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ABSTRACT

This report is a primer for the non-ballistician who

is concerned with the design or selection of biospace ex-

periments, to provide him with some feeling for the ballis-

tics of biosatellite recovery. It presents in non-special-

ized terms some results of a recent parametric study of a

wide variety of likely descent trajectories from near-earth

orbits. Although these results were computed by approximate

methods, they are believed to be sufficiently accurate for

most planning pirposes. No attenpt is made to describe

the computational methods or the underlying physics.
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BIOSATELLITE RECOVERY FROM CIRCULAR ORBITS

I. INTRODUCTION

Biosatellite recovery involves a gamut of situations

midway between those encountered by long range bombardment

missiles and manned spacecraft and shares many problems of

each genre which are not common to both. Cost and other

practical considerations favor the steep unguided descent

trajectory of a ballistic missile, while equally compelling

factors such as available mass fraction and payload g-

tolerance promote the shallower entries typical of manned

orbital missions.

Although the literature abounds with excellent

analytical treatments of the descent and re-entry regimes,

few are in evidence which cover this middle ground of par-

ticular interest to the biospace scientist. Even less

abundant are those which discuss both regimes as the con-

tinuum that they actually represent, in terms which are

meaningful to the non-specialist.

This paper is intended to fill partially the persist-

ing need for a non-rigorous, yet factually illuminating and

useful presentation of those parameters which are of vital

interest to the planners of biospace experiments.

-1-
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II. DISCUSSION

Interest here is confined to the fairly straight-

forward (and probably the most prevalent) case of ballistic

re-entry from a deflected circular orbit. This implies a

non-lifting capsule geometry such as that of Mercury or Dis-

coverer with no maneuvers in the atmosphere other than para-

chute deployment during the terminal phase of re-entry. It

also means that the original orbit is deflected into a

descent trajectory by one brief firing of a retro-rocket,

as illustrated in Fig. 1. By looking only at circular

orbits, complicated presentations are avoided without seri-

ously departing from practical reality since a circular

model applies fairly closely at the slight eccentricities

(up to about100 miles difference between apogee and perigee)

which normally result from launch dispersions. Also, this

approach is applicable whenever a highly eccentric orbit

must be circularized as an intermediate step toward recovery.

The problem of direct descent from substantially eccentric

orbits will be considered in another paper.

Nine trajectory parameters (seven of which are indi-

cated in Fig. 2) will be examined. The three which define

initial conditions which essentially determine the other six

features of the subsequent path to impact are:

1. Circular altitude of the original orbit,

2. Magnitude of the deflecting velocity change, and

3. Direction of the deflecting velocity change.

-2-
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Another three represent usual trajectory constraints

imposed by biological and other considerations, with which

the choice of initial conditions must be reconciled.

4. Peak deceleration during re-entry,

5. Total range to impact, and

6. Range error, (a) due to aiming errors, and

(b) due to retro-rocket impulse

dispersion.

The remaining three relate to the atmospheric entry

point, where a descending vehicle theoretically leaves the

domain of celestial mechanics and enters that of aerody-

namics. These are of less compelling interest to the mis-

sion planner because they describe an intermediate situa-

tion which is not limiting per se, but are included here to

highlight trends and to facilitate more detailed analysis

of the re-entry phase. They are:

7. Range to entry,

8. Entry angle, and

9. Entry velocity.

Only the downrange (in the orbital plane) components

of these parameters are considered here, since the cross-

range (normal to the orbital plane) components are generally

orders of magnitude smaller. Re-entry heating is ignored

because it is a condition that can be mitigated by vehicle

design, whereas all of the other characteristics are virtu-

ally unalterable consequences of the initial conditions.

It has been assumed that the earth and its atmosphere is

non-rotating, which makes this presentation apply to orbits

of any inclination without appreciably degrading its validity.

All of the indicated relationships are totally independent

of vehicle weight, and vary only slightly over the entire

range of likely re-entry geometries.

-3-
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Interest in peak deceleration extends to a value of

about 50g, which appears to be the maximum that could con-

ceivably be endured by a small primate for more than a few

seconds. As an upper limit for the magnitude of the deflect-

ing velocity change, 4000 ft/sec has been somewhat arbi-

trarily selected which, as shown in Fig. 3, would require a

retro-rocket weighing roughly half as much as the vehicle

it de-orbits. For missions requiring impact prediction to

accuracies of 50 miles or better, these bounds automatic-

ally place an altitude limit of about 800 n. miles on the

circular orbits from which a single-impulse descent can be

reasonably considered.

Figure 4 illustrates how range and range errors are

affected by both the magnitude and direction of the de-

flecting velocity change for a given orbit of 300 n. miles

altitude. Note that for each magnitude of the velocity

change a different thrust orientation angle yields minimum

total range to impact, at which condition impact accuracy

is scarcely affected by small angular errors. The degree

of sensitivity to this source of error is indicated by the

flatness of each curve at its null point, with the larger

retro-rockets producing the flatter curves (higher accu-

racy). At the null point for the 1000 ft/sec curve, an

angular error of 50 contributes less than 0.50 (30 n. miles)

to the range error. For 4000 ft/sec a tolerance of over 100

could assure the same accuracy. The distance traveled in

the atmosphere (the difference between corresponding curves

for range to entry and range to impact) varies in a like

manner, showing that the larger retro-rocket will also

shorten the re-entry portion of descent, and reduce the im-

pact dispersions created by unpredictable variations in the

troposphere.

-4-
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Figure 5 presents the atmospheric entry angle as a

function of the same parameters for the same orbital alti-

tude. As would be expected, comparison with Fig. 4 shows

that the steeper angles correspond to shorter re-entry

regimes and equivalently higher accuracy.

In the same fashion, Fig. 6 presents the velocity

at atmospheric entry. As might also be expected, a vehicle

enters the atmosphere more slowly when more braking impulse

is provided by the retro-rocket.

In Fig. 7 the effects may be seen of these variable

initial conditions on the peak deceleration which occurs

during atmospheric penetration. Note that when the retro-

rocket is aimed for minimum range, gross aiming errors

produce quite modest variations in g-loading. It should

also be recognized that, although the magnitude of peak

deceleration is virtually independent of the re-entry

vehicle shape, its onset rate, and the altitude and

velocity at which it occurs, are significantly affected

by the weight-to-drag ratio.

For the same example Fig. 8 shows how variations in

rocket impulse affect impact accuracy. Note particularly

that this contribution to range error is expressed as a

percentage of the deflecting velocity change, in order to

reflect most meaningfully the variations in rocket impulse

which cause it. Present state of the art for solid pro-

pellant rockets can reasonably assure a scatter of less

than 2 per cent about the nominal total impulse. These

curves clearly indicate that this source of error cannot

be materially reduced by changing the thrust orientation

to an angle other than that which yields minimum range.

In fact, the resulting increase in sensitivity to angular

-5
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errors (referring back to Fig. 4) would generally more than

offset any slight gains.

From the foregoing it is fairly evident that the

shortest route to impact is usually the optimal route.

Accepting this somewhat over-simplified premise makes our

problem of data presentation much more tractable.

Figure 9 presents the thrust orientation angles

which produce minimum range (which might be construed as

optimal) for the entire range of altitudes and deflecting

velocities. Since these data represent null points in

curves of varying flatness, their importance varies ac-

cordingly. A feeling for this can be obtained from Figs.

16 through 22, which present the parameters of Fig. 4 at

other altitudes.

Figure 10 similarly presents all data for minimum

total range to impact. To provide additional perspective,

Fig. 11 describes pictorially how this information might

apply to a specific mission: in this case recovery at

White Sands from a polar orbit.

The over-all trends in atmospheric entry conditions

are illustrated in Figs. 12 and 13. Of particular value

are the curves for entry angle, which indicate the length

of residence in the atmosphere with its attendant impact

errors.

Figure 14 summarizes our findings on peak decelera-

tion, while Fig. 15 collects all of the data on velocity -

caused impact errors for minimum range descent trajectories.

It is apparent from Fig. 15 that the higher the altitude

(and from Fig. 12, the steeper the entry angle) the larger

will be the proportion of impact error from this source.

6-
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Tables I through VIII present in tabular form the com-

puter output data from which the curves were derived.

Other tentative inferences can and should be drawn

from the material which has been presented here, but the

reader is cautioned against using any of them out of con-

text. In no event should these data be used as the sole

basis for system selection, regardless of accuracy require-

ments, since a variety of qualifying considerations which

are not dealt with here may prove to be of overriding im-

portance.

-7-
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