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ON A NONLINEAR THEORY OF ELASTIC SHELLS

By

W. L. Wainwright

Summary

This paper is concerned with a nonlinear theory of elastic shells
with small deformations whose material response is nonlinear. The develop-
ments are carried out under the Love-Kirchhoff hypothesis. General consti-
tutive equations are derived in which the geometrical properties (due to
deformation) and the material characteristics are separable. Through this
separability, it is shown how to extract constitutive equations of pre-
determined types. Particular examples are followed by a discussion of the

membrane theory.

1. INTRODUCTION

In a recent paper, Zerna [1960] dealt with a nonlinear theory of
elastic shells which has as its basis the proposal of constitutive equa-
tions which are at once geometrically linear and physically nonlinear. The
work of Zerna [1960], however, is somewhat limited in scope since, in
particular, it contains only a third order correction to the linear theory
with no indication of how a second order or higher order corrections are
to be obtained. In addition, Zerna's constitutive equations upon complete
linearization reduce to a version of those commonly referred to as Love's
first approximation which, as brought out in more recent investigations of

Naghdi [1962], do not satisfy all requisite invariance requirements.
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In the present paper, through the artifice of a series expansion for
the strain energy function, we derive in Section 3 general nonlinear con-
stitutive equations for isotropic elastic shells whose mechanical behavior is
(in the sense of Zerna) geometrically linear and physically nonlinear. The
expansion of the strain energy function just mentioned is effected with the
aid of certain results deduced in the Appendix (Section 6), where an
expression for a potential is derived relating two 3 x 3 symmetric matrices.
The notation employed throughout the paper is essentially that of the paper
by Naghdi [1962] mentioned above.

Specifically, the content of the paper is as follows: Certain pre-
liminary results which are needed subsequently are given in Section 2.

As mentioned above, Section 3 contains the derivation of the general con-
stitutive equations. Here, in addition to invoking the Love-Kirchhoff
hypothesis, it is assumed that the displacements and their gradients are
small but compatible with this the constitutive equations are fully non-
linear. Also included in Section 3 is an investigation of the invariance
requirements of the general constitutive equations. In Section 4, we first
discuss a systematic procedure for determining approximate constitutive
equations of various order in a manner which results in separation (in
product form) of the purely geometrical effects (due to deformation) and

the material response of the shell. Comparison is made with the results

of Zerna [1960] and the special cases of the first and second order theories
are discussed; the first order (or linear) theory yields the Fligge-Lur'e-
Byrne equations. In Section 5, we specialize the nonlinear constitutive
equations to those appropriate for the membrance theory of shells. We further
show that for static problems of the membrane theory, even when the con-
stitutive equations are (physically) nonlinear, the determination of dis-
placements may be reduced to the solution of a system of linear differential
equation.

In deriving the general constitutive equations, the use of power series
form of the strain energy function offers certain advantages which should
be elaborated upon. Firstly, in order to obtain the (two-dimensional)
shell constitutive equations from the appropriate strain energy function in
3-gpace, the power series representation permits an explicit integration
across the thickness of the shell. Secondly, through this procedure, there

results a separation between the geometrical properties (due.to deformation)



and those representing the material response so that desired geometrical
.and physical approximations may be introduced independently of each other.
Also, it should be noted that the power series representation of the strain
energy function (discussed in general in Section 6) is independent of the
present application and may be used in other nonlinear problems.

. Preliminary results. For later developments, it is convenient to recall
certain results concerning the geometry of the shell which here will be
referred to its deformed state. We will assume at the outset that the
coordinate system is normal relative to the mid dle surface of the shell
and hence use freely such simplifications as evolve (see, Synge and Schild
[1949], Sec. 2.6 and Naghdi [1962], Sec. 3).

Let h denote the thickness of the shell and xa be the coordinate
along the normal to the middle surface. Further, with reference to

Euclidean 3-space, let B - (gu , 53) be the base vectors of the shell

space (defined by its middle surface and - g s x s 2 ) and s, those of
its middle surface. Then
- P
By " Fa % (2.1)
where
Vol = SR C (2.2)
g B g

ﬂaa is the second fundamental tensor of the surface and d:ﬁ is the Kro-

necker delta.
In all that follows, we assume

< R (2.3)"

* For details of this restriction on the space of normal coordinates
see Naghdi [1962].



with R nin denoting the least radius of curvature to the middle surface. It
then follows immediately that the characterintic roots of x ba are less

than 1 and hence (see Mirsky [1955] pg. 332) is given by the con-

kN B
vergent series

N O L (2.1)

where the notation baB stands for the P factors

P
o - O " D A 5
b‘3 bpbv,...b)\ba. (2.5)
Here, we also note that the determinant p of “aﬁ is given by
3
H = 1-2Hx +l((x3)2
(2.6)

(o4 a

2H = b K=| b 5 | »

and that if 'l.'ij is an arbitrary space tensor with subtensor 'Ia » then
the corresponding surface tensor ?B is defined through (see Naghdi [1962],

Sec. 3.3),

B - 17‘ "" (2.7)

which characterizes the transformation relation between space and surface
tensors.
We recall that the constitutive equations for an elastic body in the

sense of Green, i.e.,

S I (2.8)

ae“

for an isotropic material may be shown to have the form (see e.g.,

“lye



Truesdell and Toupin [1960], p. T30)

ot w0 gt ae el pe, et (2.9)

where oij and eij are, respectively, the stress and the strain tensors,
T is the strain energy and in (2.9) o0 (A =0,1,2), are functions of
three independent invariants of eij' For the purposes of this paper,
the most convenient set of invariants is the set

i 1 1 1 1 k
Ky=e' , Kz =3 e 3 eji , Ky = 3 e, ejk e, - (2.10)

As stated previously, it is the purpose of the present paper to derive
general constitutive equations wherein such nonlinearities as exist are
purely physical and are cast into the coefficients ¢, of (2.9). Accordingly,
we confine attention to linearized strain-displacement relationg

2e, =u +u (2.11)

S B VE IS 1§
and in keeping with this plan set ¢, = O in (2.9). It then follows from
(A.6) of the Appendix that = is independent of K; so that the relevant

invariants are

. 3
K, = dala +u ls ,
K, = % [ “ala Bl + u"lB L (2.12)

+ 4 eaa eaa + E(ual .4)2 ],
where u, are the components of displacements and ( )|1 denotes co-
variant differentistion.

The analysis that follows is developed under the Love-Kirchhoff
hypothesis, although it may also be carried out so as to incorporate the
effect of transverse shear. It has been shown (Naghdi [1962]) that



under the Love-Kirchhoff hypothesis the usual displacement assumptions in
the form

1
T o=V (x, xz) +x g” (81. %) ,
. (2.13)
U = w (xl, xz)
are in fact exact. With (2.13) and the use of (2.11), we have
o '1a 3 P
2
- + » .1
2 ey ua(r xK)+“B(7w X K ) (2.14)
as = %3 * 0,
and
a o o o' a
7 vilg Wty Kg=ellg.
(2.15)
]
ﬂa- - (W||a+bave) s
where ( ) o denotes covariant derivative with respect to the first
fundamental tensor of the surface a
In view of (2.15), the invariants K, and K, take the form
2 P 3,0
Kyepw (g +x ),
(2.16)
Joa 15 6p 3 6 6
Ko Hg M { A + x B + ( ) lab ] ’

vhere
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A:; - 3l 79‘3 Py 7y Top e,
By = 3L+ Pt (g 6% 70) 41, (21)
n:; - % { KGB Kpa + x°a Keg a® ]
exhibit the symmetries
A:; - Agz , ngg - n;: , Zg . ‘;2 . (2.18)

3. The stress-strain relations. We have already admitted the linearized
strain-displacement relation (2.11), the displacements in the form (2.13)
vhich are exact under the Love-Kirchhoff hypothesis, and moreover have
required 02- 0. On this basis, we now proceed to derive exact constitutive
equations for elastic shells which are nonlinear in the sense stated in
8ection 1.

First, we recall the definition of the stress resultants dlﬁ in the

form

h
“aa- [22 “Omuakdxs
2

(3.1)
h
- fh2 u Siez' Py 4,
- = an
2
vhere (2.8) has been used. Observing from (2.15) that
de
9z _ 3z °C%
g uv 3705
a2 . L, o B a B
be“v 2 ( o i 5 v +u v 5 m ) (3-2)
- 2L o
aeav v



then (3.1) may be expressed as

h h
pf’a-fzu-b—z dxa-ya— fa b Edx (3.3)
2 2
and 1 f wve define
h
X -fszdxs, (3.%)
h
T2

then
8 . gL;L e . SK (3.5)

The expression (3.5)2 involving the stress couples HC‘B follows from the
same procedure used to obtain (3.5), .

We now proceed to obtain a suitable representation for the scalar
potential X in terms of the invariants K, and K;. Because of the re-
striction ¢, = 0 , we have from (A.9) that CA‘PA
(A.15) that £ has the form '

0. It then follows from

1 A T+l 1 A+l
B e T R R fEyT WA (3.6)

Consider now

K, -',}aB (7Ba + x KBa)
2 P 2 P+1FP (3.1
D N G U Y N W T U A
P=0 P=20

vhere (2.4) has been used. In the last series we replace P + 1 by P and
vwrite

P = P-1
3
K, =P + 0P, Z (x)F b7y + kP, Z (x2)F % (3.8)
P=1 P=1

-8-



so that if we define

B

P 7 , for P= 0,

- { 7° (3.9)
p fo . 850 for P 2 1
Ta’g a’ B’ ?

then (3.8) becomes

= P
e ) OF M, (3.10)
P=0

The right hand side of (3.10) is a converging series since the series

for 13(1 converges. A parallel procedure gives for K, the expression
N P
R, = X () n, (3.11)
P=0
where
6
Ag? for P= 0 ,
P
P . S B ep
N = aAeB L Bep R for P=1 , (3.12)

)7 6 P-4 ) P-g )
B % B [ ) o
c%pAaB+cep BaB+c9sz, for P22 .

In (3.12), A, B and E are given by (2.17) and

P
P
& -y
Q-

o]

P

P P-

S e -X e R (3.13)
0 Q=

where it should be noted that C is symmetric, {i.e.,

P P
&P . ke (3.14)



By a procedure similar to that used in the foregoing, it can be

shown that the powers of the invariants K, and K, may be expressed as

A N P A P
() =) <. (x) =Y AF B, (3.15)
P=0 P=0 A
where
P L gr-s RP
c jz 55 }: . LY ue,
A
Q=0R=0 =0
(3.16)
P T
P § T-§ Q-R P-Q
D = }; }: N N . . .N N.
8 Q-OR-O §=0

The formalism of (3.16) is intended to indicate that there are A factors

and A - 1 summations. It also follows from (3.16) that

P-Q
' (3.17)

For the product (I(]_)A (KZ)P , we write

(k)2 (k)7 = Z L
P=0 A

r

(3.18)
P
g

bo,
o

P
}E P
A T

Q=0 Q= of

and in order that the representation (3.18) be applicable to the special
cases A =0 and I' = O , we append to (3.16) the definitions

=10~



0 0 P P
C =D = 1 C =D = 0, forPz2l ,
0 0 0 o (5.19)
P P
C = D = 0, for PO
a A
P
and note in passing that Aﬁ is independent of x3 .
r
With the aid of (3.18) and (2.6), (3..4) may now be written as
X f§[1-2n3+1<(3)2][—1— i(sr}:
h x * F+1 far x) AT+l
-= P=20
2
(3.20)
P N, z G A e
A+l A A+l 0
P=20
Introducing the notation
1
1@ = 5@ - (3.21)
and observing that
1(Q) = 0o , for Q even,
e (3.22)
1@ = B30, forqoa,
then the integration of (3.20) yields
X .Y {[n(r+1)-2nq(r+2)+xn(r+3)].,
P=0
(3.23)

F P L P
(_AI‘_ A —A A )}
P+l prp1 &+l aslo

-11-



In order to express the stress and couple resultants NQB and lPﬁ

in terms of the invariants g and R » we need to obtain certain additional

To this end, from the definitions (3.9) we obtain

results.
o 0
% M - aHv oM -
’
L Sva
P
) 4
oM - bW oM -
7 d«
ny ny
1t follows from (3.12) and (2.17) that
0
1 & (B B
N= 3 [rg0fg +7g )]
and hence,
0 0
N _ 1l wv, . w O N
5 — " 27"+ 3%
Hy Hv

It is convenient to introduce the quantity

in terms of which

80 that

Qllcv

~

= -
[ ]

Zr T

ﬂ

2

1
= 5(»

by 7vu)

-12-
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(Pz1).

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



Similarly, for P 2 2, we have

P P-1
1 ¢ v o’ o’
N = fplen, b ") (rg+r,) +
P-2
. ¢ s a
+(R-D) A N b T+ (3.30)
P-2
6 Q o P-Q-2y
+ N v b o A N b P ]
Q=0
so that for P 2 2,
3N 1 Iy TR’ o Pely
S 'E[ba(7 +77) + P b
7
P-1 Q P-q-1
ué v p FTRELN
+a E: o Ny o 1,
Q=0
(3.31)
ap P-1, P-2
1 o] a 3
B3 R OP Y et T
VR Y
P~-2
6 Q P-Qx?
7} v P
Q=0
P
We now turn to Aﬁf in (3.18) and proceed to establish the following
identities:
P Z P-2
aAAr / oM = A, ,
(3.32)
P Z P-2
3 A, / 3N =T A
AT A r-1
To prove the first of (3.32), we first note that
P P
C = M . (3.33)

-13-



Hence,

P / 2 P P-2 X
M = & = ¢ . .
s¢ / 2 z = (3.34)
Next, from (3.17)
P 5, q P-Q
c = Z c M (3.35)
2 h
Q=0
so that
P z P Q P10 9 P-Q
dC / OM = Z (az M + C B )
2 Q=0 1
(3.36)
P-Z P-2
=2 M = 2 C
1
and by induction we arrive at
P Z P-2
C M = A C . .
3¢ /3 A% (3.37)
Now, since by (3.18)
P L q P-Q
A = y c D (3.38)
AT A r

Q=0

P Q
and since P as given by (3.16) is dependent only on the N's, we have in

view of (3.37)

P 2 P q-z p-q
9 A/ oM = Z A C D . (3.39)
AT Q=0 A-1 r

1f we replace Q by Q + 2, (3.39) becomes

-1h4-



Z
113 (3.40)
Q =-z

and then, through the definitions (3.19), the first of (3.32) follows.
The second of (3.32) may be established in a similar manner where in
particular it is convenient to use (3.18);.

Explicit forms for the constitutive equations can nov be obtained
from (3.5) and (3.23) and read

o P
P-Z2 2
B -
W8 = ) ) finea) - amee) + xa(een)) I 8, W/ 2y,
P=02=0 (3.41)
z z
P-2 P-Z
oM N
+ F A — 4+ F A ]}
<171 s
r+1 Ar a-'’m To AT A'T ayﬁa
2, Z P-2 2
B a - 3 M
' z‘ y {[ n(P+1) - 2Hn(P+ 2) + Kn(P+ 3)] [LA AAO &;
P=0 2=0 (3.12)
z z
A P'Z P-Z aN

M
* 741 Broaftm Koy © AT alr T ]} ‘

The constitutive relations (3.41) and (3.42) may be put in more explicit
forms by further substitution from results of the type (3.24), (3.26),
etc., but we delay this until the next section, where special cases are
considered.

Before closing this section, we examine the invariance properties of
the above constitutive equations.+ It is evident that the equations (3.4l)
and (3.42) are tensorially invariant. Furthermore, it is easily verified
that they are also consistent with the virtual work theorem for shells.
Next, it is necessary to show that the sixth equation of equilibrium,

For an account of invariance requirements in shell theory, see
Naghdi [1962].

-15-



namely

e (.2 u®) = o, (3.43)

or equivalently

3 X a X >
c ( - b -0, (3.44)
ap §7Ba v aKBv

is identically satisfieg. To this end, observing that X may be regarded
as a function of fl and N , by (3.44) we have

N { Y Z 5y
Z eaﬁ \( X/aum) g‘;z; +(d3X/3N) 57_Ba
Z=0

Q/
ZN

2, [ex/som VI
TPy (3x QK + x/ )BK
Bv Bv
(3.45)

1 z z z
- Z 8 {ax/au g’; - g—“—-)
2 =0 pa Bv

Z az az
+ OX/AN (—N - SR )} )
Bym v aKBv

A
Consider now the coefficient of 3X/ 3 M in (3.45) in conjunction with

equations (3.24). For z2Z 1, it is identically zero while for Z = O, it
is symmetric in 0 and B and hence vanishes. Next, consider the coefficient
of 3X / O N. A little manipulation of (3.31) will show that

6: a a: 1,271a po 27 ae
7m - bv BKB - 5( b 0 AN+ ba N ) ’ (3'“6)
v

an expression symmetric in @ and 8. Thus, for Z 2 2, in view of the
presence of GaB in (3.45), this coefficient also vanishes. The vanishing
of this coefficient for 2 = O, 1, follows with the aid of equations (3.26)

-16-



and (3.29). The final invariance requirement which should be examined is
invariance under rigid r%tation. It may be shown that the value of each
of the invariants M and N is unchanged by infinitesimal rigid rotations and
thus X retains its value under such a transformation. The calculations

are somewhat lengthy and hence are not included here.

. Approximate constitutive equations. From a practical point of view, it

is of interest to consider constitutive equations which are approximations to
those given by (3.41) and (3.42). The procedure to be used in obtaining the
approximate equations will be one of simply terminating the series after a
finite number of terms and we proceed to do this in a systematic manner.
First, we recall that there are two types of summations involved in
(3.41) and (3.42), summation over the letter P and summation (implied)
over the indices A and I'. These two summations are effected independently
and it is this fact which leads to the independent consideration of geo-
metric properties and material response. In order to systematize our dis-
cussion of this matter, we will use the notation % to represent terms of
the type ba‘3 and y to represent terms of the type 7aB. Terms of the type
Ka6 and APB will be regarded as %. 1f we return to the definitions of
the various elements which are the constituents of (3.41) and (3.42), we
can easily see to what power y and % occur in them. These results are

summarized in Table I below:

TABLE 1
Element Power to which Powir to which
y occurs g occurs
P
M 1 P
P
N 2 P
P
C A P
A
P
D 27 P
r
P
A A+2r P
AT

-17-



We observe from this table that the powers to which y and % occur in
the various elements are independent in the sense that the former is determined
by A and T while the latter is determined by P.

The quantities LA and Fop in (3.41) and (3.42) are material coefficients,
and the power to which y occurs in terms involving these coefficients is
determined solely by the value of the index of those coefficients. This
fact 18 seen by applying the information of Table I to (3.41) and (3.42)
and the result is summarized in Table II which, together with Table I,

reveals the manner in which the y and % terms occur in the constitutive

equations.
TABLE II
Coefficient of Power to which
y occurs
HS A
ESF A+2T +1

With the information gleaned from the above two tables, the pro-
cedure for determining various approximate constitutive equations is now
clear. First, we select the highest power to which we wish % to occur in
the expansion and we then sum over P in such a manner as to obtain all
terms up to and including that power. We emphasize, however, that because
of the presence of n (P + 3) in (3.41) and (3.42), we cannot choose the
highest power of % to be less than 2. After the choice on % has been
made, we are free to select the power to which y shall appear in the con-
stitutive equations~* The term "order" will be used in this connection,
i.e., equations linear in y will be called first order, those containing
both linear terms and terms of second degree in y will be called second
order, etc. It is clear that once the choices on L and y have been made,

R
the determination of the specific equations is a routine matter.

* The sequence of choices used here in selecting the powers of b and y

may be interchanged. The one adopted here appears to be convznient.

-18-



In the examples which follow, we shall always choose the highest
power to which % occurs to be 2. Consequently, we will first expand the
relations (3.41) and (3.42) imposing this restriction and then, by making
use of relations of the type (3.46), obtain the desired expressions. Thus
expansion of (3.41) in the manner just described gives

P = (1) {LA ARO ‘5‘3— [r +1A- 1Ar+1 ia M PWEQ]}

N 7ﬁa a0 Iy

1 0 0 3 0 0
-2 (A 'SQL*‘ A a“)+KAA 59-“—]
Tag B0 Oy 0 37p

. 2 0 1 1 0 2
+—Lr:] -2 S oM, o, 9M ()

r+1 -1 r+l 9 7Ba A-IAI‘-O-I d 731 A-1T+1 9 731
LM, 9 am 0 ok
. A
oH S.\.-f‘r-rl 3 a0 *a-1'r41 3 i~ )+ Ka-lre1 3 Tea ]
2 0 1 1 0 2
d N N JN
A A A
+FA1[AI‘ Srm"',;r 67m+Ar 3 Tog
1 0 0 1 0 0
. N N N
2H (AAI‘ > *alr 78a )+ KAAP Taa ]} ’

The Cayley-Hamilton theorem when applied to e
may be expressed as

B with the use of (3.2L)

2 1 0
IM M IM_
r’aa 2H 55-—7&1 + K5== oo 0 (4.2)

and if we write PB for the adjoint matrix of baB’ vwe have

-19-



OB . g . P

o ) (k.3)
- op2M . M

d - d 7o
Further, combination of (4.3), (3.26), (3.29) and (3.31) yields

2

1 0
%L- 21133-7L +K%
[ o] po px
(k4. 4)
1,0 3BV .,B ,av _¥x . v8 BV
.a[bvx +5° N bv(x +AFY) ]

and
1 o
N N

-3 [P B (R 4 ") (4.5)

*
- % (% P+ va ) -6 PV + 9"+ (P 4B ),

Now, with the use of (4.2) to (4.5) and with some simplification and
combination. (L4.1) reduces to

0 0 0
- ap - cp 1,08 _po
LA h{LA Ao ® +F1.\r[r FTa-re1® +ah 207 47 )]}

Wl 2 o ! wpl, a 2 a5} xp
*Tz)'{LA[AAo‘ Ao Pt Faifar a-fre1® a-trer b

( u. 6)
2 1
+3 rN.[ A O 45 + A% 42 B2 (P 4 7"“)>

+ A/c:,. ((b“v AR S I R INLR xa”)) ]} .

-20-



and, similarly, the corresponding expression for ﬁzﬁ is

1 - 0
B _ k3 ap _ 2)
M 15 {%A [Afo a AAO o ]
N . o 0 -
+ r+1 FAP {A-IAI‘-O-I e T A-1 Ap+1 ] (%.7)

+ % FAFL;F P+ 4 Aﬁf((xaﬁ'* ) - {,av PV + 7Va)>]} :
Equations (4.6) and (L4.7) are of second degree in % but of arbitrary
order in y. Such subsequent examples as are to be given will follow directly

from these equations after a choice has been made on the order of 7. As
a first example, let us obtain the first order or linear constitutive equa-
tions. For this case, Table II inggructs us to retain L; and FOO and to

set all other L, equal to zero. (In order that the state of zero

A’ AT
stress and zero strain coincide, we also set Lo = 0.) In fact, if we set

Ll = IL_B";E > F = E (1&.8)

we then obtain the Fliigge-Lur 'e-Byrne constitutive equations. For future
reference, we record representative examples of these equations, written

in 1lines of curvature coordinates and in physical components. Thus,
‘ n° 1 1 1
N(ll) - h{kLI+!b0)7(ll) + L17(22) +13 (L1*?00)(§2' ii)(K(ll) - 317(11i} ,

h h,1 1 1
N(12) =2 Foo {(7( 12)"' 7(21))+ 12 (i'z B il)(x(a) "R, 7(219}
(4.9)

3
M) = ll‘—a{(Llﬂ?oo) K(11) * le(zz) + (l.l-o-l'o())(%2 - %-1) 7(119}

ha
M12) = 28 l’oo{ (K(12) *%(22))* (&~ &) Y(an) }

where the constants L, and F,, are given by (4.8).
We now return to equations (4.6) and (L4.7) and proceed to obtain the
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constitutive equations for the second order theory. For this purpose,
it is convenient to introduce the notation

e,

5 ) (k4.10)

k
vhere the subscript k in each case designates that resultant which arises
from (4.6) and (L4.7) from exactly those terms which are of degree k in y.
Thus, 1“05 and 1Hab would refer to the right hand sides of the Pliigge-

Lur'e-Byrne equations (4.9). If the theory sought is ch order, then we
hav

-i kNaB R e -i‘ kHaB . (4.11)
k=1 k=1

vhile for a completely general theory,

L) P, P L) e (h.12)

k=1 k=1

With this understanding, we need only determine ENaa and gllaa to complete
the description of the second order theory since ln"‘ﬁ and 1‘{15 are given
by (4.9). The representative results are as follows:

1 2
M) * "{‘2‘7<n) 1z * Trol57{0)* Yez) * H7(ae) P Aea W) ()* 7(22)”}
3
. ‘;—2{:.2[2(7(11) +7a9) Many B 1)+ Oy # e ]
+ 10 [, = 100 M) 7000y * 2 Many ) * 70y ) G

+ 2().?11) + xfaz)) +(\yp) * x(a))z

+ (7 5 Max) ®(aa) * 7)) * Paz) *+ Nz "(u)]} ,

PP =



2N(y2) = "5" Flo { (7(11) + 7(22)) (7(12) + 7(21))
(k.14)

ne 11
+15 [“( 12) * M22))P(az2) * M2n)) * (1) ¥ 7(22)) M) &, - i}’]} °
and

3

1
M3y ~ %2_{1'2(7(11)+ 7( 23)) {20‘( n) * 7‘(22))"' Ry (7( u) ¥ 22))]

*+ T [("( 12)7(22) * Maz) (22 * 3 Maz) *M22)) P(a2) * 7(an))
(4.15)
+ iliz ( % (7(211) + 7?22)) + % (7(12) + 7(21)) i >

1 )
+ (7\(11) M K(22)) () * (7(11) + 7(22)) (K(ll) + 7(11)(52 - il)>]} ’

h3
My2) = 2% Fio {()‘(n) + )‘(22)) (7(12) + 7(21))
(4.16)

1 1
* (7(22) *7(22)) ["(12) *ha) *7(2) §, "Ry ) ]} :

The foregoing expressions simplify somewhat for special configurations. For

example, in the case of a flat plate, the representative equations reduce to
2 1 2 2

1
+% (e + 7(21))2 +7(1) () * 7(22)’] }
(u.17)

3
+ %2'{102 (K( 11) + K(22))2 + FIO [2('(?11) + K(222))

+ (Ky2) + K1) +K(1a) () *“(ae))] } ;
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2“(:1.2) - % l'10'{ (7(11) + 7(22)) (7(12) + 7(219
(4.18)

ne
* 12 (K(11) + K(za)) (K(la) + K(al))}' ’

3
2“(1.1) - %5'{2L2(7(11)+ 7(22))(K(11)+ K(az)) + l'10[5 K(11) 7(11)+ K(22)7(22)
(%.19)

+ (Ka2) +X (21)) (7(22) * 7(21)) * 7(01) (22) * 7(22) "(n)]} '

S (K, K ) ( + )
M12) = 2% Fi0 19 (21)* ¥(22)! (7(a2) * 7(21)
(&.20)
* (0, * 7(22)) (K(y0) * "(zn’} '

Our purpose in recording (4.17) to (4.20) is to observe the coupling, i.e.,
the dependence of the siress resultants on the strains K__ as well as the
dependence of the stress couples on the strains Yas" In contrast, it may
be recalled that when (L4.9) is specialized to the case of a flat plate, no
such coupling is present.

It is of interest to compare the constitutive equations (3.41) and
(3.42) upon specialization with those obtained by Zerna [1960]) whose con-
stitutive equations contain only first and third degree terna.** If in
the expressions for Raa and lFB, we neglect, as Zerna does, terms involving
(%pz with respect to the remaining ones as well as terms of the type %,
then (4.6) and (4.7) become

0 0
- A ap
L h{[LA alo *TaT 'ArA-i‘r+1] .
0 (4.21)
~ap
* far alr 7 } '

e
Although Zerna [1960] dous not explicitly invoke the Love-Kirchhoff
hypothesis, he neglects the effect of y _ and sets 0°3 = 0 but retains
a3
the effect of y3a3.

-2}4=



and

3 1 1
g . b - Y, ap
¥ 12 {[LA alo *r¥d FAI‘A—IAI‘+1].

(4.22)
1 0
~0B ~0B
*hyr At 7 B oA K } ,
where we have written
3P . %Y, ROPL 2P . (4.25)

Now if, as in Zerna's case, we wish to retain only the first and third degree
terms, it follows from Table II that the only nonvanishing coefficients are
Ly » La, Fyy s Fyy » and Fy- Here expansion of (4.21) gives

~e ~
P . h{[l..l(y 9) aaB + FOO 7&&]

+ [L3(7 o) *+Fyy (7) (7"p 7°,~):| R (4.2L)
~0 .2 1 ~ ~

which is of the same form as the corresponding expression given by Zerna.

It should be noted, however, that while the coefficients of (;99)(";‘; ;kp) laB
and (:769)2 705 are identical in (4.24), they are not the same in the
corresponding expression given by Zerna [1960]. A similar conclusion cin

be arrived at upon the comparison of (4.22), when only first and third degree
terms are retained, with Zerna's expression for the stress couples after a

misprint in Zerna's equation (L45) has been corrected.

5. Membrane theory. In this section, we specialize the previous results to
those appropriate for the membrance theory of shells., We recall that
for equilibrium problems of the membrane theory, where the shear stress
resultants and the stress couples are absent, the state of stress is stati-
cally determinate and the stress resultants ﬁaﬁ are obtained from the

equations
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Naa” +PB = 0,

a
B
, baBNa +p = 0, (5'1)
g
eaBNQ - 0.

For the subsequent determination of the displacements, we turn to
the constitutive equations (4.6) and, consistent with the membrane theory,

neglect the terms with the factor (%)2 . Thus, for the membrane theory,
instead of (L4.6), we have

0 0
B . L ap
N h{(LA abo *F 5T Fara-fre1) @

(5.2)
0

1. 0B, g
+FAI’ AAP 2(7 +y )} )

Because of the symmetry of the right-hand side of (5.2), it is seen
that (5.1)3 is identically satisfied. Also, in view of (3.18),, all
A's appesring in (5.2) may be written in terms of M and N alone so that

0 0 0
NP an {[LA(ﬁ)A + F—Q—l Y M) (qyf +1 ] P

(5.3)
0, O
+ P P (m)F % (P + 7ﬁa)} -

0 0
Since M and N are functions of 705, it is clear that the combination

of (5.3) and (2.11) constitutes a system of nonlinear differential
equations in the displacements. Since !PB as solutions of (5.1) can be
regarded as known, it is convenient to express M and N in terms of NaB.
or more specifically, in terms of the invariants of NaB Let
1
PoeNy s Bo= g N, (5.4)
and introduce further the notation

0 0
¥ = B (0. (5.5)
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Contraction on (5.3) gives

0 0, .40 0
P, = h{[LA W® + ~Arr, (W) 1(N)P“] 2+ 9 M} (5.6)

or

0 a Q
[ L, )P + Fe_l P, ()2 -1 (N)P+1]

(5.7)
1 (B2
- L (Byn
in terms of which NaB becomes
8 L e O o 1,08, po
N -h"e-(il-wl{)a +w-§(7 +97) b (5.8)
By (5.4) and (5.8), we arrive at the additional relation
0 0
P, - P2 = b5 [ 4N - (M) (5.9)

0 0
Equations (5.6) and (5.9) givg M and N in terms of P, and P, . In

the linear case,othe solution for M is straightforward, and since in this

case Y = F M is determined by

o0 ?

0
h(aL, +F )M = B, = N . (5.10)

It then follows from (5.3), after the values of F.. and L, are supplied

00

from (4.8), that

l, 1

3 (y B+ 731) - & (1 +v) lﬁlﬂ - v 1N77 2B ] (5.11)
which is the usual result of the linear theory.

In the second order theory,
o
¥ = F_ +F _M (5.12)

00 10

so that by (5.6) and (5.9), P, and P, reduce to
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0 0, 0 0 0
P,=h [2 [LM + Lx(M)" + P, ) N] + (Foo + By M) n} (5.13)

2 0 - 0 0 >
P> = h (F +F M) [ - (M)°]. (5.14)

o] 0
Although N may be easily eliminated between these equations, giving M

in terms of Paaand P, the resulting equation .s of the hth degree in g.
However, once M is known in terms of P, and P,, (5.3) yields a system of
linear differential equations for the displacements. In fact, 8vcn 18

the general case, so long as (5.6) and (5.9) can be solved for M. and N in
terms of P, and P, , the differential equations for the displacements are

linear.

- Appendix: Power series forms for the elastic potential.

Equations (2.9) include the most general isotropic stress-strain
relations of elasticity, but since the OA being arbitrary functions of
the invariants of eij depend also on x3, it is desirable to express £ in
(2.8) in a form which will readily lend itself to integration across the
thickness of the shell. The developments here, however, are entirely
general in that they are applicable whenever two symmetric second order
tensors are related through a potential.

Let the symmetric tensors under discussion be Q"j and Atj. where the
first is an analytic isotropic function of the second. We further assume

that & potential T (Aij) exists" such that

Q"j - ﬁg— . (A.1)

i
Let
K, = Aii , K, = % Aij Aji,
Ky = % Aik Akj Aji , (A.2)
»*

The necessary and sufficient conditions for the existence of a potential I
may be found in Truesdell's [1952] paper. Truesdell's conditions, however,
are given in terms of a set of invariants which are different from those
utilized in this paper.
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be selected as the three independent invariants, then

r = r (K, Kz, Ka ). (A.3)

Our choice of the invariants (A.2) is motivated by the fact that their

derivatives have the form

d K i K i 9 i k
25 -51’§iﬂf"“j’§7§f‘"k“j’ (A.4)

i

and hence (A.1) may be written as

i i i 1,k
Qj-clsj+c2Aj+c3AkAj, (A.5)

where the coefficients

(o = 1, 2, 3) (A.6)

are power series in the invariants KA‘ Since the existence of a poten-

tial I' has been assumed, it follows that

3T 3
I R @

or equivalently

P Ca - ) Cp (A.8)
d Ky 3Ky

which are in fact the necessary and sufficient conditions for (A.1l) in
terms of KA'
Since the cA may be written as power series in terms of KB’ ve write

Cs in the form

C; = C Ky~ K; Ka , (A.9)



wvhere A, I'c A= 1, 2, 3, , . . and summation is intended even in those terms
(which will arise later) in which an index appears more than twice. With

Cs given by (A.9), we proceed to determine C, and C, with the use of (A.8).
Thus

9C . 9C ., Cora kA kg1 K" (A.10)
d Ka d Ky
80 that
- 1
cc = 5 Cora K2 kSR o rAleA k', (A.11)

where the second term on the right-hand side represents the arbitrary
function of i{ntegration. Similarly, with the two remaining conditions of
(A.8) and with (A.9) and (A.11), we obtain

A A<l . . A4l
(A.12)
s+ p g0l TH 4L g2
r+1 arn 2 A2
Having determined C, , we compute I' from (A.6) and obtain
1 A, T A+l
F''= T+1 Graf K2 K
1 r+1 1 A+1 (8.13)
A, T4+ +
tre1 IrK ke Tt LK >

vhere the arbitrary constant of integration has been set equal to zero
without loss in generality. The choice of the set of invarisnts (A.2)
and the starting point (A.9) was motivated by the desire to depress the
coefficient C,. However, as should be apparent, the procedure is the
same for any choice of independent invariants such as

- al e L oim n
L =4y IL = 3 B35 Ay A
. (A.14)
o | mp } 0o k i
IIT =57 8y, A A AL [Ajl
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1f, instead of (A.2), (A.lh4) is taken as independent, then different
(although equivalent) integrability conditions will result (Truesdell
[1952, p. 133]). 1In this case, the potential has the same form as (A.l3)

except with different coefficient:sEAr.A , ik[" and i& while the co-
efficients C, of (A.5) are [compare with (A.1l) and (A.12)]
< A T+1 A A7 A-1_.T A+l
C, = cAI'AI II IIT + A+1cAI‘AI 1T 11l
r = A+l T'-1 A+l <= A+l r
+ N4l 1 CA!‘A I lII I11 + FAI' 1 I1
- -1 I'+1 - A
+—A—r+1 FAPIA I +1, 15
(A.15)
- A+l r I - A T-1 A+l
Gz = -Gy M ul - LT, fut
= r
- %1 2 ul,

= r...A
Cs = Cypp 2 ol m
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