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The axisymmetric vertex moticn of a viscous fluid over a flat
surface is investigated. Paradoxical results obtained by Moore and
Goldshtik are resolved. Guided by a useful extension oi Prandtl's
bouﬂ&aty layer theory an appropriate similarity transformation is
found which reduces the Navier-Stokes equations to three ordinary
differential equations. The solution of the remaining boundary value
problem reveals significant properties of vortex flows and explains
several phenomena observed in hurricanes. A complete numerical

resulc is displayed.
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mathematical description of the steady vortex motion of a viscous fluid
which is governed by the Navier-Stokes equations. Taylor [9] , Cooke
(2], Goldsheik [37, and Long [4]) investigated the vortex motion normal
to a flat surface, which is asymptotic to a coaxial potential vortex

at large distances from the surface and the core of the vortex. Taylor
and Cooke excluded the core of the vortex and presented certain solu=
tions of the corresponding classical boundary layer equations by apply-
ing the method of Kdrmdn-Pohlhausen. Moore [5] showed that the
axisymmetric vortéx flow considered is nonasymptotic to certain so=
called "similarity solutions" of the boundary layer equations used by

Taylor and Cooke. Nevertheless, Long ignored the presence of the sur-

boundary layer equations, which presumably describe the vortex flow
approximately in the core. Goldshtik reexamined the problem and
attempted to integrate the exact Navier-Stokes equations by a similarity
solution of Moore's type. This interesting investigation led to the
paradoxical results presented in [3] .

Since the paradoxical results of Moore and Goldshtik appear to
be physically questionable, the same vortex flow problem will be rein-
vestigated in the present paper. It will be shown that the dis-

crepancies discovered by Moore and Goldshtik are due to inconsistent

and incomplete boundary data used to determine a unique solution of

i
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the differential equations considered. Moore's nonexistence result

is also a consequence of Prandtl's boundary layer theory which
examining the existence of a solution to the remaining parabolic
boundary value problem,

on the basis of a specified physical problem, complete and
consistent boundary data will be found in order to define a useful
solution of the Navier=Stokes equations. Guided by an extended
boundary layer theory, which preserves the full elliptic Navier-
Stokes equations; a set of ordinary differential equations will be
derived by an appropriate similarity transformation. This trans-
formation is based upon the concept of the limiting line of a
boundary layer the existence of which is suggested by the extended
béundary layer theory.

The investigations are supported by a complete numerical solu-
tion, which has been established by means of the Runge-Kutta method.
All results appear to be physically plausible and permit the
explanation of several phenomena observed in hurricanes outside

their cores.




2. Definition of a Solution of the Navier=Stokes Equations

In the cylindrical coordinate system (r, ¢, z) let (u, v, W)
denote the corresponding velocity vector of an axisywmetric vortex
flow over the solid surface z = 0, If v; p, and p are the constant
kinematic viscosity, the constant density, and the variable pressure

of the fluid, the flow is governed by the Navier-Stokes equations
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Since the nonlinear elliptic partial differential equations (1)
through (4) are singular at the axis r = 0, it is not possible to
specify a solution in the region (r 20, z 20) by an arbitrary set
of boundary data and singularity conditions. In order to find a
consistent and complete set of boundary values, it is helpful to
examine the characteristic properties of the following physical
flow model (see Figure 1),

The vortex flow over the surface at z = 0 may be produced

by a very long rod of small diameter d which is rotating around its

axis at r = 0 with the angular velocity w. If all friction forces

_A‘____L_ .




at the surface at z = 0 were eliminated, then the rod would produce the
potential vertex flow
u =0, VEL

. w=o, P:.I 5
’ o = )

S

where an additive pressure constant is neglected., In order to investi-

r
with the vortex strength

gate exclusively the influence of the friction forces at the surface z = 0
on the potential vortex (5), it is necessary to prevent any additional
exterior disturbances of the flow. This econdition may be fulfilled by
providing the rod with a flexible surface which glides freely with the
flow in the axial direction., For the rigorous mathematical model the rod
must extend from z = 0 to z = ®». The diameter of the rod must shrink
to zero, while the angular velocity increases to infinity So that the “
vortex strength (6) remains a constant. Since thé fluid is to be at
rest at large distances from the rod, adequate sources and sinks of
equal strength must be located at large distances from the surface.
A circular sink around the axis r = U is necessary at z = ® to absorb
the fluid which is ejected by the vortex motion from the boundary layer
at the surface. This sink must change at some r = rqy to an annular
source of equal strength, which supplies the boundary layer with the
necessary fluid in return.

With this description of the physical flow model, it is now

easy to determine consistent singularities and complete boundary data
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which define a useful solution of the Navier-Stokes equations. At the
surface and at large distances from the rod the solution is subject to

the "regular boundary conditions":
r>0 )

z_o,:ut'-'o, v=0, wao ¢))]

_:fﬁ‘uio, v=0, w=0 |, (8)

At the rotating rod and at large distances from the surface the solu-
tion is determined by the following "singular boundary conditions':

r -0 - ( v . W :
z>0. : TA log §9

r<e (;y=0, Ea1l, e—¥e_-1, (10
7 zoe. r TA log £8

where I' and A are constant parameters at one's disposal. The constant

T, must be determined simultaneously with the solution. No conditions

are imposed at the two singular points (r =0, z = 0) and (r = », 2 = @),

The consistency of the foregoing singularities (9) and (10) may
be demonstrated on the basis of the following principles:

(I) The singularities required for the primary tangential flow v are
admissible, because the Navier-Stokes equations (1) through (4)
yield the potential solution (5) which has the same singularities.

(I The sink and source distribution admitted for the secondary axial
flow w is compatible with the singularities of the primary tan-
gential flow, as the Navier-Stokes equations yield the potential

solution

u=0, vs =, wsFALos%“* (11)

st a4 e
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vith the same singularities. Thus the exchange of fluid between ?
the boundary layer at z = 0 and the sink and source at z # @ can

proceed freely without friction forces acting. Since the undis-

turbed flow (5) is not regular at r = ®, the amount of fluid |
revolved by the vortex flow depends upon the radius r = ® of the
surface at z = 0, This indicates the freedom of the parameter A
which, vice versa, determines the radius of the surface, i. e., it
defines the exact meaning of the limit r = » (see [8)).

In this connection it ir sigaificant to compare the boundary

data posed by M. A. Goldshtik for the same physical problem (see [3]
and also (2, 5, 9)). Goldshtik subjected the flow to the same regular .

boundary values (7) and (8), to which he added the singular boundary ‘

conditions

2r° p

|
|
|

o f Y "0, W = W5(2z) (bounded!) (13)

Since these conditions were incomplete, he required later a special

"similarity property' for the solution, by which he tacitly added the

missing data

P20 w-0, w-0, (14)
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Without going into any process of integration, it is casy to
show the inconsistency of these conditioms which led Goldshtik te his
"paradoxical results". His special similarity assumption requires the
vottex flow to produce a sort of source in the axial flow W at the
point (r = 0, z = 0). This source is characterized by an unbounded
axial velocity w which must remain unbounded along the entire axis
r = 0, where the tangential and radial flows are at their asymptotic
frictionless state. In fact, Goldshtik's existence proof for small
Reynolds numbers is based on the second condition (13); which is not
fulfilled by his solution (see [3, page 927 ):

It may be mentioned that the authors' attempt to solve Goldshtik's
equations (1.3) through (1.8) under the boundary conditions (1.7)

and (1.8) (see [3]) falled for small and large Reynolds numbers
because of nonconvergence of the Runge-Kutta method. The numerical
results demonstrated very clearly that the friction forces at the
surface are not sufficient to produce a source of the strength (16)
in the axial flow. Further exterior forces are needed, to reduce the
axial velocity fromw = @ to w = 0 along the axis r = 0, This obser-

which 1s free of effective friction forces.
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3. A Reduction of the Navier-Stokes Equations

For an approximate integration of the Navier-Stokes equations (1)
through (4) under the boundary conditions (7) through (10), it is useful
to simplify the singular boundary conditioms (9) and (10) by introducing
dimensionless quantities by the following conventions:

L

e

U v =

-

"=y

v, v = TA log X8
w = TA log = W, (an

oo
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¥
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(18)
where R may be called the Reynolds numbet of the flow. After carrying .

out this transformation one arrives at the new Navier-Stokes equations:

UU, + Ar log S wu. - L + v@) = p -2 p o Li g . :

Mg * AT Log L2 WU, - 2 4 V) = By o3 P4 gle@We + 1) - U] (19)
UV, + Ar log fo wv, - eV + V,0) - V21 (20)
e T AL 208 = W2 ' govEr T Vaz ri (&

P r - .
rlog%n[uwg*-Atlos;-?—W;]éUw -%Er

myr 2 T
+ g(r® log ipp + Wy + ;1."1-)
= 2w, ] (21)

; . log SA W, =
Up + Ar log §2 W, = 0 (22)

i+ e s 58
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The transformed boundary conditions are:
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The solution of this equivalent elliptic boundary value problem may be .

i
guided by the essential hypothesis of Prandtl's boundary layer theory in iw
the following form,

Weak Boundary Laver Assumption:

Friction forces, which are

caused by the nonslip condition at a solid surface in a primary real
are essentially acting only {
within a "boundary layer" that is bounded by a certain "limiting line." ' 4
The asymptotic flow beyond the boundary layer is the primary flow on
which may be superposed a secondary flow without effective friction

forces, ' k

It is significant to note that the "extended boundary layer i




Navier-Stokes equations. Thus the validity of existence and unique-
ness theorems, which are known for elliptic boundary value problems,

remains untouched by this theory. This most important requirement of

by the complete "classical boundary layer theory." Indeed, the well-
known boundary layer assumptions, which neglect certain first and
second order partial derivatives, lead to parabolic differential
equations,; for which the existence and uniqueness theoreéms of elliptic
boundary value problems do not hold in the same generality. This is
reason enough to abandon such risky assumptiofis. In this connection
it may be interesting to compare other simplifications of this sort *
which have been suggested in the past and which have been criticized
in a similar manner (see, for imstance,[1]).
The additional assumptions of the claséical boundary layer
theory may also be abandoned as they do not simplify the constructive
solution of the remaining mathematical problem in gemeral. This
statement will be verified for the present problem by the following
derivations and for further examples by other investigations (see [8]),
It may be worthwhile to mention that the extended boundary layer
theory introduced above leads to exactly the same asymptotic solution
of the classical flat plate problem as the common boundary layer
theory without any mathematical complications. This reveals a clear
superiority of the extended boundary layer theory over the classical )

theory which may be well founded in special cases,
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In order to find an approximate solution of the boundary value
problem considered, it is helpful to utilize the limiting line z = §(¥)
of the boundary layer the existence of which is suggested by the
extended boundary layer theory. For am accuracy parameter e, which
18 at one's disposal, the limiting line of the boundary layer along

the surface at z = 0 may be characterized by the following flow data:

z=8(r) :Vsl-=-ce @27

£ 268(r) : UssO, Val, Wal , (28)

The existence of a line z = 8(r), which satisfies all éondicions Q27
and (28) is plausible from the boundary data (23) through (26).

Since V is a solution of an elliptic differential equation, §(r) must
be an analytic function of r which connects the two singular boundary
points (r = 0, z = 0) and(r = @, z = ®) for any accuracy parameter

0 <e¢ <1 (see Figwe 1).

According to the conditions (23) through (28) it is useful to

r=r, =3
which maps the boundary layer 0 < z S §(r) onto the parallel strip

0 S {s1. The boundary lines (r >0, z = 0) and (r <=, z = ®) are

transform the Navier-Stokes equations (19) through (22) by the
(29) {




mapped onto the corresponding lines (£ >0, £ =0) and (r < &, { & &),
While the lines (r = »;, z < =) and (r = 0, z > 0) reduce to the points

(x =® {=0) and (r = 0, { = &), the singular points (r = 0, z = 0)
and (r = ®, z. = ®) stretch into the lines (r = 0, { <) and (r = &, { >0),
Thus, in the (¥, {) plane the solution censiaared 45 not soveinal by

any boundary data at r = 0 and ¥ = & ,

After evaluating the transformed conditiona (23) through (28) one is
tempted to seéek a solution of the corresponding Navier-Stokes equations
which is independent of r. Indeed, if a boundary layer exists, which
satisfies the conditions (27) and (28), then all partial derivatives
with respect to r vanish at [ = 0 and are almost zero at [ = 1 at
least for some values of r, for instance, around ¥ = ry . The same
remains true within the boundary layer 0 £ [ < 1, because the lines
{ = const. may be considered as first order approximations of the
lines of constant velocity (U, V, W) around r = vy . Thus, the exact
solution of the problem considered must yield a first order approxima-
tion which is independent of r around r = r, within the strip

0s(sl.

These results reveal the limits of the classical boundary layer
theory. After differentiating the esgential boundary layer assumption (27)
along the line z = 8(r) one arrives at .

.d_v.gﬂ*{gl

rri

[N

dé = o
ir

‘|
i

(30)

1
o

Thus, %% and .gl display the same asymptotic behavior, if |6/(r) | has
r z

a positive lower bound, Unless r can be confined to a proper vicinity

12

= .
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of a point ¥ = ry at which 6'(x;) = 0, 6'(r) may even grow beyond

any upper bounds, if the accuracy of condition (27) is increased.

After differentiation of equation (30) aleng the line z = §(t)

one ®eés in the same manner that, in the Navier-Stokes equations (19)

up to second order, unless the derivatives §'(r) and 6”(r) vanish at

some point t = £, . Hence, the classical boundary layer theory is

consistent for an "almost parallel" boundary layer which has a limits

ing line that assumes the slope and the curvature of the corresponding

surface in Ehe region of interest. This condition is fulfilled in

the classical flat plate problem, but it is vielated in the present

problem as the following derivations will show (see also [8]),
After carrying out theé similarity transformation (2%) one

arrives at the reduced Navier-Stokes equations:

128y o Fre28’ - 887 & 580y L R8/atmr _ an Lo oy
(1+ 83U + [0(28"% - 687 + 23=) + 338’0V - Ar log 8 WU

23 “ s . .
+ Rl0° 4 v - 2P - B p1- 0 (31)

1+ 62V + (026 - 68" + 2y + Be'w - ar log e N =0 (32)

_ . l * — L' . 12 2 e 15 . _ -
UW+ 75 P=gpe log (1 + 8%¢HW + £(26" - 66" - 7

~

o E Palp r %7 2rd’ A
+ 5 108 ;-(8'CU - Ar log B WM - S W (33) ]

800 - Ar log 2 W =0 : (34)

13 i




In ‘tlese equations the partial derivatives of U, V, W, and P with .
tespect to r are omitted because only [-dependent solutions are of ﬁ
interest. The partial derivatives with respect to ( are indicated
by a dot, while the primes denote the derivatives of the limiting
line of the boundary layer.

The continulty equation (34) displays very clearly that the

search for an apbroximate solution of the boundary value problem

considered can be successful in the present form, only if :
8'(r) yields the expansion i

y
S

I
|
for instance around r = rg, where temms of second and higher order may d
be neglected. The limiting line of the boundary layer has then the |

expansion

_\2 C I . !
5= B(}‘l) ({-J [z log 22 + 1]+ e (B #0) (36)

around r = rq .

The general features of the limiting line of the boundary layer
determined by equation (36) are displayed in Figure i. It is remarkahle ‘
to note that the boundary layer thickness reaches a relative maximum
at the point r = r, where the axial velocity w changes its direction. ‘
Hence the boundary layer thickness must assume also a relative minimum |

before it increases rapidly beyond any bounds. This surprising

14 ’
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phenomenon is physically plausible, as the positive and negative
secondary axial flows deform the boundary layer which is produced by
the friction forces along the surface at z = 0,

After substituting the approximation (36) in the equations (31)
through (34) and neglecting terms of higher order one obtains the fols
loving system of ordinary differential equations: |

. ,B?o) . R (B’-’o .
“(T Q‘“Z'-—z') (U"+V2=2*)io (37)

(38)

<
+
-
’,I‘; o
N ®
) k K51
S——
‘M|
L]
o

2
R Y
(Bfo) P=0 (39)

BOU - AW=0 . “0)

These equations may be simplified by the introduction of the stream
function G({) and the characteristic number o which are defined by
the relations
U=-G, w;i%(c-gé), c=£‘2’_9. . (41)

This substitution leads to the following soiutiOn of the problem
considered:

The functions G(J), V(Z), and P(J) represent an approximate
solution of the Navier-Stokes equations (1) through (4) under the

boundary conditions (12) through (15), which is valid within the

i5
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boundary layer 0 £ { £ 1 in the viecinity of r = r5, provided:

(A) G(O), V(D , and B(Q) fulfill the differential equations
E*e?gé-fﬁgi(éﬁasv‘azp) (42)
Ve P =0 (43)

GG - (0) =<5 P (44)

,Q“u;‘r‘,

under the boundary conditions

<
n

¢=0: 6=90, G=0, (45)

N ©

(me: G=G,, V=1, P ’ (46)
(B) the characteristic number ¢ satisfies the accuracy coadition
=1 Vel-e , (47)

(C) G(L) and P(D satisfy the conditions

=1

2
o
o
»
W
<

(48)

with sufficient accuracy,
(D) the characteristic constants B and r. of the limiting line of the

boundary lgyg;

B 3
8(r) my r°(2 log %ﬂ- +1) (49)

16
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are determined by the relations

op

B = ’ To "9 : (50)

()

This solution is based upon the "joining properties’ (B) and (C),
which constitute the mathematical justification of the entire boundary
layer theory. The exact integral (11) of the Navier-Stokes equations
(1) through (4) is utilized as an approximate aolution_gucsiaé the
boundary layer 0 £ { < 1 of the problem under consideration. An
approximate solution of the Navier-Stokes equations is constructed
within the boundary layer which yields the correct boundary data at
(= 0. Both solutions are asymptotically equal for large values of ¢.
They are joined along the limiting line of the boundary layer (=1
under a small violation of the analyticity of the exact gsolution.
This violation is controlled by the properties (B) and (C), which is
extended to all derivatives of the dependent variables that occur in
the Navier-Stokés equations.

The existence of an integral, which fulfills the differential

equations (42), (43), and (44) and the boundary conditions (45) and (46)

indicates the simplified system of differential equations

G+ PG == (V-1 (51)

V+P=0, P=s

N

(52)

17
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In fact, the system (51) and (52) is integrable by quadratures and

yields a solution undér the unaltered boundary

conditions (45) and

(46). Although this system represents no approximate substitute for

the system (42), (43), and (44), it retains all its characteristic

properties at both ends of the interval O <

of the simplified system (51) and (52) may be

< %, Thus, the solutioen

used as an initial inte-

gl for an appropriate iteration procedure (see section 4) which con-

verges to the solution of the complete system.

The existence of the integral defined

by the conditions (A)

through (D) justifies the gemeral boundary layer assumption which

guided the foregoing derivations. Furthermore, it demonstrates the

consequences of ignoring the restrictive limits of Prandtl's boundary

layer theory. If all assumptions of the classical boundary layer

theory were applied then the differential equations (42), (43), and

(44) would reduce to the equations

§-8 @ ev-om
i=0

PG - ) =P ,

(53)
(54)
(55)

which have no solution under the boundary conditions (45) and (46).

It is obviously false to neglect the term &6

of the differential equations (42) and (43) no

18

against all other terms

matter how large the
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Reynolds number R may be assumed. It ié exactly this term which
characterizes the boundary layer directly at the surface and at large
distances from the surface. If the term ¢ (G is deleted, then the
differential equations assume a totally different character within
and outside the boundary layer and no longer permit a propér solution.
boundary layer theory destroys the elliptic character of the Navier-
Stokes equations without examining the existence of a proper solution

to the remaining parabolic equations.

19




4, Characteristic Properties of Vortex Flows

in section 3 the vortex flow problem défined in séction 2 Las been

reduced to an ordinary boundatry value problem the integtal of which

complete integration of the remaining boundary value problem the
foregoing derivations and the equations obtained display significant
phenomena of the vortex flows considered.

The derivations in the sections 2 and 3 led to two important
properties of vortex flows, which may be summarized as follows:

Phenomenon 1: The boundary layer alons a flat surface normal to
an axlsymmetric vortex flow may be considered as a logarithmic source
and sink pair for the secondary axial flow outside the boundary layer.
The radial extension re of the circular axial source is a characteristic
flow parameter jn addition to the vortex Reynolds number R & ['/v ,

Phenomenon 2: The secondary axial flow deforms the monotonic
structure of the friction boundary layer along the flat surface as
sketched in figure 1.

The equation (43), which is integrable by the error functiom leads

to the following properties of the vortex flow considered.
Phenomenon 3: Within the accuracy of a first order approximation
the dimensionless velocity (U, V, W) is a vector function of the

dimensionless variable { = 2/6(r), such that:

20
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(a) the tangential velocity V({) is independent of both chatacteristic
flow parameters R and r,p ,

(b) the radial and axial velocities u({) and w(() depend solely upon
the Reynolds number R of the vertex flow.

Phenomenon 4: Within a first order approximation the characteristic

number ¢ (0 &~ 2.5 for a relative accuracy €. = 1%) is independent of

both characteristic flow parameters R and ¥,. Hence the boundary layer

thickness

2 L
z-6(r)waz(rg)(1+2103r (56)
is independent of the Reynolds number R of the vortex flow.

The statement (a) of the phenomenon (3) 18 an obvious consequence
of the integral

3

0

Sl

which solves equation (43) under the corresponding boundary condi-
tions (45) and (46). The equations (47) and (57) lead directly to
a constant number ¢ as was stated in phenomenon 4. From this
result one deduces easily the statement (b) of phenomenon 3 by

examining the equation (42) together with the corresponding boundary

conditions (45) and (46).

21
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In this connection a significant analogy between the present
problem and the classical flat plate problem may be pointed out.

In both cases the decay of the cotresponding boundary layers along
flat surfaces is of the same stréngth, i. e., the disturbances of the
primary velocities decay essentially with the same logarithmic order
two. This analogy seems to indicate a very general property of
boundary layers along solid surfaces (See alsoe [8.), This is
physiecally plausible as the occurrencé of a friction boundary layer
along a solid surface represents a transport phenomenon.

For an investigation of further phenomena of vortex flows,; it is
helpful to examirie completé solutions of the remaining beundary
value problems defined in the previous chapter. Such explicit solu-
tions may be obtained through numerical integrations after introduc-

ing the following new variables

T=oL, g =G, and h = 2P , (58)

This substitution leads to the transformed system of differential

equations

{i -1
4
o
n
e
”~~
0Q..
ht
+
<
td
L}
=
~

(59)

<
+

<.
0

=0 (60)

0Qe
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Q
]

=3

.

~
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(61)
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Ne0;: g=0, =0, V=0 (62)

[
o

M=o g=g, V=1, h =

W
[
B

(63)

A numerical example, which is determined by the Reynolds number
R = 10, is displayed in figure 2. The solution has been obtained
by the Runge-Kutta method which started the integration with an
assumed set of initial data that had to be improved successively
until the accuracy conditions (B) and (C) (see section 3) were

sufficiently met.

the crude solution of the system (51) and (52) by integrating the

linear equations

.e® . . R [y~ _
gn + T‘bn = 4 (,an-si + vg - hr».-é’-;)
Ve W=0 (65)

. (8 = T8.) = = h
(8. - Tg.) = 2 h, ,

(64)

(66)

will be described in another paper in preparation. Numerical
results will be presented and discussed for various Reynolds
numbers R.
All numerical calculations reveal a very strong dependence of the

secondary flow (U, W) upon the Reynolds number R. Hence, it is useful
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to introduce a “boundary layer of the secondary flow" the thickness of
which will depend upon the Reynolds number R. This boundary layer may

be determined by the parameter value gg such that at

The limiting line 2z i‘ss(r) of the boundary layer of the secondary

flow is then defined by
z = 85(r) = (6(x) ,

where z = 6(r) is the limiting line of the boundary layer of the

entire flow defined by the similar condition (47) (see figure 1 and 2).
After simple numerical calculations one arrives at the following

two significant properties of vortex flows.

Phenomenon 5: The boundary layer thickness of the secondary flow

decreases as the Reynolds number R increases.

Phenomenon 6: At the solid surface the radial shear stress increases

much faster with the Reynolds number R than the tangential shear stress.
The phenomena 1 through 6, which appear to be new in the theory of

real flows, are physically plausible. This has been pointed out for

the phenomeéna 1 and 2 in the previous sections. The phenomena 3

through 6 are physically also feasible, as an increasing tangential
velocity tends to decrease and to increase the boundary layer thickness

at the same time. Indeed, when the particles of the fluid are forced
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taneously forced to remain longer under the influence of the friction

forees at the sutface. Thus, an increasing tangential veloeity cam

neither increase nor decrease the thickness of the friection layer at the
surface. However, these arguments do not apply to the secondary flow.
Hence the boundary layer of the secondary flow must behave in the usual
manner, i.e., its thickness must decrease as the Reynolds number
increases.

The properties of vortex flows over a flat surface found above
may be compared with phenomena observed outside the cores of hurticanes.
Such a comparison is génerally feasible , as the driving core of a
hurricanée may roughly be replaced by a rotating rod that produces a
similar vortex flow. Of course exterior disturbances of the vortex
flow other than those caused by the surface of thé earth must be
neglécted, The observations have fully confirmed the source and
axial flow, The logarithmic increase of the axial velocity toward
the vortex axis explains the rapidly increasing rainfall toward the
core of a hurricane (see (10, p. 130™), In this connection it
appears [easible to identify the radius of the rainfall area roughly
with the characteristic flow parameter rq, which measures the radial

extent of the logarithmic source around the axis, The radial shear

stress at the surface, which is large compared with the tangential

N
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hurricanes (see .6, ps 2981). Finally, it may be mentioned that the
temperature observed in hurricanes (see .6, p. 319.) exhibits a similar
nonmonotonic behavior as the axial velocity found above. This should
be expected, because the energy equation, which governs the tempera=
ture of the fluid, has the sameé second order terms as the third

Navier-Stok.s equation for the axta’ velocity
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