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NEUTRON TRANSMISSION VERSUS THICKNESS FOR SOME COMMON MATERIALS

ABSTRACT

Curves of neutron dose transmission versus thickness are presented
for laterally infinite slabs of several common materials for neutrons
incident at several fixed energles and angles. The materials are: water,
polyethylene (borated), iron, concrete, Nevada Test Site soil (area 7, i
dry and 100 percent'saturated), laminated slabs containing one inch of
iron on the outside, a variable thickness of iron on the inside, and 3,6,9,
or 12 inches of polyethylene sandwiched betﬁeen the layers of iron. The
neutron source energies are 0.5, 1, 2, 3, 5, and 14 MEV; the incident angles
are 0°, 30°, 45°, and 70°.

Sufficient edditionsl material is presented for interpretation, evaluation,
and use of the results given. '
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INTRODUCTION

During the past two years the Ballistic Research Laboratories have made
detailed and extensive calculations of the transport of neutrons through
several common materials. Some of the results of these calculatlons along
with a description of the methods employed have been reported in References
1 - 4. The purpose of the present report is to present all of our calculated
dose transmission factors for the materials treated. In some instances previous
results have been improved; in these instances the present resultis supersede
the previous results.

RESULTS AND DISCUSSION

Table 1 gives the densities and elemental compositions for all of the
materials treated. The results are contained in Figures 1 - Uk,

Differential elastic cross sections are used for oxygen and iron. For
all other elements, elastic collisions are assumed isotropic in the center

of mass system.

Inelastic collisons are handled in two ways. For each element a "threshold

energy,” E,_, , is defined. For neutron energies (before any given collision)

th
n & nuclear temperature model with the temperature, T, given by

T = K V/;;

is utilized. (T and E are measured in MEV,) For neutron energies before

above Et

collison below Eth’ a single level, Ey, is assumed responsible for the in-
elastic scattering. All inelastic collisons are assumed isotropic in the

center of mass system. Table 1 gives the values employed for E and

th? Ty
K for the various elements of concern.
The rad is the unit of dose employed in the calculations. The flux to

dose conversion factors are taken from Reference 5.
A cutoff energy of 10 electron volts is used throughout the calculations.

Figures 1 - 6 show the calculated dose transmission factors versus
thickness for water for six source energies and four incident engles. Figures
7 - 12 give similar results for borated polyethylene, while Figures 13 - 18
glve similar results for iron. Several machine calculations performed for



pure polyethylene slebs (up to six inches in tHickness) show that the
differences in dose transmission between pure polyethylene and borated

polyethylene are negligible.

Figures 19 - 24 represent an attempt to scale neutron transport results

_ for several hydrogenous materials having quite different hydrogen contents.
The results are moderately good: a scale factor is found for each material
for each source energy but it is not always possible to draw a single curve
thrqugh the data for each incident energy, angle, and all materials. In some
cases two curves are required. One curve suffices for water and polyethylene%
the other suffices for Nevada Test Site soil (dry and 100 percent saturated) &
and for concrete. The composition for Nevada Test Site soil is based on
Reference 6; that for concrete is based on Reference 7. For these materials,
atoms of all elements other than hydrogen, oxygen, aluminum, or silicon were
replaced by silicon atoms. (This changes the density slightly.)

Soils and concretes vary greatly in composition; their hydrogen contents
also vary greatly. Often the compositions are not well known; in the case of
soils the compositions often vary widely over small distances while their
hydrogen contents vary with the weather. Therefore, in many instances, high
accuracy is not required; the curves in Figures 19 - 24 can then be used to

estimate neutron transmission through soil or concrete satisfactorily.

Figures 25 - 42 give the dose transmission factors for laminated slabs
of iron and borated polyethylene. These slabs contain one inch of iron on
the outside, a veriable thickness of iron on the inside and 3, 6, 9, or 12
inches of polyethylene sandwiched between the layers of iron. The curves
have not been drawn for values of the abscissa corresponding to less than one
inch of iron. In this region all of the iron is on the outside, while velues
of the abscissa greater then unity imply one inch of iron on the outside and
the remeinder on the inside. Thus the curves should be cusped at an absclssa
of unity. Since the calculated results do not suffice to determine the
detailed shapes of the curves, the curves have not been drawn for values of
the abscissa less than unity.

Figures U3 and Uh give dose transmission factors for normally incident
neutrons for five source energies for slabs of water end borated polyethylene.

The slab thicknesses here are greater than those in Figures 1 - 12. In the
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vicinity of twelve inches, the results in Figurés 43 and Ul differ slightly
from those in Figures 1 - 12. This is because additional Monte Carlo cal-
culations were made to obtain the results contained in Figures 43 and Wk4.
These were averaged with previous results for thicknesses at which previous
results were available. Therefore, the results in Figures 43 and 4} have
‘slightly smaller statistical errors associated with them than the previously
given results. '

FURTHER DISCUSSION

Most of the results were obtained by Monte Carlo :calculations. A
description of the basic machine program is contained in Reference 1. This
pro'gra.m has been modified in two iﬁportant respects since the publlcation
of Reference 1. A "splitting" technique has been incorporated in the program.
This allows the calculation of much deeper penetrations tha.n_ had been possible
previously. Handling of the information generated on the slab interior has
been changed. 1In particular, this allows making calculations for seversal
slab configurations simultaneously. (It also gives rise to more useful in-
formation on the slab interior than that described in Reference 1, but that

is not of concern here.)

Reference 3 describes a method of calculating deep penetrations based
on the fact that (the scattered) neutrons penetrating a thick medium achieve
a quasi -equilibrium several mean free paths from the source. This method, in
effect, allows determination of & relaxation length for the scattered neutrons
once quasi-equilibrium is established. Then the transmission for any thick-
ness is readily calculated; however, the accuracy diminishes as the thickness
increases and there is no way of knowing at what depth the results cease to
be reliable. This method had been used for calculations of neutron trans-
mission through slabs several inches thicker than calculable by analog
Monte Carlo prior to the incorporation of the splitting technique in the
basic machine program.

Calculations made with the aid of the splitting technique have served
to substantiate the validity of the quasi-equi_librium method described in
Reference 3. In addition, the avallability of calculated results for deeper
penetrations than could. be made witl}out the splitting technique has allowed
more accurate determination of the relaxation length applicable after quesi-
equilibrium is achieved. The deep penetration results alsé give good

9



information on the approach to quasi~-equilibrium. This improved information
has been used to calculate some of the results in this report, while other
of the deep penetration results have been made with the splitting technique.
It has not been possible to calculate all of the results employing the
splitting technique since computing machine time becomes very long for the
Eeep penetrations. However, a good many of the calculations were made by
this method on occasional weekends when the ORDVAC would otherwise have been
idle. The quasi-equilibrium method has.been checked against the splitting
resul'ts whenever the latter were available since calculations by the quasi-
equilibrium method can be performed rapidly by hand. With the improved
values of the relaxation lengths now a&ailable, the two calculations agree

FRANK J. ALLEN

A T

ARNOLD T. FUTTERER

quite well in all cases.

&/A/&Wﬂ.wfﬁ

WILLIAM P. WRIGHT
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APPENDIX
THE DEEP PENETRATION PROBLEM

One of the outstanding problems in radiation transport is the calculation
of the transmission through a medium many mean free paths thick. The problen
is more difficult for laminated slabs than for a homogeneous material and it
is more difficult for oblique than for normal incidence. Recently a splitting
technique* was incorporated into the BRL Monte Carlo neutron transport code
to deal with this problem. It is of some interest to gonsider what advantage
is gained by this technique. ’ '

We define the splitting advantage to be the ratio of the computing time
required to obtain a result by analog Monte Carlo to the time required to
obtain a result of like statistical validity with the aid of the splitting
technique. Figure A-1 gives three curves of splitting advantage versus
probability of transmission. One is a theoretical curve based on the study
in Reference 8. The other two are based on machine runs made with three

splitting surfaces and seven splitting surfaces, respectively.

It may be seen that the three curves have the same shapes. Seven splitting
surfaces are much better than three. Use of more surfaces would bring about
& further improvement. The theoretical curve-is based on a simple case amensble
to analytical treatment: only ebsorption and forward scattering are allowed.
In obtaining the theoretical curve no allowance was made for any machine
operations other than those required to treat collisions. The points on the two
lower curves in Figure A-l are based on machine runs for several ﬁaterials
(including some laminated slabs), various thicknesses, incident energies and
incident angles. It was not always possible to choose either the positions of

¥ 1n this technique, a neutron, upon crossing any of several preselected surfaces,

is split into several neutrons. The weight of each of these is reduced in
proportion to the amount of splitting, so that the results are unblased. The
similation of the neutron's physical interaction processes is not altered in
this procedure.

*¥ Three splitting surfaces were available in the machine program before seven
(the maximum aveilable); several calculations were made wWth three splitting
surfaces. The reason for this is connected with the difficulties caused by
the ORDVAC*s small (4096 word) fast memory. Programming compromises had to
be made in order to obtain accurate physical input along with the desired
multiplicity of output information.

)



the splitting surfaces or the amount of splittifg at each surface in an
optimum manner. For the deep penetrationscalculated, splitting factors
larger than two were required at most of the surfaces since only seven
splitting surfaces are available in the machine program. In view of these
‘facts, it is perhaps surprising that the curve for 7 splitting surfaces in

Figure A-1 is as close to the theoretical curve as it is.

The preceding discussion lends strong support to the following, intuitively
clear, assertion: in calculating the probabllity of transmission, the advantaée
gained by splitting is mainly a function -of this probebility itself, and is
almost independent of the detailed sequences of events, the totality of which a
determine this probebility. This is in contrast to the state of affairs with
importance sampling: for use of this technique, one must know which classes
of event sequences are important beforehand in order to increase the sampling
of those trajectories which make the chief contributions to the transmission.

Figure A-1 shows that the splitting advantage does not increase quite
as rapidly as the probabllity of transmission decreases. For example, a
decrease in probability of transmission from 10'2 to 10-7, or five orders of
magnitude, is accompanied by a gain in splitting advantage of but four orders
of magnitude. This means that ten times as much time 1s required to compute
the probability of transmission for the case of lesser liklihood. Thus,
although the advantage gained by splitting is very great, it is not great

enough to make possible the calculation of arbitrarily deep penetrations.

2h
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TABLE 1

ELEMENTAL, COMPOSITIONS AND AUXILIARY INFORMATION

16

Meterial Density Elements Atoms Eth E7 K
‘ tai
Grams/c Contained 1();3;2 53-1;1 (MEV)  (MEY) (MEVl/e)
Water 1.0 H *66.9 - - -
0 33,45 10,0 - 6.3 0.469
8 percent .97 - H 76.8 - - -
Borated
Polyethylene c 39.2 10.0 4,43 0.267
50 0.658 - = ;
Bll 2.67 - - -
Iron 7.88 Fe 8k.9 3.0 0.85 0.267
Nevada Test 1.15 H 8.555 = - -
Site Soil ' 0 22.68 10.0 6.3 0.469
(Area 7T)
Dry Al 2,01k 3.0 0.96 0.294.
' Si 9.5 6.0 1.8 0.294
Nevada Test 1.25 H 16.87 - - -
Site (Area T)
100 percent
Saturated 0 27.0 10.0 6.3 0.469
Al 1.976 3.0 0.96 0.294
si 8.963 6.0 1.8 0.294
Concrete 2.26 H 13.75 - - -
0 ) 45,87 10.0 6.3 0.469
AL 1.74% 3.0  0.96 0.294
Si 20.15 6.0 1.8 Q.28



DOSE TRANSMISSION FACTOR

FIG. |

NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
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FIG. | {confd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF JNCIDENCE
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DOSE TRANSMISSION FACTOR

FIG. 2 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG. 2 (cont'd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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"FIG. 3 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR

F16. 4 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR

FIG: 5 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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"DOSE TRANSMISSION FACTOR

"FIG. 6 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR

FIG. 7 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
‘ THICKNESS AND ANGLE OF INCIDENCE
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F1G.7.(cont'd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR

FIG. 8 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF
SLAB THICKNESS AND ANGLE OF INCIDENCE
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FIG. 8 (cont'd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF

DOSE TRANSMISSION FACTOR
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1.0

- FIG. 9 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB

THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR

FIG. 10 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
' THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR

FIG. Il
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FI1G. 12 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR

FIG. 13 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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FIG.14 NEUTRON DOSE TRANSMISSION AS. A FUNCTION OF SLAB

DOSE TRANSMISSION FACTOR
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DOSE TRANSMISSION FACTOR

FIG. I5 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR

FIG. 16 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
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FIG. I7 NEUTRON DOSE TRANSMISSION AS. A FUNCTION OF SLAB
THICKNESS AND ANGLE OF INCIDENCE
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DOSE TRANSMISSION FACTOR
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DOSE TRANSMISSION FACTOR

FIG. 19 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
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DOSE TRANSMISSION FACTOR
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FIG. 22 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB THICKNESS AND ANGLE
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FIG, 23 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF
SLAB THICKNESS AND ANGLE OF INCIDENCE
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FIG. 25 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 26 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 27 DOSE TRANSMISSION FACTOR VvS. TOTAL THICKNESS OF IRON
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'FIG. 29
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FIG. 30 DOSE TRANSM?!SSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG:-31 DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 32- DOSE TlgANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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F1G. 33 DOSE TB.ANSMlSSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 34 . DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 35 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG.36 bOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 37 DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 38 DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG.39 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG. 40 DOSE TRANSMISSION FACTOR VS. TOTAL THICKNESS OF IRON
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FIG, 4! DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FlG.42. DOSE TRANSMISSION FACTOR vs. TOTAL THICKNESS OF IRON
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FIG. 43 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
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FIG. 43 (cont'd) NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
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DOSE TRANSMISSION FACTOR

FIG. 44 NEUTRON DOSE TRANSMISSION AS A FUNCTION OF SLAB
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