
UNCLASSIFIED

AD295 720

ARMED SERVICES TECHNICAL IN--AON AGENCY
ARLINON HALL SATAION
ARLINGIN 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



R63SD4

MAG NETO HYDRODYNAMIC BOUNDARY LAYERS *

A. SHERMAN

SPACE SCIENCES LAJ30RATORY

cftq GENERAL* ELECTRIC
MISSILE AND SPACE DIVISION

*THIS WORK WAS SPONSORED BY THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH,

OFFICE OF AEROSPACE RESEARCH, UNDER CONTRACT AF49(638)-914



SPACE SCIENCES LABORATORY
AEROPHYSICS SECTION

MAGNETOHYDRODYNAMIC BOUNDARY LAYERS*

by

A. Sherman

This work was sponsored by the Air Force Office
of Scientific Research, Office of Aerospace Research,
under Contract AF 49(638)-914.

R63SD4
January, 1963

MISSILE AND SPACE DIVISION

GENERAL@ ELECTRIC



CONTENTS PAGE

12.1 Introduction 1

12.2 The Rayleigh Problem 2

12.3 Formulation of Boundary Layer Equations 9

12.4 Incompressible Boundary Layer Flows 13

12.5 Compressible Boundary Layer Flows 19

12.6 Magnetic Boundary Layers 29



FOREWORD

This report has been written as Chapter 1Z

of a forthcoming book, Engineering Magnetohydro-

dynamics. References to other chapters refer to

other chapters in that book.



12.1 INTRODUCTION

The subject matter to be covered in the present chapter will consist of

Magnetohydrodynamic flows of a boundary layer character. In conventional fluid

dynamics, boundary layer theory has been developed to a high degree of sophisti-

cation. No comparable extensive treatment will be attempted here. The problems

which will be discussed will be chosen to illustrate those new features introduced

by the interaction between currents flowing in the conducting fluid or plasma and

the electromagnetic field. The principle interest in the present chapter will be

in flows for which the magnetic Reynolds number is vanishingly small. For

completeness, however, the boundary layer character of flows with Rm - will

be treated in the last section.

The first problem considered will be the Rayleigh problem in which a magnetic

field is applied normal to the surface of an impulsively moved half plane. Its

principle value will be in that a solution can be obtained in closed form so that

the nature of Magnetohydrodynamic boundary layer flows can be inferred. Follow-

ing this introductory treatment the boundary layer equations are obtained from

the full equations by means of the well known boundary layer approximation.

Based on these equations, incompressible boundary layer flows are examined

first. Two methods of solution of the non-linear partial differential equations

are developed. For flows which satisfy certain specified conditions, similarity

exists and the equations can be reduced to an ordinary differential equation which

must then be integrated numerically. For more realistic boundary conditions

similarity cannot exist so that in this instance series solutions are necessary.

For high speed flows (hypersonic) compressibility effects must be considered, so

compressible boundary layers are considered next. In this case the boundary

conditions are such that similarity conditions can be applied and the solution to

the problem reduces to that of numerical integration of two coupled ordinary

differential equations.

To conclude this chapter the electric current and induced magnetic field

boundary layers which can form on surfaces when the magnetic Reynolds number

is very high are considered. Although the Magnetic Reynolds is extremely small

in almost all cases of interest in continuum Magnetohydrodynamics the above

subject is of interest since it involves application of old boundary layer concepts

to a new physical problem.



12.2 THE RAYLEIGH PROBLEM

The problem which will be studied in the present section is shown in

figure 12-1.

BO

ft??t

Figure 12-1. Rayleigh Problem Configuration

A field B is applied perpendicular to the plate and is assumed to be uniform in

space and constant in time. The doubly infinite plate (a non-conductor) is assumed

to move in x direction impulsively at t = 0. The problem is to determine the

induced flow and magnetic field due to the impulsive motion in general.

A number of authors have investigated the general problem( 1 ) ' (2) and have

calculated the coupled flow and induced magnetic fields by means of various

approximations. Of principle interest in the present chapter will be flows in

which Rm << Re . In this case the problem reduces to one in which the flow

disturbance is confined to a thin boundary layer region while the induced field

varies over a much larger region.

The equations appropriate to the present problem are essentially the same

as those for the transient couette flow, except that now the second, stationary,

wall is infinitely. far away:

au B abx 2
P -T 0 y + 7 (12.1)

i~2
(3bx 1 au 2 ab
-a t Be 2 + - b (12.2)

0 ay a ay 2

The boundary and initial conditions are

t = 0: u(y, 0) 0 bx (y, 0) 0

t > 0: u (0, t) =u 0  bx (0, t)= 0
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where, of course, u and b must remain finite as y - ao. The requirement that
bx = 0 on the moving non-conductive wall is arrived at in much the same way

as was done for Couette flow, see Chapter 10 section 10.3.

The above equations can be most readily treated with the aid of the Laplace

transform defined by

L if (y, t)1 =? (y, s) f 00e - s t f (y, t) dt
0

where s is some constant parameter. Taking the Laplace transform of (12. 1)

and (12.2) gives
s B° A d2A

B + v d- (12.3)
p I dy dy 2

A d2

dAu 1 x (12.4)x dy 2 dy 2

where v = i7/p = kinematic viscosity and the boundary conditions are now

A u2u (o, S) = (0, S) 0

The solution of equations (12.3) and (12.4) is readily found to be

2 2m n
A (--s) (-S)

yA emy + Be- ny (12.5)mB0  n Bo

= Ae - m y + Be - n y  (12.6)

where A and B are arbitrary constants. Terms which diverge at infinity have

been omitted, and +m and ±n are solutions of

r2  2 Bo 2
(- - s) (vr S) r2 =0 (12.7)

which is satisfied if

oB 2  cTB 2

m= a- +as + + S

= aB02  ¢ a B° 2 +fOB0 
aB

- 0 + s - -)1 s
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where
(a 1 _"VT 2 V9_-1 2

4 4 -- -

The constants A and B must be selected to satisfy the boundary conditions
imposed. The solution then assumes the following form:

2 2
A ( 1 "  -in ) (n

u ______ ____ -m (- -5s) -n

m [lm. s ] r m nny (12.8)

A
b X U0 e 3m - enyf (12.9)

B 0 s (m-n) -L + 5]

Inversion of these equations is quite difficult as they stand. Since our

principle interest will be in flows in which Rm -0, and this implies
P m  - 0 or 1 a solution of boundary layer character can be

In V!Reu

anticipated and the problem accordingly simplified. Keeping up finite, and

letting v - 0 while holding y/iv- fixed leads to the following results:
1/2 02+B2]-/

v]11-2+7 n- s [-L + -PA'

and

A 1 e S + y
_ 1 e v (12.10)
u00 s
A
bx= 0

Accordingly, when bx = 0 at the moving wall it is zero throughout the velocity

boundary layer region. Such a result could have been anticipated. If on, the

other hand, other boundary conditions had been selected for bx other results

would have been obtained. If the problem geometry were such that for long

times .bx (0, t) - constant rather than zero then the boundary condition would be

that bx at the boundary be some function of time depending on the total current

flow. Such a boundary condition could not be conveniently handled. Finally, if

the moving wall is assumed to be a perfect conductor the electric field in the

fluid adjacent to the wall must be zero. Then from equations (10. 1) and (10. 5a)

-4-



we have

- a_ Ez + uBo
aL z 0J

or

abx
Ely (o,t)= - 0uBo  (12.11)

which is the required boundary condition for this case. As has been shown by

Ludford 11) the solution when equation (12. 11) is used as the boundary condition

leads to a bx which is constant throughout the boundary layer region.

Returning now to the problem originally posed, the inverse of equation (12. 10)
is readily found to be

_1[e -Y erfc - -- p t

/ 2

+ e erfc Y + (12.12)

This result is identical to that of Rossow12 ) although the induced magnetic field

was not considered in that reference. The reason for the agreement is obvious

as bx = 0 throughout the boundary layer region. However, it should be noted

that bx will become finite above the boundary layer and approach some constant

value at -. The value of formulating the complete problem before making the

boundary layer approximation will be seen shortly when the shear stress at the

wall is calculated.

First, however, consider the solution for u found above. If B is allowed
to go to zero equation (12.12) reduces to the classical Rayleigh problem:

-'2' = 1 - erf(- -- \ (12.13)

In this case the velocity profile depends on only one variable 2 which is

essentially the similarity variable to be discussed later. In the presence of

magnetohydrodynamic effects such similitude no longer exists and there is no one

variable on which u_. depends. In order to illustrate the flow pattern, calcu-U00

lations based on equation (12.12) have been carried out and are presented in

Figure 12-2.

-5-
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Figure 12-2. Velocity Profiles in the Rayleigh Problem

It can be seen that application of the magnetic field increases the time required

for the flow velocity above the plate to reach any specific value.

If desired, the above solution can be interpreted as a boundary layer flow

with t - x/ua. In this case we observe that as the field strength is increased

the velocity profile becomes fuller. This result is analagous to that found for the

Hartmann flow earlier. Also, the above results suggest that a natural variable

to formulate the boundary layer problem with should be T) = y just as in the

in the case of conventional incompressible boundary layers.

Finally, the force on the moving plate will be considered. The shear stress

is given simply as

T( W)y (12.14)(l") = a 'Yy=O

Now from equation (12.8) the transform of T. may be derived

ciB 2
A Vu m
T= (12.15)
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The inverse of this expression gives the following result

TW (t) " Ie0 1 - t +/Y erfv/it} (12.16)

where CB
2

P (1+rpm )7

which agrees with Rossows ( 2 ) result when Pm = 0. The above equation is valid

for arbitrary values of Pm and is thus a much more general result.

In order to illustrate the influence of Pm on the solution, equation (12.16)

is plotted in figure 12-3.

A number of valuable observations can be made based on these results.

First, it is clearly seen that as a increases the wall shear becomes larger

for any given time. This increased shear arises as a result of the enhanced

Lorentz force on the conducting fluid near the moving wall. At very long times

all of the curves of Figure 12-2 reach asymptotic values given by

lim t - c (TW')=

Now in the non-magnetohydrodynamic Rayliegh problem equation (12.13) shows

that u -co as t - - so that TW -- 0, and it is of interest to inquire as to why

in the present problem TW' # 0 in the same limit. If we return to the original

equations of the problem, equations (12. 1) and (12. 2), and assume - = 0 theat
following solution is obtained for u and bX.

B 2

(TB 0u y
-= e
U00

bx Va1 u-cl- [A - i

The steady state long time solution then has an exponential velocity profile rather

than the constant one when say a = 0. This shape of the profile arises because of

the existence of the currents in the fluid and the attendent Lorentz force. The

form of the current distribution is also exponential decreasing from some finite

value at the wall to zero at infinity.

-7-
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Figure 12-3. Wall Shear in Rayliegh Problem



From the point of view of the physical problem the wall shear is balanced

by the reaction force on the source of the magnetic field. When there is no

magnetic field there is nothing to balance this shear and so it must be zero in

the steady state.

12.3 FORMULATION OF BOUNDARY LAYER EQUATIONS

The boundary layer approximation in fluid mechanics has been discussed by

many authors from the time of Prandtl; there is, therefore, no justification in

repeating these arguments. What will be discussed in the present section will

be those new terms which appear in the equations due to Magnetohydrodynamic

effects, and their simplification via the boundary layer approximation. Attention

for the present will be restricted to flows with Rm - 0 so that the magnetic

field can be taken as the applied field (i.e. section 10.8 of chapter 10). The

question of the boundary layer approximation when Rm - - will be discussed

later.

The general problem which will be considered is shown in Figure 12-4.

The magnetic field vector is assumed to lie in the xy plane but may have x and

y components. The Lorentz force for such a two dimensional problem is given

by

F = i_ LB 0 = [E + q xB] xB (12.17)

B

Figure 12-4. Magnetohydrodynamic Boundary Layer Problem
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where the current is derived from the Ohm's law since induced magnetic fields

have been assumed negligible. Now since only steady flow problems will be

considered it will be valid to take E = 0 or if desired some constant. It may

be recalled that in the unsteady problem (i.e. transient Couette flow) it is not in

general valid to assume E = 0. For the present case, equation (12. 17) can be

written as

Fx = -ao(uBy - vB x B) (12.18)

Fy = a (uB x B y - vB x2) (12.19)

For purposes of order of magnitude arguments one can assume that B = 0 (Bx).
Then, since -v = ® (6) where 6 is the boundary layer thickness the first of the

above expressions can be written as

Fx n: - By2 u (12.20)
where By can be a function of x and y in general.

In a boundary layer calculation it will be exceedingly inconvenient to keep

By a function of y. Accordingly, it is of interest to study By (x, y) somewhat

more carefully. For a two dimensional field one of Maxwell's equations (VB = 0)

requires

8B 8B-- + Y =0
i8x EByaxa

Now with Bx = C9(By) and (1= (l) while 6= ( - 1 ) we have
. y ax ay

aBY
ay 0(1)

or
ABy = 0 (6)

A y

Thus, the change in By across the boundary layer will be the order of 6 and can

be neglected.

Making use of equation (12.20), assuming p = p(x) and making the usual

boundary layer approximations the x component of the momentum equation becomes:

becomes:

p (U au + v au+ = B 2 u + u) (12.21)

Before proceeding further the assumption that p = p (x) must be examined

further. Again assuming B = (Bx) equation (12.19) reduces to

-10-



F - acuB B (12.22)y y x

Now the y component of the momentum equation can be written in the following

form

Pu + pv Lv + = QuB B + (12.23)
ax ay ay x y Re (y a

where YBR2 L
PR U00

R PR U00 L
R =~
e IR

and the velocities have been made dimensionless by some reference velocity (uoo),
2

the distances x and y by some reference length (L), the pressure by pou0 O , the

density p and viscosity 1 by reference values, and the magnetic field by some

reference field (BR). For magnetohydrodynamic boundary layer problems of

interest Q = 0 (1). Then an order of magnitude analysis of equation (12. 23) with

u = )(1), v = (6), -L = 0(1), ay 0 (1), and e = () gives

ay

or

Ap = ((6) ~ 0

Thus, the pressure change across the boundary layer is the order of 6 (a small

quantity) and can be neglected. It should be noted, however, that in the absence

of magnetic forces A p = 0)(62) so that it is less valid to assume p = p(x) in

the present case than it had been in the absence of a magnetic field.

Next, the Joule heating term which will enter into the energy equation must

be considered.
.2

H = _= T(xB) (qxB) (12.24)

or

H= a 2 +v2Bx -2uvB xByJ

as before, the last two terms can be neglected since v/u = () (6). Thus,

H au
2 B 2

-11-



and the energy equation can be written as follows

P h + h udp
8x - + ~ v - dx=

8 h + ._ kj
(Y P R ay) ay (e p

2 (au' 2  (12.25)+ O2 B y + ay/(2.5

where Cp7

R =  k

Finally, the mass continuity equation must be added to complete the system

of equations:

T- (Pu) + ay (Pv) = 0 (12.26)

Before proceeding to the solution of specific problems it will be of interest

to study the general question of similar solutions for incompressible, constant

property, boundary layer flows. Consider equation (12.21) evaluated in the inviscid

free stream flow

p+ +oBy 2 u00 (12.27)
dx dx

Combining this with equation (12.21) leads to the following relation.

au au du0 0 o B 2___ a2u
u - + v- - uo + aB 2(u-u0) = av--u (12.28)ax ay dx P 8y2

Introducing u = and v = - ao satisfies continuity and equation (12.28)Inroucng El y a x
becomes2 becomes B U00 d uo + v yy (12.29)

0y yx x yy +  p y - U00) dx yyy

The problem now is to determine whether or not the above can be reduced to an

ordinary differential equation by a proper choice of variables. Let us assume

4 (x,y) = UV i x f (n)

where

t7(x,y) = Y-

and where it should be noted that uoo and By are known functions of x as yet

unspecified. Substituting the above equation (12. 29) becomes

-12-



2 !--- (f') - + d- ff ,,

- B2  
_ _ f 1

p (1 - 1 fl) - 8du -+ (12.30)P )= +-F X '

Accordingly, similarity can be achieved if

duco u
dx x

and

so that u0o and B must be of the following form to permit a similar solution

U= C1 xm

m-1

B = C 2 x 2

In fluid mechanics the xm variation of uo corresponds to the wedge flow solutions.

In magnetohydrodynamic problems such a simple interpretation is not possible

since the applied magnetic field interacts with the inviscid free stream flow.
We will return to this point in the next section.

A final point in regard to the above treatment should be made. In looking

for similar solutions only the incompressible boundary layer was studied. For

a compressible flow the situation is much more complex. Now, for a similar

solution to be found for the compressible boundary layer problem it is safe to

say that a minimum condition would be that ueo and By satisfy the conditions

already established for the incompressible case. In addition, many other

assumptions and requirements will be necessary to obtain similarity in the

compressible case. Some of the new phenomena associated with compressible
magnetohydrodynamic boundary layer flows will be treated in section 12.5.

The following section will be restricted to incompressible boundary layers.

12.4 INCOMPRESSIBLE BOUNDARY LAYERS

The distinguishing feature of an incompressible magnetohydrodynamic
boundary layer is that the inviscid flow external to the boundary layer is also

a conductor. Then, since it is not possible to restrict the magnetic field to

the boundary layer region alone, one has no choice but to incorporate the

results of the inviscid magnetohydrodynamic analysis into the boundary layer

-13-



investigation. On the other hand, this may not be necessary in compressible

flows in which the conductivity can vary, and for certain types of flows may be

assumed zero external to the boundary layer. Application of the similarity

solution to incompressible boundary layer although feasible, in principle, will not

be carried out due to the difficulty of interpreting the resulting inviscid flow.

Instead, two simple incompressible boundary layer problems will be analyzed by

the series expansion technique

Boundary Layer with Uniform Free Stream

The first problem that will be considered will take as a model for the

inviscid flow the flow through a parallel walled two dimensional channel and will

consider the flat plate situated somewhere in the channel some distance from

either wall. In this case, the free stream velocity will be a constant and the

pressure gradient will be given by dp/dx = -a u o B 2. The applied magnetic

field will be assumed constant so that the pressure will vary linearly along the

channel. The equation to be solved is equation (12.29) which simplifies to the

following. uB 2

yyx - xyy +  ( u) yyy (12.31)

where the boundary conditions are

0 = y =0 at y = 0

4, uoo at y = -, x = 0y

Since the pressure gradient in the present problem is constant and favorable it

will be adequate to use a classical Blasius series expansion to effect a solution.
Assume r crBy2 , p_ \2 1

A(x,y) = I fo +  p x fl +  -x) f2 + .... ] (12.32)

where it is assumed that (P-9  x) is a small quantity and the f's are functions

of 71 = y . Introduction of the above assumption for 4 into equation (12.31)

leads to the following infinite set of ordinary differential equations.

fo" +f fo " = 0, (12.33)

with the following boundary conditions:

fo () = f0 ' (0) = 0 fo'(l) 1

-14-



f, 1+ ff fff + 3 fo f- 1 (12.34)f1 2 fo - fo' 1 2 f0 0 o

with

f 1 (o)= fl' (o) 0 fl' (1 )= 0

,, "I+1 f2" 2fI + 5 fo itf= 3 ffl"+f

f2' + f o -
2 fo' f2' 2 f 2 = (f1')2 - f +

(12.35)

with

f2 (o) =f2' (0) =0 f2' ( =0

etc.

The first of these is the well known Blasius equation for which the solution

has been tabulated for the boundary conditions shown. All subsequent equations

are linear, but since they depend on the preceeding solutions numerical integration

is necessary. The first two equations beyond the Blasius have been solved by

Rossow (2 ). The resulting velocity profiles are shown in figure 12-5.

6 2
-1ST ORDER IN Woo X

---- 2 NO ORR IN r X

4- P 0.10

.20

0 4 6 1.2

Figure 12-5. Incompressible Boundary Layer for Uniform Applied
Magnetic Field and Free Stream Velocity

Again these results are in agreement with the Hartmann flow treated in

Chapter 9 and the Rayliegh problem solution discussed earlier in the present

chapter. In other words, the presence of the applied magnetic field tends to

make the velocity profile fuller. If, on the other hand, the free stream velocity

had been decreasing with x the pressure gradient would have become unfavorable,

the boundary layer profile would have become less full, and the possibility of

flow separation would exist. Such a case will be considered next.

-15-



Boundary Layer Subject to Adverse Pressure Gradient

Consider, as an appropriate inviscid flow the flow through a parallel walled

channel when the applied magnetic field is created by a current-carrying wire

alligned perpendicular to the flow direction and imbedded in the lower wall. As

shown in Figure 12-6 the boundary layer development along the lower wall will

be considered.

MAGNETIC
LINES OF

UNIFORM FORCE
ENTERINGA

FLOW
BOUNDARY

Y LAYER

.y

S-:]-- WIRI

Figure 12-6. Boundary Layer Development with Magnetic Field
Generated by Current-Carrying Wire in Lower Wall

One must, of course, assume that the boundary layer ahead of x = 0 can be

removed, perhaps by a bleed port shown schematically as the dotted region.

The equation and boundary conditions for 0 have already been presented,

equation (12.31), and will also be used in the present problem. One should be

aware, however, that requiring Oy = uo at y = - means that the inviscid flow

shear (see Figure 10-33) at the lower wall is being neglected. In general, this

shear can be neglected when the inviscid free stream flow has been linearized.

As noted earlier, the existence of a non-uniform free stream velocity, and

the possibility of separation, requires the use of a series solution which is more

sophisticated. A procedure frequently used for conventional boundary layers

and ideally suited to the present problem is due to Gortler. Its extension to

magnetohydrodynamics and its application to the present problem will be carried

out now.

If the following dimensionless variables are defined

-y - -

yxu y B0 U0

YO YO ui
" , ]ReQ_ I, B

Y o u i y Bo

-16-



and Re = UiYoV Q = B0
2 YO

where ui = u (o,y), assumed constant, y0 is some reference length, and Bo

some reference magnetic field, and the following new independent and dependent

variables are defined

= fx ,0 = -U-
o

Then equation (12.31) now becomes

F77777 FF 72 F 7 2

2 (12.36)B 1
24 F F 7t Ft FTi + (F 1)

with the following boundary conditions

F = F7 = 0 at 17 = 0

F = 1 atq= o

The problem can be solved in general by assuming the following expansions:

F (t, 7) = Fo (17) + 4 F1 (71 ) + 42 F2 (11) +
2 2 duo = /(t) = p 0+ t/p1 + t2 P2 + . .

20 dx0

iY2  =~ 2 +~ 2 M 0+t91+t 2~22
B2 g (4) =go +4g +4 2g 2 +....
U0o

Substituting these into equation (12.36) one obtains, as before, an infinite set of

equations. The first of these is the Blasius equation

Fo" + Fo  " = 0 (12.37)

Fo (o) = F (o) = 0 Fo ' ( ) 1

The second and all later equations are linear, and are given by the following

recursive system

-17-



F111 + F oFk'' - 2kFo Fk + (2k + 1) F" F

(12.38)
+ Rk = k =I, 2, 3,

where

2 k-1 k-j
k- = k-I1- -J=I i=1 j-1 I k-i-j

k-1 k-1
-F' Z F - 2 2 (k- j) F1 F'

0 j=l j-1 kj j= k-j

k-i
+ 2; 1 + 2j) F F" + 2gk-1 (I- Fo)

i=l -

k-1-2 ~ F-2 l gj-1 F1_

j=i k-j

and

Fk = F1 = 0 at n = 0

F'k = 0 at ?= i .

Application of the above equations to the solution of the specific problem of

Figure 12-6 has been carried out by Sherman (3 . Numerical results were obtained

for an inviscid flow in which L/y o = 1.6 and Q = 0.1. Curves showing the wall

skin friction, boundary layer thickness, and velocity profiles are shown in

Figures 12-7 and 12-8.

..\

or,
0 . . ID 1 .i 1.4

r
Figure 12-7. Wall Skin Friction Versus Distance From Leading Edge

for Q = 0.1 and L/y o = 1.6. Nonmagnetic case ---- ;
Magnetic Case, Series Solution -; Magnetic Case,
Integral Approximation -
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Figure 12-8. Boundary Layer Velocity Profiles at Several Positions
Downstream of Leading Edge for Q = 0.1 and L/y o = 1.6

In order to interpret these results properly it will be of value to review

the physical phenomena occuring in the flow. First, the applied magnetic field

acts on the inviscid flow in such a way as to cause the boundary layer free stream

velocity to decrease rapidly in the vicinity of the wire. This tends to make the

velocity profile less full, and thereby reduce the wall skin friction. In addition,

the magnetic field within the boundary layer creates a Lorentz force which tends

to retard the flow. This effect then also tends to reduce the skin friction, and

both combined may retard the boundary layer sufficiently to cause separation.

That such flow separation is indeed a practical possibility is shown in Figures

12-7 where T = 0 at x = 1.22 L, just beyond the wire. For the present strongly

retarded flow the classical Karman-Pohlhausen integral approach is seen to be a

poor approximation. The details of the velocity profiles are shown in Figure 12-8

where it must be kept in mind that uao is decreasing as x increases from zero.

12.5 COMPRESSIBLE BOUNDARY LAYERS

Although some of the requirements for similar magnetohydrodynamic boundary

layers had been identified earlier such solutions were not sought in the incom-

pressible case due to the difficulty in interpreting the results in terms of a

practical problem. When the flow is compressible, however, such difficulties

may not exist. For example, when considering the hypersonic flow over a flat

plate in which the free stream is at a low temperature compared to the high

temperatures in the boundary layer, one may assume r = 0 so that the applied
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magnetic field does not disturb the inviscid flow and u~o = constant. Also, there

are some practically important problems for which the interaction between the

magnetic field and the inviscid flow have been calculated and have shown u~o to

have the required form for similarity.

In the cases just cited similar solutions have practical significance, and in

fact are absolutely essential for progress to be made in solving these complex

problems. In the present section two compressible boundary layer flows will be

treated in some detail, and a third will be discussed.

First, consider the hypersonic flow over a semi-infinite flat plate when the

temperature within the boundary layer is high enough to ionize the gas. In order

to obtain a similar solution, the free stream velocity is assumed constant (low

free stream temperature so that a = 0), and the applied magnetic field By is

assumed to vary inversely as the square root of x. In addition, the wall tempera-

ture is assumed constant, and the gas is considered to be in thermodynamic

equilibrium. The geometry and coordinates of Figure 12-4 will be used.

Neglecting heat flux due to diffusion of species (current does not flow across

a temperature gradient), the Hall effect, and induced magnetic fields, and putting

dp = 0 the boundary layer equations are given by Equations (12.21), (12.25), anddx
(12.26). The magnetic field can be expressed as

B =

The reduction of these equations to the ordinary differential equations corresponding

to similarity is accomplished by the Crocco transformation (4 ) . The procedure will

be sketched briefly.

If the independent variables of the problem are changed from x and y to x and8u
u and T S- the transformation formulas can be written as follows:

8x/y X au/

(4)x = ( (8)x = Th ( )x

recognizing that we can consider y = y (x, u) the first of these leads to

ax au
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or
u Ox) yx(Fou ' 'yu

and the second yields

or

- 1
YU T

Then the transformation equations can be rewritten to yield

Using these relations the transformed boundary layer equations become
a(Pv) a(pu) -I E1 (Pu) (12.39)

au Yx au T X
Or oBo2 L° 71P+2- B02L 7 u (12.40)

pv = (Pu) Yx + u (2

Puu 
0+ T L - aB 2 )W

u+ au o o au

+ T E ( T h + O2 (12.41)17 u P R au x 7

where the second term in the last of these has been simplified with the use of

equation (12.40). Eliminating pv from equation (12.40) by use of equation (12.39)

gives

Pu + 7 (Pu)x + 2 B 2 d Iu
p x -duL2 0 L O d -u  T

or (Pu7)+ 2T B2od2 •(pAu_) +d B 2Lo d- ( 7u ) = 0 (12.42)
T ~ 0 Io du ,I r1.2

x du T

Next assume that

T (x, U) = G(u)

and h (x, u) = h (u)
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so that equations (12.41) and (12.42) become

Pui _q 1 + 1 d2 G B0 Lo d (
2G V- V du2 - du G 0

or
G d 2G  Pu + GB L -d -d (12.43)du 2 2 0 0 du\N3

and2
G dG dh B02 Lo u dh
-x du du R x du -

i7x du x )+ u BxL

or
dG dh d (G +

du-- = TU R du

rB 2 uLo t + ] (12.44)
GB du

These are then two ordinary differential equations for G and h as functions of u.

The numerical procedure for their solution is given in detail by Bush(5) where

the method of expressing p, 17, cr, and PR as functions of h for high temperature

air are also described. Some of the results of calculations for the constant wall

temperature case are shown in Figure 12-9.

1.4-

1.2-

1.0 r/rNM

/ # 
/

4- I /
4I /

UI /

0 I I I I

IW, 10 1

Figure 12-9. Shear Stress and Heat Flux for Hypersonic
Boundary Layer
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The conditions chosen for the above case were To = 222°K, p = 10- 3 atm,

Moo = 25, and a wall temperature of ~2000°K. The subscript NM stands for

non-magnetic, and Q is the interaction parameter proportional to B .2

The above results bear a striking resemblance to the real gas Couette flow

results described in Chapter 10. Again, a hysterisis effect exists due to the

form of the a versus T curve and the dotted portion of the curves are unstable.

The principle new information here is that in allowing the boundary layer to grow

in height (in the couette flow 6 is fixed) a reduction in heat flux of 80% is possible

where little if any heat flux reduction had been predicted earlier. The shear

stress does, however, behave as predicted.

Another compressible boundary layer flow of practical interest is one which

grows along the electrode surface of a crossed field MHD channel. The principle

new feature here is that a current flows normal to the boundary layer surface

(see Figure 12-10) so that the contribution to the heat flux due to the diffusion

of electrons in a temperature gradient cannot be neglected.

SELECTRODE
SURFACE

Figure 12-10. Electrode Boundary Layer Configuration

Since the boundary layer under consideration will be developing within a finite

width channel the usual assumption that the boundary layer thickness is not large

enough to disturb the inviscid flow must be made. In addition, it is necessary

to assume that the electrical resistance of the boundary layer is small compared

to the resistance of the inviscid flow so that the overall current flow is determined

external to the boundary layer.

The momentum equation is given by equation (12.21) except that now the

Lorentz force is written as j B since (j) is now some known function of x.Y

pu + P + x= (L y) + j B (12.45)
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The energy equation written in terms of temperature (h = cp T) is given by

equation (12.25) except that here the Joule heating is written as j2/c again due

to the fact that j = j (x) is a given quantity. The continuity equation is, of course,

equation (12.26).

Since (j) is the same within the boundary layer as in the free stream the

momentum equation in the free stream is

S du 9 =B (12.46)

and combining this with equation (12.45) gives

8u + au =" _- u ( ) + pu du,- (12.47)8X a ay ay dx

The energy equation evaluated in the free stream yields

dTo =.2
POO u0 C (00 u + - 12.48)

which when combined with equation (12.25) yields the following relation

~a(y T +5k T)v+ )u
2

p u vayy 2e

+ p dx u oo .U0

It is interesting to note at this point that the momentum equation for the present

case is independent of By. The principle Magnetohydrodynamic effects appear in

the energy equation.

For convenience in the boundary layer analysis I. and K will be assumed

proportional to T, despite the fact that for constant mean free path, kinetic

theory leads to a T1/2 dependence. In general (see chapter 5) the electrical

conductivity can be determined as a function of pressure and temperature. This

time, for convenience in both the free stream and boundary layer analysis the

pressure dependence will be ignored. Finally, the gas will be assumed perfect

so that

p = pRT (12.51)

Now, the boundary conditions which are needed are

Too = To (x) u0o = uo (x)

In addition, expressions are needed for p (x) as well as j (x). All four of these

relations can be obtained from the solution of the inviscid problem. For the

inviscid flow, it will be assumed that Too and Eco are constant, the former also
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leading to a constant aw if the pressure dependence of a is neglected. Within

these assumptions the solution, based on the methods of chapter 11, is

Uoc = tXn

p = oo (RToo Ec) 2  (5n-1) 1-5n (12.52)

a2 2n

nna 2oRTo a (5n-1) x 2n

a n

where one must have n > 1/5.

As noted earlier, u., in the above form may make a similarity solution

possible. The feasibility of reducing the equations to similar form will be

taken up next. Define the following independent variables

x u

= f -P- o dx (12.53)
o PO UoC

and

u0 fY dy (12.54)
oV C -, 0 PO

where ( )0 denotes some convenient reference x position. Next, define a stream

function in order that mass continuity be satisfied

Oy PO Ox pv

and then redefine the stream function to be

0 = V- VO u 0 V f (t)

The momentum equation then becomes

fu-- + t  + du0- - (f)2] = 0 (12.55)

If a dimensionless temperature is defined as 0 - the energy equation

becomes

1 a20 + f 2- 2 fV4 L - (y-1) M 2  (f1)

PR t 2  a

1/2
- - ] C§!Pouoo p 80
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2 2 uo  P ( - f0 ) (12.56)
-' C T00 p00 uc2  "P '(

Using the results of the inviscid analysis, equations (12.52), to determine

and restricting the value of n so that n < - we find

2-41

x = (2-4n) ( ) (12.57)
Xo0 1 0

and the energy and momentum equations can be written as follows

1 a2o 08 e
1 a + f 8= 2f (-l) M'0 2 (f,) 2

P R a7 2 a at

1/2
( ,-)(5n-1)1/2 5kTo o, 0 0

n2e 17ORT ° 0a

- (12.58)

and
f" + ffl1 + n - 0- (f )2] = 0 (12.59)

Accordingly, it can be seen that since Mo = Moo (4) that the first two terms

on the right hand side of equation (12.58) are functions of 4 and prevent a similar

solution. If, however, the wall temperature is constant then 0 # 0 (0, and the
2

first of these terms vanishes. Finally, when Mo =0 the second term can be

neglected and a similar solution is feasible if Moo 2 0 it can be taken to be a

constant and the similarity is then in exact. In the present example one can

clearly see that when the flow is compressible the specification that uoo a xn

is not sufficient to ensure a similar solution, but that additional conditions and

assumptions are necessary.

Calculations based on the above equations have been carried out by Kerrobrock (6 )

for Helium seeded with Cesium. The free stream temperature and Mach number

were taken to be 3000°K and unity respectively. A wall temperature of 1500°K

was also chosen.

Within the boundary layer being considered heat is generated by two mechanisms:

viscous dissipation, and Joule heating. Energy is transported from these two
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sources and from the high temperature free stream to the wall by both conduction

and diffusion of electrons against a temperature gradient. For the selection of

parameters made by Kerrebrock both viscous dissipation and Joule heating are of

comparable importance, and energy transport by electrons is only a few percent

of the overall heat transfer.

To see more clearly the influence of the above heat sources on the boundary

layer, velocity and temperature profiles are shown in Figures 12-11.

4- 4-

3n I3- n
0 . ,1 / 1 7 .2

0.23 / 0.25
2 -/0.25 2 0.2

0.29 03
0.31.

FLAT PLATEI- I

0 0
0.5 0.6 0.7 0.8 0.9 1.0 0 0.2 0.4 0.6 0.8 1.0

9u T/T o 0 : U /u C

Figure 12-11. Temperature and Velocity Profiles for Electrode
Boundary Layer. M = 1, 0  0 . 5

Increasing values of n correspond to free streams with increasing acceleration.

This is seen to correspond to the fact that the velocity profiles tend to become

fuller as n increases. The temperature profile marked "flat plate" corresponds

to the case for which there is no current flowing at all. The large difference in
a Io between the dashed curve and the others is indicative of the increased heat

flux due to Joule heating in the low temperature region near the wall. For the

numerical example chosen the increase is approximately an order of magnitude.

The temperature excess at the highest accelerations can be attributed to heat

generated by viscous dissipation which cannot readily transfer to the wall due to

the large amount of heat liberated near the wall by Joule heating.

The final item of interest in regard to the electrode boundary layer is the

electrode potential drop. Due to the fact that the gas in the vicinity of the wall

is at low temperature and consequently low electrical conductivity, the electrical

field in the vicinity of the wall will be much larger than that in the free stream

in order to be consistent with a constant current flow. This will lead to a
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larger potential drop across the boundary layer thickness than across a corres-

ponding thickness of the free stream. Qualitatively, the potential distribution,

based on the electric field seen by a stationary observer, across a complete

channel will be as shown in Figure 12-12.

h

Y BOUNDARY
STREAM1 LAYER REGIONS

0

Figure 12-12. Potential Distribution Across a Channel of Height h.

The precise magnitude of the potential drop across the boundary layer can

be calculated readily. Consider the potential drop in excess of the potential

drop through an equivalent thickness of free stream. Then

6 = f (E -E..) dy= f j- - a-- -B(uo - u)I dy (12.60)
o oo La I

where it should be noted that the reduction in a in the boundary layer will tend

to increase 60 while the reduction in flow velocity there will tend to reduce it.

Depending on the assumed conditions 68 can be positive or negative. Calculations

of 60 based on the example cited earlier are shown in Figure 12-13.

200

O0 M I l

0.20 024 0.28 0.32
n

Figure 12-13. Boundary Layer Potential Excess
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It is interesting to observe that 60 is positive, for this case, so that the

potential drop through the boundary layer is indeed greater than in the free

stream over the same distance.

Finally, mention should be made of the magnetohydrodynamic compressible

boundary layer in the region of the stagnation point on a blunt body. The practical

example is, of course, the re-entering nose cone. For this problem the inviscid

flow has been calculated and it has been shown that uoo = ax when B is a constant,y
the magnitude of a being reduced as the strength of the magnetic field is increased.

These are precisely the minimum requirements for a similar solution, as noted

earlier, and with several additional simplifying assumptions similarity solutions

can indeed be obtained. (7)

12.6 MAGNETIC BOUNDARY LAYERS

Up to this point in the present chapter, and in fact throughout this book,

problems of external flow (flow over closed bodies such as airfoils) have not

been considered. It will be of interest, however, to consider qualitatively some

new boundary layer phenomena that arise in such flows when Rm is large and

PRm is small. (8)

The particular overall problem that will be investigated will be the so called

"alligned flows". These are flows in which the flow velocity and magnetic field

vectors far from the body are parallel. Now when Rm = o and the electric field,

E, is zero the Ohm's law requires that vxB = 0 so that v and B are not only

parallel at infinity but are parallel everywhere. For a body of finite conductivity

E = 0 implies j = 0 so that the magnetic field is harmonic within the body.

Since it must be a constant on the surface the mean value theorem of potential

theory tells us that it must be zero everywhere within the body. Accordingly,

the tangential component of B at the surface must jump from a finite value to

zero. As was shown in Chapter 2 this corresponds to a current sheet at the

surface. Since v must also go to zero at the surface there must also be a

vortex sheet there. When Rm is large but no longer infinite these current and

vortex sheets are in reality boundary layers. The physical nature of such layers,

and the equations governing them will be the subject of this section._Rm

Since, as was seen earlier, P = Re the assumption of large Rm and
Rm fe

small PRm is tantamount to assuming Rm large and Re much larger. Accordingly,

it can be anticipated that the boundary layer in question will really be two layers.

One will be an outer layer in which viscosity is negligible, and the other will be

a viscous sublayer. The outer layer thickness will be the order of Rm - 1 /2 ,
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-1/2 Tefo xenlt h
while the inner layer will be the order of Re - The flow external to the

outer layer, where v aB, will be irrotational. The above physical interpretation

of the boundary layer region is illustrated in Figure 12-14.

POTENTIAL
FLOW

INVISCID
BOUNDARY

U LAYER

VISCOUS SUBLAYER

Figure 12-14. Sketch Showing Inviscid Magnetohydrodynamic
Boundary Layer and Viscous Sublayer

Before considering the equations and specific boundary conditions in detail,

it will be of value to first discuss the procedure for solution. First, the

potential flow must be determined neglecting both boundary layers. The boundary

conditions for such a solution are that the surface be both a fluid and magnetic

streamline. From such a solution one obtains values of u and B at the wall.

These, then, will serve as outer boundary conditions for the inviscid layer.

The inner conditions for this layer are evaluated by assuming the viscous layer

to be of negligible thickness. Thus, one of the inner conditions on the inviscid

layer will be v = 0 while u 0. Another inner boundary condition on the magnetic

field will be needed to complete the formulation of the inviscid boundary layer.

The viscous layer will then use u (x, o) as obtained from the inviscid layer solu-

tion as its outer boundary condition along with v = 0. The inner boundary

conditions on the viscous layer are the conventional ones of u = v = 0.

So far little has been said about the boundary conditions on B. The

difficulty lies in the fact that when Rm is no longer infinite then B is no longer

zero within the body and Bx and By at the surface are not known prior to the

solution of the problem. The one thing we do know, however, is that when

Rm - 0 then B x and By should both - 0 within the body.
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Before resolving the above question of the boundary values of B x and By it

will be necessary to introduce some order of magnitude arguments. It will be

assumed that the thickness of the inviscid magnetic boundary layer, 6i , is

) (Rm-1/2 ), and that the thickness of the viscous sublayer, 6 , is C9 (Re-1/2

Also, differentiation with respect to x will not alter the order of magnitude of a

quantity, while differentiation with respect to y will change the order of magni-

tude by 6-1. Whether it is 6i or 6v will depend on which layer is being discussed.

It was noted earlier that Bx and B tend to zero as Rm - -, so that it will

be valid to assume them both 0 (Rm -1 2 ) at the wall. Since the viscous sublayer

is extremely thin neither should vary appreciably from its value at the wall

within this region. Next, consider the following relation

xB=Rm vxB (12.61)

where v and B have been made dimensionless by reference values of v and B,

where Ohm's law has been used, and E 0. Or, for the present two dimen-

sional problem:

8B aB vB
x Rm [uByvBxJ (12.62)ax E8y - m-2

Within the viscous layer the first two terms have the following order of

magnitudes

aB y (R -1/2) aBx c (Pm -1/2
ax m n -y

aB
so that aBy/x << y . Also, within the viscous layer v << u and B and

y ay y
Bx are of comparable order of magnitudes, so that vBx << U y. Accordingly

equation (12.61) can be simplified, within the viscous layer to
OBx

- = R uB 
(12.63)

Or, integrating over the viscous layer

Bx = B (x, o) + 0 (R/2 Re

Bx = 0 (R -1/2) + 1/2

Accordingly, one can assume B x = 0 throughout the viscous sublayer and take

this as the other inner boundary condition for the inviscid layer.
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The equations governing both boundary layers will be deduced next, by

similar order of magnitude arguments. Within the inviscid layera~ a B R- 1/25
ax- + 8B = 0, so that assuming B =(1) leads to B = (R
ax ay x y m

Next, the two momentum equations (equation 8.17), and equation (12.62) are

considered
0(i) 0 (i) 0(i) (i) C(i)

auau 8P ( Bx IB x
pu u- + pv - IB By -'_+ B (12.64)

( (R1 / 2) 0 (R -1/2 -1 /2 -9(R - 1/2
m ~ m 0 ( m L C(m )

v pv +.+ B -- y + B -B y (12.65)

p 8x ay ay x ax y ay

S(Rm-1/2) ((Rml/2) (R ml/ 0(R -1/2

8B - y Rm  uBy - v Bx (12.66)
a~x ay m

B2  Bwo2

where P= p + -- and N = '-U. and it will be assumed that P and N are

0 (1). The resulting boundary layer equations in dimensional form for the

inviscid layer are

8u 8u +8P =B x +
pu a- + p v 2-+ ax Bx ax y ay (12.67)

x-7" a Ae (uB VBx (12.68)

ax + a =  0 (12.69)

aB aBx + Y = 0 (12.70)
ax ay
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with the boundary conditions

at y = 0 u = u00 (x)

Bx = B x0(x) auW(x)

aty=0 v= 0

B =0x

It is interesting to see that a boundary condition on By at y = 0 is not needed

since when By is eliminated from the equations by equation (12.70) they become

second order in Bx and there are two boundary conditions on Bx available. The

value of B at y = 0 is part of the solution being sought and, accordingly, it isY
not a suitable boundary condition. From equation (12.65) it can also be seen

that =(m ) and P = P (x) alone. Accordingly, L can be evaluated

from the free stream solution.

The boundary layer equations within the viscous layer are precisely those

obtained earlier in the present chapter. The applied magnetic field, By, is

taken to be the value found at y = 0 from the inviscid boundary layer solution.

The pressure, p, to be used is P(x) obtained from the potential flow solution.

In conclusion then, when Rm -- cc boundary layer phenomena very similar

to conventional boundary layers can exist. They do, however, offer a number

of new features for future studies. (8)
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some new phenomena within the framework of boundary
layer theory. It is intended that the present material will
be one chapter of a forthcoming book.
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