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ABSTRACT
,‘-J/ i /8 ,Jﬁ;effﬁ?d
detailed analysis of the nearly-frozen, nonequilib-
r:l.un supersonic expansion of a dissociated diatomic gas around a sharp,

T

|

two-dimensional corner, assuming an incoming stream in dissocietion equi-
librium. The analysis is based on & small perturbation technique in which
small local depertures fram frozen flow near the corner are treated. The
mlﬁé”i:t necessarily restricted in lateral extent but covers the entire
anguler range of the flcw field and, therefore, brings out the nonlineer
aspects of the nonequilibrium behavior. An exact analysis is presented
(in similitude form for a diatamic gas) in which numerical procedures are
required to effect the solution. However, in the exact solution, the
expression for the atamic species mass fraction has been placed in closed
form and, in conjunction with appropriate approximations, is used to de-
termine the thermochemical field in an additional solution (applicable to

hypersonic flow) which is approximate but entirely in closed form. Some
nunerical results for the first-order nonequilibrium flow field are pre-
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Symbol

NOMENC LATURE

Speed of sound

Constant [see Eq. (2-13)]

Constant [see Eq. (2-13)]

Constant pressure specific heat
Frozen constant pressure specific heat
Chemical potential (Gibbs function)
Function defined in Eq. (2-13)

9/Pu T

Specific enthalpy

Specific dissociation energy

Integral expression defined in Bq. (3-35)
Integral expression defined in Bg. (3-35)

Recambination rate constant
- A
Yoo/ ¥

CP,‘ / Rw
Parameter defined in Bg. (2-21)

Mach number
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NOMENCLATURE

Pressure

P/Pe

Radiel coordinate

Gas constant
Universal gas constant
Specific entropy

5/R,,

Temperature
Characteristic dissociation temperature

Redial velocity

U/Va,

Tangential velocity

ViVa,

Incaming total velocity

Atanic mass fraction

Actual specific heat ratio

Frozen specific heat ratio

Effective specific heat ratio
Cheracteristic length [see Eq. (2-22)]

r'r
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NOMENC LATURE

Symbol

9 Vorticity

7/ Ve

|

[( %+ 1)/ (Y- I)] k

. Angular coordinate

M Mach angle

+v Flow turning angle

e Density

o e/ Ces

T T/Te

4 Reduced angular coordinate

(A Recambination rate temperature exponent

"'A Net rate of atomic species mass production
Subscripts

A Refers to atamic species

F Refers to frozen or zeroth order field

L Index (generally refers to the £ ' chemical species)

M Refers to molecular species

! Refers to first order



Subscripts .

I Denotes conditions at initial frozen cherecteristic
I Denotes conditions at final characteristic }:
& Refers to incoming stream -
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1. INTRODUCTION

The problem of the centered expansion of ste.dy, supersonic, reacting gas
flow around a sharp corner (Prandtl-Meyer flow) is of practical interest
as a simple case of nonequilibrium flows that are encountered on bodies

in high altitude, hypersonic flight (Refs. 1,2). Moreover, the study of
this problem constitutes a fundamental research tool with which to inves-
tigate the effects of hamogeneous reactions on supersonic conical flow
fields. Complete solutions for a dissociated gas mixture have been given
in the case of an equilibrium expansion, where the dissociation and recam-
bination rates are equal and much greater than the convection rate through-
out the expension fan (Refs. 3, 4, 5). The presence of a chemical reaction
in local equilibrium does not change the basic self-similar nature of the
solution that is observed in a perfect gas, since the flow remains isen-
tropic and irrotational throughout with the characteristics emanating as
straight lines from the corner. However, when the incoming flow velocity
is sufficiently high and the density sufficiently low, the expansion can
force the local reaction rates out of equilibrium. The finite dissociation-
recambination rates introduce a nonisentropic, rotational effect into the
problem, as well as a length scale proportional to radius that destroys

the conicity of the flow. With increasing radius, there is a recombination-
dominated (nonequilibrium) transition from campletely frozen flow near the
corner to an asymptotically-approached region of equilibrium flow far fram
the corner. When the incaming velocity is very high (and/or density very
low), the entire expension may become chemically frozen, in which case the
flow again reverts to an isentropic, irrotational, self-similar behavior.

The theoretical description of & nonequilibrium centered expansion involves
a set of coupled, nonlinear, partial differential equations. Therefore,
in general, solutions must be obteined by & numerical technique based on



the method of characteristics for reacting gas flows (Refs. 5, 7, 8).
However, valuabla insight into the nonequilibrium effects can be gained
by considering small departures from & self-similar solution by either
(2) treating weak expansions, with small depertures from conditions in
the incoming gas stream, or (b) treating small locel depertures fram the
frozen flow near the corner. Method (a) features greater simplicity
because the flow may be regarded as irrotational and the resulting linear-
ized equations possess constant coefficients. This case has been treated
by several investigators for both expansion and campression flows (Refs.
9, 10). The method is restricted to small turning angles but covers the
entire lateral extent of the field. Method (b) is mathematically more
canplex since the coefficients in the linearized equations governing the
nonequilibrium perturbations are complicated functions of the zeroth order
self-similar solution. Moreover, the perturbations are not irrotational.
Nevertheless, this approach is unrestricted as to flow twrning angle and
brings out the nonlinear aspects of the nonequilibrium behavior. This
report presents & detailed analysis of & nearly-frozen, nonequilibrium
supersonic expansion of a dissociated diatomic gas around a sharp, two-
dimensional corner for the case of an equilibrium dissociated incoming
stream. The present investigation cornstitutes a further extension of
Nepoliteno's analysis (Ref. 8) in that the entire angular range of the
flow field is treated, specific numerical results are given, and scme
approximate and exact closed form solutions are developed.

GOVERNING RELATIONS

2.1 Basic Equations

Consider the steady, adiabatic, supersonic expansion of a dissociated
diatamic gas around a sharp two-dimensional cormer, as shown in Fig. 1.
Viscosity, heat conduction and diffusion effects are neglected, and the
flow properties immediately asheed of the first expansion fan characteristic
are assumed to be uniform. The governing equations for such & reacting
gas flow ere well-known (see, for example, Ref. 11). In the polar coor-
dinate system of Fig. 1, they are expressed as foilows.

o ond ol el bend b ) e b b e eed eed eed e oed o o



Continuity
AUD 4 280 -0 (2-2)

Aton Mass Conservation

U%%-+-—¥-

Radiel Mamentum

= -“6&- (2-2)

i

e(ugl+ *3¢-¥)--42 (2-3)
Tangential Momentum
eV + ¥+ ) -+ 38 (2-4)

Energy

2 2 2
/)4--9—51-3 cownsr =bo+-=2'_.'u + Ve (2-5)
Thermal Equation of State

P :=€R,(1+)T (2-6)

The specific enthalpy /7 is given as a function of o and T by the
caloric equation of state:

h= %«;h,-:(l-oz)/c%d.r+oc(b,+ fCe‘dT) ’ (2-7)



vhere C Pa,m denotes the atamic or molecular specific heat and hp is
the dissociation energy of the gas. In the subsequent analysis, the rota-
tional degrees of freedom of the molecule are assumed to be fully excited,
and the effects of electronic excitation and vibretional nonequilibrium
on the internal energy are neglected in comperison to the dissociation
energy o h,. Thus CPA « 5R, and Cp, is & function of T ranging be-
tween § R,, (no vibrationel excitation) end £ Ru (campletely excited
vibration). To further simplify the analysis, Cp,, shall be regarded as
a constant (i.e., vibration is "frozen" throughout the expension). Hence
Eq. (2-7) vecames

h=CpT + xhy, (2-8)

where E-P = [I\’,‘l + (S-KM)O(]R" is the frozen specific heat and

Z <K, $%-

The entropy change along a streamline for reacting diatomic gas flow is
(Refs. 6, 11):

T'(U-g—f, +¥-§%)=‘(7A-7n)% ’ (2-9)

vhere 3{“ M2 h am — T S, denctes the "chemical potential" (or
Gibbs function) for the atom or molecule (expressions for S, um ,%- P
and S in terms of 7, 4 and OC are given in Appendix A). The follow-
ing equivalent form of Eq. (2-9), namely Crocco's Theorem for a reacting
gas, may also be obtained from (2-9) and the momentum equations:

T

+—;,’-f=-(%-7n)gﬁ7-_ (2-104)

o

R
bl

-Uf = = (- 7”)% , (2-10B)



vhere f= g%- a-s‘gz is the vorticity in cylindrical coordinates. Both
Eqs. (2-9) and (2-10) are very useful in obtaining a physical appreciation
of the nonequilibrium dissociation effects on an inviscid flow.

2.2 Reaction Rate

The dissociation-recambination reaction for a diatomic gas is

K
X+ M= 24+X , (2-11)

Ke

vhere M, A denote a molecular or atomic particle and the third body X
may be either of these two. For such a reaction, the net volumetric rate
of atamic species mass production w~, can be written as

Ya s -2 A (BT Gl pT) (2-12)
vhere
2 A 8 -T/T
G (o, p,T) 2 B~ (1- <) (53) —%,— e (2-13)

Here, i, and ) represent the recambination rate constant and tempera-
ture exponent, respectively, A and B are constants (Appendix A), and
7o = hp /R, is a characteristic dissociation temperature. The function

G (o¢,P,7) has the important property of vanishing identically vhen
thermochemical equilibrium prevails. Thus vhen reaction (2-11) is in
local equilibrium in the fiow, the equation G = O defines the correspond-
ing solution to (2-2) forex .

2.3 Speed of Sound

The speed at which infinitesimally small disturbances propagate through a



dissociated diastomic gas can be written (Ref. 6) as

08 f[Rrigy ]‘éf e

vhere ]' = O vhen the gas is not in chemical equilibrium and j = / vhen
the gas remains in equilibrium when subjected to an infinitesimal distur-

bance. Here, ¥ is the actual specific heat ratio of the dissociated gas,
defined by

Y = (—-('%a '}/aT)P- (AP/QT)Q ’ (2-15)

and ¥ is the frozen specific heet ratio

-_Cp = Bt (5= K o¢ (2-16)
¥= (X)«-cousr C;-(IW)RM K= [+ (4-Kp ) X

According to (2-1%), the velocity normal to a Mach wave equals the local
"frozen" speed of sound (based on ¥ ) in any gas with a finite reaction
rate. However, in a campletely equilibrium-dissociated gas, the speed of
sound based on ¥ (§< ¥ < ¥) must be used.

2.4 Boundary Conditions

If the incaming gas is uniformly dissociated, so that the initial expansion
characteristic 1s straight, it must be either chemically frozen (after
having previously undergone a highly nonequilibrium flow expansion) or in
thermochemical equilibrium. In the former case, OCq 158 an independent
varisble with G (Xe., Po,Te )#0, vhile in the latter case, ko is &
function of £, and Teo given by G{(Xe, Peo,Tw)s 0. Since any expen-
sion of a chemically frozen stream must remain frozen, we shall consider
only an equilibrium free stream. Consequently, th» following conditions



define our problem as a supersonic expension around & sharp corner (Fig.
1). At the initial expansion fan characteristic I,

6= pu = Sin () (2-17)

PePu @ m, T=Ta , X = Xa

(2-18)
U= Va,, Cos € , V=V, Sin6;
At € =-2r, the tangential velocity camponent must vanish:
(V)0=-v =0 (2“19)

The flow along the wall for a nonequilibrium expansion will be & function

of T since a relaxation toward equilibrium occurs with increasing stream-
line distance.

2.5 Nondimensional Equations

It proves convenient to deal with the foregoing equations in an appropri-
ately nondimensionelized form. ‘Therefore, the following new independent
variables are introduced:

PzpP/Pw, 0:=20/60, T27T/7e

(2-20)
TaU/Va, + VaViVay 1 f=S/Ry 1 4 = 3/ Te |
Furthermore, we define the parameters
8 A
e - A
To=2T /Te ,KP.:—%PA&:f)— » Ky= Voo / Feo (2-21)



and a characteristic (flow length/reccmbination length) parameter
2__ w-2
fedalfelfidle - -pr (2-22)
(-]

Then Eqs. (2-1) - (2-6), using (2-8), (2-12) and (2-13), are transformed
into the following set of six equations for the six unknowms &¢, P , o,
7, U and V:

Ur%-o-v-;a_ ==2pP'rpicv?t “ (..u)LF_a.e§] (2-24)

o (ru-g-;‘, —%.——3-_& (2-25)

(rU-SJL+ -5% ov)= ?L.ﬁ:_ (2-26)
-?'R%’ U*+V_‘.,) [K + s-n -3 ](I ™+ —,g?—['r,q-(; Kn)T-'J (2-27)

P = (l:“ )o—r (2-28)

The attending entropy relations beccme

r73 . V34 - (Hpla)rr Pt (2-29)
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or, in terms of Crocco's Theorem,

P B & Fo-(s) By o
Fi z._m..(us.aT f-_(&;_t&n)%«é , (2-30B)

where

?=A§7_"§2“a‘5‘-? = f/va.,

Note that, according to Appendix A, A&, -%,, may de written in terms of
the reaction function G as

Azl h[ s 1 o+/] (2-31)

vhich properly vanishes at equilibrium (G =0Q). Finally, the boundary con-
ditions transform to

&=sw (%)

& -
Pzo =Tz ) X5 e , 5 =ert’

(2-32)
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(2-33)

<i
"
(o)

The foregoing equations are in a universal nondimensional form which is
very convenient for parametric study of nonequilibrium expansions regard-
less of the method of solution. Furthermore, it is evident that P R
®X,, U and V at a given M, and 7~ are the same at each point €,
''r for all combinetions of incaming gas if the following parameters are
held constant: Ky, W, Ty, Kp. That is, the following similitude law
governs the flow:

P, 00,0,0,V = §(Mu, 275 K, 0, T, p 3 €, 7)) (2-34)

This similitude is in many respects analogous to that demonstrated in Ref.
12 for nonequilibrium, small disturbance hypersonic flows.

It is seen that the flow described by the foregoing equations cannot be
conical in the presence of a finite dissociation-recambination rate, since
the parameter /7 is a function of V. Furthermore, when /"~ OL[/J and
G#0, Eas. (2-24), (2-29), and (2-30) show that the degree of dissocia-
tion, entropy and vorticity vary along streamlines as the flow expands
around the corner. The effects of nonequilibrium chemical reaction involve
a transition between frozen flow at the corner (/720,66 # 0 ,X =Xe) and
equilibrium flow far from the corner (f=e,G = O ,0¢=0¢(€) < Xew ) across
vhich the entropy increases and O< decreases with ¥* . The radial expanse
of this transition region is governed by the magnitude of /7 ‘. ‘en

I'"« / , the radial scale vahishes from the problem and the entire expen-
sion becames a chemically frozen, conical flow. As r' 1s increased, the
outer edge of the nonequilibrium zone moves inward. When /7 '>)l , the
entire expansion (with the exception of a very small region near the
corner) is in equilibrium and hence is again self-similar. In this case,
of course, ¢ (€) decreases through the expansion according to the rela-
tions G =0 and

——
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The presence of chemical nonequilibrium also induces a curvature of the
expension fan characteristics. This curvature may be observed by noting
that depertures fram frozen flow must intrc2ace a reaction rate effect
vhich is recombination-daminated and which therefore tends to reduce &X,
and increase T and P .* Thus for a given local turning angle, the Mach
number increases with radius and the expansion fan characteristics curve
upwvard and avay from the frozen flow characteristics. At a sufficiently
large distance fram the corner, the characteristics became asymptotically
parallel to (but not coincident with) the characteristics for a completely
equilibrium expansion (Fig. 1). This lack of coincidence, which is a mani-
festation of the radial increase in entropy, vanishes when I" L see.

NEARLY-FROZEN NONEQUILIBRIUM EXPANSIONS

3.1 Perturbation Method

We now consider small departures from a campletely frozen expansion due
to nonequilibrium dissociation effects. Since a nearly frozen flow is
characterized by smell values of /"*/*' 7" , we expand each of the depen-
dent variables in a series of ascending powers of [ :

(O, 7) =0C, (@) + 7 04, (@) + 0, @) +- - -

TO,7) =T @)+ T, @)+ T (&) +- - -

m—

*Vhen a dissociated gas is expanded, the nonequilibrium effects on resultant
velocity and flow density are less significant than the corresponding
effects on temperature and pressure.

n
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etc., vhere subscript F denotes the local frozen expansion solution,
subscript | denotes the local first order perturbations due to nonequi-
librium effects, etc. Substituting into Egs. (2-23) - (2-28), equating
coefficients of 1ike powers of /7 equal to zero and taking Ky=/ , we
obtain a set of nonlinear ordinary differential equations for the zeroth
order (frozen) flow field and a set of linear, nonhamogeneous, ordinary
differential equations with variable coefficients for each of the first,
second, etc., order perturbations. Confining our attention to first-order
nonequilibrium effects, we have the following two sets of equations.

Zeroth Order (Frozen) Flow

- v o d
O’F(u:+-$—gf)= -V a—%f (3-1)
X (€) = CONST = Ko (3-2)

id___E.-VF;. zzo

de
(3-3)
g (8) = consT = o,
o Ve (% + 387~ vz 56 G-4)
— — 2 — Y
...i%_/_(,- T,)zle.zMﬂ(u:-f-vF - (3-5)

PF = o’p TF (3"6)



First-Order Flow

2(c; g

+ o',,q)-o-a%(a;,.\?,q-o—, %)=o0

9."25'1:-2 o —(1- “‘)"EPILe ]
G
= 1dU = P
(e V)] -

% (g B+ o[22 R Fe (D) g 4

P -

P OrT, HXo Tp o'F

The corresponding entropy and vorticity perturbation equations are

U £

l

2 __w-2

R T

+ 7 ad -

do

—-"—-(I-—ot.)—’—’- e'?]‘&:[-%ﬁ—“’—.,-r

(3-7)

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)

(3-13)

13
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vhere Z:%—g‘--z

G =[5 o 5 Tt ot (558,
(3-15)

+ (“'““)(?%l_)% -(1+ o(.)—g':-

The boundary conditions on the frozen and first-order solutions are

- x 3
G:SlN(ﬁ:):Pg:'K‘:c&:l’G:mh%.—:—‘ljv‘:‘-—h%‘: (3-16)

(3-17)

n
<l
"
o

e=-27; V. ={=0 (3-18)
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3.2 Frozen Ixpansion Solution

Egs. (3-1) - (3-6) describe the self-similar expension of a thermally and
calorically-perfect gas with a specific heat ratio S’;(o(-). Thus the
effects of frozen dissociation on the expension are bounded by the solu-
tions for an undissociated perfect gas (¥, = ¥, = 1.4) and & pure mon-
atomic gas (¥p = ¥, = 1.667) for a given M, and 2. Since the details
of the frozen flow field are needed to evaluate the coefficients and non-
hamogeneous terms in the first-order perturbation equations, a brief
reviev of the zeroth-order solution will now be given.

The analysis is naturally divided into three distinet regions: A, B, and

C (Fig. 1). In region A shead of the first characteristic, the resultant

velocity and thermodynamic properties are uniform while the tangential

and redial velocity camponents are given by pure geametry. Thus, vwhen
~/

o2 Sw (3z)’

O "'Tr=e==vn,.=/

(3-19)
UF = Cos ‘9‘, -\7‘ N SnN‘G‘

In region B within the expansion fan, the flow is determined by Eas. (3-1)
through (3-6) and (3-19). Combining (3-1), (3-3) and (3-6), we obtain

V:z AT.’:FO__F = %:;. (3-20)

vhich indicates that the tangential velocity camponent is equal to the
local speed of sound in region B. Substituting the irrotationality con-
dition (3-3) and (3-20) into the energy equation (3-5), the following
first-order differential equation for Ug(€) is obtained:

a2 2

o Fek= ot 7GR oo

15



vhere
AR =

Taking into account the initial boundary condition on U, Eq. (3-21)
integrates to

2 + X
U;. = (Jﬁl;..‘_"'/) Slw/:‘.‘—%&'&+57w.'#:ﬁ-fz—)*]: (3-22)
.37

vhere the choice of sign in Y is determined as shown below. Thus, using
Eq. (3-3) and the boundary condition on V. , we obtein

¢4
v =_,é— %n’—ﬂ) Cos ¥ (3-23)

Denoting ¥'=Y, at =6, = S'""(-l\_;:)’ such that

PR %
V=S (Hptr) = S ) -

W et M Mg
Eqs. (3-22) and (3-23) can be written as

U = (M_n_‘il SnY 24)
Ve = Mn SIN Ve (3-24)

oz -l Cos¥

16
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According to (3-20), the frozen temperature distribution in the expansion
fan becames

k3
T, = foit (3-26)

05 Y,

and, therefore, since the flow is isentropiz,

%/ F-1) 2%/
Pe =(T,) = (&%) (3-27)
LA
= (R )%= = (Lo v:) (3-28)

The Mach number distribution in the fan now may be written as

L, el = 2 2
M_%‘-’El =M () =(M£—/)% +/ (3-29)

The solution is campleted by observing that the sign on © -©3 in the
foregoing definition of ¥ must be such that Ty, Pe, 0 </ (and

M )M ) for €- <-®,. Since 'Y: <-} for M,, <00, Eqs. (3-26) - (3-29) re-
quire ¥ >, (Cos?' < Cos¥;) and hence & negative sign on 6 -9y, i.e.,

¥=% +?§7i= Sm /+M ) -;(-[Sm l)--&] (3-30)

The solution in the third region, C, the wniform flow field downstream of
the last frozen expansion fan characteristic which is parallel to the wall,
again becames qQuite simple. The thermodynamic properties and resultant

17
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flow velocity are equal to their values at .9..:-9.: , and the radial and
tangential velocity components are given by

. F
= (0, + V. )rCos(e--rV)

(3-31)

:-(U + VF) Sin (& +27)

Using (3-29), 63 1is calculated as a function of M, and 2~ by the
relation

Taw (g+v)=r(-’7)ra~[m‘ﬂ-%¥‘—°=], (3-32)

vhere 24, is the Prandtl-Meyer turning angle function (Ref. 13) and
vhere the choice of sign rests on obteaining the proper upward-running
characteristic (discarding the downward-running member in this problem).

3.3 Rirst-Order Solution

By. (3-8) is decoupled fram the remaining first-order equations; a formal
solution for o<, (€©) can therefore be easily obtained. Switching to the
independent variable J, inserting the proper frozen flow functions for
the coefficients, and using the appropriate integrating factor (3-8) yields
the following solution in region B:

1
'- -(?4-!)

o, (¥)=-27 My Cos ¥, (Cos"r) PET  (CosY) Gr dy (3-33)
Tz

vith o<, (¥, )=0 . Using (2-13), (3-26) and (3-27), and noting that

a
[
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T»

Kp("d.) = e
Eq. (3-33) can be written as

X oo Fizw-4 ol e’
«,(y)= - 7:&:—’7 My (Sec ¥.) (CosV) /i-nm- —WI)W]

Bec¥)
(3-34)
vhere

M ‘!12&-3
I(y) = J(Cos Y dy (3-354)

X

v 4-2w9-2A 2 2
L,¥) = [(ssc®) Exp(~T, Cos™¥, Sec’Y)d ¥ (3-35B)
‘YI

represent contributions fram the recambination and dissociation rates,
respectively, the former being the predominant mechanism since o< de-
creases with 7°(x,£0) . Eq. (3-35) correctly predicts that OX, vanishes
vhen the incoming stream is undissociated (o =0).

The foregoing quadratures must be carried out numerically for arbitrary
values of %7, W and A. However, vhen ')laq-Zw-; is an integer,
(3-35A) may be evaluated in closed form directly from available integral
tables (Ref. 14). Moreover, for ¢ -2W-24 equal to an even, positive
integer, a closed form representation of (3-35B) in terms of the error
function cen be cbtained (details are given in Appendix B).* Fortunately,

¥
The authors are indebted to Mr. T. Okamura of the Research Group, Missile
Aero/Thermodynsmics Section, for pointing out this representation.
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the conditions for closed form integrability lie within the realm of prac-
tical interest, since & is usually negative (W= -1.5) for dietomic
gases. Therefore, a numerical evaluation of (3-35) for arbitrary values
of 7, W and A can be avoided by a parsmetric study of the closed form
solutions and subsequent interpolation.

In region C downstream of the last frozen expansion fan characteristic
(GS%_), the solution to (3-8) is straightforward. Here, the nonhamo-
geneous reaction rate term is constant and UF » VF are given by (3-31).
- The resulting integration, subject to the initial condition ox,(65) ,(o(')‘,
can be carried out in closed form and yields

“lg(“) Sin(e+2) _

T Sin(eev)
(3-36)
2% | Pe T, A -%0-7’
o T,
tq./(-—u;%é—;{n ; - [—LP_- ] Sm(9+V)[Cor(e+v)-Ca.-(§,y)]
oK, Cez-v) )

This solution describes a recombination-domineted relaxation downstreem of
the final frozen expansion fan characteristic in which the influence of the
previous nonequilibrium flow history within region B continually diminishes
as ©4+ 3 decreases. At the wall, o; becames campletely independent of
the flov in region B and may be calculated directly from the frozen solution. -

The remaining first order perturbations may now be obtained by solving two
additional differential equations. Napolitano, in his discussion of the
problem, chose to evaluate the first-order entropy and radial velocity by
quadratures and then determine the other flow field variables algebraically.
This approach is suggested naturally when one observes that (3-13) is
uncoupled from the remaining equations by the foregoing solution foro(,.

In practice, however, the advantage of this procedure is scmewhat diminished
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since the resuiting integration must still be done numerically. Moreover,
as shell be shown, it is more fruitful to proceed instead in terms of
the vorticity field, particularly for the purpose of developing approxi-
mate, closed form solutions. Therefore, Egs. (3-13) and (3-14) will
henceforth be discarded.

Convenient relations governing the first-order vorticity perturbetion
7 .d0 =
]

may be easily derived. First, we eliminate olP/d€ between (3-8) and
(3-10), using (3-7), to yleld

Vor 4L -4 T+ G4V ] (3-37)

A second vorticity relation is also obtained by cambining (3-9), (3-11)
and (3-12):

These two relations are equivalent to the two mamentum equations (3-9) and
(3-10). Now within the frozen fan region B, vhere V: M: =Tp, (3-37) and
(3-38) may be combined so as to eliminate the cammon factor comteining
o, U and V, ; then using (3-1) and (3-3), one obtains a linear first-
order differential equation for f; that readily integrates to the solu-
tion:

. 4
U, 2
f): - fi-%:“—.—) {f[%‘- *2 (5"Kn)"(7 "")./“0 “y)dy (3'39)
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with O, (¥) known and the boundary condition 7, (W)=O. In region C
downstream of the last frozen fan characteristic, the solution for ﬂ
becomes quite simple, since by Eq. (3-37)

—

1 =consT = f(eg) (eZ2e.) (3-40)

when %‘,%E=o . Thus the nonequilibrium effect within region B results in
a flow vhich emerges with a fixed rate of rotation proportional to 7
throughout region C.

With f known, the differential equation governing the radial velocity
perturbation U, may now be determined. The expression f ﬁ-‘ 2V

and Eq. (3-38) are differentiated to obtain relations for g.é. and 49y |
respectively. These relations along with (3-38) and the definition of f
are then substituted into the first-order continuity equation (3-7). After
a lengthy algebraic manipulation, the following equation is obtained.

2 -3

(1- o7 ) &G, [ Gl dsplas Mp s (ha, dTio) | 4T 3

+z[+-r—d!r—=/=l? M ‘"t_ 7 [+(z -;)_.-_L]i%_f: !
(3-41) |
{M—(Z* ).ML:(_:HQ... )] 1

. .
S,

) 'rﬁ-.-(s-u.z F E_VEMIEHML
2‘“! Ur *VF 53‘);1 K"y.-ﬂ(" H'o(a BS‘KM)“- "’KM]T}'
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This second-order, linear differential equation for TJ; was not given by
Napolitano since his analysis was confined to region B within the frozen
expansion fan. In this region, vwhere M: \7:'= Tg , the coefficient of
d'q /de" 1s zero and Bq. (3-41) reduces to a first-order equation for

U, (vhich indeed it must, since only one boundary condition, U, ©):=0 ,
is available). By taking advantage of the frozen flow relstions, Eq. (3-l1)
mey be further simplified to

- - .~
43 [-CF) g [T =Fom (3-e)
vhere
-— - 2 2__w=-2

Subject to the boundary condition U,(€;) = O, the solution to Eq. (3-41)

may therefore be written as the following integral expression of known
functions:

v

ek
%= FE%R) oo e ©
Y

v
d

(3-kk)

This equation is equivalent to the solution given by Napolitano. In con-
trast, the solution for Tl-,' in region C is much more difficult, since the
second-order term does not drop out (1S MAV,/T, S O for €3¢ S-V).
In this case, we have a two-point boundary value problem involving the
initial value of U, (6y) given by Bg. (3-klt) and the condition

2
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a% ©=-27 =1 = T (o) (3-45)

since V, =O at the wall, With O, Ty and f constant for 6-<€y,
(3-41) may be reduced to

(- Male) 4T - @MEDe Ve AT [y - 2e (524 7)] T

(3-46)
w—l

/‘;'r-[(s-»m)otﬁk,,] PN ] P" . &

- © <6y ,

vhere the right hand side is a constant. Unfortunately, a transformation
of Eq. (3-46) to either normal or self-adjoint form does not yield a dif-
ferential equation that can be solved in terms of quadratures. Therefore,
to obtain the flow field downstream of the frozen fan region, (3-46) must
be solved numerically.

With ¢, , f and U, known, the remaining first-order variables V[ ,
F , o end 7, are determined algebraically from the relations

=242-%) | (3-47)
Pz-opVuMi(GG+%V+ TV.) (3-48)

Ta+ -2 [T v -
% R e e RS G

- R _o _ o
= T B o ived) (3-50)

all of vhich properly vanish at the initial expension fan characteristic.

- e
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3.4 Approximate Solution for Hypersonic Flow

Before discussing numerical examples of the foregoing exact solutions, it
is of interest to point out a simplified approximate solution for Me>2 |
vhich has been found to bring out many features of the first-order nonequi-
1librium flow field reasonably well.

Since the first-order atom concentration &,(&) may be obtained analyti-
cally in closed form, it would be of interest to obtain approximate closed
form analytical solutions for the remaining first-order thermodynamic
variebles in terms of ©¢;, These solutions may be obtained for Me >/

by simplifying the analysis as follows. We may observe that the present
problem is analogous in many respects to the nonequilibrium expansion of

a dissociated gas in a hypersonic nozzle. Now in the latter case, it has
been established that large departures fram equilibrium have a relatively
small effect on both the density and flow velocity in camparison to the
corresponding effects on the local camposition, temperature and pressure

as long as the fraction of the totel energy involved in dissociation is

not large (2 25 percent) ( Ref. 15). Therefore, in view of the aforemen-
tioned analogy, it may be argued that the nonequilibrium effects on density
and the resultant velocity in the present problem may be neglected for the
purpose of estimating F, and ‘T, when the incaming stream is hypersonic
and its dissociation energy is not too large u fraction of the total energy.
Then on the basis of the assumptions

%

m

0 0,0, +V Ve ¥0

ve may dispense with two of the first order flov equations [conveniently,
the differentisl equations (3-7) and (3-37))] and obtain the following
purely algebraic solutions for T, , F and 7,— :

T, Tas(Soii) Te j“z (3-52)
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s - -
R - o fatleinlle - LE- ] (3-53)

Kus (5= K1) X oo

F = -=—EL_._ -
f Yoo Mo 5 V. (3-54)

These closed-form approximations are questionable in region C; for example,
(3-54) does not correE:;ly predict that ? _:!.s a constant in this region
end, in fact, yields f —s e at the wall (Vg= O ). Nevertheless, as will
be shown below, these formulae do bring out the essential features of
hypersonic nonequilibrium flow within region B reasonably well.

3.5 Numerical Results

In this section, some numerical results for the first-order nonequilibrium
flov field will be presented. We shall attempt to bring out the main
physical features of the nonequilibrium effects, evaluate the influence of
the various thermochemical parameters, and assess the accuracy of the
approximate solution for hypersonic flow discussed in the foregoing section.

In Figs. 2a through 2f, angular distributions of the frozen and first-

order variables in region B are presented for typical values of the physi-

cal parameters and three different Mach numbers. These curves pertain to

all possible turning angles 2. The corresponding values of ©p for each

2-and Mo [from Eq. (3-32)] are shown in the insert of Fig. 2a. It is -
observed that the sign of the atom concentration, temperature, pressure
and vorticity perturbations is cammensurate with a recombination-dominated
behavior throughout region B (a, <0, T, ,F,>0 , £>0 ). The density
perturbation is initially compressive (0} >O ) but subsequently becames
negative throughout much of the frozen fan region unless 2/ is quite
small. In the examples shown, it is clear that the first-order flow field
is highly nonlinear and rotational except in the case of very small total
turning engles (the range of linearity decreasing rapidly with increasing

e e
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Me ). Generally speaking, the perturbations increase very sharply at the
beginning of the expansion and will in many cases attain a peak value in‘
region B before the last frozen fan characteristic is reached. The initial
rate of growth increases with Mg; however, the maximum values are by com-
parison rather insensitive to Mg . Both o and F increase more
repidly than o, and T, while 7 rises gradually and lags considerably
behind the other perturbations. For Mgy 2 5, the radial velocity pertur-
bation is extremely small throughout region B.

The influence of the three parameters ¥, , Kp and &J) on the first-order
distribution functions is shown in Figs. 3, I and 5, respectively. In
Fig. 3, the nonequilibrium effects are seen to be quite sensitive to Ty

a 20 percent reduction in this parameter produces a ten-fold increase in
the magnitude of the perturbations. Since the flow is recambination-
dominated, the influence of T is primarily the result of a change in
the free stream dissociation level [see Eq. (3-34)]. An increase in Kp,
as shown in Fig. 4, also increases the magnitude of the perturbations for
the seme resson. In Fig. 5, an increase in the recambination rate tempera-
ture exponent W from -1.5 to zero is seen to produce roughly e 25 percent
reduction in o, and T, (wvith far less of a reduction in the remaining
perturbations). This effect follows fram the fact that the local recom-
bination rate has been reduced. It is clear that any value of W between
-2 and -1 will yield essentially the seme perturbation function solutions;
hence, the major effect of changes in the value of & 1lies in the small
parameter /7 [By. (2-22)] and is proportional to 7;“"7:

Shown in Fig. 6 are the distributions of T, , P and F Dbased on the
exact solution for oX; (@) end the approximations o Z0,Us+V, veZo
[Bqs. (3-52) through (3-54)]. These simple closed-form approximations
provide a satisfactory qualitative description of the flow in these
exemples, and are in good quantitative agreement with the exact solutions
in the vicinity of © =8, for all three Mach numbers shown. However,
the initial rise and possible maxima in the perturbations are underesti-
mated, so that (3-52) through (3-54) will be inaccurate throughout region

27
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B for expansions with very smell 27.* This result is to be expected,
since 1t is seen from Fig. 2a that O = 0 18 a poor approximation in
the initial portion of region B.

Exact numerical solutions for the complete first-order nonequilibriwm flow
field in region C downstreem of the last frozen expansion fan characteris-
tic were not carried out ** Hovever, en exact, zlosed form solution for oX,
has been given [Eq. (3-36)] and the corresponding value of 7,. is known
from the foregoing solutions in region B [Eq. (3-40)].

As an illustrative example of the complete first-order nonequilibrium flow
field in region B, Figs. Ta through 7d present a composite solution for a
typical case at M, =/0 expanded through the maximum turning angle

75“ = 19.2 degrees with the following free stream conditionms:

- - - L
T.=3 450 °K foz 0.1 ATM -2!1.7;,—7_'-,-_
1B.5x 10 Cn‘ F

5 ¥ T-L
= . R, = 6.140 T8
Ay 4500 °K)* Mocs-Sec ¢ +O ok

r'=0.142 ;& ( Ea. 2-22)

The general effect of the nonequilibrium perturbation on the frozen themmo-
chemical field can, of course, be anticipated fram the foregoing analytical
and numerical results (i.e., the marked change in®, oK and P and the

o

*
In this case a linearized theory such as Ref. 10 can be used.

*
These solutions are currently being programed; results will be reported
in a future report.

. .
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less significant change in 0" ). However, the graphical presentation (Figs.
7a through 7d) of the composite flow field clearly shows to what degree
the nonequilibrium effects may alter the basic field. In the initial por-
tion of the fan, the nonequilibrium effects indicate a flow field recom-
pression for T > | inch; this recampression is unrealistic and will not
appear in the physical flow field. It follows that in the initial portion
of the fan the radius of validity of the first-order solution is of order
1l or less and, in fact, at larger radii the indicated camposite solution
has been forced to relax through and away from the equilibrium solution.
This excessive relaxation results in a completely unrealistic solution.

As ve proceed into the fan, however, the radius of validity of the solu-
tion is extended outward since the basic (frozen) flow field departs more
and more from equilibriun. In the latter part of the fan (approaching the
wall), the nonequilibrium effects became negligible since the flow field
becames frozen to all orders as it approaches its maximum expanded state.
The behavior in the initial portion of the fan clearly emphasizes the
important point that the application of any small perturbation technique
such as is used in this analysis is not simply a matter of multiplication
and addition. It is, rather, a careful process, foremost in which is the
determination (or estimation) of regions of reasonable validity. These
regions generally can be described only within the context of a specific
problem and are dependent not only on the initial physical problem posed
but also on the consistency or accuracy of the solution required.

CONCLUDING REMARKS

The problem of the centered expansion of steady, supersonic, chemically
reacting diatamic gas flow around a sharp corner has been analyzed by
treating small local departures from the frozen flow near the cormer.

An exact solution utilizing a Lighthill-type gas model was presented in
similitude form together with some numerical results for the first-order
nonequilibrium flow field. This solution and the accampanying numerical
results brought out the following festures. The first-order species equa-
tion was placed in closed form and was shown to t2 independent of all but
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the frozen solution in the expansion fan and at the downstream wall, acquir-
ing a dependence on the previous first-order species solution in the region
between the final frozen characteristic and the well. The first-order var-
iations of the thermo-chemical parameters show the flow field to be heavily
recambination-dominated but not to the degree where the neglect of the
dissociation effects will give an accurate assessment of the flow field.
The first-order flow field is shown to be highly nonlinear and rotational
except in the case of very small flow turning angles. The small range of
linearity decreases rapidly with increasing free stream Mach number. In
general, the nonequilibrium perturbations increase very sharply in the
initial portion of the expansion and will in many cases obtain a peak
value before the final frozen characteristic is reached. The initial rate
of growth increases with increasing free stream Mach number, but the peak
values are shown to be rather insensitive to the free stream Mach number.

Since it has been observed that for reacting expending flow in a hypersonic
nozzle large departures fram equilibrium cause relatively small changes in
density and flow velocity, an analogy was made with the present problem.
An epproximate solution was developed based on this analogy which allowed
a completely closed form determination of the thermochemical field. These
simple closed form approximations provide a good qualitative description
of the flow field. When compared to the exact first-order solution, it is
seen that the initial rise and the maximum values of the perturbations are
underestimated. However, the exact and approximate solutions are in good
quantitative agreement in the middle and latter portions of the fan.
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APPENDIX A

ENTROPY AND FREE ENERGY OF A DISSOCIATED DIATOMIC GAS

The specific entropy of & thermally and calorically perfect gas species is

S: =S+ Cotn T -RibnPi (a-1)

vhere To 1is an arbitrary reference temperature, .,;(°> is the entropy at

To and one atmosphere pressure, and 4. is the partial pressure in atmos-
pheres. The corresponding specific entropy for a dissociated diatamic gas
mixture is thus

(o)
+*

5%:‘&,, S—E—h{; —(»«)h?-ln/(f;% 2«(_“%)1-« ] (A-2)

where we have taken 7o =Tg for the expansion problem. The free energy
difference g,-g» 1is obtained from Eqs. (2-8), (A-2) and the definition

Y2 hi-TSL:

%;ﬁ“h{*r(;f{-})gw(-z-;—;:)‘m;n/?s- » (ﬂﬁﬁ‘ﬁﬂﬂ))]} > (A-3)

== W)
using %‘ Kn+ (5-Ky) X and SA,H = :: @713+ C’A,n ‘"'(21-;3) )

Now for thermodynamic equilibrium, both the reaction rate function G in
Eq. (2-13) and Y-+ must vanich. Hence a comparison of Bgs. (2-13)
and (A-3) at equilibrium shows that the constants A and B in Eq. (2-13)
may, in fact, be identified with the vibrational specific heat parameter
Ky and the standard camponent entropies as follows:

Az 5-K, sta = -A (A-b)
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Therefore, vith the aid of Eqe. (A-4) and (2-13), Eq. (A-3) may be re-
written in terms of G :

B/T
-9 =g, [£P
3"‘# -“"’[(-'-“)e T/R73)S G*/] (A-5)
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APPENDIX B

EVALUATION OF FIRST-ORDER DISSOCIATION INTEGRAL

The dissociation integral [Eq. (3-35b)] may be rewritten in a more useful
form by employing the trigonometric substitutions S:C‘Y=/+""W Y =d(TanV),
Then letting Np=4-2c-2A4, Ap=Tp Cos ¥ and X = (h) TanY , ve
obtain Bq. (3-35b) as follows:

g 2o Tan¥
I,(%,WF-(%;;-*/ (/4--;-) e dX (B-1)
2 Tan Ye

It is immediately seen that when Np =2 , the integral (B-1) reduces to
the error function; thus

-2
ey - fTe [ E2e/m; Bw®- Ene(vR, Tan v e

If Ny is a positive, even integer 72, Eq. (B-1) may also be expressed in
closed form by taking advantage of Eq. (B-1) with ANp=2 and the follow-
ing deriveatives thereof:

(B-3)
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Thus, for example, we have

A A% TanV R VB Tan ¥ N .
-Ap -t =Ap g oM
1',(4,7):%,’-} e "d""z%;yi/ (€ &4 dla)ux
S Tan ¥ % Tan Yl
(B-4)

=Ap 2 ATy
= Lewftl)- L5y [ xe " ]

¥y Tan Yr

In this vay, one may proceed to evaluate Eq. (B-1) for Np =6, 8, ...,
etc., using progressively higher derivatives fram Eq. (B-3).
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