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-. 4 ABSTRACTr A P ... ' detanldnanalsisb-

detailed analysis of the nearly-frozen, nonequilib-

Ii rim supersonic expansion of a dissociated diatomic gas around a sharp,

two-dimensional corner, assuming an incoming stream in dissociation equi-

flibrium. The analysis is based on a small perturbation technique in which
small caldepartures fran frozen flow near the corner are treated. 7he

anlis is necessarily restricted in lateral extent but covers the entire

angular range of the flow field and, therefore, brings out the nonlinear

aspects of the nonequilibriun behavior. An exact analysis is presented

(in similitude form for a diatomic gas) in which numerical procedures are

required to effect the solution. However, in the exact solution, the

expression for the atomic species mass fraction has been placed in closed

form and, in conjunction with appropriate approximations, is used to de-

I termine the thermochemical field in an additional solution (applicable to

hypersonic flow) which is approximate but entirely in closed form.. kne

numerical results for the first-order nonequilibrium flow field are pre-
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Symbol

MSpeed of sound

A Constant [see Eq. (2-13)]

a Constant [see Eq. (2-13)]

Cp Constant pressure specific heat

1P Frozen constant pressure specific heat

?Chemical potential (Gibbs function)

I G Function defined in Eq. (2-13)

b Specific enthalpy

ho Specific dissociation energy

I(V) Integral expression defined in Eq. (3-35)

.lit (Integral expression defined in Eq. (3-35)

I A'R Recombination rate constant

1 KM , ,/R
KP Parameter defined in Eq. (2-21)

i M Mach number
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Symbol

If Pressure

P

7" Radial coordinate

R Gas constant

Ro Uiversal gas constant

5 Specific entropy

r" Temperature

T Characteristic dissociation temperature -,

U Radial velocity

L/,. -VA,

V Tangential velocity

V V/v~d

VA. Incoming total velocity

OC Ataic mass fraction I
Actual specific heat ratio

Frozen specific heat ratio

A
YEffective specific heat ratio Ti

r Characteristic length [see Hq. (2-22)]

r r r
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NaC!LATUR'I
Symbol

I f Vorticity

* t [( +1/ v.-,~
-VA

4. Angular coordinate

1AMch angle

Flow turning angle

9 Density

VF Reduced angular coordinate

Recmbination rate temperature exponent

W tA rate of atomic species mass production

Subscripts

I A Refers to atomic species

F Refers to frozen or zeroth order field

I Index (generally refers to the V -H chemical species)

M Refers to molecular species

Refers to first order
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Subscripts

I Denotes conditions at initial frozen characteristic

71" Denotes conditions at final characteristic
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1. IMTRODUCTION

7he problem of the centered expansion of steady, supersonic, reacting gas

flow around a sharp corner (Prandtl-Meyer flow) is of practical interest

as a simple case of nonequilibrium flows that are encountered on bodies

in high altitude, hypersonic flight (Refs. 1, 2). Moreover, the study of

this problem constitutes a fundamental research tool with which to inves-

tigate the effects of homogeneous reactions on supersonic conical flow

fields. Complete solutions for a dissociated gas mixture have been given

in the case of an equilibrium expansion, where the dissociation and recam-

bination rates are equal and much greater than the convection rate through-

out the expansion fan (Refs. 3, 4, 5). The presence of a chemical reaction

in local equilibrium does not change the basic self-similar nature of the

solution that is observed in a perfect gas, since the flow remains isen-

tropic and irrotational throughout with the characteristics emanating as

straight lines from the corner. However, when the incoming flow velocity

is sufficiently high and the density sufficiently low, the expansion can

force the local reaction rates out of equilibrium. The finite dissociation-

recombination rates introduce a nonisentropic, rotational effect into the

problem, as well as a length scale proportional to radius that destroys

the conicity of the flow. With increasing radius, there is a recombination-

daninated (nonequilibrium) transition fram completely frozen flow near the

corner to an asymptotically-approached region of equilibrium flow far from

the corner. When the incoming velocity is very high (and/or density very

low), the entire expansion may become chemically frozen, in which case the

flow again reverts to an isentropic, irrotational, self-similar behavior.

The theoretical description of a nonequilibriua centered expansion involves

a set of coupled, nonlinear, partial differential equations. Therefore,

in general, solutions must be obtained by a numerical technique based on

I
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the method of characteristics for reacting gas flows (Refs. 5, 7, 8).

However, valuable insight into the nonequilibrium effects can be gained 1
by considering small departures from a self-similar solution by either

(a) treating weak expansions, with small departures from conditions in I
the incoming gas stream, or (b) treating small local departures fram the

frozen flow near the corner. Method (a) features greater simplicity

because the flow may be regarded as irrotational and the resulting linear-

ized equations possess constant coefficients. This case has been treated 1
by several investigators for both expansion and compression flows (Refs.

9, 10). The method is restricted to small turning angles but covers the

entire lateral extent of the field. Method (b) is mathematically more 1
complex since the coefficients in the linearized equations governing the

nonequilibrium perturbations are complicated functions of the zeroth order 1
self-similar solution. Moreover, the perturbations are not irrotational.

Nevertheless, this approach is unrestricted as to flow turning angle and

brings out the nonlinear aspects of the nonequilibrium. behavior. This

report presents a detailed analysis of a nearly-frozen, nonequilibrium

supersonic expansion of a dissociated diatomic gas around a sharp, two-

dimensional corner for the case of an equilibrium dissociated incoming

stream. The present investigation constitutes a further extension of

Napolitano's analysis (Ref. 8) in that the entire angular range of the

flow field is treated, specific numerical results are given, and some

approximate and exact closed form solutions are developed.

2. GOVERNING RELATIOS I

2.1 Basic Equations I
Consider the steady, adiabatic, supersonic expansion of a dissociated I
diatomic gas around a sharp two-dimensional corner, as shown in Fig. I.

Viscosity, heat conduction and diffusion effects are neglected, and the

flow properties immediately ahead of the first expansion fan characteristic

are assumed to be uniform. The governing equations for such a reacting

gas flow are well-known (see, for example, Ref. 11). In the polar coor-

dinate system of Fig. 1, they are expressed as follows.

2 1



Continuity

Atom Mass Conservation

-~ +W (2-2)

Radial Manentum

+ V(2-3)

Tangential Mcmentum

V V _ (2-4)

7r- r

Energy

- += V Y-! cOAfSr xh + .. (2-5)

Thermal Equation of State

P 2 e 11M. 0+o40  T (2-6)

The specific enthalpy /) is given as a function of OC and " by the

caloric equation of state:

6: r 0.~A (- oc))C .cr+o hfp ) ,C (2-7)

3



where C Pxm denotes the atomic or molecular specific heat and /7D is

the dissociation energy of the gas. In the subsequent analysis, the rota-

tional degrees of freedom of the molecule are assumed to be fully excited,

and the effects of electronic excitation and vibrational nonequilibrium

on the internal energy are neglected in comparison to the dissociation

energy Oat . Thus Cp a F Rm and Cp, is a function of - ranging be-

tween -j R, (no vibrational excitation) and -t RM (completely excited

vibration). To further simplify the analysis, C pt4 shall be regarded as

a constant (i.e., vibration is "frozen" throughout the expansion). Hence

Eq. (2-7) becomes

h= CpT + o h, , (2-8)

where p [K44- (5- Km)o]R, is the frozen specific heat and

The entropy change along a streamline for reacting diatomic gas flow is

(Refs. 6, 11):

r 5+V CIS (2-9)

where hA, M - A, denotes the "chemical potential" (or

Gibbs function) for the atom or molecule (expressions for 'AM .? O-M

and 5 in terms of T, -p and OC are given in Appendix A). The follow-

ing equivalent form of Eq. (2-9), nawely Crocco's Theorem for a reacting

gas, may also be obtained from (2-9) and the momentum equations:

as Y'M) 13ex(2-10A)

7-1.,. . ',- U. f (2-10B)

I



where 19 B - 4 is the vorticity in cylindrical coordinates. Both

Eqs. (2-9) and (2-10) are very useful in obtaining a physical appreciation

of the nonequilibrium dissociation effects on an inviscid flow.

2.2 Reaction Rate

The dissociation-recombination reaction for a diatomic gas is

X + M - 2A +X ,(2-11.)
K t

where M, A denote a molecular or atomic particle and the third body

may be either of these two. For such a reaction, the net volumetric rate

of ataic species mass production W-A can be written as

OL =-ZA . r7w &(o,f,T) ,(2-312)

where

t "4 S e-/rC' T) r I+ -/° ) e e (2-13)

Here, kR and W represent the recambination rate constant and tempera-

ture exponent, respectively, A and B are constants (Appendix A), and

7p % hjD /Am is a characteristic dissociation temperature. The function

G O( oipr) has the important property of vanishing identically when

thermochemical equilibrium prevails. Thus when reaction (2-11) is in

local equilibriun in the flow, the equation G, x 0 defines the correspond-

ing solution to (2-2) fore .

2.3 Speed of Sound

The speed at which infinitesimally mall disturbances prOpagate throu& a

I
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dissociated diatonic gas can be written (Ref. 6) as

CL (2-14)

where 7 0 when the gas is not in chemical equilibrium and v = when

the gas remains in equilibrium when subjected to an infinitesimal distur-

bance. Here, ?( is the actual specific heat ratio of the dissociated gas,

defined by

- h ar) , (2-15)

and T is the frozen specific heat ratio

7 ) C0,.-(5-- (2-16)
~amCOtST (w)R m

According to (2-14), the velocity normal to a Mach wave equals the local

"frozen" speed of sound (based on Y ) in any gas with a finite reaction

rate. However, in a completely equilibrium-dissociated gas, the speed of

sound based on V- 4 £ V) must be used.

2.4 Boundary Conditions

If the incoming gas is uniformly dissociated, so that the initial expansion
characteristic is straight, it must be either chemically frozen (after

having previously undergone a highly nonequilibrium flow expansion) or in
thermochemical equilibrium. In the former case, OC.. is an independent
variable with G(oc.,, ,ir)s, while in the latter case, t,, is a
function of f6 and T given by &-o(4, P6, )= 0. Since any expan-

sion of a chemically frozen stream must remain frozen, we shall consider

only an equilibrium free stream. Consequently, th% following conditions

6
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define our problem as a supersonic expansion around a Sharp corner (Fig.

1). At the initial expansion fan characteristic I,

-&r aA~r S I 'i(-L) (2-17)

(2-18)

COS=-VA.. "5 z

At 0 -7/, the tangential velocity component must vanish:

. =(2-19)

The flow along the wall for a nonequilibrizn expansion will be a function

of r since a relaxation toward equilibrium occurs with increasing strew-

line distance.

2.5 Nondimensional Equations

It proves convenient to deal with the foregoing equations in an appropri-

ately nondimensionalized form. 1herefore, the following new independent

variables are introduced:

p /f , -ae/('.., " T/7, t(2-20)

i~ Ulv, , 0 V vv., ?a= s/m. , ? /f. T"M

Furthermore, we define the parameters

sA"3K a / T=D' ,K, . -= KW= Yea (2-21)

I
17



and a characteristic (flow length/recaubination length) parameter

2w-ar - Am Cam I L r- r-i ,,~iI~hT r = T'r (2-22)

VROO

Men Eqs. (2-1) - (2-6), using (2-8), (2-2) and (2-13), are transfomed

into the folloving set of six equations for the six wnknovns 0, P , ,

T, 0 and :

a _r + .&)- - (2-23)

Ur V ~ 2  ) P- _4) K (2-25)
PP

ap
al +va - Iv ) - _ 226

I O.m (2-25)

1e attending entropy relations beccue

2 KIF + L /+O: (2-27)

jt
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or, in terms of Crocco's Theorem,I
+ or (2-30A)

- ( " "'-(2-30B)

where

fl. -do

Note that, according to Appendix A, aA y be written in terms of

the reaction function & as

]e
&A -AM G- + / ,(2-31I)

which properly vanishes at equilibriun (G w0). Fnally, the boundary con-

ditions transform to

______________ I(2-32)

M ..

I9
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(2-33)

The foregoing equations are in a universal nondimensional form which is

very convenient for parametric study of nonequilibrium expansions regard-

less of the method of solution. Furthermore, it is evident that P , T,

U, , U and V at a given Me and 7.r are the same at each point 0-,
r r for all combinations of incoming gas if the following parameters are

held constant: KM, ), -, Kp. That is, the following similitude law

governs the flow:

P, r; O UV (r;K mIWco , t Kp er7- (2-34)

This similitude is in many respects analogous to that demonstrated in Ref.

12 for nonequilibrium, small disturbance hypersonic flows.

It is seen that the flow described by the foregoing equations cannot be

conical in the presence of a finite dissociation-recaubination rate, since

the parameter P is a function of r . Furthermore, when r- 0 r 3 and

G O, Eqs. (2-24), (2-29), and (2-30) show that the degree of dissocia-

tion, entroly and vorticity vary along streamlines as the flow expands

around the corner. The effects of nonequilibriumn chemical reaction involve

a transition between frozen flow at the corner (Pa"0 ,G 0 ,OC =oC.*) and I
equilibrium flow far from the corner (r-eM, G = 0 , OC a (4)OCO ) across

which the entropy increases and O decreases with Ir . The radial expanse j
of this transition region is governed by the magnitude of /7' . Wen

P(< / , the radial scale vahishes from the problem and the entire expan-

sion becaes a chemically frozen, conical flow. As PI is increased, the

outer edge of the nonequilibrian zone moves inward. When P'>> I , the

entire expansion (with the exception of a very small region near the

corner) is in equilibrium and hence is again self-similar. In this case,

of course, cc (&) decreases through the expansion according to the rela-

tions G=x0 and

10|
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The presence of chemical nonequilibriumn also induces a curvature of the
expansion fan characteristics. This curvature may be observed by noting
that departures from frozen flow must intrclace a reaction rate effect
which is reccmbination-daminated and which therefore tends to reduce M,
and increase 'T and P .* Thus for a given local turning angle, the Mach
nunber increases with radius and the expansion fan characteristics curve
upward and away from the frozen flow characteristics. At a sufficiently

large distance fron the corner, the characteristics became asymptotically
parallel to (but not coincident with) the characteristics for a completely

equilibrium expansion (Fig. 1). This lack of coincidence, which is a mani-

festation of the radial increase in entropy, vanishes when 1460.

3. EPARLY-FR NOZ N ULMI4 EXPANSIONS

3.1 Perturbation Method

We now consider small departures from a copletely frozen expansion due
to nonequilibriun dissociation effects. Since a nearly frozen flow is
characterized by small values of r' r -r , we expand each of the depen-

I dent variables in a series of ascending powers of r

1 oc( ,r) =oc-, (. po4(e) +Tr. (70 -.

I

*%Ien a dissociated gas is expanded, the nonequilibrium effects on resultantvelocity and flow density are less significant than the corresponding
effects on temperature and pressure.

II!



etc., where subscript F denotes the local frozen expansion solution,

subscript I denotes the local first order perturbations due to nonequi-

librium effects, etc. Substituting into Eqs. (2-23) - (2-28), equating

coefficients of like powers of P equal to zero and taking Kv-/ , we

obtain a set of nonlinear ordinary differential equations for the zeroth

order (frozen) flow field and a set of linear, nonhmogeneous, ordinary

differential equations with variable coefficients for each of the first,

second, etc., order perturbations. Confining our attention to first-order

nonequilibrium effects, we have the following two sets of equations.

Zeroth Order (Frozen) Flow

A crr (3-1)

OC F() coNS- : oCm (3-2)

(3-3)

co. N-s/

"F VF UP +F?) (3-6)

IIt
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First-Order Plow

2( UF + +) ,, + al g, - (3-T)

C I ,F L,4. -('-'.)t.) e (3-8)

GiF

OF/'7F~*~(~~ P(3-9)

-- ( O-o)

V+ =YF - (3-10)

PF ao . r. I+MD T. 'F

Mhe corresponding entropy and vorticity perturbation equations are

(3-13)

I; (I-oPf.) ato-o,.

S13



and

V.,: -E- 4(m 4.- o-, _ 1m, (3-14A)

-eoA rJ' (3-1B)
doc, 0 AT.2O,7

vhere 1=

(3-15)

+ 5r.~ )(a -,'-- + C) PTFF

The boundary conditions on the frozen and first-order solutions are

P,-S -or, op)o, -- (3-17)

: -F 0: = - (3-18)

I
14
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3.2 Frozen REnsion Solution

Eqs. (3-1) - (3-6) describe the self-similar expansion of a thermally and

calorically-perfect gas with a specific heat ratio (cK.). Thus the

effects of frozen dissociation on the expansion are bounded by the solu-

tions for an udissociated perfect gas (F. x . = 1.4) and a pure mon-

atomic gas ( W=m - 1.667) for a given Mob and 7-. Since the details

of the frozen flow field are needed to evaluate the coefficients and non-

homogeneous terms in the first-order perturbation equations, a brief

review of the zeroth-order solution will now be given.

The analysis is naturally divided into three distinct regions: A, B, and

C (Fig. 1). In region A ahead of the first characteristic, the resultant

velocity and thermodynmic properties are uniform while the tangential

and radial velocity components are given by pure geometry. Thus, when

O. -_ - P,, v,=

(3-19)

:Co 0 ' S: =9 - , O-

In region B within the expansion fan, the flow is determined by Eqs. (3-1)

through (3-6) and (3-19). Combining (3-1), (3-3) and (3-6), we obtain

--F P (3-20)

which indicates that the tangential velocity component is equal to the

local speed of sound in region B. Substituting the irrotatioality con-

dition (3-3) and (3-20) into the energy equation (3-5), the following

first-order differential equation for UF() is obtained:

/+ f. I 4W + ,(3-21)

I
i 15



where

Taking into account the initial boundary condition on (7c, Eq. (3-21)

integrates to

= \M2 + +A Z/'.

where the choice of sign in 3 is determined as shown below. Thus, using

Eq. (3-3) and the boundary condition on , we obtain

Os (3-23)

Denoting 'IV, at -# = such that

_____ =SIN

Eqs. (3-22) and (3-23) can be written as

S la 'r(3-24~)

I-
6(3-25)YF .Cos

16



According to (3-20), the frozen temperature distribution in the expansion

fan becomes

I

9C I =- (3-26)

and, therefore, since the flow is isentropis,

F s(3-27)

a- O s V (3-28)

The Mach number distribution in the fan now may be written as

..'(o-/ ) _= &*O) , M.&'e
. v TAAi + I/  (3-29)

The solution is completed by observing that the sign on 4. - & in the

foregoing definition of IV must be such that T, Pc I < I (and

Al > M,) for - < -&. Since 'r -F for M. <,a, Eqs. (3-26) - (3-29) re-
quire V>P (CosC < CO ) and hence a neptive sign on -Ox, i.e.,

SIA- SN t- -J (3-30)*1

The solution in the third region, C, the uniform flow field downstrem of
the last frozen expansion fan characteristic vhich is parallel to the wall,
again becomes quite simple. The thermodynamic properties and resultant

I
|'



flow velocity are equal to their values at.G&z.G, and the radial and

tangential velocity components are given by

'.o" ~ L C , 0" oS (-,& ) "+

(3-31)

Using (3-29), Ok is calculated as a function of M n. and ./ by the

relation

7A' (~7)= )A /~ A At r (3-32)

where "1-M" is the Prandtl-Meyer turning angle function (Ref. 13) and

where the choice of sign rests on obtaining the proper upward-running

characteristic (discarding the downward-running member in this problem).

3.3 First-Order Solution

Eq. (3-8) is decoupled from the remaining first-order equations; a fornal

solution for C, (4) can therefore be easily obtained. Switching to the

independent variable Y, inserting the proper frozen flow functions for

the coefficients, and using the appropriate integrating factor (3-8) yields

the following solution in region B:

OC 0)CM.COSV(COs)7P Cs Go, , "V r ay (3-33)

with OCI('W,)trO . Using (2-13), (3-26) and (3-27), and noting that

18
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K, eD , +O(,W .

1 -=)= e"="' ~L =

Eq. (3-33) can be written as

(3-34)

where

, (CoS',) 3-35A)

t~l  4-?-, -ZA

t.(S, , Exp(- T o, Cos'V, S)a (3-35B)

yr

represent contributions fram the recambination and dissociation rates,

respectively, the former being the predmiinant mechanism since oc de-

creases with 'r(oc 1-O) . Eq. (3-35) correctly predicts that C vanishes

when the incoming stream is undissociated (oc.a ).

I lie foregoing quadratures must be carried out numerically for arbitrary
values of 17, W and A . However, when It'+ Zc - 3 is an integer,

S(3-35A) May be eval ated in closed form directly from available integral
tables (Ref. 14). Moeover, for + -ZW-2A eqal to an even, positive

I integer, a closed form representation of (3-35B) in terms of the error

function can be obtained (details are given in Appendix B).* Fortunately,

2he authors are indebted to Mr. T. Omura of the Research roup, MssileI Aero/Thermodyrmics Section, for pointing out this representation.
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the conditions for closed form integrability lie within the realm of prac-

tical interest, since CJ is usually negative (W&) -1.5) for diatomic

gases. Therefore, a numerical evaluation of (3-35) for arbitrary values

of 1, (J and A can be avoided by a parametric study of the closed form

solutions and subsequent interpolation.

In region C downstream of the last frozen expansion fan characteristic

( -: V, the solution to (3-8) is straightforward. Here, the nonhmno-

geneous reaction rate term is constant and U, VF, are given by (3-31).

The resulting integration, subject to the initial condition O, (&) u(o.),
can be carried out in closed form and yields

0 C ) SIJ (+)

(3-36)

This solution describes a reconbination-dnminated relaxation downstream of

the final frozen expansion fan characteristic in which the influence of the

previous nonequilibrium flow history within region B continually diminishes

as 4)+27 decreases. At the wall, oCI becanes copletely independent of

the flow in region B and may be calculated directly frm the frozen solution.

The remaining first order perturbations may now be obtained by solving two

additional differential equations. Napolitano, in his discussion of the

problemn, chose to evaluate the first-order entropy and radial velocity by

quadratures and then determine the other flow field variables algebraicall.

This approach is suggested naturally when one observes that (3-13) is

uncoupled frm the renaiing equations by the foregoing solution for 0C( I .

In practice, however, the advantage of this procedure is scewhat diminished

I
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since the resulting integration must still be done numerically. Moreover,

as shall be shown, it is more fruitful to proceed instead in terms of

the vorticity field, particularly for the purpose of developing approxi-

j mate, closed form solutions. Merefore, Bqs. (3-13) and (3-14) will

henceforth be discarded.

I Convenient relations governing the first-order vorticity perturbation

T

may be easily derived. First, we eliminate aU?/d# between (3-8) and

(3-10), using (3-7). to yield

I dO - (3-37)

A second vorticity relation is also obtained by combining (3-9), (3-11)

and (3-12):

-rP TPj cK, (3-30)

7hese two relations are equivalent to the two momentum equations (3-9) and
(3-10). Now within the frozen fan region B, where V F. a rjr , (3-37) and

(3-38) may be cobined so as to eliminate the coamon factor containingIr, , 01 d ; then using (3-) and (3-3), oneobtains alinear fi t-

order differential eqation for 4 that readily integrates to the solu-

tion:

P, I---, L -K,) )= v (3-39)

II



with O( (V) known and the boundary condition T, ("r) -O. In region C

downstream of the last frozen fan characteristic, the solution for X

becomes quite simple, since by Eq. (3-3T)

~'CON~r -f (3-40)

when =0 . Thus the nonequilibritu effect within region B results in

a flow which emerges with a fixed rate of rotation proportional to 7r
throughout region C.

With known, the differential equation governing the radial velocity
perturbation V may now be determined. The expression A, j-Z

and Eq. (3-38) are differentiated to obtain relations for and
respectively. These relations along with (3-38) and the definition of

are then substituted into the first-order continuity equation (37). After
a lengthy algebraic manipulation, the following equation is obtained.

-0 4 M t r- --

w 
F-(3-41)

-C, *,"v . I
,. -- BL 7f

-F /d U4-+ )OC- +4K
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This second-order, linear differential equation for U, was not given by

I Napolitano since his analysis was confined to region B within the frozen

expansion fan. In this region, where M1 V,= -r , the coefficient of

dI /J L is zero and Eq. (3-41) reduces to a first-order equation for

U (which indeed it must, since only one boundary condition, A9 () C 0

is available). By taking advantage of the frozen flow relations, Eq. (3-41)

may be further simplified to

where

7 F(K') ++* J - (3-43)

Subject to the boundary condition U, (&) = 0 , the solution to Eq. (3-41)

may therefore be written as the following integral expression of known
functions:

This equation is equivalent to the solution given by Napolitano. In con-

1 trast, the solution for U, in region C is much more difficult, since the

second-order term does not drop out ( 1A.V/TFs 0 for 0, S e -V).

I In this case, we have a two-point boundary value problem involving the

initial value of U, ('&) given by Eq. (-1 and the condition

1 23



since 7 --0 at the wall. With a', -Cr and F constant for < ,

(3-41) may be reduced to

(3-46)
- _________,) ;,] I -,. <
= f[r-M)O(M.DrMJ 1+61. 1 J 7r

where the rigit hand side is a constant. Unfortunately, a transformation
of Eq. (3-46) to either normal or self-adjoint form does not yield a dif-
ferential equation that can be solved in terms of quadratures. Therefore,
to obtain the flow field downstream of the frozen fan region, (3-46) must
be solved numerically.

With 04 , ' and U known, the remaining first-order variables ,

, o and C, are determined algebraically fran the relations

(3-47)

]0i U 1pr9 (3-49)
'F Of, )C(. ,

t-t

= L , (3-50)

all of which properly vanish at the initial expansion fan characteristic.
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3.4 Aipproximate Solution for Hyrersonic Flow

i Before discussing numerical examples of the foregoing exact solutions, it

is of interest to point out a simplified approximate solution for M&>) I

which has been found to bring out ma features of the first-order nonequi-

libriumn flow field reasonably well.

Since the first-order atcm concentration ,(14) may be obtained analyti-

cally in closed form, it would be of interest to obtain approximate closed

form analytical solutions for the remaining first-order thermodynamic

1variables in terms of Oej. These solutions may be obtained for Mw >>/

by simplifying the analysis as follows. We may observe that the present

problem is analogous in many respects to the nonequilibrimu expansion of

a dissociated gas in a hypersonic nozzle. Nov in the latter case, it has

been established that large departures fram equilibrium have a relatively

small effect on both the density and flow velocity in ccimparison to the

corresponding effects on the local canposition, temperature and pressure

as long as the fraction of the total energy involved in dissociation is

not large (1 25 percent) ( Ref. 15). Therefore, in view of the aforemen-

tioned analogy, it may be argued that the nonequilibrium effects on density

and the resultant velocity in the present problem may be neglected for the

purpose of estimating P, and Or, when the incoming stream is hypersonic

and its dissociation energy is not too large a fraction of the total energy.

Then on the basis of the assumptions

a$ V0, P F 7 F SI
we may dispense with two of the first order flow equations [conveniently,

1 the differential equations (3-7) and (3-37)] and obtain the folloming

purely algebraic solutions for -r, and

* 1 'z ',(3-52)

I
I I
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P,5KM? - <1 (3-53)

These closed-form approximations are questionable in region C; for example,

(3-54) does not correctly predict that 7 is a constant in this region

and, in fact, yields :--om at the wall (VF a 0 ). Nevertheless, as will

be shown below, these formulae do bring out the essential features of

hypersonic nonequilibrium flow within region B reasonably vell.

3.5 Numerical Results

In this section, some numerical results for the first-order nonequilibrium

flow field will be presented. We shall attempt to bring out the main

iiysical features of the nonequilibrium effects, evaluate the influence of

the various thermochemical parameters, and assess the accuracy of the

approximate solution for hypersonic flow discussed in the foregoing section.

In Figs. 2a through 2f, angular distributions of the frozen and first-

order variables in region B are presented for typical values of the pysi-

cal parameters and three different Mach numbers. These curves pertain to

all possible turning angles %,. The corresponding values of & for each

1"-and M . [fran Eq. (3-32)] are shown in the insert of Fig. 2a. It is

observed that the sign of the atom concentration, temperature, pressure

and vorticity perturbations is commensurate with a recombination-dominated

behavior throughout region B (O', <0, ,F > 0 , 7> 0 ). The density

perturbation is initially compressive (a; >0 ) but subsequently becomes

negative througiout much of the frozen fan region unless 7." is quite

small. In the examples shown, it is clear that the first-order flow field

is highly nonlinear and rotational except in the case of very small total

turning angles (the range of linearity decreasing rapidly with increasing
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Moo). Generally speaking, the perturbations increase very sharply at the

beginning of the expansion and will in many cases attain a peak value in

region B before the last frozen fan characteristic is reached. The initial

I rate of growth increases with Map; however, the maximum values are by cam-

parison rather insensitive to Mal. Both q and P increase more

rapidly than MI and -,, while T rises gradually and lags considerably

behind the other perturbations. For Ma Z- 5, the radial velocity pertur-

bation is extremely small throughout region B.

The influence of the three parameters ',, Kp and 4J on the first-order

1 distribution functions is shown in Figs. 3, 4 and 5, respectively. In

Fig. 3, the nonequilibrium effects are seen to be quite sensitive to ti,;

Ia 20 percent reduction in this parameter produces a ten-fold increase in

the magnitude of the perturbations. Since the flow is recombination-

domlnated, the influence of 'r,, is primarily the result of a change in

the free stream dissociation level [see Eq. (3-34)]. An increase in Kp,

as shown in Fig. 4, also increases the magnitude of the perturbations for

the same reason. In Fig. 5, an increase in the recoubination rate tempera-

ture exponent W from -1.5 to zero is seen to produce roughly a 25 percent

I reduction in ocK and ', (with far less of a reduction in the remaining

perturbations). This effect follows from the fact that the local recom-

bination rate has been reduced. It is clear that any value of W) between

-2 and -1 will yield essentially the same perturbation function solutions;

hence, the major effect of changes in the value of W) lies in the small

parameter ' [Eq. (2-22)] and is proportional to T.

i Shown in Fig. 6 are the distributions of To , PI and 3 based on the

exact solution for 0, ( ) and the approximations o 9 U iF+ 17 0

I [Eqs. (3-52) through (3-54)). These simple closed-form approximations

provide a satisfactory qualitative description of the flow in these

I examples, and are in good quantitative agreement with the exact solutions

in the vicinity of m = &.O for all three Mach numbers shown. However,

i the initial rise and possible maxima in the perturbations are underesti-

mated, so that (3-52) throush (3-54) will be inaccurate throuehout region
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B for expansions with very small V.* This result is to be expected,

since it is seen from Pig. 2a that 37, = 0 is a poor approximation in

the initial portion of region B.

Exact numerical solutions for the complete first-order nonequilibrim flow

field in region C downstream of the last frozen expansion fan characteris-

tic were not carried out.** However, an exact, closed form solution for Ml
has been given [Eq. (3-36)] and the corresponding value of g is known

from the foregoing solutions in region B [Eq. (3-4O)].

As an illustrative example of the complete first-order nonequilibrium flow

field in region B, Figs. 7a through 7d present a composite solution for a

typical case at M1. -/0 expanded through the maximum turning angle

W = 19.2 degrees with the following free stream conditions:

P4=O VN.a Z,000 g-

3 # so OK-fL z 0.1A 7w= 2 .7~I

_ 1.5I C o R .- 6+0 Fr- L

(4500 OK)WO ROL!i~ S1 PUMLA- &K

r"=0.14Z - (IN 1 . .- zz)

The general effect of the nonequilibrium perturbation on the frozen thermo-

chemical field can, of course, be anticipated from the foregoing analytical

and numerical results (i.e., the marked change in V, ( and P and the

*In this case a linearized theory such as Ref. 10 can be used.

These solutions are currently being programed; results will be reported
in a future report.
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less significant change in "). However, the graphical presentation (Figs.

7a through 7d) of the composite flow field clearly shows to what degree

the nonequilibriun effects may alter the basic field. In the initial por-

tion of the fan, the nonequilibriu effects indicate a flow field recon-

pression for r > i inch; this recompression is unrealistic and will not

appear in the physical flow field. It follows that in the initial portion

of the fan the radius of validity of the first-order solution is of order

1 or less and, in fact, at larger radii the indicated canposite solution

has been forced to relax through and away from the equilibrium solution.

This excessive relaxation results in a canpletely unrealistic solution.

As we proceed into the fan, however, the radius of validity of the solu-

tion is extended outward since the basic (frozen) flow field departs more

and more from equilibrium. In the latter part of the fan (approaching the

wall), the nonequilibrium effects becone negligible since the flow field

becomes frozen to all orders as it approaches its maximu expanded state.

The behavior in the initial portion of the fan clearly emphasizes the

important point that the application of any small perturbation technique

such as is used in this analysis is not simply a matter of multiplication

and addition. It is, rather, a careful process, foremost in which is the

determination (or estimation) of regions of reasonable validity. These

regions generally can be described only within the context of a specific

problem and are dependent not only on the initial physical problem posed

but also on the consistency or accuracy of the solution required.

N. ccCLUtDIO RDEVA

The problem of the centered expansion of steady, supersonic, chemically
reacting diatomic gas flow around a sharp corner has been analyzed by

treating small local departures fran the frozen flow near the corner.

An exact solution utilizing a Lighthill-tpe gas model was presented in

similitude form together with some numerical results for the first-order

nonequilibriun flow field. This solution and the accopanying nuerical

results brought out the following features. The first-order species equa-

tion was placed in closed form and was shown to to independent of all but

II



the frozen solution in the expansion fan and at the downstream wall, acquir-

ing a dependence on the previous first-order species solution in the regton

between the final frozen characteristic and the Wall. The first-order var-

iations of the thermo-chemical parameters show the flow field to be heavily

recombination-dominated but not to the degree where the neglect of the

dissociation effects will give an accurate assessment of the flow field.

Mhe first-order flow field is shown to be hily nonlinear and rotational

except in the case of very small flow turning angles. The small range of

linearity decreases rapidly with increasing free stream Mach number. In

general, the nonequilibriun perturbations increase very sharply in the

initial portion of the expansion and will in many cases obtain a peak

value before the final frozen characteristic is reached. The initial rate

of growth increases with increasing free stream Mach number, but the peak

values are shown to be rather insensitive to the free stream Mach number.

Since it has been observed that for reacting expanding flow in a hyperscmic

nozzle large departures from equilibrium cause relatively small changes in

density and flow velocity, an analogy was made with the present problem.

An approximate solution was developed based on this analogy which allowed

a copletely closed form determination of the thermochemical field. These

simple closed form approximations provide a good qualitative description

of the flow field. %en cacmpared to the exact first-order solution, it is

seen that the initial rise and the maximum values of the perturbations are

underestimated. However, the exact and approximate solutions are in good

quantitative agreement in the middle and latter portions of the fan.

3
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FLOW GEOMETRY AND COORDINATES
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APPENDIX A

ENTROPY ANID FREE ENERGY OF A DISSOCIATED DIA2?Q4IC GAS

I The specific entropy of a thermally and calorically perfect gas species is

(0 p. InA4As , (A-1)

I where 7 is an arbitrary reference temperature, S e ) is the entropy at

7 and one atmosphere pressure, and -p,. is the partial pressure in atmos-

pheres. The corresponding specific entropy for a dissociated diatcmic gas

mixture is thus

S 0C Ise) w . z
(*) M m I .ec4a)W

I where we have taken r. a r for the expansion problem. The free energy

difference r- vi is obtained from Eqs. (2-8), (A-2) and the definition
7,A = rsz:

Ir T~~p J~/r( 0)c~ 5A)(Aw Ifz)/ (A-.3)

Nov for thermodynamic equilibriuu, both the reaction rate function G in

I Eu. (2-13) and - must vanish. Hence a compari-son of lEa. (2-13)

and (A-3) at equilibrm shows that the constants A and B in Eq. (2-13)

I amy, in fact, be identified with the vibrational specific heat parameter

K(, and the standard component entropies as follows :

I 5K. : 3I -Z.A (A. )

I

r 47I72_ Z)



Therefore, with the aid of Eqs. (A-4) an (2-13), q.. (A-3) uy be re-

written in term of G-:

=A- - T H+/ (A-5)
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APPENDIX B

EVALUATION OF FIMT-ORDER DISSOCIATION INTEGRAL

The dissociation integral [Eq. (3-35b)] may be revritten in a more useful

ibm by emloying the trigonometric substitutions S[ ¢C' +'r,( "y ,, d7(MAN).
Then letting NW,:+-2cp-ZA P p -r eos&-p n X ye
obtain Eq. (3-35b) as follows:

Iw TAEV

J e ae- y) (B-1)
~TANa

It Is immediately seen that Vhen MV u Z, the Integral (B-1) reduces to
the error funeion; thus

I b(2,1) 24r e h-, TA E P)p(4/.TANm4B-]

If N is a positive, even integer >2, Eq. (B-1) my also be expressed in
closed form by taking advantage of Eq. (B-1) with N9  2 and the follow-

ing derivatives thereof:

22

d~ X&

(B-3)

I1 I b (.'V) = (XX'

1

1 49



2hus, for example, ve have

wr, kov%,,

In this way, one may proceed to evaluate Ei. (B-1) for Nx = 6, 8, ... ,

etc., using progressive3y higher 
derivatives fra E. (B-3).
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