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I ABTRAC~T
The axisymmetric votex moticni of a viscous fluid over a flat

surface is investigated. Paradoxical results obtained by Moore and

Goldshtik are resolved. Guided by a useful extension oi Prandtl's

boundary layer theory an appropriate similarity transformation is

found which reduces the Navier-Stokes equations to three ordinary

differential equations. The solution of the remaining boundary value

problem reveals significant properties of vortex flows and explains

several phenomena observed in hurricanes. A complete numerical

resulL is displayed.
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1.Introductio

in recent years several investigations have been devoted, to, the

mathematical description of the steady vortex motion of a viscous fluid

which is governed by the Navier-Stokes equations. Taylor [9] , Cooke

C21, Goldshtik C31, and Long £4) investigated the vortex motion normal

to a flat surface, which is asymptotic to a coaxial potential vortex

at large distances from the surface and the core of the vortex Taylor

and Cooke excluded the core of the vortex and presented certain solu-

tions of the corresponding classical boundary layer equations by apply-

ing the method of KArman-Pohihausen. Moore [5) showed that the

axisymmetric vortex flow considered is nonasymptotic to Certain so-

called "similarity solutions" of the boundary layer equations used by

Taylor and Cooke. Nevertheless, Long ignored the presence of the sur-

face and constructed a certain similarity solution of the classical

boundary layer equations, which presumably describe the vortex flow

approximately in the core. Goldshtik reexamined the problem and

attempted to integrate the exact Navier-Stokes equations by a similarity

solution of Moore's type. This interesting investigation led to the

paradoxical results presented in [3j

Since the paradoxical results of Moore and Goldshtik appear to

be physically questionable,the same vortex flow problem will be rein-

vestigated in the present paper. It will be shown that the dis-

crepancies discovered by Moore and Goldshtik are due to inconsistent

and incomplete boundary data used to determine a unique solution of



the differential equations considered. Moore's nonexistence result

is alsio a consequence of Prandtl's bound.ary layer theory which

destroys the elliptic character of the Navier-Stokes equations without

examining the existence of a solution to the remaining parabolic

boundary value problem,

On the basis of a specified physical problem, complete and

consistent boundary data will be found in order to define a useful

solution of the NavierStokes equations. Guided by an extended

boundary layer theory, which preserves the full elliptic Navier

Stokes equations, a set of ordinary differential equations will be

derived by an appropriate similarity transformation. This transm

formation is based upon the concept of the limiting line of a

boundary layer the existence of which is suggested by the extended

boundary layer theory.

The investigations are supported by a complete numerical solu-

tion, which has been established by means of the Runge-Kutta method.

All results appear to be physically plausible and permit the

explanation of several phenomena observed in hurricanes outside

their cores.

2
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2. Definition of a Solution of the Navier-Sitokes Ei.atiotns

in the cylindrical coordinate system (r, T-, z) let (u, v, w)

denote the corresponding velocity vector of an axisym-metric vortex

flow over the solid surface z a 0. if ., ;p, and p are the constant

kinematic viscosity, the constant density, and the variable pressure

of the fluid, the flow is governed by the NavierS~tokes equations

UUrwuz + u u
r pr rr. rr zzj

uvr +wv +M + 0 rr + I + V2 (2)r r r

uv-+ ww ipz4+ I + AlV+ ]()

(*r + 0 (4)

Since the nonlinear elliptic partial differential equations (l)

through (4) are singular at the axis r s- 0, it is not possible to

specify a solution in the region (r z 0, z -> 0) by an arbitrary set

of boundary data and singularity conditions. In order to find a

consistent and complete set of boundary values, it is helpful to
examine the characteristic properties of the following physical

flow model (see Figure 1).

The vortex flow over the surface at z P 0 may be produced

by a very long rod of small diameter d which is rotating around its

axis at r P 0 with the angular velocity w. if all friction forces

3
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atthe surface at z = 0 were eliminated, then the rod would produce the

potential vortex flow

uO, v , w - - (5)
r p

with the vortex strength
A2Y (6)

where an additive pressure constant is neglected. In order to investi-

gate exclusively the influence of the friction forces at the surface z z 0

on the potential vortex (5), it is necessary to prevent any additional

exterior disturbances of the flow. This eondition may be fulfilled by

providing the rod with a flexible surface which glides freely with the

flow in the axial direction. For the rigorous mathematical model the rod

must extend from z = 0 to z = o. The diameter of the rod must shrink

to zero, while the angular velocity increases to infinity so that the

vortex strength (6) remains a constant. Since the fluid is to be at

rest at large distances from the rod, adequate sources and sinks of

equal strength must be located at large distances from the surface.

A circular sink around the axis r = U is necessary at z = c to absorb

the fluid which is ejected by the vortex motion from the boundary layer

at the surface. This sink must change at some r r0 to an annular

source of equal strength, which supplies the boundary layer with the

necessary fluid in return.

With this description of the physical flow model, it is now

easy to determine consistent singularities and complete boundary data

4
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which define a useful solution of the Navier-Stokes equations. At the

surface and at large distances from the rod the solution is subject to

the "regular boundary conditions":

z. U a-O, v 0, W"0 (7)

Sr , =O.=O, w-nO . (8)

At the rotating rod and at large distances from the surface the solu-

tion is determined by the following "singular boundary conditions":
0 uw l 0.. _.w ... 1 (9)

> 0 r FA log

r rk 1
where r and A are constant parameters at one's disposa6. The constant

re must be determined simultaneously with the solution. No conditions

are imposed at the two singular points (r = 0, z = 0) and (r = m, z = a).

The consistency of the foregoing singularities (9) and (10) may

be demonstrated on the basis of the following principles:

(1) The singularities required for the primary tangential flow v are

admissible, because the Navier-Stokes equations (1) through (4)

yield the potential solution (5) which has the sane singularities.

(It The sink and source distribution admitted for the secondary axial

flow w is compatible with the singularities of the primary tan -

geatia! flow, as the Navier-Stokes equations yield the ptential

solution

vi nO 0 V -0rW WrA log!A(1
r r

5
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with the same singularities. Thus the exchange of fluid between

the boundary layer at z - 0 and the sink and source at z c-0 can

proceed freely without friction forces acting. Since the undism

turbed flow (5) is not regular at r e6, the amount of fluid

revolved by the vortex flow depends upon the radius r = a of the

surface at z = 0. This indicates the freedom of the parameter A

which, vice versa, determines the radius of the surface, ii e., it

defines the exact meaning of the limit r - do (see E8]).

In this connection it it, sig.ificant to compare the boundary

data posed by M. A. Goldshtik for the same physical problem (see t3l

and also r2, 5, 9])6 Goldshtik subjected the flow to the sooe regular.

boundary values (7) and (8), to which he added the singular boundary

conditions

r -0 2L;° . Pz..J (12)

r 0
z >0 : u -'0 , w Wo(z)(bounded:) (13)

Since these conditions were incomplete, he required later a special

"similarity property" for the solution, by which he tacitly added the

missing data

r > 0
0 w-O , (u(0) 4)

z - (15)

6
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* Without going into any process of integration, it is easy to

show the inconsistency of these conditions which led Goldshtik to his

"paradoxical results". His special similarity assumption requires the

vortex flow to produce a sort of source in the axial flow w at the

point (r 0, .= 0). This source is characterized by an unbounded

axial velocity w which must remain unbounded along the entire axis

r 0, where the tangential and radial flows are at their asymptotic

frictionless state. in fact, Goldshtik's existence proof for small

Reynolds numbers iS based on the second condition (13),which is not

fulfilled by his solution (see 3, page 927 ):

wft-~ (16)wi z z

it may be mentioned that the authors' attempt to solve Goldshtik's

equations (1.3) through (1.8) under the boundary conditions (1.7)

and (1.8) (see [31) failed for small and large Reynolds numbers

because of nonconvergence of the Runge-Kutta method. The numerical

results demonstrated very clearly that the friction forces at the

surface are not sufficient to produce a source of the strength (16)

in the axial flow. Further exterior forces are needed, to reduce the

axial velocity from w = w to w 0 along the axis r = 0. This obser-

vation led to the introduction of the logarthmic singula rty (11)

which is free of effective friction forces.

7
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3. A Reduct ion -of teairSoe qain

For an approximate integration of the Navier-Stokes equations (1)

through (4) untder the boundary conditions (7) through (10) * it is useful

to simplify the singular boundary conditions (9) nd (10) by introducing

d imensiJonleass quan-tities by the following conventions:

rmU v-v w rA log (17),
r

P r

r (18)

where R may be called the 'Reynolds number of the flow. After carrying

out this transformation one arrives at the new Navier-Stokes equations:

U~r+X 1g~A~J~~ (U2+2 . p+iEr(Ur +Utz) U' (9

UVr + Ar LOS L- W V -[(r + Vzz) -Vr] (20)
r R

r-10;E-CUr+ Ar log L- Wz] W P
r r -A

+ Z[r~ o ( W~

2ir) - (21)

U~+AlogEW =0(22)

8



The transformed boundary conditions are:

r > :U-0, V-O, W- O, (23)

r 9 V i, 1Wilt (25)

< r •}U O, 1, W-" . (2'6)

The solution of this equivalent elliptic boundary value problem may be

guided by the essential hypothesis of Prandtl's boundary layer theory in

the following form.

WeakBoundar-y Layer Assumption: Friction forces, which are

caused by the nonslip condition at a solid surface in a primary real

flow without effective friction forces, are essentially acting only

within a "boundary layer" that is bounded by a certain "limiting line."

The asymptotic flow beyond the boundary layer is the primary flow on
which may be superposed a secondary flow without effective friction

forces.

It is significant to note that the "extended boundary layer

theory" based on the weak assumption preserves the character of the

9
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Navier-Stokes equation. Thus the validity of existence and unique-

ness theorems, which are known for elliptic boundary value problems,

remains untouched by this theory, This most important requirement of

admissible simplifications of mathematical problems is, however, ignored

by the complete "classical boundary layer theory." Indeed, the well-

known boundary layer assumptions, which neglect certain first and

second order partial derivatives, lead to parabolic differential

equations, for which the existence and uniqueness theorems of elliptic

boundary value problems do not hold in the same generality T-1his is

reason enough to abandon such risky assumptions. in this connection

it may be interesting to compare other simplifications of this sort

which have been suggested in the past and which have been criticized

in a similar manner (see, for instance, 1]).

The additional assumptions of the classical boundary layer

theory may also be abandoned as they do not simplify the constructive

solution of the remaining mathematical problem in general. This

statement will be verified for the present problem by the following

derivations and for further examples by other investigations (see [8)),

It may be worthwhile to mention that the extended boundary layer

theory introduced above leads to exactly the same asymptotic solution

of the classical flat plate probem as the comon boundary layer

theory without any mathmatical complications. This revels a clear

superiority of the extended boundary layer theory over- the classical

theory which may be well founded in special cases.

10
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In order to find an approximate solution of the boundary value

problem considered, it is helpful to utilize the limiting line z - 6(r)

of the boundary layer the existence of which is suggested by the

extended boundary layer theory. For an accuracy parameter e, which

is at one's disposal, the limiting line of the boundary layer along

the surface at z & 0 may be characterized by the followdng flow data:

z 8(r): V as 1 e (27)

z 8(r) : O0 , VOl , W~l . (28)

The existence of a line z w 6(r), which satisfies all conditions (27)

and (28) is plausible from the boundary data (23) through (26).

Since V is a solution of an elliptic differential equation, 6(r) must

be an analytic function of r which connects the two singular boundary

points (r f O, z 0) and(r = c, z - m) for any accuracy parameter

0 < e < I (see Figore 1).

According to the conditions (23) through (28) it is useful to

transform the Navier-Stokes equations (19) through (22) by the

"similarity relation"

r-r, _ (29)

which maps the boundary layer 0 % z 9 8(r) onto the parallel strip

0 % 1. The boundary lines (r > 0, z - 0) and (r <c, z * 9) are

- 11



mapped onto the corresponding lines (r > 0, C 0) and (r < , i io)

Whi!e the lines (r = , z < ) and (r 0, z >0) reduce to the points

(r = b, C = 0) and (r 0, c o c), the singular points (r f 0, . 0)

and (r fj z. =) stretch into the lines (r - 0, a < n) nd (r - i, C >0).

Thus, in the (r, C) plane the solution consi. eed rec not overzed by

any boundary data at r = 0 and r -

After evaluating the transformed conditions (23) through (28) one in

tempted to seek a solution of the corresponding Navier-Stokes equations

which is independent of r. Indeed, if a boundary layer exis--ts, which

satisfies the conditions (27) and (28), then all partial derivatives

with respect to r vanish at - 0 and are almost zero at I 1 at
least for some values of r, for instance, aroud r = r, . The same

remains true within the boundary layer 0 9 :59 1, because the lines

- const. may be considered as first order approximations of the

lines of constant velocity (U, V, W) around r r. Thus, the exact

solution of the problem considered must yield a first order approxima-

tion which is independent of r around r = r. within the strip

0 1.

These results reveal the limits of the classical boundary layer

theory. After differentiating the essential boundary layer assumption (27)

along the line z. - 6(r) one arrives at

dV + E O
_ (30)

dr ar az dr

Thus, . and A display the same asymptotic behavior, if 14'(r) I has

a positive lower bou. Unless r can be confined to a proper vicinity

12



of a point r rb at which 6 "(rd) -0, 8'(r) may even grow beyond

any upper bound-s, if the accuracy of condition (27) is incereasedi

After differentiation of equation (30), along the line z o-6(r)

OWu a66s in the same manner that, in the Navier-Stokes equations (19)

through (2,2), partial derivatives withi respect to r cannot be neglected

up to second order, unless the derivatives 6'(r) and 6"(r) vanish at

some point r ft to Henice, the classical boundary layer theory is

consistent for an "almaost parallel" boundary layer which has a limfit-

ing line that assumes the slope and the curvature of the corresponding

surface in the region of interest. This condition is fulfilled in

the classical flat plate problem, but it is violated in~ the present

problem as the following derivations will show (see also [L)

After carrying out the similarity transformation (29) one

arrives at the reduced Navier-Stokes equations:

(+ 6IsCIO)U +- C *22 R6 )+!( 8 ~ rlo ~WI
r r

+ R EU2+ V-2P ,P 1 )-0 (31)

r6 6
(+ 6' 2 ) f12 --P , 66 + .=) + &0CU Ar log W))IV0 (32)

rr

ow + A8 P - i log TF(1 + 6 ',2c-)w + c(26':, 66' - ,

+log 1!-{6'CU -Ar log W IN f (33)

6 , -IJ -Ar log M& W - 0 (34)

13
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In tthese equations the partial derivatives of t, V, W, and P with

respect to r are omitted because only C-depandent solutions a-re of

interest, The partial derivatives with r esp-ect to - are indicated

by a dot., while the primes denote the derivatives of the limiting

line of the boundary layer.

The continuity equation (34) displays very clearly that the

searchi for an approximate solution of the boundary value problem

considered can be successful in the present form, only if

6'(r) yields the expansion

,',(35)B (,

for instance around r a to, where terms of second and higher order may

be neglected. The limiting line of the boundary layer has then the

exvansion

8- B ( log + 1> ... (B 0 0) (36)

around r r .

The general features of the limiting !ine of the boundary layer

determined by equation (36) are displayed in Figure i. It is remarkable

to note that the boundary layer thickness reaches a relative maximum
at the point r - ro where the axial velocity w Changes its direction.

Hence the boundary layer thickness must assume also a relative minimum

before it increases rapidly beyond any bounds. This surprising

14
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phenomenon is physically plausibl.e, am the positive and negative

secondary axial flows deform :the boundary layer which is produced by

the friction forces along the surface at z * 0.

After substituting the approximation (3,6) in the equations (31)

through (34) and nieglecting terms of higher order one obtains the fol-

lowing system of ordinary differential equations:

U iE+Pa) ~U + V2  (3)

I~-2
V + r CV =0 (38)

A Br (39)

B OJ AVW-0 *(40)

Thse equtin may be_ smlfeby the introduction of the stream

function G(C) and the characteristic number a which are defined by

the relations

WX(G-~) , a (41)

This substitution leads to the following solution of the problem

considered:

The functns () V(), and P(-) represent an approximt

solution of the Navier-Stokes equations (1) through (4) under the

boundary conditions (12) through (15), which is valid within the



boundary layer 0 1 in the vicinily of r smr6, provided!

(A) C(C) V(Q, and P(C) fulfill the differential equations

r+ p~c -G 6p.( + V3  2p) (42)
4

v + 00'~* (43)

10 (44)to
a

under the boundary conditions

C-O G0- & G 0 V 0 (45)

C-ram 0-C,, V- , (46)

(B) the characteristic number a satisfies the accuracy conidition

L v- c (47)

(C) G(C) and P(Q) satisfy the conditions

Cml:C~0, C 0 (48)

with sufficient accuracy,

(D) the characteristic constants B and r, of the iUnitinit line of the

boundary layer

D r

16



are determined by the relations

A 2a

This solution is based upon the "IJoining properties" (B) and (C),

which constitute the mathematical justification of the entire boundary

layer theory. The exact integral (11) of the Navier-Stokes equations

(1) through (4) is utilized as an approximate solution outside the

boundary layer 0 1 C S I of the problem under consideration. An

approximate solution of the Navier4tokes equations is constructed

within the boundary layer which yields the correct boundary data at

C & 0. Both solutions are asymptotically equal for large values of C

They are joined along the limiting line of the boundary layer 1 1

under a small violation of the analyticity of the exact solution.

This violation is controlled by the properties (B) and (C), which is

extended to all derivatives of the dependent variables that occur in

the Navier-Stokes equations.

The existence of an integral, which fulfills the differential

equations (42), (43), and (44) and the boundary conditions (45) and (46)

indicates the Bimplified systen of differential equations

G+ o8 G- W (V' 1) (1
QG- -4--- -- (51)

+ 7



In fact, the system (51) and (52) is integrable by quadratures and

yields a solution under the unaltered boundary conditions (45), and

(46)i Although this system represents no approximate substitute for

the system (42), (43), and (44), it retains all its characteristic

properties at both ends of the interval 0 . Thus, the solution

of the simplified system (51) and ('52) may be used as an initial inte-

guln for an appropriate iteration procedure (see section 4) which con-

verges to the solution of the complete system.

The existence of the integral defined by the conditions (A)

through (D) justified the general boundary layer assumption which

guided the foregoing derivations. Furthermore, it demonstrates the

consequences of ignoring the restrictive limits of Prandtl's boundary

layer theory, If all assumptions of the classical boundary layer

theory were applied then the differential equations (42), (43), and

(44) would reduce to the equations

c = + - 2P) (53)

0=o (54)

,G(G- wG) * F (55)

which have no solution under the boundary conditions (45) and (46).

It is obviously false to neglect the term 02X', against all other terms

of the differential equations (42) and (43) no matter how large the

18



Reynolds number I may be assumed. it is exactly this teu which

characterizes the boundary layer directly at the surface and at large

distances from the surface. If the term OCO is deletedi then the

differential equations assume a totally different character within

and outside the boundary layer and no longer permit A proper soution,

As was pointed out above, this is not surprising as the classical

boundary layer theory destroys the elliptic character of the Wavier-

Stokes equations without examining the existence of a proper solution

to the remaining parabolic equations.

19
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4. Cceris-tioc Properties- of-Vortex- Flows

In section 3 the vortex flow problem defined in section 2 has been

reduced to an ordinary boundary value problem the integral of which

represents an approximate solution of the exact problem. Without

complete integration of the remaining boundary vaiue problem the

foregoing derivations and the equations obtained display significant

phenomena of the vortex flows cosidered.

The derivations in the sections 2 and 3 led to two important

properties of vortex flows, which may be summarized as follows:
Phenonrwenon: The boundary layer aon-g a flat surface normal to

an axisymcnetric vortex flow may be considered as a logarithmic source

and saink pair for the secondary axial flow outside the boundary layer.

The radial extension ro of the circular axial source is a characteristic

flow parameter in addition to the vortex Reynolds number R i r/u

Phenomenon.2: The secondary axial flow deforms the monotonic

structure of the friction boundary layer along the flat surface as

sketched in figure 1.

The equation (43), which is integrable by the error function leads

to the following properties of the vortex flow considered.

Phenomenon 3: Within the accuracy of a first order approximation

the dimensionless velocity (U, V, W) is a vector function of the

dimensionless variable z / z/(r), such that:

20
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(a) the tangential velocity V(C) is independent of both characteristic

flow par-aieters R and rb

(b) the radial and axial Velocities u:(C) and w(C-) depend solely upon

the Reynolds number R of the vortex flow.

Phenomenon 4: Within a first order approximation the characteristic

number a (a f 2.5 for a relative accuracy cr 1 is; independent of

both characteristic flow parameters t and ro. Hence the boundary layer

thickness

is independent of the Reynolds number R of the vortex flow.

The statement (a) of the phenomenon (3) is an obvious consequence

of the integral

V(O -erf 2 f e2.t2dt (57)
0

which solves equation (43) under the corresponding boundary condi-

tions (45) and (46). The equations (47) and (57) lead directly to

a constant number a as was stated in phenomenon 4. From this

result one deduces easily the statement (b) of phenomenon 3 by

examining the equation (42) together with the corresponding boundary

conditions (45) and (46).

21
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In this connection a significant analogy between the present

problem ard the classical flat plate problem may be polfnted out.

in both eases the decay of the corresponding boundary layers along

flat surfaces is of the same strength, i. e., the disturbances of the

primary velocities decay essentially with the same logarithmic order

two. This analogy seems to indicate a very general property of

boundary layers along solid surfaces (see aIgo [8). This is

physically plausible as the occurrence of a friction boundary layer

along a solid surface represents a transport phenomenoni

For an investigation of further phenomena of vortex flows, it is

helpful to examine complete Solutions of the remaining boundary

value problems defined in the previous chapter. Such explicit solu-

tions may be obtained through numerical integrations after introduc-

ing the following new variables

= $ , and h =2P . (58)

This substitution leads to the transformed system of differential

equations

• g+ 2'=Z(g + -h) (59)

V + TVO0 (60)

Tj) =o h (61)
2

22
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which must be integrated under the boundary conditions

: g=0 , o , V o (62)

1-: g- , V-i, h 1
(63)

A numerical example, which is determined by the Reynolds number

R = 10, is displayed in figure 2. The solution has been obtained

by the Runge-Kutta method which started the integration with an

assumed set of initial data that had to be improved successively

until the accuracy conditions (B) and (C) (see section 3) were

sufficiently met.

A more efficient iteration procedure, which improves successively

the crude solution of the system (51) and (52) by integrating the

linear equations

gn, + Tli " n (A -. + V2 " hr... (64)

V + TV0 (65)

k(g l- ) -
(6,6)

will be described in another paper in preparation. Numerical

results will be presented and discussed for various Reynolds

numbers R.

All numerical calculations reveal a very strong dependence of the

secondary flow (U, W) upon the Reynolds number R. Hence, it is useful

23
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to introduce a "boundary layer Of the secondary flow" the thickness of

which will depend upon the Reynolds number R. This boundary layer may

be determiined by the parameter value C. such that at

W(C) = 1c * .(67)

The limiting line z i 6 (r) of the boundary layer of the secondary

flow is then defined by

z* 8s (r) Cs (r)

where z 6(r) is the limiting line of the boundary layer of the

entire flow defined by the similar condition (47) (see figure 1 and 2).

After simple numerical calculations one arrives at the following

two significant properties of vortex flows.

Phenomenon 5: The boundary layer thickness of the secondary flow

decreases as the Reynolds number R increases.

Phenomenon 6: At the solid surface the radial shear stress increases
much faster with the Reynolds number R than the tangential shear stress.

The phenomena 1 through 6, which appear to be new in the theory of

real flows, are phiysically plausible. This has been pointed out for

the phenomena 1 and 2 in the previous sections. The phenomena 3

through 6 are physically also feasible, as an increasing tangential

velocity tends to decrease and to increase the boundary layer thickness

at the same time. Indeed, when the particles of the fluid are forced
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to remain closer to their undisturbed circular motion they are simul-

taneously forced to remain longer unider the influence of the friction

forces at the surface. Thus, an increasing tangential velocity can

neither increase nor decrease the thickness of the friction layer at the

Surface. However, these arguments do not apply to the secotndary flow.

Hence the boundary layer of the s-econdary flow must behave in the usual

mannfer, i.e., its thickness must decrease as the Reynolds number

increases.

The properties of vortex flows over a flat surface found above

may be compared with phenomena observed outside the cores of hurricanes.

Such a comparison is generally feasible , as the driving core of a

hurricane may roughly be replaced by a rotating rod that produces a

similar vortex flow. of course exterior disturbances of the vortex

flow other than those caused by the surface of the earth must be

neglected. The observations have fully confirmed the source and

sink character of the boundary layer at the sur.ace for the secondary

axial flow, The logarithmic increase of the axial velocity toward

the vortex axis explains the rapidly increasing rainfall toward the

core of a hurricane (see [10, p. 1301). In this connection it

appears feasible to identify the radius of the rainfall area roughly

with the characteristic flow parameter to, which measures the radial

extent of the logarithmic source around the axis. The radial shear

stress at the surface, which is large compared with the tangential
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shear stress, explains the Very strong radial oceant waves produced by

hurricanes (see 7,6 , p. 298]j). Finally, it may be mentioned that the

temp~erature observed in hurricanes (see 16j p. 319'j) exhibits a simnilar

nonmonotontic behavior as the axial velocity found above. This should

be expected, because the energy equation, which governs the temfpera-

ture of the fluid, has the same second order terms as the third

Navier-SLOk.;s equation for the axtal. velocity
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