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ABSTRACT

The purpose of this report is to show that the mapping

of a function on the unit circle into its conjugate is a bounded

operation in an Orlicz space if and only if the Orlicz space is reflexive.



CONJUGATE FUNCTIONS IN ORLICZ SPACES

Robert Ryan

1. The purpose of this paper is to prove the following results:
1r f(x + Q) - f(x - t) d7-li

Theorem 1. Let f (x) =- I- f = lim1T I f'V0 Ztan- t E-+0

The mapping f - f is a bounded mapping of an Orlicz space into itself

if and only if the space is reflexive.

Beginning with the classical result by M. Riesz for the L spacesP

[6; vol. I, p. 253] several authors have proved this theorem in one direction

or the other for various special classes of Orlicz spaces. We mention in

particular the papers by J. Lamperti [2] and S. Lozinski [4] and the

results given in A. Zygmund's book [6; vol. 1l, pp. 116-118]. In our proof

we use inequalities and techniques due to S. Lozinski [ 3, 4 1 to show

that boundedness of the mapping implies that the space is reflexive. We use

the theorem of Marcinkiewicz on the interpolation of operations [ 6; vol. II,

p. 116] to prove that reflexivity implies the boundedness of f-' f . Our

results are more general than Lozinskits results since we use the definitions

of an Orlicz space given by A. C. Zaanen [ 5] which includes, for example,

the space L,.
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Section 2 contains preliminary material about Orlicz spaces.

In Section 3 we prove that boundedness implies reflexivity and in

Section 4 we prove the converse.

Z. Let v = p (u) be a non-decreasing real valued function

defined for u > 0 . Assume that 9 (0)-- 0, that V is left continuous and that

that (p does not vanish identically. Let u = 4(v) be the left continuous

inverse of (p. If lim u_-. o q0(u) = I is finite then 4(v) = oo for

v > I ; otherwise 41(v) is finite for all v > 0. The complementary

Young's functions • and T are defined by

u v
S(u) f p(t) dt , k(v) = f41(s)ds.

0 0

D is an absolutely continuous convex function for 0 < u < 00 and

%k is absolutely continuous and convex in the internal where it is finite.

If lim Vo(u) = co this internal is 0< v <oo. If lim u-*oo qo(u)

is finite we say that T, jumps to infinity at v = 1.

4 is said to satisfy the A - condition if there is a constant2

k>O anda u0 > 0 suchthat f(2u) < kf(u) for u>u 0 . This is

equivalent to satisfying the inequality (1 u) < k 9 (u) for all

sufficiently large u, where A is any number greater than one (for a

proof and further details see [1; p. 23 ])
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The Orlicz space L= L 0 ( 0 Zn) consists, by definition,

of all measurable complex functions f defined on the unit circle
2 r

for which lft - sup f If(t) g(t) Idt <o , where the supremum
0 2 7

is taken over all functions g with f T I g(t) I dt < 1. The space
0

L T is defined by interchanging 4 and T. The Orlicz space LMO

is defined to be the set of all measurable complex functions f for

2n
which 1l f 11MI = sup f I f(t) g(t) I dt< o, where the supremum is

0

taken over all g with 119 gI < 1- L is similarly defined. The

spaces L,, Li,, LMD and LMk are all Banach spaces with their

respective norms when functions equal almost everywhere are identified.

The spaces L and L consist of the same functions and

I1 fDMU < lft1! < Z 11 f1MC) The same is true replacing ( by T,.

The space L is reflexive with dual space LMNP if and only if both

1 and TI satisfy the A - condition.2

Two Young's functions 0i and 4z are said to be equivalent

(D r, ) if and only if there exist positive constants k,, k?, and u0

such that 01 (k 1 u) < 0%(u) < 1 (k 2 u) for u > u 0  It is clear that

is an equivalence relation and that the A 2 -condition is an equivalence
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class property. If i N 0z then L and L consist of the same

functions and the norms II II and 1 ID are equivalent. Conversely,1 2z

if L and L have the same elements then Oir (1 [1; p. IIZ].

3. In this section we will show that if f- f is bounded
th

then L I is reflexive. Let Sn (f) denote the n partial sum of the

Fourier series of f and write Dn(t) = sin (n V2 sin/ s t. If

Irf 11 < C 1if 11 for all fc L then it follows [6; vol. I, p. 266]

that 1Sn(f) 11 < AllfII for all f e L and all n, where A is a

positive constant independent of n and f , Thus, the following result

is ostensibly more general than the corresponding part of Theorem 1.

Theorem 2. If 11Sh(f) If < Allfl1( for all f e LD and

all n then L is reflexive.

The proof of Theorem 2 uses the following two lemmas given

by S. Lozinski in [ 3] . Lozinski proved these lemmas under more restrictive

conditions on 9 than we have assumed. Nevertheless, Lozinski's proofs

remain valid for the functions as we have defined them.

Lemma 1. i5 log0 u(u) < liD I1 for up(u) >1.

Lemma 2. if 1Sn(f) 11 < Allfl for all f e LC and all n

then 1IDI < ZTA n+ O(u) for 0 < u < 0
n b- u
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Proof of Theorem Z. Our proof is a variation of the one

given by Lozinski in [ 4] . From Lemmas I and 2 we have

(1Pq(v) log n < k n+ 0(u)
v(q (v) - u

,-A
for vqp(v)> 1 and 0<u <00. k=!-L . Our immediate aim isto250

show that for all sufficiently large X> I.

(2) log ( x )< 2k Pv

for v>v 0 , where v 0 depends upon X.
u u

For any X> I c(u)= f p(t)dt >f p,(t)dt
0 UA

and hence 1()(u P( = k-) P()

Thus

(3) log ~-ln < log n
0 (v) vPV

By combining (3) and (1) we see that
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(4) A([) log n() k n (
~(v)

whenever > I. Let n P (v) greatest integer in 0 (v)o

Then (4) becomes

(5) (P log (X-l) [,(v) <k )(v)} (v) < v2(V)

For every sufficiently large X there exist a v 0 > 0 such that for v> v0

(6) 1< L< (X - I) [ (v) and
2 O(v)

(7) v

Using (5) , (6) and the fact that O(v) < vq,(v) we get inequality (Z)

for v > v.. Since k can be arbitrarily large (2) implies that

limu.. 0(u) = 0o and hence that T does not jump to infinity. We

next show that T satisfies the A - condition.2

Let k be large but fixed and write 1= - log (-) . Then2k 2

(2) states that

(8) tI < (Ct)

for t > v 0
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This implies, on taking inverses, that there is a number s such

that for s > s O

(9) Cs)< X( .

Vv v I-

Thus f q(s)ds < Xf )ds = X1 J (s)ds or
so sO  s

s0s0 s0

(10) T(v) - T( S )< M[*( ) - (

This shows that for sufficiently large v

(11) (Y-v)< 2XI *(v)

and hence proves that & satisfies the A .condition.
z

if ls n(f) 10< AllfI1 for all f c L then it follows

that s n(g) IIM < AIIgH M for all g LMi or, equivalently,

that I s(g) 1i < AIIgT for all g e L . Since we have shown

that F does not jump to 0o we can interchange the role of Z and '

in the above argument to show that 4 satisfies the A - condition.

This proves that L is reflexive and completes the proof of Theorem 2.
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4. In this section we prove a general result about reflexive

Orlicz spaces which combined with the classical results of M. Riesz

[ 6; vol. I, p. 256 and p. Z66] yields the unproved half of Theorem 1

as well as the converse of Theorem 2.

Theorem 3. Suppose that T is a bounded linear operator

on Lp into Lp for 1 <p<0o. Thenif L is reflexive T is

defined and bounded on L into L .

Proof. The proof consists of showing that 0 can be replaced

by an equivalent function 0I ( 0 1) such that 0I satisfies the

conditions of the Marcinkiewicz theorem on the interpolation of operations

i.e. such that

(IZ00 b ®l ( t) at 0(12) t1 1 and

u to1 P up

(13) f l ( t ) dt ()
1 ta + 1  I.u

for u-oo, where 1 <a <P <00.

The assumption that L is reflexive implies that limu_,o@( u)=Oo

and hence that lim 0 (u) w 0 By [1; p.16] i is equal for sufficientlyU--0 u
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U
large values of u to a function M of the form M(u) f p(t) dt

0
where p is a non-decreasing right continuous function with

lim u_0p(u) = 0 and limu oop(u) = o. Clearly l- M.
u-~cO

By [1; po 4 6 ] the function M defined by Ml(u) = M( t)dt
0

is equivalent to M and hence to 1 . The derivative of M is

continuous and strictly increasing.

Since L is reflexive both P and i satisfy the Az -condition.

Thus both M 1 and its conjugate Youngs function N satisfy the

A2 -condition [1; p, 23] . According to [1; pp. 2 6 -27] this implies

the existence of numbers a, b, and u0 > 0 with 1 <a <b <oo such

that

uM, (u)
I <a < <bMI(u)

for all u > u 0 a If we define DI by

MI(u 0 ) a
a u for u < ua 0u 0

t i( u) =

MIl(u) for u > u 0
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we obtain a function tI - such that

(14) l<a< 0q1(u) < b

for all u > 0.

We next show that (I satisfies (12) and (13) for suitably

chosen a and P. In particular choose a and P such that

1 <a <a <b <P <0oo. This is clearly possible. In what follows all

of the integrals will exist as finite numbers because of (14),

Integration by parts shows that

00 (  4P oo (t) (1(u)

(15) f -dt - f  - t- and

u tPu t) +i U

(16) f = t dt f  +dt+
0 ta  0 t +  u

From (14) we obtain

(17) f 0 1(t)  f 1 t)
u t dt_ b + 1 dt and
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( f- dt > af - dt.
0 t 0 t

Combining (15) with (17) and (16) with (18) shows that

119)~ 0 f D t ) 1 ( u

(19) f -- dt < and
u - P-b UP

(U) I (t ___i 1 u

(20) - dt < a
-- a - aI<

0u j

This shows that 0I satisfies (12) and (13). Thus by the Marcinkiewicz

theorem and Theorem 10.14 of [6; vol I, p.174] there exists a constant

such that 1lTfI11 < K lf 1l for all f c L D. Since D-0I there

is a constant K such that lTfi! < KIf 1I for all fE Ld. This completes

the proof of Theorem 3.

Statements of the standard corollaries of Theorem 1 can be

found in [2] .
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