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ABSTRACT

This paper gives a characterization of solution manifolds of

ordinary differential equations with constant coefficients as finite-dimensional

shift invariant linear manifolds of continuous functions,



SHIFT INVARIANT LINEAR MANIFOLDS

P. M. Anselone

This paper concerns a relatively little known characterization

of solution manifolds of ordinary differential equations with constant

coefficients. Such a manifold consists, of course, of polynomial-

exponential functions. In the main theorem, which follows, R is the

real line and C(R) is the set of complex continuous functions defined

on R.

Theorem 1. Let M be a finite dimensional linear manifold

in C(R) which is shift invariant, i. e.,

f(t) a M, x* R 4 f(t+x) E M. (1)

Then there exist non-negative integers m pand complex numbers zp

p .1 e0 1 q. such that M is spanned by the functions

tmept p 0, 1 s, & m . p(

Equivalently, M is the solution manifold of an ordinary differential

equation with constant coefficients,
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This theorem is not really new. A generalization of it to functions

defined on a topological group was given in 1948 by Laurent Schwartz [ 1] .

His proof depends on the theory of group representations. The primary

purpose of this paper is to present a new, more elementary, proof of Theorem 1 .

Both the theorem and this proof have features which ought to be of substantial

mathematical and pedagogical interest. In particular, the theorem was

essential in a paper [ Z] by D. Greenspan and the author on linear difference-

integral equations. It was used in order to determine certain "fundamental"

solutions, which are eigenfunctions of a related operator.

Proof of Theorem 1. Let {fi (t): i= i, 9..m ) beabasis for

M. It follows from (1) that, for each i 1, ... , m and each xe R, there

exist unique complex numbers atj (x), j = 1, ... , m, such that

mm
fi(t+x) = ij(xlfIt) ,::M (3)Jul It x R.

If we could differentiate (3) with respect to x and then let x = o, we

should obtain a system of ordinary differential equations with constant

coefficients, from which the theorem would follow immediately. The rest

of the proof justifies this procedure by showing that the functions _i are

differentiable.

Let f(t) denote the (column) vector with components ft) 

i = 1, ..o , m. Let A(x) denote the matrix with elements aij(x) a iJ=,... m.
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Then (3) is equivqlent to

t+x) = A(x)( t), t. xe R. (4)

Moreover, there is a unique matrix function A ={i which satisfies (4)

One implication of the uniqueness is that

A(o) - I. (5)

Equation (4) yields

. ~A(y) A( x)'?(t) -- A( y)-I(t + x) = f( t + x + y) = A( x + y 'f(t)

for all x, y, t, e R. By the uniqueness of A,

A(y)A(x) = A(x+ y) =A(y+x) - A(x)A(y), x,y, R. (6)

Thus, A is a commutative semigroup of matrices. This fact motivates the

steps which follow, but is not actually used to obatin the results.

We prove next that A is continuous, i.e., that each aiJ . is

a continuous function. For this purpose an auxiliary result is needed.

Lemma. Let gi# i = 1, .. , m, be m linearly independent real

or complex functions defined on an arbitrary (abstract) set P. Then there
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exists a subset of P,

PM =  p• J- m

consisting of exactly m points, such that the restrictions of the

functions gi to Pm are linearly independent. Hence, the matrix

gi (P ) } i, J = 1, *.., m, is non-singular.

This lemma is a direct generalization of the familiar theorem in

linear algebra that the row and column ranks of a matrix are equal. To see

this, consider a "matrixW' with rows i = 1, ... , m and with the columns

indexed by the elements of P. Let gi(p) be the element in row i and

column p . Since the functions gi are linearly independent, the row rank

of this matrix is m. By the same reasoning as in the classical case, the

column rank of the matrix also is m, so that there exists a non-singular

square submatrix (gi(p ) }, , j, = 1, .. , m. Incidentally, the same

lemma was used by R. C. Buck [ 3] in a different connection.

Since the functions fi (t) , i = I, .°e , m, are linearly independent,

the lemma implies that there exists tk a R, k = 1, *. , m, such that the

matrix { fi (tk) ) is non-singular. For each x t R, define a matrix

function B by

B(x)= {fi(tk+x)), i, k w, ..., m,. (7)
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Then, by (3) ,

B(x) = A(x) B(o), (8)

where B(o) is non-singular. It follows that

A(x) = B(x)B 1(o) . (9)

Since B is clearly continuous, A is continuous.

We have proved that A is a continuous semigroup of matrices. One

of the earlier results in semigroup theory (cf. [ 4] , pp. 282-284, or (5])

asserts that A is necessarily differentiable. In order to keep this proof

elementary and self-contained, we prove here in a few lines that A' exists.

By (6),

t t x+it
A(x) f A(y) dy = f A(x + y) dy f A(s) ds. (10)

0 0 0

The continuity of A and (5) imply that

A(y) dy - I as t- o. (11)

t0

1t t
It follows that both - f A( y) dy and f A( y) dy are non-singular for t

0 0
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sufficiently small and positive. By (10)

A~x) f A(s)dsfA(y)dy] (12)
x 0

for some t > o. Since the right member of ( 12) is differentiable with

respect to x, A' exists. Therefore, each aij is differentiable.

Finally, differentiate (3) with respect to x and then let x = o

to obtain

mZ (t = L L (0) f (t), i= is 000 1 m, te R, (13)
J=l I

This system of ordinary differential equations with constant coefficients

yields the desired results.

The conditions in Theorem I can be relaxed. For example, it suffices

to require (1) only for x sufficiently small and positive. The functions in

M need not be defined on all of R ; they could be defined on [ o, co ] or on

[o, c] for some c>o.

A generalization of Theorem 1 to real Euclidean n-space Rn is given
below, A typical element of Rn is devoted by I = (t 1 a .. , tn ) .

Theorem 2. Let M be a finite dimensional linear manifold in

C(R n) such that

n, Rn
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Then there exist integers mkp and complex numbers z k p = 1, ... , q

and k = 1 , ... n . such that M is spanned by the functions

m1  m nZilp Z np m k=O no Isee m kp k ,n

p[ 1... qk

r

This theorem can be proved in much the same way as Theorem 1.

Details are omitted.
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