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ABSTRACT

The steady motion of an incompressible inelastic non-

Newtonian Reiner-Rivlin fluid near a spinning cone has been

studied and a similarity solution has been presented. It has

been shown that the flow patterns can be obtained from

Srivastava-Jain's work. But the pressure distribution is not

the same and we have given the numerical values of the

pressure in two tables and also shown their variation in two

figures.



THE BOUNDARY LAYER FLOW OF A NON-NEWTONIAN FLUID

NEAR A SPINNING CONE

Subhendu K. Datta

Introduction. The boundary layer flows of non-Newtonian fluids have drawn

increasing attention in the past few years due to their importance in many

technological fields. Several authors (Srivastava (1958), Jain (1961), Jones

(1961) and others) have solved the steady boundary layer flows near a

stagnation point, near a rotating disc or over a plane. Some unsteady boundary

layer flows have also been solved (Srivastava (1960), author (1961)). But to

my knowledge the three dimensional boundary layer over a spinning cone of a

non-Newtonian fluid has not been studied. The problem of three dimensional

boundary layer near a spinning cone for an ordinary viscous liquid has been

studied by Wu(1959). He showed that with a suitable choice of coordinate

axes and independent variable the flow functions can be made to satisfy the

same set of equations as were obtained previously by Cochran-Karman, but

the pressure does not satisfy the same equations. In considering the same

problem in this paper for a non-Newtonian fluid (incompressible, inelastic and

of the Reiner-Rivlin type) we have come to the same conclusion that the flow

functions satisfy the same set of equations which were obtained by Srivastava

and Jain but the pressure does not, when we make a suitable choice of axes.

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-11-02Z-ORD-2059.
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We have computed the pressure within the boundary layer and shown the

variation in the figures I and II.

Equations. The constitutive equations for an inelastic non-Newtonian Reiner-

Rivlin fluid are

Tii = -p6+ij + T,

ij = 1 2, 3 (1)
Ti ij 4 Sc eik ekJ

where Ti and e i are the components of stress and rate of strain respectively,

p is the pressure, and c are the coefficients of viscosity and cross

viscosity respectively. We know that

1
ei =1 (vi~ +vii (2)

where vt's are the components of velocity.

x

z

Figure 1
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We choose cartesian coordinates (x, y, z) with origin 0 at the vertex of the

cone and z-axis along the axis of the cone. Let a be the semi-opening angle

of the cone. Then if we take coordinates (1, ,, 0) such that

x=(t sina+ Tcosa) cos0, y =(ijsina+ cosa) sin0, z =ilcosa- sina, (3)

then the physical components of rate of strain are

8v nv. v sina+v& cos ae e.-e 0_..
1 an ' e =, ' e - sinca+ (cosa

(4)
vv v 0 sina

2 a+ ail = ail nsina+ ;cosa

1 ve v0 cos a
e 0 =[(-- -sin& + ;cosao'

where we have taken the symmetry into consideration.

Thus the equation of continuity is

v -- ..+ + v s in a + v C o s a ( 58v q q sina+ ;cosa

The equation of momentum will give after the transformation (3) ,

8v ev v2 sin a 8T', aT
p(v n +v TI A il n

8 8 8 isina+ a cosa 8+,; +

sin a(T' - Tre) + cos T'
tina+ ;cosa (6)
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a

P(vl !a + v=-P2 + lt+

COS 4T'. T6 0) + sinaT'

rjsina+ 4cos, (7)

By BV v sina+v cosa 8 Z(aincrnT +coSaTe)
0 'v M r_ v)= + + aTn0 Oe 0+ sinc+ cosa v0 a + 84 + )sina+ cos a

(8)

taking the symmetry into consideration. i'.'s are given by the second equation

of (1) and equations (4)

Z. Boundary Layer Approximation. In order to solve equations (5) - (8) we

assume that

v ~ O00), vr, 1%o0(6/-no), ve -- O(1), (9)

which are the ordinary boundary layer assumptions (of interest) compatible with

the equation of continuity (5) . These assumptions are generally valid at a

large distance from the vertex of the cone. Assuming

6 ~ (-J V  (0-- ~ Z ) (10)

11 10 O ~Osina c

V = lp, P VC =Lc/P,C C

where w is the angular velocity of rotation, we have from equations (5) -

(8) , neglecting all terms smaller than 0(l) ,
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v av vn--% + +-- +-M = o (l
an~ at n

av av v -_ 8v a n2
v ---n + v - - .- - -  = - L- 22 + V a-- +, [I -)

' I 8 nr at nq p a n" a 8 2 an t

av e v 8v v v 1 av v

- av - _A i _a n +  - {( - - (T- i) ] a
+v a v tnv 82v an av 71a v t

8v O  av v O  v av2 8v 2 a v
__ 7- T_+ + n + -- - +-- ], (13)

2ye 1 av v 2ave av 2v

O oa+Vn)+( )} + o (-n) ] . (14)
-- cot= -- vc at ) +(-t) 1+ cotn (8

In deducing (12) - (14) we have used the reduced equation of continuity (11)

So, now we are to solve the system of equations (11) - (14) subject to the

boundary conditions

v (TI,O) = 0, v (TI,0) = 0, vo(n,O) = no sin a

(15)
lim v ( ,) =O, nlir v 0 0

In the next section we present a similar solution for the system of equations

(11) - (14) subject to the conditions (15)
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3. Similarity Solution. We assume as solution of equations (11) - (14)

v T1= f(,q) F(Q), v = g(ij) G(t), v 0 = C(1)O

substitute these in equation (11) and get as a result

Ft Q c~nl(16)
G -(Q An) + f'(1) 2 '2

where X is a constant.

To satisfy the third condition (15) we set #(i) =- . Thus we have, from

equations (12) - (14) ,

fA1) f,( 1 ) F2 () + g(n) f( 1 ) F'() G() - = - L + vfI) F"( +
p Ot

+ v [2f(TI) f'l(T) (FI()) 2 - - F() F'(4))

+ 1 2(f)) (F'(M 2- , i (0o1M) } (17)
11

f(,q) F(Q, O(Q) + g(,q) G ,) #'(Q + f(q1) FX (Q r)- vil0"(4) +

c [a .1 'O - '() O'+ (* ) ; ) }.

It appears from the set of equations (17) - (19) that the similarity solution is

possible if
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i4) = ', p(I, 4) q (4) + Tp2 (W) cota, P1  - o(l), P2  "-°4 ) • (Z°)

Then from (16) we obtain g(,q) = . St~stituting these in (17) - (19) we get,
2

equati, g coefficients of j and q ,

F 2(s) + xG() F(t) - 2 (c,) = vF"(Q) - v C[(F'(t)) 2 + 2F(4)F"(4)+3(0'(t)) 2

(21)

P p() v ftF,(t))2 + (*( 2))2] (22)

1 p = vF,(t))z + o 2 M (23)

2F() §() + XG() V'(4) = v"() + 2v [F'(,) 0'(4) - F(t) 0"()] (24)C

Equations (21), (24) and (16) give us the functions F(), G(t) and e(c)

while ecquations (22) and (23) give us the pressure distribution within the

boundary layer. Changing to dimensionless variables,

X G(;) -H(Q ,

H()= 4v7w si Hl ) ,(25)

F(;) - c sin Fl(;,) I

Q(Q sin a 0 1 (t)

P2( } = pw 4vw sin a sin aP 2( I)

2 W sn a
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we obtain,

F 2() + H1(t 1) Fji4 1) - 02(41) -i( ) - K [2F)) 2 + F(4,) F''(4,) +

+ 3(.,l) 2 ] , (26)

Pl(y1) =KiFi(y1 ))2 +( l))2 ] , (27)

Pi(Y 2 + 2(Fi{;l)2 , (28)

IF,(;l ) *i(ll) + III(;) *i(41) = oil) + ZK[F-(;) ei(ll)-Fl(;) e( )J, (29)

Z Fl(; l ) + Hi'(;) = 0 , (30)

K=v Wsina/vC

Equations (26), (29) are the same as obtained by Srivastava (1958) for the

rotational motion of a plane lamina in a non-Newtonian fluid. The boundary

conditions of our present problem are:

F1(0) =0, i6(0) = 1, HI0) 0 , (31)

lir FI(Ll) = 0, lim 011( ) z 0 ,

and these also correspond to the boundary conditions of his problem. The

expression for PI in (27) is also same as obtained by him. Only the

expression for P2 in (28) differs from that of his. This shows that the nature

of the flow will be the same as in the case of rotation of a disk. The values

Equations (12), (13)
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of F,, F1, *I and -H1 have been given in tables II-IlI by Jain (1961) in his

paper solving Srivastava's problem in a different way. We borrow these results

from his paper and since the pressure distribution is different in our case, so

we compute the values of

Pl/Pw2 s i n "  -a=p 1  -K [(Fj( )) 2  + (O 11 2

and also of

f1

/2 - Ps-n 2 - P20 f 60 i(g) + K(F1(-Q )) de
IW3  sin a 4v -sin a 0

for K = 0.05 and 0. 1, and give these in the following tables I and UI and show

their variations in figures 2 and 3

Table I

Pl/iW 2 sin2 a

K 0.05 0.1

0.0 0.0323 0.0646

0.5 0.0160 0.0320

1.0 0. 0081 0. 0161

1.5 0.0039 0.0076

2.0 0. 0018 0.0035

2.5 0.0008 0. 0015
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Figure 2

Table II

0.05 0.1

0.60 O.4098 0.4111

1.20 0.5687 0. 5691

1.80 0.6238 0.6240

2.40 0.6418 0.6421

3.00 0. 6476 0.6479

3.60 0.6493 0.6497

4.20 0. 6499 o. 6502
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Figure 3
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Conclusion. It has been pointed out before that the flow functions FI, ol and

H1 satisfy the same set of equations as was obtained by Jain when he considered

the flow due to a rotating plane lamina in a Reiner-Rivlin fluid. So, the flow

pattern will be same as in his case. This means that the values of FI, *l and

-H1 decrease as K increases. Besides, the boundary layer thickness also

decreases with increasing K .

Regarding the pressure distribution it may be seen from table I that P1

increases as K increases, but it dies away vary rapidly as we go away from the

wall of the cone. Also, from table II we find that (P 2 - P2 0) (P 2 0 being the

value of P2 at the wall of the cone) tends to its asymptotic value earlier as

K increases (which corroborates with the fact that the boundary layer thickness

decreases). Table I shows that P1 dies away within (almost) half the thickness

of the boundary layer. Thus the effect of the cross viscisity is most prominent

only near the wall and this too becomes more magnified as we go farther from

the vertex of the cone.

The numerical calculations were made in CDC 1604 of the numerical laboratory

of the Mathematics Research Center by Jaafar A-Abdulla. My thanks are due

to him.
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