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TRANSLATORS' PREFACE TO THE ENGLISH EDITION

Within the past few years, interest in the dynamic stability of elastic

systems has increased. This interest is reflected in the appearance of a

large number of papers on this subject. Unfortunately, few are in English,

the majority of these papers being written either in Russian or German.

In addition, there is no English text available which presents the mathemat-

ical theory of the subject with its applications. However, such a text is

available in Russian. This work, "Dynamic Stability of Elastic Systems,"

(Gostekhizdat, Moscow, 1956) by V. V. Bolotin, together with its German

translation (Veb Deutscher Verlag Der Wissenschaften, Berlin, 1961), is the

only comprehensive book on the subject of dynamic stability. To fill this need

in American scientific literature, it was decided to undertake the translation

of this unique book.

At the time the translation was initiated, the German edition was not

yet available, and the book was translated from the Russian. With the

appearance of the German edition, the translation was checked and all

changes in the German edition were incorporated into the English translation.

Footnotes in the Russian edition were eliminated and the German referencing

system was adapted for our use. A number of notes were made by the trans-

lators in order to bring the American edition of the text up to date. Refer-

ences to new works published in the United States and an additional Russian

reference were added.

The translators would also like to thank Dr. Paul Seide, Dr. Robert

Cooper, and Dr. John Yao of Aerospace Corporation for reading the

translation.

El Segundo, California, November 1962 V. I.W., K.N.T., K.D.G.
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PREFACE TO THE GERMAN EDITION

Four years have passed since the appearance of the Russian edition

of the present book. During this time a series of works on dynamic stability

were published, containing interesting results. In addition, the general

theory was applied to a new class of problems whose analysis appeared to

be of a mathematical nature which fell within the narrow limits of the theory

of dynamic stability. All of the above are considered in the German edition

of the book. References are included of some works published thru 1956,

which were unknown to me when the book was first published.

G. Schmidt, from the Institute for Applied Mathematics and Mechanics,

German Academy of Sciences, Berlin, prepared the excellent translation

and contributed corrections in some places. The translation was also

reviewed at the Institute for Vibration Technology, Karlsruhe Technical

University; F. Weidenhammer and G. Benz especially gave worthwhile

advice. C. W. Mishenkov, from the Moscow Power Institute, assisted me

with the preparation of complete references. To all these people, I would

like to express my deep thanks.

December 1960 Author - V. V. Bolotin

Moscow
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PREFACE TO THE RUSSIAN EDITION

This book is an attempt to present systematically the general theory

of dynamic stability of elastic systems and its numerous applications.

Investigations of the author are used as the basis for the book, part of which

was published previously in the form of separate articles. The author's

method of presentation is retained where the problems treated have been

analyzed by other authors.

The book is devoted to the solution of technical problems. As in every

other engineering (or physics) investigation, the presentation consists of

first choosing an initial scheme or pattern, and then using the approximate

mathematical methods to obtain readily understood results. This intent,

and the desire to make the book easily understood by a large number of

readers, is reflected in the arrangement and structure of the book.

The book consists of three parts. PART I is concerned with the

simplest problems of dynamic stability which do not require complicated

mathematical methods for their solutions. By using these problems, the

author wishes to acquaint the reader with previously investigated problems.

At the same time, certain peculiarities of the phenomena of instability are

clarified, which previously have been only sketchily mentioned. PART I

also contains methods of solution of the general problem.

PART II begins with two chapters containing the minimum necessary

mathematical information; a conversant reader can disregard these chapters.

The properties of the general equations of dynamic stability are then

examined; methods are presented for the determination of the boundaries of

the regions of instability and the amplitudes of parametrically excited

vibrations for the general case.
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PART III is concerned with applications. Various problems of the

dynamic instability of straight rods, arches, beams, statically indeterminant

rod systems, plates, and shells are examined. The choice of examples was

dictated by the desire to illustrate the general methods and present solutions

to practical problems. The number of examples was limited by the size of

the book.

I would like to take this opportunity to express my sincere thanks to

A. S. Vol'mir for having read the manuscript and for having given valuable

advice.

January 1956 Author - V. V. Bolotin

Moscow
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ABSTRACT

Volume I ntains the introduction and the f two chapters

of V. V. Bol ns book, "The Dynam tability of Elastic

Systems." Thisw kis essential systematic exposition

of questions in the the of t dynamic stability of elastic

systems. The introduct contains a short history of the

development of the ject. hods for the determination

of the boundarie of the regions o namic instability are

examiThe effec f damping on the

regions 'dynamic instability is investiga d. irt-. e Ch

Tw . e results from experimental investigat s and an

exte sive bibliography are also included.
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INTRODUCTION

1. In recent years a new branch of the applied theory of elasticity has

evolved, the theory of the dynamic stability of elastic systems. In this branch,

problems which are examined are related to those in the theory of vibrations

and the stability of elastic systems. As in many other areas of learning on

the border line of two fields, the theory of dynamic stability is now going

through a period of intensive development.

The theory of dynamic stability is easily illustrated by examples.

(a) If a straight rod is sub-P1
jected to a periodic longitudinal load M)

(Figure la) and if the amplitude of the

load is less than that of the critical

static value, generally speaking, the

rod experiences only longitudinal a) Ni b)

vibrations. However, it can be

shown that for certain relations

between the disturbing frequency 4 d)

and the natural frequency of transverse

vibrations w, a straight rod becomes Figure 1

dynamically unstable, and transverse

vibrations occur; the amplitude of the transverse vibrations rapidly increases

to large values. The relation of the frequencies at which it approaches this

resonance (so-called parametric resonance) differs from the frequency

relation for the usual resonance of forced oscillations. For sufficiently
I

small values of the amplitude of the longitudinal force, the relation

has the form 9 = 2w.

IThe phenomena of parametric resonance of a stretched string, when one
of the ends is attached to an oscillating tuning fork, was uncovered by Melde
(1859). The first theoretical explanation of this phenomena was given by
Rayleigh (1883-1887). See Ref. I for example. A survey of early works on
parametric resonance can be found in Zhurn. Tekhn. 4, (1) (1934).
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(b) A circular ring compressed by a uniformly distributed radial

loading (Figure lb), in general undergoes only axial deformation. However,

for certain relations between the frequency of the load and the natural

frequency of the natural bending vibrations of the ring, the initial form of

the ring becomes dynamically unstable and develops intense bending vibrations.

(c) Periodic forces acting in the middle plane of a plate (Figure Ic),

under certain conditions can excite intense transverse oscillations.

(d) A periodic loading applied symmetrically with respect to the

arch (Figure ld), in general causes only symmetrical vibrations, but under

certain conditions can excite asymmetrical vibrations of very large amplitude.

(e) Periodic forces acting on a beam of a narrow cross section and

applied in the plane of its greatest rigidity (Figure le), under certain

conditions can excite bending-torsional vibrations from this plane.

The number of examples can be increased. Whenever static loading of

a specific kind makes possible a loss of static stability, vibrational loading of

the same kind will make possible a loss of dynamic stability. This is charac-

teristic since loading is contained as a parameter on the left-hand side of the

equations of perturbed equilibrium (of motion). We will call such loading

parametric; this term is more appropriate, because it indicates the relation
2

to the phenomenon of parametric resonance

By introducing this concept of parametric loading, one can define the

theory of the dynamic stability of elastic systems as the study of oscillations

originating under action of a pulsating parametric loading 3 . However, it

would be more correct to speak not of parametric loadings in general, but

ZIn recent years the term has become more generally used by everyone

(Ref. 2).

3Sometimes the subject of the theory of dynamic stability is interpreted in
a broader sense, including problems concerning the vibrations of elastic
systems under the effects of certain parametric impact loading. This
definition has not been retained.
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of loadings parametric with respect to certain forms of the deformations.

Thus, a longitudinal force compressing a straight rod is a parametric loading
with respect to the transverse deflections, but not with respect to the

longitudinal deformations.

2. A detailed review of the literature on the theory of dynamic stability,

completed thru 1951, can be found in an article by E. A. Beilin and G. U.

Dzhanelidze (Ref. 3). We will look at certain fundamental stages of the

development of the theory.

An article by N. M. Beliaev (Ref. 4) published in 1924 can be con-

sidered to be the first work on this problem. In this article the problem of
dynamic stability of a straight rod hinged on both ends was examined, and

the boundaries of the principle region of instability were determined. In 1935,

Krylov and Bogliubov (Ref. 5) again returned to the problem and examined

the case of general support conditions. Applying the Galerkin variational

method, the authors reduced the general problem to the equation which had

already been examined by Beliaev, differing only in that the coefficients of
the equation are approximate parameters (in the sense of Galerkin's method).

A year earlier, Kochin (Ref. 6) examined a mathematically related problem
of the vibrations of bent shafts; another related problem was investigated in

connection with the oscillations of the driving system of an electric
locomotive (Refs. 7 and 8).

We note that the first foreign works on the dynamic stability of rods

appear in the late thirties and early forties (Refs. 9, 10, and 11).

The dynamic stability of plates under the action of compressive longi-

tudinal forces was investigated by Bodner (Ref. 12), Khalilov (Ref. 13),
Einaudi (Ref. 14), and Ambartsurnian and Khachatrian (Ref. 15). The problem

of the dynamic stability of a circular ring under the action of a radial

pulsating loading was solved by Dzhanelidze and Radtsig (Ref. 16). A number
of particular problems were investigated in a pamphlet by Chelomei

(Ref. 17). The problem of the dynamic stability of symmetric arches loaded

3



by compression and bending was investigated by the author (Refs. 18 and 19).

Markov (Ref. 20), Oniashvili (Refs. 21 and 22), Bolotin (Ref. 23), Federhofer

(Ref. 24*), 4 Yao (Ref. 25*), and Bublik and Merkulov (Ref. 26) investigated

certain particular problems on the dynamic stability of shells.

The question of the influence of damping on the boundaries of the regions

of instability was discussed by Mettler (Ref. 27) and Naumov (Ref. 28). Let

us note that the corresponding problem in a more general form was solved in

1927 by Andonov and Leontovich (Ref. 29). The case of variable loading

represented by piece-wise constant segments was investigated by Smirnov

(Ref. 30) and Makushin (Ref. 31).

The works mentioned above have a common characteristic in that the

problem of dynamic stability is reduced (exactly or approximately) to one

differential equation of second order with periodic coefficients (Mathieu-Hill

equation). Meanwhile, Chelomei had already shown (Ref. 17) that the problem

of dynamic stability in the general case reduces to systems of differential

equations with periodic coefficients. Brachkovski (Ref. 32) (using the method

of Galerkin) and the author (Ref. 33) (using integral equations) established a

class of problems which can be exactly reduced to one equation of second

order. A generalization of these results for the case of dissipative systems

was given by Dzhanelidze (Ref. 34). Although the properties of the equations

obtained by the Galerkin method have been well studied, the number of

publications based on this approximation continues to grow (Ref. 35).

In certain papers (Refs. 36, 37, and 38), the problem of the stability of

plane bending, requiring an examination of a system of differential equations,

is reduced to one Mathieu-Hill equation.

I. I. Gol' denblat (Ref. 39) investigated the problem of the stability of a

compressed thin-walled rod, symmetrical about one axis. The problem was

reduced to a system of two differential equations. Using the results of

4 References followed by an asterisk have been added by the translator.
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N. A. Artem'ev (Ref. 40), Golldenblat presented a method of constructing the

regions of instability by means of expanding according to the power of the

small parameter. A similar method, devoid however of a rigorous foundation,

was applied by Mettler (Ref. 41) to the problem of dynamic stability of the

plane bending of a beam. Weidenhammer (Ref. 42), using the same method,

investigated the problem of the stability of a rod clamped on the ends.

Another version of the method is given by Kucharski (Ref. 43) in the appli-

cation to the special problem of the dynamic stability of plates and by

Reckling (Refs. 44, 45, and 46) in the application to the special problem of the

dynamic stability of plane bending. Still another variation of this method was

applied by Yakubovich (Refs. 47, 48, and 49).

Another method, free from the assumption of the small parameter, is

given in an article by the author (Ref. 33). This article also investigated the

structure of the general equations of dynamic stability. The author (Ref. 19)

and Piszczek (Refs. 50, 51, 52, and 53) also investigated the general problem

of the dynamic stability of plane bending; the author (Ref. 54) investigated the

problem of the dynamic stability of plates. In the present book this method

is extended to dissipation systems and is applied systematically to problems

involving the stability of rods, arches, beams, frames, plates and shells.

In the works enumerated above, the problem of dynamic stability was

examined in the sense of finding the regions, in the boundaries of which a

given form of the motion becomes dynamically unstable. The idea of the

inadequacy of the linear treatment for determining accurate values of the

amplitudes in the resonance regions was first clearly formulated by

Golldenblat (Ref. 55), who indicated a relation of this problem with those

involving the excitation of electrical oscillations (see Ref. 56). The presen-

tation of a nonlinear theory applicable to the problem of the dynamic stability

of a compressed rod was given by the author (Ref. 57). An analogous problem

was examined almost simultaneously by Weidenhammer (Ref. 58); see also

Refs. 59 and 60). In a paper by the author (Ref. 61) the nonlinear theory is

extended to the secondary regions of instability and also to the case of a rod

5



0
having initial curvature. Other nonlinear problems were investigated by

Bolotin (Refs. 62 and 63) and Ivovich (Refs. 64, 65, 66, and 67). In another

article (Ref. 68), the solution of the related problem of the oscillations of a

rotating shaft having different principal bending stiffnesses is given. Certain

nonlinear problems on the dynamic stability of plates and shells were investi-

gated by the author (Refs. 69 and 23) which included the stretching of the

middle surface. The present book gives the solution of a range of new

nonlinear problems, and in particular, for arches, beams, and statically

indeterminate rod systems.

Presently very little experimental data exist on this subject, although

these data represent a field of definite interest. Experiments of parametric

excited transverse vibrations of a compressed rod are described by the

author (Ref. 57). These experiments determine the amplitudes of steady-state

vibrations and investigate damping, the regime of beating, and the process

of establishing the vibrations . This paper also gives a comparison of the

experimental results with theoretical results. The parametric excited

vibrations of compressed-curved arches are described in previous papers of

the author (Refs. 18 and 70). Experiments on the dynamic stability of plane

bending of beams were conducted by I. A. Burnashev (Ref. 71) and V. A.

Sobolev (Ref. 72).

3. The theory of dynamic stability has already opened the way for direct

engineering applications. Parametrically excited vibrations are similar

in appearance, on the surface, with the accompanying forced oscillations and

can therefore qualify as ordinary resonance vibrations by practical engineer-

ing standards. In a number of cases, however, the usual procedures of

damping and vibration insulation may break down in the case of periodic vibra-

tions and even bring the opposite results. Although the vibrations may not

threaten the structure or its normal operation, they can bring about fatigue

failure if they continue to act. Therefore, the study of the formation of

parametric vibrations and methods of the prevention of their occurrence is

necessary for engineering researchers in the various areas of mechanics,

transportation, and indistrial structures.

6



The theory of dynamic stability is one of the newest branches of the

mechanics of deformable solids. Although during the last ten years much

has already been done to clarify many problems that were only recently

completely obscure, a large and beneficial field for investigations remains.
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PART I
Elementary Problems of Dynamic Stability

CHAPTER ONE

DETERMINATION OF THE REGIONS OF DYNAMIC INSTABILITY

.1. DIFFERENTIAL EQUATION OF THE PROBLEM

1. Consider the problem of the transverse oscillations of a straight rod
loaded by a periodic longitudinal force (Fig. 2). The rod is assumed to be

simply supported and of uniform cross section along its
*

length. We shall make the usual assumptions of strength

of materials, i. e. , that Hooke's law holds and plane sec- 4+1mo

tions remain plane. The case of nonlinear elasticity will

be examined in Chapter III and further on in the book.

This problem is similar to a number of the simplest
problems of dynamic stability. It was first set down pre- U
cisely in such a form by N. M. Beliaev (Ref. 4).

We will proceed from the well-known equation of Figure 2

static bending

9



where v(x) is the deflection of the rod, EJ is its rigidity during bending,

and P is the longitudinal force. After two differentiations, the equation

takes the form

which gives the condition that the sum of the y components of all the forces

per unit length acting on the rod is equal to zero.

To arrive at the equation for the transverse oscillations of a rod under

the action of the periodic longitudinal force,

P(t- P-+ Pecos at.

it is necessary to introduce additional terms into Eq. (1. 1) which take into

account the inertia forces (Ref. 9).

As in the case of the applied theory of vibrations, we will not include

the inertia forces associated with the rotation of the cross sections of the

rod with respect to its own principal axes. The influence of longitudinal

inertia forces will be considered in later chapters. In the meantime, note

that longitudinal inertia forces can substantially influence the dynamic stability

oi a rod only in the case when the frequency of the external force is close to

the longitudinal natural frequencies of the rod, i. e., when the longitudinal

vibrations have a resonance character. In the following discussion, we will

consider that the system is not close to the resonance of the longitudinal

vibrations.

(
10



With these reservations, the inertia forces acting on the rod can be

reduced to a distributed loading, the magnitude of which is

Py

where m is the mass of the rod per unit length. Thus, we arrive at the

following equation,

of, Pr o
AIJx+(PG+PC"$*P+uvinO- (1.2)

for the dynamic deflections v(x.t) of the rod at any arbitrary instant

of time.

2. We will seek the solution of Eq. (1. 2) in the form

9(x. 1)--/f, (t) do- Auxt (k , 2 . . (1.3)

where fk(t) are unknown functions of time and I is the length of the rod.

One easily sees that Eq. (1. 3) satisfies the boundary conditions of the problem,

requiring in the given case that the deflection together with its second deriva-

tives vanish at the ends of the rod. We shall remind the reader that the "funda-

mental functions'

()-- do--Us

are of the same form as that of the natural vibrations and the loss of static

stability of a freely supported rod.

II



Substitution of Eq. (1. 3) into Eq. (1. Z) gives

AV A + (P, + .-, , 0 81) ] ,,..- d -o.

For Eq. (1. 3) to really satisfy Eq. (1. 2), it is necessary and sufficient

that, at any t, the quantity in the square bracket should vanish. In other

words, the functions fk(t) must satisfy the differential equation

-A+-x(h1P+P. ,l 23...) (1.4)

The notation

W- V (1. 5)

is introduced into Eq. (1.4) for the kth frequency of the free vibrations of an

unloaded rod and,

Pea M- 1JF (1.6)

for the kth Euler buckling force (the asterisk denotes this given quantity in

future problems).

12



It is convenient to represent Eq. (1. 4) in the form

+14(- 2cos 6%-0 (A-, 2, ... ),.

where 0k is the frequency of the natural oscillations of the rod loaded by a

constant longitudinal force P0 0

and Pk is a quantity which we will call the coefficient of excitation

2 (P -P O)" (1.9)

Because Eq. (1. 7) is identical for all forms of oscillations, i.e. , for all k,

we will in the future omit the indices of 1k and Rk and write this equation in

the form

f+f'(-PCoskf-I-O. (1. 10)

The prime denotes differentiation with respect to time.

13



3. Equation (1. 10) is the well known Mathieu equation. In the more

general case of the longitudinal force given by

P(t)- Po+ P,9 (f),

where t (t) is a periodic function with a period T

we arrive at

f-+-'gil -2a4(t)ll-- iO.

I
Such an equation, more general than the Mathieu equation, is usually called

Hill' s equation.

Mathieu-Hill equations are encountered in different areas of physics

and engineering. Certain problems in theoretical physics are reduced to a

similar equation, in particular the problem of the propagation of electro-

magnetic waves in a medium with a periodic structure. In the quantum

theory of metals, the problem of the motion of electrons in a crystal lattice

reduces to the Mathieu-Hill equation. The Mathieu-Hill equation is also en-

countered in the investigations of the stability of the oscillatory processes in

nonlinear systems, in the theory of the parametric excitation of electrical

oscillations, and other divisions of the theory of oscillations. Certain prob-

lems of celestial mechanics and cosmogony, in particular the theory of the

motion of the moon, also lead to Hill's equation.

1
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A vast amount of literature in devoted to the investigation of the

Mathieu-Hill equation (see, for example, Refs. 73, 74, and 75). One of

the most interesting characteristics of this equation is that for certain re-

lations between its coefficients, it has solutions which are unbounded. The

values of the coefficients cover certain re-

gions in the plane of the two parameters L

and Q, i.e. , the regions which in the phys-

ical problem under consideration correspond

to the regions of dynamic instability.

For example, Fig. 3 shows the dis-

tribution of the regions of instability for the

Mathieu equation

-Z+(X-'cos2x)ImO.

In such a form, the coefficients of the equa-

tion depend on the two parameters X and h2

which are plotted as coordinates. The

regions in which the solutions of the equation Figure 3

are unbounded are crosshatched. As is

evident from the figure, the regions of instability occupy a considerable part

of the plane of the parameters.

Therefore, to answer the question concerning the dynamic stability of

a rod, it is necessary to find on the , hZ plane a point corresponding to

the given ratio of parameters. If a point occurs in the non-crosshatched

region, it means that the initial straight form of the rod is dynamically

stable. If, however, the same point is found in the crosshatched region.

then any initial deviation of the straight form of the rod will increase in-

definitely with time, i.e. , the straight form of the rod will be dynamically

unstable.

15



The determination of the regions of dynamic instability constitutes

one of the main tasks of the theory.

02. SOME PROPERTIES OF THE MATHIEU-HILL EQUATION

1. Consider the equation

f -9Pjll-2pt(t)]fO -1.0.

in which 0 (t) is a period function with a period of

T--T. (1. 12)

With respect to this function, we shall assume that it can be represented in

the form of the converging Fourier series

* g b hc s W + % n 0 .( 1. 1]3)

Note, first of all, that Eq. (1. 11) does not change its form by adding the

period to t. This follows from the fact that

90(t+ r)"--(1).

Therefore, if f(t) is a solution of Eq. (1. 11), then f(t+T) is also its solution.

16



Let fI (t) and f2 (t) be any two linearly independent solutions of
Eq. (1. 11). Then on the basis of the previous discussion, fI (t+T) and

f2 (t+T) are also its solution, and, consequently can be represented in the

form of a linear combination of the primary functions

Il (*+ - =ila(O)+iAQ=ll), }
j,(t+)--Lmd 1 (t)+a z,(, . (1. 14)

Here ask are certain constants.

Thus, the addition of the period to t results in a linear transformation

of the initial system of solutions. If, instead of initially chosen solutions

f1, P(t), we take some other linearly independent solution, then the coefficients
of the transformation of Eq. (1. 14) generally will change. In particular, one

can try to choose solutions (t such that the secondary coefficients in
Eq. (1. 14) vanish

*g,== ==~0.

The transformation of the characteristics in this case will take its simpliest

form. It is reduced to the simple multiplication of functions by certain constants1

,(I+7) p.(+ -p(). (1. 15)
es(+ t n,-J(t)I

In contrast to Eq. (1. 14), we will introduce here the new notations

du - Pa'

1These solutions are the well-known Floquet Solutions.
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0
It is known from the theory of linear transformations (for example, see

Chapter X) that any transformation of the type in Eq. (1. 14) can be reduced

to the simplest or, as is more commonly referred to, the diagonal form

where the numbers p, 2are determined from the characteristic equation 2

6---P al , (1. 16)
I , n4-PI

2. The characteristic equation plays an important role in the theory of the

Mathieu-Hill equation since, as we will see below, it defines the character of
solution of Mathieu-Hill equation in many respects. We will now show what

this equation consists of.

Let fI(t) and f2 (t) be two linearly independent solutions of Eq. (1. 11)

satisfying the initial conditions

ft(0)-I 1. 1(0)0" (1. 17)

mo)..o. /2(o):...

Then, letting t = 0 in Eq. (1. 14), we obtain

%,- A ().

Differentiating Eq. (1. 14) termwise and letting t 0, we have

ills - f,(7).

d.-f,(7).

zFor the sake of simplicity, we have omitted here one detail which will

be explained later- the case where the characteristic equation has multiple
roots of nonlinear elementary divisors.
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Thus, the characteristic equation taken the form

,(a)-P -o() _0f9(7) /9 (7)-PI

or, if one expands the dete:rminant, it takes the form

p,-2A4+B-0. (1. 18)

In Eq. (1. 18) the following notations are assumed

D-f,(T)(7)-fa(T)A (T).

By their very meaning, the roots of the characteristic equation, and

consequently its coefficients do not depend on the choice of the solutions

f 1 , 2( t ) . One can show, for example, term B of the characteristic equation

is always equal to unity. Because the functions f1 ,2(t) are solutions of

Eq. (1. 11), then

-+ 2I- (,$ ,(01, - 0.

Multiplying the first of these identities by f2 (t), the second by fl(t), and

subtracting one from the other, we obtain

f,(ofaf()-f, (fm vo-0.
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after integrating we obtain

IiQj)(')-/, (f)/i(Oi - cont.

The quantity on the left-hand side coincides, for t = T, with the B term

in Eq. (1. 18). For the determination of the constant on the right-hand side, we

we shall set t = 0. Then, making use of the initial conditions in Eq. (1. 17),

we will find

If(T)h(lf m/(7)/t(7- 1.

Thus, the characteristic equation takes the form

ps-2Ap-+ I --0; (1. 19)

its roots, obviously, are connected by the relationship

'P, --. (1.20)

3. It was shown in No. I that among the particular solutions of Eq. (1. 1)

there exist two linearly independent solutions f'l, 2 (t) satisfying Eq. (1. 15)

4%Q +T)-p,%,(t) (t. 1, 2).

These solutions, which acquire a constant multiplier by the addition of

the period to t, can be represented in the form

e (9) -Z (t) (A-, - 2), (1.21)
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where X 1 , 2 (t) are certain periodic functions of period T. In fact,

It follows from Eq. (1. ZI) that the behavior of the solutions as t -00

depends on the value of the characteristic roots (more precisely, on the value

of its moduli). In fact, taking into account that

"ap-IaPl+1arPp,

we can rewrite Eq. (1. 21) in the following form

(1) - , (g) 8-9 ot' - 1. 0 .z2)

where ok(t) is the bounded (almost periodic) function

%)- Xa MI 8 10me

If the characteristic number Pk is greater than unity, then the cor-

responding solution, Eq. (1. ZZ), will have an unbounded exponential multiplier.

If the same characteristic number is less than unity, then the corresponding

solution is damped with increasing t. Finally, if the characteristic number

is equal to unity, then the solution has a periodic (or almost periodic)

character, i. e., it will be bounded in time.

Let

IA-4l.I(, +1,(Tl> 1.
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Then, as can be seen from Eq. (1. 19), the characteristic roots will be real,

and one of them will be greater than unity. In this case the general integral

of Eq. (1. 11) will unboundedly increase with time

A9t)- CX, (t)*"r a .i-Cy (M81 ,

However, if

< .

the characteristic equation has conjugate complex roots, and since their

product must be equal to unity, their modulus will be equal to unity. The

case of complex characteristic roots corresponds to the region of bounded

solutions. On the boundaries separating the regions of the bounded solutions

from the regions where the general integral unboundedly increases with time,

the following condition must be satisfied.

t(7)+1A()12- . (1.23)

One can make use of the Eq. (1. 23) to determine the boundaries of

dynamic instability. However for its construction, it is necessary to know

particular solutions of the problem, at least during the first period of oscil-

lation. This calculation, however, has serious computational difficulties

connected with it. Only in certain special cases is it possible to integrate

the differential equation of the type of Eq. (I. 11) in terms of elementary

functions. One of these cases will be considered in the following paragraph.
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.3. CONSTRUCTION OF THE REGIONS OF DYNAMIC INSTABILITY
FOR A PARTICULAR CASE

Let the longitudinal force change according to the piecewise -constant

law, i. e. , during the first period

P(O-P6+P,. if 0<t 4t,

Such a law of changing load is rarely met in practice. However, in the case

when t o = (T/2). we have a variation which for a small Pt can be considered

as a first crude approximation to the harmonic regime

p (t) -- P -Pl IdnWO.

This is the case to which we shall restrict ourselves in future considerations.

It is possible to write down the equation of the vibrations in the form

f+91 -2p*(O 11-0.

whe re

if O<t4 ,

*(0---. if ,<t4r.

and the coefficient of excitation, as before, is equal to
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4
During the first half of the period, the vibrations are represented by

a differential equation with constant coefficients

Its general solution, as is well-known, will be

f(f) - C si p1t + D, cos plt,

where, for the sake of brevity

The particular solution, satisfying the initial conditions f1 (O) = 1,

f(O) = 0, is

1(0 - cos pIt.

The second solution, satisfying the initial conditions f 2 (0) = 0, f(0) 1,

obviously will be
Is(0=" slnpot.

These two solutions must be extended to the second interval of time

(T/2) < t <_ T, during which the vibrations are described by

f +S(I + 2)f - 0.

The general solution of this equation will be

f(O-C, dn + Dcoopt,

where p? = 12 V I +4L , similar to the previous case. The constants C and

D 2 must be found from the condition that on the boundary of the two half-periods
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(at t = T/Z), the functions fl, 2 (t) and their first derivatives be continuous

A.(r r +-).

Substitution gives, for the continuation of the function flM

COT- -' C2 do ef + D Cs 4

-p, -doT W COT pgD, doA

Solving these equations with respect to the constants C2 and D 2 , and

replacing T = (2w)/9, we find

Cs-cs~es!P-dn!cO.!e,
~h

Similarly, for the function f2 (t)

m, -h *idsn c± - o! np

Substituting the values of coefficients C2 and D2 in the expression for f(t),

we can calculate

A- ,(I)+/(7),.

4*2
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After a number of cumbersome transformations, we obtain

A -cos P-- - n n . (1.24)

In conformity with the results of the preceding paragraph, we can con-

clude that for

the equation of the problem under consideration does not have unbounded in-

creasing solutions-the initial straight form of the rod is dynamically stable.

For

I=$C08k- '2 ~ sin

the amplitudes of the transverse oscillations will unboundedly increase with

time. The equation

Im~Jcs~- (.25)

Wo -permits one to determine the boundaries of the
Ax - I I regions of dynamic instability. This equation

Scan be found in many references. (See, for

E example, Ref. 76)

La - Detailed calculations are carried out in

the work by V. M. Makushin (Ref. 30). One

•- * of the diagrams from this work is shown in

Fig. 4. The regions of instability are cross-
4 hatched.40-

0 - 4g5 4U4DA IP. Equation (1. 25) can be generalized for

Figure 4 the case when the longitudinal force changes
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according to an arbitrary piecewise-constant law. The corresponding

equat'on has the form

1(2 cooP 1 pt.dop,4 t 'h d-- ip 10cos NO4) sin p1

+(2cos,scos.M + j4 do pjn,,,)u OPtT.m 1.

A discussion of the results will be postponed until later.

94. DERIVATION OF THE CRITICAL FREQUENCY EQUATION

1. A method of determining the regions of instability is presented in the

following for the case of an arbitrary periodic function, given in series form

inEq. (1. 13).

It was shown in .2 that the region of real characteristic numbers

coincides with the region which has unboundedly increasing solutions of

Eq. (I. 11). On the other hand, the region of complex characteristic roots

corresponds to the bounded (almost periodic) solutions.

Multiple roots occur on the boundaries dividing the regions of real and

complex roots; moreover, as follows from Eq. (1. 20), such roots can be

either pl = p2  1, or P1 = p2 = -I.

In the first case, as seen from Eq. (1. 15), the solution of the differential

equation will be periodic with a period T = (2w)/@; in the second case 3 we will

have the period 2T.

Therefore, the regions with unboundedly increasing solutions are

separated from the regions of stability by the periodic solutions with a period

3A more detailed analysis shows that only one of the particular solutions
will be periodic. The second solution will have the form

fAt) = X1 (t) + tx 2 (t)

where Xl(t) and x2(t) are periodic functions of time.
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T and 2T. More exactly, two solutions of identical periods bound the region

of instability, two solutions of different periods bound the region of stability.

The last property is obtained easily from the following considerations.

Assume that in the interval between p = 1 and p = - I lies the region of real

roots (the region of instability). As a consequence of the continuous depend-

ence of the characteristic roots on the coefficients of the differential equation,

there must then be among them the root p = 0, and consequently, also p = co,

which is impossible. Thus, the roots p = I and p I - bound the region of

the complex roots, i. e. , the region of stability.

2. From the preceding discussion, it follows that the determination of the

boundaries of the regions of instability is reduced to finding the conditions

under which the given differential equation has periodic solutions with periods

T and ZT. From the viewpoint of the physical problem considered here,

such results seem completely natural. Indeed the periodic motion is essen-

tially the boundary case for oscillations with unboundedly increasing ampli-

tudes.

To find conditions for the existence of periodic solutions, we can often

proceed in the following manner (see, for example, Ref. 7). Having intro-

duced the "small parameter" p. (the coefficient of excitation, for example,

can be accepted as such a parameter), one seeks the solution to

f+Q'II -2&0()Jf-0

in the form of a power series of 1L

I A + + Phs+...

Here fk are unknown functions of time. Substituting this expression in thek k
initial equation and equating the coefficients having the same p. , one obtains

4A rigorous proof of this theorem can be found in the book by M. J. 0.
Strutt, Ref. 73.
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a system of differential equations with constant coefficients which can be

solved by the method of successive approximations. The solutions found in

this manner have limitations imposed on them in the form of the requirement

of absence of infinite terms, i. e. , the requirement of the periodicity of

solutions.

However, the conditions for the existence of periodic solutions can be

obtained in a different manner, i. e., without the application of the method

of perturbation of small parameters borrowed from non-linear mechanics.

The fact that the periodic solutions do exist and that they can be expanded into

Fourier series is known. This permits one to seek the periodic solutions of

Eq. (1. 11) directly in trigometric series form. As an example, we shall

apply this method to the Mathieu equation

f +I(I-2pcos of-O. (1.26)

We seek the periodic solution with a period ZT in the form

As- (skUIt+b.CO4) (1.27)
iI,II,

Substituting Eq. (1. 27) into Eq. (. 26), and equating the coefficients of iden-

tical sin (k#t)/Z and cos (kft)/2 gives the following system of linear homo-

geneous algebraic equations in terms of ak and bk;

( %_ + ~ a" - 0 Qt--.0,..()a-aa.s a*J O (,5..7....).

Note that the first system contains only coefficients ak , the second contains

only bk -
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3. As is well known, the system of linear homogeneous equations has 4
solutions different from zero only in the case when the determinant composed

of the coefficients of this system is equal to zero. This also holds in the case

when the system contains an infinite number of unknowns. Thus, the fact

that the determinants of the homogeneous systems obtained are equal to zero

is the condition for the existence of the periodic solution of Eq. (1. 26). Join-

ing the two conditions under the * sign, we obtain

.0. (1.28)
0 1-p - .

This equation relating the frequencies of the external loading with the

characteristic frequency of the rod and the magnitude of the external force

will be called the equation of critical frequencies, where critical frequencies

are understood to be the frequencies of the external loading 0 corresponding

to the boundaries of the regions of instability. Equation (1. 28) makes it pos-

sible to find regions of instability which are bounded by the periodic solutions I
with a period ZT. To determine the regions of instability bounded by the

periodic solutions with a period T, we proceed in an analogous manner.

Having substituted into Eq. (1. 26) the series.

f(O-bO (ai4 n+b'COS T 1

we obtain the following systems of algebraic equations:

(k4 .... ).
I - all s--, e+.-0.

(I + a" -0.

(-(-i,. .... ).
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Equating the determinant of the obtained homogeneous system to zero,

we arrive at the following equations for the critical frequencies

I-i I- 0-s" - l g

0 ...

and

_ P 0 0 ..
IsI-P -p

0 -p I- -P ... -0. (1.30)

0 0 lop
................

4. The determinants obtained in No. 3 are infinite and, therefore, the

question of their convergence must be considered.

One can show that these determinants belong to a well-known class of

converging determinants, i. e. , to normal determinants. The determinant

I+ctt Cn Cis ...

A= es I- Ci ... (1.31)CIS % tqC ...

5 See Ref. 77. Infinite determinants were investigated for the first time

in connection with the integration of the Hill equation (Lunar Theory, 1877).
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is called normal if the double series

A A

is absolutely convergent.

We can examine, for example, the determinant in Eq. (1.28). When we
multiply the kth row!(k = 1,2,3, ... ) by- 4n2/[ 2k- 1)282 it can be reduced to

the same form as Eq. (1. 3.), where

cmuhf(A--I),

--(f - ns~s (k ,i I);4p

C4 QLi -- (1±1).

(2kL -± I)'.0 O 0 * - 1).

Constructing the double series

i

we can prove that it converges absolutely. Actually we have the inequality

f-2k- k-: -
t-1 ht-t k-I

where the series standing on the right side is convergent.

One can prove analogously the convergence of the remaining determinants.

95. DETERMINATION OF THE REGIONS OF DYNAMIC INSTABILITY

1. For the clarification of the general character of the distribution of the

regions of instability, we will examine the case of a very small periodic

component of the longitudinal force. Letting t - 0 in Eqs. (1. 28). (1.2)
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and (1.30), we find that for very small values of K the solutions with a period

ZT lie in pairs in the vicinity of the frequencies

0,--0 (A -1. 3. 5,..)

and with a period T in the vicinity of the frequencies

0.--2 (k-2. 4. 6, ... ).

Both cases can be combined in one formula

O.- (-, 2, .... ). (1.32)

Equation (1. 32) gives the relationship between the frequencies of the

external force and the frequencies of the natural vibrations of the rod, in the

vicinity of which the formation of unboundedly increasing oscillations is pos-

sible; namely, close to these relationships, the regions of the dynamic in-

stability of a rod can be found.

We shall distinguish the first, second, third, etc. , regions of dynamic

instability according to the number k contained in Eq. (1. 32). The region of

instability situation near 0* = Zn is, as will be shown later, the most dan-

gerous and has therefore the greatest practical importance. We will call this

region the principal region of dynamic instability.

The origin of the resonance at 0 = 20 is easily seen from the following

argument. Imagine that the rod (Fig. 2) oscillates in the transverse direction

with the natural frequency Q. During this oscillation, the longitudinal dis-

placement of the moving end also will be a periodic function of time, having

however the frequency 20. Indeed for every period of transverse oscillation,

two periods of oscillations of the moving support occur. To sustain the reso-

nant oscillations so that the external force applied at the moving end has a

frequency 20, it is necessary that 0 = 20.
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Before going on to further calculations, note the pecularity of this unique

parametric resonance. If ordinary resonance of forced oscillations occurs

during coincidence of the natural and exciting frequencies, then parametric

resonance occurs during the coincidence of the exciting frequency with a

doubled frequency of the natural oscillations. Another essential difference of

parametric resonance lies in the possibility of exciting vibrations with fre-

quencies smaller than the frequency of the principal resonance. Finally,

qualitatively new in parametric resonance, is the existence of continuous re-

gions of excitation (regions of dynamic instability), which we will now go on

to calculate.

2. Since we are considering infinite determinants, the calculations can be

expediently performed by systematically investigating the first, second, third

and higher orders of the determinant. Hence the difference between two suc-

cessive approximations serves as a practical estimation of the accuracy of

computations.

For numerical calculations it is possible to represent the infinite 4
determinants of the type in Eq. (1.28) in the form of chain fractions. We will

show this on an example for the determinant

a, 1 0 0...

I as 1 0... -o
0 1 a. I ...

(any of our determinants can be reduced to such a form).

We will systematically expand the first, second and higher orders of

the determinant. The equation of the first approximation evidently will be

a1  0. In the second approximation, we obtain

at--=0.

34



The equation of the third approximation is

which can be reduced to the form

and the general equation is represented by the form

at-ns 0 (1.33)

Consider the determinant in Eq. (1. 28), in which

I&u - (2 - )sP] (k >2).

and Eq. (1. 33) assumes the form

-OF- ---

o r
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The formula obtained is especially convenient for the application of the

method of successive approximations. Substituting an approximate value for

the critical frequency on the right-hand side, we will obtain a more exact

value each time. 6

3. The advantage of the method described above is that it permits one to

calculate the boundaries of the regions of instability with as high an accuracy

as desired. At this point, we will not do any numerical calculations but will

try to develop somewhat different formulas for the boundaries of the regions

of instability.

We will examine Eq. (1.28) to determine the boundaries of the principal

region of instability. Retaining the upper diagonal element, i. e. , "determinant

of first order, " and equating it to zero

± -:L--- 0.

we obtain the approximate formula for the boundaries of the principal region

so - 22p 19 (1.34)

As is well-known, N. M. Beliaev derived the equation

Is 2aifI [ :- 4 (P*-P)

which in our notations takes on the form

4.i.29 (1 ±jt-o).

6 1n this manner N. M. Beliaev, (Ref. 4) calculated the boundaries of
the principal region of instability.
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This formula was obtained by means of interpolation according to the results

of separate numerical calculations of the Hill determinant, and can be con-

sidered sufficiently accurate. It is not difficult to see that up to the value

= 0. 5, both equations give practically identical results.

To increase the accuracy of Eq. (1. 34), we will consider the second

approximation

O -0. (1.35)

Substituting the approximate value of the critical frequency of Eq. (1. 34) into

the lower diagonal element of the determinant in Eq. (1. 35), which affects the

final results only slightly, and solving the equation with respect to 0, we obtain

I* - 2Q

where the last term under the radical takes into account correction for the

second approximation. This correction increases as Rt increases, but even

at Ii = 0. 3 it does not exceed one percent. Thus, the accuracy of the very

simple Eq. (1. 34) is shown to be sufficient for practical purposes.

The result obtained is best understood if one remembers that "the

determinant of first order" in Eq. (1.28) corresponds to taking into account

the erfect of the first terms of Eq. (1.27), i.e.

1()--a -. W + b cos

The first approximation gives good results, signifying that the periodic

solutions on the boundaries of the principal regions of instability are close to

harmonic vibrations. We will return to this deduction later on.

7 This value as follows from Eq. (1.9) corresponds to the case which is
hardly reached in practical problems: P-+P-P,
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Let us dwell upon one interpretation of Eq. (1. 34). Rewriting this

equation in the form

we can compare it with Eq. (1. 8), which determines the natural frequency of

a rod loaded by a constant axial force

Comparing these equations, we can arrive at the conclusion that the frequen-

cies corresponding to the boundary of the principal region of dynamic in-

stability for the first approximation can be determined as the doubled fre-

quencies of the natural oscillations of the rod loaded with the constant

longitudinal forces P + I/ZPt and Po- 1/2Pte respectively.

To determine the boundaries of the second region of instability, it is

necessary to consider Eqs. (1. 29) and (1. 30). By restricting ourselves to

determinants of second order

I P 4 I .i gO

we obtain the following approximate formulas for the critical frequencies

1, (1.36)
I. M QYT'-2'p.
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These equations can be made more accurate if one considers determinants of

higher order. 8

To calculate the third region of instability, one must refer to Eq. (1. 28).

Thus, proceeding from the determinant of second order, Eq. (1. 35), one

obtains

* (1. 37)

Comparing Eqs. (1. 34), (1. 36), and (1. 37), we see that the width of

the regions of dynamic instability rapidly decreases as the number of the

region increases

A' P' A, A .... (1.38)

The principal region of instability has the greatest width.

The distribution of the first three

regions of instability on the plane ( , 0/

2fl) is shown in Fig. 5 (the regions of - -

instability are crosshatched). In con- so

trast to Fig. 3, the values X-1/2 are

plotted here on the vertical axis and 4 -- -

the vaules h /2 on the horizontal axis.
In addition to this, Fig. 5 considers o ; -

only that part of the plane of the changed 4# - - /

parameters which is of practical inter- .-.

est. This part of the plane is surrounded

by a frame in Fig. 3.
8 41 4: VJ 44

Figure 5

I1n the literature (see for example Chelomei, Ref. 17), one can find the
assertion that the second, and generally the even regions of instability de-
generate into curves. This assertion is incorrect; the source of the error
is in the poor choice of the zero approximation in "the method of the small
parameter."
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CAW The regions of instability on the plane

- - (P0 /P*, 0/211) appear in Fig. 6. The ratio

P t/P is constant ahd is equal to 0. 3. As

to Pt -P 0, the regions of instability degenerate

4, .into the backbone curves given by

46 )rI p 'N5 - (h -, 1, 2, 3...)

0 . The boundaries of the regions cannot be ob-

-4- . \ tained from Eqs. (1. 34), (1.36), and the other

- equations when P /P.. is large. Here one

: 44 48 48 f must use the Mathieu diagram (Fig. 3) or

tables of the eigenvalues of the Mathieu
Figure 6 equation. 9

4. We shall briefly dwell upon the application of the method stated above

to the more general case of the Hill equation. Let the longitudinal force

change according to the law

a

S- P "- klPt cos hOt.

The corresponding equation will be

r* +.- 0'(1 - 92pcoskS)f=.. (1.39)

where

9 See Ref. 73. The construction of the regions of instability for the case
of large coefficients of excitation was done by Lubkin and Stoker (Ref. 11).

4
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Again we seek the periodic solution in series form

substituting this equation into Eq. (1. 39), we obtain, for the critical

frequencies:

o ',:i P I ps-w...
"P+:L'POI -- - o""0 - .. ,0. (1.40)

-- ": Pi - (p, d"" P) 1 1-- P. --'V ...

. ..... ..............

The rest of the equations have an analogous form. Retaining in them

the diagonal elements, i. e. , neglecting in the final computations the influence

of the harmonics, we obtain

G* 2'V±Ip_ Qt m 1, 2.3...) (1.41)

Comparing this equation with Eq. (1. 34), which corresponds to the
case of a harmonically changing longitudinal force, we see that in the first

approximation, each region of instability depends only on the corresponding

harmonic in the expansion of the longitudinal force. This case was observed

already by N. M. Krylov and N. N. Bogoliubov (Ref. 5). The influence of

the ith harmonic on the width of the kth region of instability comprises the

magnitude of the order (I k * 2±i) , as is seen from the equation of the critical

frequencies.

We will apply the results obtained to the case when the longitudinal

force changes according to a piecewise-constant law (93). Having dis-
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placed the initial instant of time by T/4, we present the expression for the

longitudinal force in the form of the trigometric series

Pt)--Po+! -Cosho,,

which converges uniformly everywhere with the exception of the points at

which the magnitude of the longitudinal force changes. We obtain

4~=~IP.

where

I-' . -, PO) •

For this case Eq. (1. 41) gives I
p (h - 1'3, 5,. (1.42)

Comparing Eq. (1. 34) with the equation obtained for k = 1, we arrive

at the conclusion that, in the case of the rectangular variation of longitudinal

force, the principal region of instability appears to be approximately 4/it

times wider than that described by the Mathieu equation.

The harmonic longitudinal force is sometimes replaced by a force

changing according to the piecewise-constant law, its amplitude being deter-

mined from some other prior consideration. This replacement can be

justified when discussing the principal region of instability. Qualitatively

incorrect results are obtained, however, if the secondary regions are con-

verted to a piecewise-constant law of changing longitudinal force. Thus, the

third, fifth and, generally the odd regions of instability for the case of a
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k
harmonic longitudinal force have a width of the order A 0/i - t' , but in the

case of piecewise-constant law the width is of the order AO/n -. p/k.

*6. SOME EXPERIMENTAL RESULTS

The experimental verification of the theoretical results presented above

can easily be carried out in the laboratory (Ref. 56). One of the possible

designs of the experimental setup is shown in Fig. 7.

The test fixture is assembled on the base 4

of a vertical impact pile-driver. The specimen

(No. 3 on diagram) made of flat-bar steel is

placed between the guides of the pile-driver

(No. 4), while the stationary support of the

specimen is fixed on the lower plate and the

moving support slides in the guide. This in-

stallation provides free vertical translation of Figure 7

the moving end of the rod; free rotation of the support cross sections is pro-

vided by means of ball bearings. All this allows thc conditions of the test to

approach the theoretical conditions.

In the author's experiments, strain-gages in conjunction with a loop

oscillograph registered and recorded the oscillations. To eliminate the de-

formations due to axial compression, two gages were used, one of which was

posted on the tension side and another on the compression side. The gages

were connected in parallel to the circuit of a measuring bridge, i.e. , in the

two adjacent arms so that the influence of the deformation of the opposite sign

is doubled and eliminates the compression deformation.

The gages (constant) had the sensitivity s = Z. 1 and a resistance of

ZOO 0. An ac amplifier was used, with a carrier frequency of 8000 cps. A

type B-4 vibrator was used. The characteristics of the vibration were: sen-

sitivity was I mm/ma, natural frequency of the system in air 3500 cps, re-

sistance 1 (1, and maximum current 100 ma.
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The eccentric vibrator (No. 2) produced the periodic component of the

longitudinal force. The frequency of the load was determined by a sliding

contact on the shaft of the vibrator, periodically closing a circuit connected

in the system. This simple device made it possible to determine not only the

phase time, but also the phase angle between the external force and the ex-

cited vibrations.

The experiments confirmed the theoretical conclusion concerning the

existence of a continuous region of dynamic instability. Generally, the

periodic longitudinal force induces transverse oscillations at any frequency.

The amplitude of these oscillations is negligible, and the oscillations take

place with the frequency of the external force. These oscillations are ob-

viously dependent on the initial eccentricity of the longitudinal force. How-

ever, in a certain range of frequencies lying in the vicinity of 0 = 21, strong

transverse oscillations develop with amplitudes increasing to high values.

Characteristically, this growth, at least initially, follows the ex-

ponential law (Fig. 8). This is in complete agreement with theoretical re-

sults, according to which the solution of the Mathieu equations on the

boundaries of the regions of instability have the form

(S) =(s .

where In p is a real quantity.

Figure 8
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At this point, it is worth mentioning the experiments concerning the

parametric excitation of electrical oscillations conducted under the guidance

of L. I. Mandel'shtam and N. D. Papalski (Ref. 78). Figure 9 shows an

oscillogram of the growth of the current in an oscillatory contour, the

inductance of which periodically changes with time by means of the aid of

an external mechanical force (Ref. 79). The character of this oscillogram

if a perfect analogue to our oscillograms. In particular, in both cases the

amplitude growth follows an exponential law. Further growth of amplitude

is slowed down and finally stops, which in both cases is caused by the effect

of non-linear factors. This question will be examined in detail somewhat later.

Figure 9

The experiment confirms not only the qualitative but the quantitative results,

and in particular, Eq. (. 34). In using this formula, however, one must take

into account that the force developed in the vibrator increases in proportion

to the square of the frequency. It is possible to write down that

where Pt is the amplitude of the longitudinal force which the vibrator develops

at the frequency Z0. By considering this relation, and from Eq. (1. 34), we

obtain

45(P-
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or the shorter form

O0- 20 (1.43)

The principal region of instability, the boundaries of which are determined

from Eq. (1.43) is shown in Fig. 10. On the same curve, the experimental

results are plotted, which obviously agree

ZJ well with theory. The boundaries of the

principal region of instability emerge very

precisely at the appearance of oscillations

occurring with a frequency less than twice

that of the external forces, can be established
44M with high accuracy. Outside the region of

4Z5 instability, as already mentioned, the steady-

o' , state oscillations occur at the frequency of
41 4Z 4 4a the external load (Fig. 11).

Figure 10 The above results are related to the

principal region of instability. No correlation could be found experimentally

regarding the second, third, and higher number regions-at least for a small

amplitude of longitudinal force. 10 It is true that in approaching the synchronism

0 f, the intensity of oscillations occurring with a given external force

a b

Figure I I

amplitude increases somewhat. However, the region of increase in vibration

amplitude is not bounded by some narrow band of frequencies, but spreads

1 0 Translator's note; These secondary regions were found experimentally
by Utida and Sezawa (Ref. 10) and Weingarten (Ref. 80*)
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far beyond the limits of the boundaries predicted from theory. This result

gives a basis for supposing that similar oscillations are produced by the

influence of additional factors such as eccentricity and initial curvature.

As we will see in the following sections, this lack of agreement between

theory and experiment for the secondary regions of instability can be

removed by considering the problem with damping.
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CHAPTER TWO

THE INFLUENCE OF DAMPING ON THE

REGIONS OF DYNAMIC INSTABILITY

.7. INVESTIGATION OF THE DIFFERENTIAL EQUATIONS

1. For reasons which will be understood by the reader later on (e 11), we

will restrict ourselves here to the effect of linear damping. More precisely,

we will consider forces of resistance which introduce into the differential

equation an additional term with a first derivative of the displacement with

respect to time:

/'+ 2a' (1 - 2,cos it)==O. (2. 1)

The coefficient of damping 4 will be determined experimentally for each

case.

We write the solution of the differential equation, Eq. (2. 1), in the form

At)- a (t). V(t).

where u(t) and v(t) are at present unknown functions of time. A substitution

in Eq. (2. 1) gives:

v"+ - (i'+ e)+ %P( - 2&cosft) av+ uvr+ 2 uv' = 0

We will require the coefficient of ul to vanish in the above expression. In

this way we arrive at the following two differential equations

a'w + Q(I - €os a,+ a+ 2 =0.: o,
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The second equation gives v = Ce' t; after substituting back in the

first equation and dividing by Ce - et , we obtain

U-+12( I- -!-- 2pco01)u U 0. (2.2Z)

The Mathicu-Hill equation thus obtain,'d differs from the equation of the

conservative problem, Eq. (1. 10), by the presence of an additional damping

term which represents a correction to the frequency

a.=0/ 1-j. (2.3)

As already shown in Eq. (1.21), the two linear independent solutions of

the Mathieu-Hill equation have the form
e

, (t) /I- W Ct f 'p,

where X l ,z(t) are periodic functions of period T, and p1 2 are roots (A' Ihe

characteristic equation. These roots are connected by the relationship in

Eq. (1. 20)

p .p,~ I.

Returning to Eq. (2. 1), we can represent its solution in the form
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or, isolating the real part of in p, in the form

I, (t) -y., (I) ,xp ( , j- s), 1
h (M -=,.(?I x M (4,,-.,). T (4)

Here, as before, 1, 2 (t) are bounded (almost periodic) junctions

YQ) - Xg (1) ~* Uh,

2. One easily sees that the behavior of the solutions of Eq. (2. 1) depends

on the relationship between the coefficient of damping * and the real part of

In p. This means that the solutions will unboundedly increase when

G<.i

and will be damped when

a>-l.

In examining this question in more detail, let the characteristic numbers

Pl, 2 be complex conjugates; then,

12PIl-0.

and both solutions lead to vibrations which are as quickly damped as the

corresponding free vibrations:

AM (- (O-".
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We will now investigate the cases of real roots; moreover, we shall

assume

Then the first solution will be damped with time; for the second

solution,

I (M S () exp GI In P - ,t.

two cases must be investigated. If

then the second solution will be damped. If, however,

then the second solution, and consequently the general integral, will un-

boundedly increase with time.

We will investigate the boundary case

Ine

It is of special importance to us that the second solution be periodic: namely,

at p > 0 a period T will occur, and at p < 0, a period ZT.

Thus, the problem of finding the regions of instability for Eq. (2. 1) is

reduced to the determination of the conditions under which A has periodic

solutions with periods T and ZT. Here, also, two solutions of an identical

period bound the region of increasing solutions and two solutions of different

periods bound the region of damped solutions.

(
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Note that the regions of instability for Eq. (2. 1) lie inside the regions of

instability for Eq. (2. 2). The latter describes, by the way, the vibrations

of a conservative system with a frequency calculated with corrections for

damping.

.8. DERIVATION OF THE EQUATION OF THE CRITICAL FREQUENCIES
INCLUDING THE CONSIDERATION OF DAMPING

Further calculations are not difficult. For determining the conditions

under which Eq. (2. 1) has periodic solutions with period 2T, we substitute

into this equation the seriesI

1(f)- 2 (ohk On~b~o~
k-I.e.'

and carrying out the trigometric transformations, we then equate the co-

efficients of the same sin (ket)IZ and cos (ket)/Z. As a result, we obtain

the system of linear algebraic equations:

(n 3I b ,=0,
J--Q -t' ,--' a,-O

----------)As t(aFa+ a = O (2.5)

(A- 3. 5 ....)

where a denotes the decrement of damping of the natural oscillations of a

rod loaded by a constant component of longitudinal force

A P (2.6)

IThis method was applied by Rayleigh (Ref. 1), for investigating the condi-
tions necessary for "sustaining motion." See also Ref. 29.
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Equating the determinant of the homogeneous system Eq. (2. 5) to zero,

we obtain an equation for the critical frequencies

I e A 30fix -- -7-W

- IL Z" 0 -0. (2.7)

0 £o ";' - l--t.-4-Ts --t

A 30 9O

7W0 IS I-p4

This equation makes it possible to calculate the boundaries of the region of

instability which lie near the frequency

e. A (k= I, 3, 5,...).

The second equation is obtained by taking a solution in the form of the

series

IQjbo ~ sin kt+ 't Cos k

A substitution of this series leads to a system of equations

b*pa- Vbl=0.
1-- kW- ---- Aah +=0,

(i -. )b,--p(2bo~b+.j ' (.8

• .a,= 0

(h= 4,6....).
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The equation of the critical frequencies

T - ...... 0 .......... ...
-p0 0 - !- .o(2

0£20 0

0 0 0 - I--s9

makes it possible to find the regions of instability which lie near

4, =r (k =2, 4, 6, ... ).

It is easy to see that at A = 0 the equations obtained coincide with the

equations of the conservative problem, Eqs. (1.28), (1.29) and (1. 30).

Furthermore, let us consider the case when g'- 0 which corresponds

to an infinitely small amplitude of the longitudinal force. The determinant,

Eq. (2.7), takes the form

A()-=&A(). 4 (0) .. . ).... (2. 10)

for this case, where

IAm' A A

all (4) 4W - , •'
1 iN 1--0

One can write the determinant, Eq. (2. 9), in an analogous form

A () -,().At()... A s).... (2. 1)

where A k(e) is defined as before.
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Since all 400) > 0, the determinants in Eqs. (2. 10) and (2. 11) cannot

take zero values. Owing to the uniformity of the determinant, the determin-

ants on the left-hand side of Eq. (27) and, respectively, Eq. (29) are not

equal to zero for a sufficiently small value of the exciting parameter. In

other words, in the presence of damping, the loss of dynamic stability of the

straight form of the rod can occur only at values of the amplitude of the longi-

tudinal force greater than a certain minimum value.

The determination of these values (which we will call critical later on)

represents general practical interest.

e9. DETERMINATION OF THE CRITICAL VALUES OF THE
COEFFICIENT OF EXCITATION

I. We begin with the principal boundary of the region of instability, for

which purpose we retain in the determinant, Eq. (2. 7), the central elements.

a O i -0. (2.12)

Solving Eq. (2. 12) with respect to the excitation frequency, we obtain

a* .= 291f I - A :-". As i

Since the decrement of damping A is usually very small compared to unity

(A = 0. 01 - 0. 05), we can simplify the formula obtained by neglecting the

terms containing higher powers of A/w:

6* =29 )( Ij :t (2. 13)

We will investigate Eq. (2. 13). As long as the expression under the

inner radical is positive, for the critical frequency this formula gives two

real values which correspond to two boundaries of the principal region of
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instability. The limiting case (Figure 12)

determines the minimum value of the coefficient of

excitation for which the occurrence of undamped os -

cillations is still possible. Thus, the critical value

of the coefficient of excitation is

A
Isin== . (2. 14) Figure 12

Equation (2. 14) shows that the greater the damping, the greater the

longitudinal force required to cause dynamic instability of the rod. Note

that the influence of damping manifests itself to a noticeable degree only for

small coefficients of excitation. Therefore, the boundaries of the region of

instability determined according to Eqs. (1. 34) and (2. 13) for IL > 21 prac-

tically coincide.

2. We shall proceed now to the determination of the boundaries of the

secondary regions of instability. We equate the determinant composed of the

central elements of the determinant in Eq. (2. 9) to zero:

IF aV

0 I -P -0.

The solution of this equation gives

The minimum value i• for which Eq. (2. 15) gives two real values for the

frequency is found from the condition
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Solving this equation, we find approximately

pot (2. 16)

For determining the boundaries of the third region of instability we

return to Eq. (2. 7), retaining it in all the written elements. The exact

solution of such an equation is difficult, therefore, we will substitute the

approximate value of the critical frequency, 0,:. = (20)/3 in all the elements,

which only slightly influences the final result, i. e. , in all except the upper

and lower diagonal elements. Equation (2. 7) can be rewritten then in

the form

0 0

a S =-0,

0 - A 0

where, for simplification, we let

9P

4
Resolving the determinant and neglecting magnitudes of order (A/I)

(&/W)6, etc. , we obtain

8 Pot ~ U64 2

64= (2. 17)

The critical frequency is calculated according to the equation

** 2(. 18)
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where g is determined from Eq. (2. 17). One can see from Eqs. (2. 17) and

(2. 18) that the third resonance occurs only when

S64 2 s

which gives approximately

Combining Eqs. (2. 14), (2. 16) and (Z. 19), we arrive at the conclusion

that for the excitation of oscillations at the critical frequency of the kth

order,

0.,=~ ( = 1k--, 2. 3 ... )

it is necessary that the coefficient of excitation exceed the critical value

P(e- 1. 2.3....). (2.20)

3. Now one can finally answer the question as to why the principal region

of instability is the most critical.

A graph of the distribution of the regions of instability including damping

is presented in Fig. 13. The graph differs from the corresponding graph for

the conservation problem (Figure 5). The presence of damping cuts off that

part of the regions of instability which border on the axis of the ordinate, and

makes impossible the onset of resonance for sufficiently small coefficients

Pf excitation. It is interesting to note that the effect of damping, which is

not essential for the principal region of instability, becomes particularly

noticeable with respect to the secondary regions. This is seen not only from

Figure 13 but from Figure 14 as well, where the dependence of the critical

coefficient of excitation of the damped rod is shown.
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For example, fc~r a decrement of damping A = 0.01, the lowest value

of the coefficient of ewccitation at which principal resonance can still occur

is - -1 
= 0.0032. In other words, principal

U/IS resonance can be realized with an amplitude

P of the periodic force which is less than

one percent of the Euler value. For the

second resonance we obtain 0.057,

i. e. , a value seventeen times greater, which

corresponds to a periodic force amplitude

St t' approximately 12 percent of the Euler

44 value. Still larger longitudinal forces are

required in order to excite the third, fourth,
4and higher orders of resonances. Such values

of the coefficient of excitation are rarely
found in engineering practice.

Figure 13

The consideraticns mentioned above show what an important role

damping plays in problems of dynamic stability of elastic systems. Unfortu-

nately a systematic stLadyof the damping of engineering structures is not

available. More studies have been made on that part of damping which is

related to the dissipation of energy in the material of vibrating structures.

But, even in machine lemrents where the character of the work tends to

#0* -1- I I reduce the external loss of energy to a minimum,

0Z5 - 00 the internal dissipation of energy comprises only

0O a small part of the general losses. In structures,

415 - -- the role of the external loss (the loss in the sup-

0 - ports and couplings, and the loss in the environ-
45 Ka I ment) is undoubtedly much greater. Therefore.

401 4 4043046A/a it is only possible to approximately indicate the

limits of the variation of the decrements of

Figure 14 damnping (for steel constructions A - 0.005 - 0,05).
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I
In any case, the above analysis shows that the principal region of

instability is the most critical; the second and, even more so, the third

regions of instability can be realized only with sufficiently large amplitudes

of the longitudinal force.

.10. THE GENERAL CASE OF ANY PERIODIC LOAD

Above, we considered in detail the case of a harmonically varying

longitudinal force. For the more general case of periodic loading, we

shall confine ourselves to brief remarks.

It is evident that all the arguments mentioned in e7 are also valid

for the case when the loading is given in the form of the series

P (O)-P. + . c, hM.

The differential equation of the problem will be

f+ f+Q(I 2Facoshk)IO0 (2.21)

where

The periodic solutions of Eq. (2. 21) correspond as before to the boundaries

-of the regions of dynamic instability. Letting

1()- 1
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we arrive at the equation of the critical frequencies

AG 00 ; A 3(
0(z. _T N
A 1 00

o7 0 0 0. (Z.2)

A0 0 0 ,- _ _

This equation makes it possiblwe tr te the boundaries of all the odd

regions of instability. For the even regions of instability we obtain

; -,.. ....... ...............
nE+pd2.) eIa+ dow it s

0 a o T -0 2. (2.23)
0 .- I --2ipa I--P -(--I)

A 0 2,lO

In the first approximation we try to neglect the mutual effect of

separate harmonics in the expansion of the longitudinal force. The determi-

nants of Eq. (2. 22) and 2. 23) break down into separate equations

AM Aa
I W _7W 0 (k- m!, 2, 3..... (2. 24)
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From Eq. (2. 24) one can find a relationship between the parameters which is

necessary to excite the first, second, and higher resonances:

pl._ (k 1, 2, 3, ... ). (2.25)

According to this formula, the formation of the kth resonance depends

solely on the kth harmonic of the longitudinal force. To take into account

the influence of the remaining harmonics, one must retain the additional

elements in the determinants of Eqs. (2. 22) and 2. 23).

As an example, we shall investigate the case of the piecewise-constant

law of variation of the longitudinal force (o 5, No. 4). In this case

4P-- (k- , 1. . 5 .. ..

and Eq. (2. 25) gives

> ( -- . 3 . 5 ...

It is easily seen that in the case of piecewise-constant longitudinal

force,' the danger of secondary resonances is somewhat greater. Thus at

a decrement of damping A = 0.01, the third resonance can occur with a

coefficient of excitation

3 - 0.0075

(instead of L = 0. 253 in the case of a harmonic longitudinal force).

In the example investigated, the boundaries of the regions of instability

can be determined with the same accuracy by means of the application

of the criteria mentioned in * 7, No. 2. In fact, the characteristic roots

in this case are found directly from Eq. (1. 19), where A is determined
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according to Eq. (1. 24). The equation for the computation of the boundaries

of the region. of instability has the form

sr m in JA ±tY---

whe re

A 6Ps + P sin 'Pa n
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