 refs. UNCLASSIFIED</td>
</tr>
</tbody>
</table>

A technique for rapid and accurate measurement of gap lengths of nearly saturated particle tracks in nuclear emulsions is reported. The method consists of obtaining photomicrographs of particle tracks with a super-

| 1. Gap lengths - Measurements |
| 2. Nuclear emulsions |
| 3. Particle tracks |
| 4. Photomicrography |
| I. Benton, E.V. |
| II. Title |
| III. S-R-007 II 01 |

UNCLASSIFIED

<table>
<thead>
<tr>
<th>Naval Radiological Defense Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNRDL-TR-591</td>
</tr>
<tr>
<td>PHOTOMICROGRAPHIC TECHNIQUE FOR MEASURING GRAIN DENSITIES OF HIGHLY IONIZED PARTICLE TRACKS IN NUCLEAR EMULSIONS by E.V. Benton 26 October 1962 21p. Illustr. 8 refs. UNCLASSIFIED</td>
</tr>
</tbody>
</table>

A technique for rapid and accurate measurement of gap lengths of nearly saturated particle tracks in nuclear emulsions is reported. The method consists of obtaining photomicrographs of particle tracks with a super-

| 1. Gap lengths - Measurements |
| 2. Nuclear emulsions |
| 3. Particle tracks |
| 4. Photomicrography |
| I. Benton, E.V. |
| II. Title |
| III. S-R-007 II 01 |

UNCLASSIFIED

Imposed image of a calibrated eyepiece-micrometer disc. The gap lengths are measured to an accuracy of \(\frac{1}{4} \) micron.

Imposed image of a calibrated eyepiece-micrometer disc. The gap lengths are measured to an accuracy of \(\frac{1}{4} \) micron.