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PR EWORD
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ABSTRACT

Investigations dealing with the buckling of thin cylindrical and conical shells
subject to axial impact are described. The studies consisted of experimental
and theoretical efforts directed toward obtaining a qualitative and quantitative
understanding of the dynamic buckling behavior of such shells under a variety of
conditions. The conditions studied include different longitudinal conditions im-
posed on the impacted end of the shell and internal pressurization. In addition,
methods of increasing the specific energy dissipation capacity of shells subject
to axial impact were studied.

A number of interesting results were obtained. It was demonstrated experi-
mentally that buckling of a cylindrical shell is initiated during the first passage
of the axial compression stress wave due to the initial impact when the impact
velocity is sufficiently high. Another significant experimental result obtained is
that the asymmetrical (quasi-developable) form of shell buckling occurs as a
result of a smooth transition from the symmetrical (''ring') form of buckling in
some thin cylindrical shells subjected to an axially symmetric axial impact.
Analytical results were obtained on the dynamical buckling behavior of cylindrical
shells subject to a constant velocity end displacement. The method utilizes the
finite deflection theory and is a refinement of the procedure due to A.S. Volmir.
It shows that both the upper critical stress and the number of circumferential
waves increase and the time to initiate buckling decreases with increasing
velocity of impact. These trends are in agreement with the analytical results of
Volmir and a phenomenological theory due to Coppa.
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R1CHARD ¥,
Chief, Structures Branch
Fiight Dynemics laborstory
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Ky, ..., Kjg, parameters defined by equation (18)
R X .Qy' half wave length of buckle in x and y directions
9 cp» critical length
L, length of shell
m, number of half waves of buckling in the axial direction
M, bending moment
n, number of circumferential buckles (In the analysis,
n is taken as the number of circumferential half waves)
P, total axial load
p, mean axial stress
Q, transverse shear force
q, intensity of internal pressure
R, radius of shell
Rj, ...., Rg, parameters defined by equation (25)
81, ...., Sq, parameters defined by equation (26)
t, time
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u, v, w, components of displacement of the middle surface in the x, y, z
directions respectively.
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Wo , initial imperfection function
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I. INTRODUCTION

The advent of missile and space vehicles has created problem areas
which require understanding and knowledge of heretofore neglected phenomena.
Formerly, the initiation of any one of a number of possible failure mechanisms
terminated the usefulness of a structure, but now the failure process itself may
be assigned a useful function.

The structural behavior during impact is of governing importance, for
example, to the success of the mission if it concerns the survivable landing of
payloads onterrestrial, lunar and other planetary surfaces. An attractive system
for accomplishing this utilizes a long cylindrical or conical shell mounted in
front of the payload. As a result of fundamental investigations in dynamic
buckling conducted at the Space Sciences Laboratory it is now known that, upon
normal impact, a cylindrical shell will collapse in an orderly and progressive
manner beginning at the impact end, with buckling remaining confined in the
vicinity of the impacted end. During this process kinetic energy is absorbed
from the payload and the deceleration pulses are maintainable within tolerable
limits through-out the impact history. In this application not only must the
time relationship between forces which produce structural failure and those
which can damage the payload prior to their functioning be known, but also the
amount of energy which can be absorbed and dissipated during structural collapse.

These studies were undertaken to extend previous investigations which were
conducted at the Space Sciences Laboratory, General Electric Company, dealing
with the behavior of shells subject to impact loading. One of the results of these
previous investigations was a theory (Ref. 1) on the physical mechanism of
buckling of a cylindrical shell subject to an axial impact. According to this
theory, buckling of a cylindrical shell will be initiated on the first passage of
the axial compression stress wave from the impacted end when the velocity is
sufficiently high. In this event the peak value of the sustained stress is given
by the relation,

.V 1
%er "_cq—E )

provided that o is within the proportional limit of the shell material. If V, is
not sufficiently high, then buckling will be initiated when the initial stress has
been increased by reflections from the ends. Whether or not this can happen
depends on the momentum of the impacting mass.

For buckling which occurs on the first passage of the stress wave, the time
at which buckling initiates is,according to the theory, given by

_ JLer
ber =55 (2)

The critical length, £ .., is the greatest distance from the impacted end reached
by the front of the stress wave prior to buckling. Since the critical length, on
physical grounds, varies inversely with the axial stress, the critical time t; .
varies inversely with the impact velocity.

Manuscript released by the autl.or September 1962 for publication as an
ASD Technical Documentary Report.

1
ASD-TDR-62-774



The form of buckling anticipated by the theory can be either of the two
familiar types: (1) the symmetrical or ring form, or (2) the asymmetrical or
triangular form. It appears that the flexural rigidity of the shell wall and the
end constraint are dominant factors in determining which of the two types of
buckling will occur initially.

It is shown that buckling in the asymmetrical form (equation 2) is an attempt
on the part of the shell to shorten axially with a minimum amount of negative
extensional strain resultant. The relation governing axial shortening with purely
inextensional deformation (true only for h & 0) is given exactly by

E=1-/1-K21a02_T_ ®

2n

This relation states that for a given value of unit axial shortening €, there exists
an infinite number of combinations of aspect ratio K and circumferential wave
number. Equation (3) is valid forO<€ €lwhich covers the entire range of
possible unit end shortenings. Thus fore =1, which corresponds to total
shortening, the aspect ratio K is given by

K= —
tan_T )
Eﬂ

Comparison of the deformational patterns optained experimentally from thin
shells with patterns constructed according to equation (4) shows good agreement
(see Fig. 18, Ref. 1).

The investigations conducted during the present program were undertaken to
explore the predicted magnitudes and trends given by the theory and to extend
the work accomplished up to the time of its initiation. The program consisted
of three phases:

Phase 1 — The Effect of Longitudinal End Conditions — Under this phase,
cylindrical and conical shells were impacted with rigid and non-rigid media.
An example of a non-rigid medium employed is water.

Phase 2 — The Effect of Internal Pressure — The purpose of this part was
to determine the effect of internal pressure on the dynamic buckling behavior of
cylindrical and conical shells (comparing with the impact buckling of unpressurized
shells) and conversely the effect of impact loading on internally pressurized shells
(comparing with static buckling of pressurized shells).

Phase 3 — Optimization of the Energy Absorption Capacity — This phase
covered studies of methods of increasing the specific energy absorption and
dissipation capacity available in collapsing long thin walled cylindrical and conical
shells.

The program was performed in the Space Sciences Laboratory of the General
Electric Company by the Space Structures Operation, Dr. F.W. Wendt, Manager.
Mr. A.P. Coppa, principal investigator, formulated the program and conducted
the experimental research. Professor W.A. Nash, University of Florida,
consultant, developed the mathematical analysis.

2



II. SURVEY OF LITERATURE

Papers dealing with the dynamic buckling of shells have appeared only in

the past several years, The most notable of these are due to Russian investi-
gators,

Schmitt (Ref. 2) presents results of an experimental program in which thin
aluminum shells were impacted at velocities up to about 500 in./sec. Some
useful data regarding the energy absorption during buckling are given and indicate
an efficiency ranging from 1030 to 3160 1lb ft/lb.

Bolotin (Ref. 3) gives an analysis of the dynamic stability of cylindrical
and spherical shells without explaining the mechanism of instability. The prob-
lems of a cylindrical shell subject to axial compression and radial pressure are
presented, as well as that of a spherical shell subject to uniform radial pres-
sure. These analyses were made on the basis of infinitesimal deflection theory.

Agamirov and Volmir (Ref. 4) extend the analysis of Ref. 3 to include finite
deflection effects. In this investigation it is assumed that impact velocities are
small compared to the sonic velocity in the shell material. The analysis is
reported to agree closely with experimental results.

Volmir (Ref. 5) has also analyzed the dynamic stability of a shallow cylindri-
cal panel subject to axial compression on the basis of finite deflection theory.

Coppa (Ref. 1) presents a theory for the mechanism of buckling of a cylindri-
cal shell under longitudinal impact. One dimensional wave propagation is used
as a model for explaining the initiation of buckling both for low and high velocities
of impact. According to this mechanism, buckling occurs at the impacted end if
the impact velocity is sufficiently high but can occur at either end for sufficiently
low velocities. Buckling progresses in a step-by-step manner with the cylinder
adjacent to the buckling portion remaining essentially stable. An inverse rela-
tionship between the buckle size and the impact velocity is argued. Itisalso shown
that the ratio of the circumferential to the axial wave length of diamond-shaped
buckle wave-forms depends on the number of circumferential waves and the unit
axial shortening.

Kadashevich and Pertsev (Ref. 6) analyze the stability of a cylindrical shell
subject to a uniformly distributed dynamic radial pressure using finite deflection
theory. The inertia corresponding to the axisymmetric circumferential displace-
ments in addition to the lateral inertia is retained in the analysis. Because of
this, the authors claim, the theory is valid for higher rates of loading than is
Ref. 4 which retain's only the lateral inertia term.

Yao (Ref. 7) presents an analysis of a long cylindrical shell subject to an
impulsive radial pressure. In this paper only the fundamental buckling mode
(n = 2) is considered. Subject to this limitation, it is shown that if the magni-
tude of the pressure is greater than the static buckling pressure, the lateral
displacement will increase monotonically as loading duration becomes long. The
cylinder can withstand an impulsive loading greater than the static buckling
pressure if the loading duration is very short compared with the free vibration
period of the cylinder in the first mode.
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III. EXPERIMENTAL INVESTIGATION

A. Apparatus
(1) Rigid Impact-Unpressurized

The experimental apparatus used on this phase was the Precision Drop
Tester, located at the General Electric Company Space Sciences Laboratory
(See Figures 1 and 2). This device consists of a hardened steel shaft 40 feet
in length which is attached under tension between two vertically aligned points.
A carriage situated concentrically with the shaft by means of two ball bushings
rides along the shaft. The impact head, a hardened and ground steel disc,
10 inches in diameter is mounted to the carriage. The carriage assembly (drop
head) is hoisted to the drop height by means of an electric winch which is
attached to the carriage by an electro-magnet. The drop head is released
merely by opening the circuit of the electro-magnet. A hardened and ground
steel base, 8 inches thick and 20 inches in diameter is mounted at the bottom
end of the shaft and situated concentrically with it. The bzse is mounted on
three adjustable screws for the accurate positioning of the base in the horizontal
plane. The carriage can also be adjusted with respect to the shaft so that the
final alignment of the head with the impact end of the shell specimen can be
accurately accomplished.

The drop head assembly contains ports for venting the air rapidly from the
cylinder as it is collapsing. By means of this venting system, the buildup of
internal pressure is prevented. The vent area can be decreased or completely
closed according to specific requirements.

The specimen and its retainer are mounted on the base concentrically with
the shaft. In order to do this the shaft must be raised clear of the base. This
is accomplished by a manually operated winch.

(2) Rigid Impact-Pressurized

The apparatus on which experiments of pressurized shells under rigid impact
are performed consists of a modification of the equipment described above
(see Figures 3 and 4). A cross beam is mounted on the carriage in place of
the vent chamber. The beam contains two mechanically actuated release mecha-
nisms which are mounted on its extremities. The drop head is mounted to one
of the mechanisms and a counterweight to the other. The shell specimen in its
retainer can also be suspended from the beam for tests in which the specimen
itself is dropped. In this apparatus, the base is moved so that it is centered
vertically under the center of the drop head. The specimen in its retainer is
secured to the base via the central hole of the base.

The cross beam assembly containing the drop head and counter weight is
hoisted to the drop height and released. If so desired, the drop head can be
released solely. When the cross beam assembly is dropped, it is decelerated
by a shock absorber which is located at the lower end of the shaft. The initial
deceleration force on the beam assembly is imposed via a foam pad so as to
reduce the shock associated with the release of the drop head.



In order to preserve the nnsupported edge condition of the impact end of
the shell as used in the unpressurized tests, a special pressurization technique
was devised for the experiments with pressurized cylinders. This was done
to eliminate the different type of constraint which an end closure would impose
on the edge of the shell. The pressurization rig, shown in Figure 5, utilizes
a thin membrane of .0008 in. thick Mylar to form a pressure tight bag. The
membrane is made by wrapping the Mylar film about a cylinder whose diameter
equals that of the cylinder to be pressurized. The longitudinal point is made
simply by one strip of half inch width scotch tape. The ends are carefully
folded so as to form under pressure a semi-toroidal configuration at both ends.
At the impact end the membrane is supported by a plate which is attached to
the cylinder mount via a transmission chain. This arrangement relieves the
membrane from a large portion of the axial pressure loading and thereby greatly
reduces the deflection of the membrane. Upon collapse of the cylinder the chain
readily folds into the mount cavity shown at the bottom of the figure and thereby
does not interfere with the axial shortening of the cylinder.

In Figure 5 the membrane is shown in its expanded position within a trans-
parent plastic shell, this to check that the membrane is expanded against the
entire surface of the shell.

The pressurization method produces an essentially radial pressure on the
shell since the axial force is taken out by the tension in the chain and in the
membrane. The only axial force which can be introduced into the metal shell
is due to friction between the shell and the membrane.

(3) Non-Rigid Impact

The apparatus for conducting non-rigid impact experiments is essentially
the same as that described above except that the cylindrical tank is put in place
of the steel base (See Figures 6 and 7). The tank is 4 feet in diameter and 50
inches in depth and is equipped with a window for viewing purposes. The window
is longer than the tank depth by an amount somewhat greater than the length of
the specimen and hence provides an unobstructed view of the specimen before
it strikes the surface of the impact medium and subsequently throughout the
impact.

The apparatus allows the free dropping of the specimens into fluids and other
deformable or penetrable media with a maximum amount of guidance prior to the
impact.

B. Specimens

The specimens used in the experiments were cylindrical shells having the
following dimensions: 5.70 in. inner diameter, 22.8 in. length and wall thick-
nesses of .004, .008, .016 and .019 inches. These correspond to a length to
diameter ratio (L/D)of 4 and diameter to thickness ratios of 1425, 712, 356 and
300. The materials used were the aluminum alloys 2024 F, 2024 T3, and
5052 H-38 and 301 F.H. stainless steel.



In procuring specimens, efforts were made to obtain cylindrical shells
having a deviation from a perfect cylindrical surface not exceeding one wall
thickness. This limit was considered the maximum that could be allowed in
order to limit sufficiently the scatter in the behavior of the shells near the
critical point.

The specimens were fabricated from flat sheet by simply rolling the sheet
into a cylinder and making a longitudinal joint. Both rubber base and epoxy
adhesives were used as bonding agents for the joints and both lap and double
butt strap configurations were employed.

The specimens were simply cylindrical, containing no stiffeners. In most
cases, the shells were mounted on a rigid circular base. The impacted end
was initially free of support and was unconstrained from radial displacement
during the impact except by friction forces at the impact interface.

C. Instrumentation

(1) Strain Measurement

For the measurement of dynamic strains in the shell wall, metal foil strain
gages (Tatnall Metalfilm, type C12-1X1-32A) were employed. For recording the
strains, oscilloscopes (Tektronix Models 531 and 535) equipped with single sweeps
were used together with Polaroid cameras.

(2) Acceleration Measurement

Cornell Models 200 and 504 high frequency accelerometers were employed
to measure and oscilloscopes and cameras as described ahove to record the
accelerations imparted to the drop head.

(3) Transient Pressure

Internal pressures during coliapse of the shells were measured by means
of a Kistler gage, model PZ 14 with a piezo calibrator, model 651-B.
Recording was also accomplished by oscilloscopes and cameras.

(4) Photography

High speed photographs of the shell deformations following impact were
made by a Fastax camera having a maximum filming rate of 16,000 frames
per second. Various finishes were tried to improve the photographic clarity of
the buckling patterns, and it was found that a photographic dulling spray is
advantageous.

(8 Triggering
All recording components were initiated by a common trigger which con-

sisted of a wire situated near the impact end of the shell. Later a system
consisting of three pivoting rods was used. The trigger circuit was closed by



the contact of the drop head with the trigger. The position of the trigger end
was such that the oscilloscopes were activated prior to the impact on the shell.
A zero base line was thereby established on the record.

D. Results
(1) Phase 1 — Effect of Longitudinal End Conditions
a. Rigid Impact

As anticipated by the theory (Ref. 1), buckling should be initiated on the
first passage of the stress wave if the velocity of impact is sufficiently high.
Experiments were designed to test for this. Strain gages were mounted axially
in back-to-back pairs on the cylinder wall near the impacted end. Other pairs
of gages were mounted near the opposite end along the same generators as the
forward gages. Oscilloscopes equipped with single sweep circuits and Polaroid
cameras were used to record the strain-time variation, Using the value for the cir-
cumferential wave number, n, as determined from tests of similar specimens, the appro-
priate time scales for the oscilloscopes were chosen. Two times were determined for
each measurement point, one short and the otherlong., The short time trace was based on
the time required by the elastic strain wave to travel a length equal to one half the axial wave
length of an inextensional buckle pattern having n circumferential buckles. This reference
time, t,, is givenby the relation:

R . g | (5)
tor ¢ 0zn " 35 >
/ 2(Vc )_( Vo )
where D = diameter of the cylinder ¢ ¢
n = number of circumferential waves

Vo = impact velocity E
speed of elastic waves in rods = / 7

The long time trace was determined according to the time required to
produce total collapse of the first row of inextensional axial half waves. This
time is given by the relation:

(¢

{ =
t " Vo ” 2n 2n (6)

As an example, if V, = 23 ft/sec, ¢ = 16,800 ft/sec, n = 6, and
D= 5.70 in.

ter
t

The purpose of these experiments was to measure the time after impact
at which instability initiates. According to the theory, the impact produces a
compression stress wave whose magnitude is given to a first approximation by:

38 x 1076 gec

1450 x 1078 sec
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Where E is the modulus of elasticity, provided that the impact strain, Vo/c is
within the proportional limit of the material: Equation (7) is for the axial stress
produced in an elastic rod when it is impacted by a perfectly rigid mass and
therefore is an upper limit of the initial impact stress.

¥ o is sufficiently high, buckling will initiate on the first passage of the
stress wave through the cylinder. When chis occurs, the axial compression
stress decreases rapidly (Fig. 8) due to the lower axial rigidity of the buckling
surface. The stress remains at a low level compared with the initial value
until the surface that is buckling has been fully collapsed. When this has
happened, an increase of axial stress is expected due to the increased axial
rigidity of the region of the shell beyond the buckled part.

The experimental results were in general agreement with the anticipated
behavior. The oscilloscope record shows a rapid rise in strain following impact
to a value which is then sustained for a short interval of time. It then rapidly
decreases to a low level and remains so for a relatively long time.

Typical strain records are reproduced in Figures 9, 10 and 11. These
show the resultant compression strain near (one inch behind) the impacted end.
The specimens were in each case 2024 H-19 aluminum cylinders of 5.700 in.
dia., .008 in. wall thickness, and 22.8 in. length. The impact velocities are
46, 11.5, and 25 ft/sec. for Figures 9, 10, and 11 respectively. Figure 9,
the short time record, has time and compression strain along the horizontal
and positive vertical axes respectively. The time scale is 10 microseconds
per unit grid spacing and the strain scale is .00196 in/in per unit spacing.

A zero strain base is established (at the extreme left) by triggering the trace
immediately prior to impact. It is seen that the strain rises within 10 micro-
seconds to a peak strain of .00214 in/in and is sustained thereafter at an average
level of .00194 in/in for 40 microseconds at which time it decreases substantially.
At 80 microseconds after initiation of the pulse (+85u sec. after impact) the
strain has decreased to zero. The time required for the initial elastic stress
wave to return to the forward gage position is 216u sec. It is apparent from
this that buckling has been initiated during the first passage of the stress wave.

Based on the theory, the axial compression strain pulse by an impzct
at a lower velocity was expected to have a lower strain sustained for a longer
time than the higher velocity case. This is indeed evident in Figure 10 (also a
short time trace) which corresponds to an impact velocity of 11.5 ft/sec. or
one-fourth the velocity of the previously discussed test. The pertinent scales
are 50u sec. per grid spacing (horizontal axis) and .000783 in/in strain per
unit spacing (vertical axis). As before, the trace begins at the extreme left.
The strain rises within 20u seconds to a value of .000802 in/in and after
remaining at an average level of about .000622 in/in rises to a peak strain of
approximately twice the initial peak. Thereafter, it decreases steadily and
becomes equal to zero at 345u sec. after impact. It is interesting to note that
the time at which the strain begins to rise to attain twice the initial value is
slightly greater than 200u sec. after initiation of the signal. According to the



loading mechanism in the theory (Ref. 1) a rapid rise in strain to twice the

initial value is expected at 216 usec. when the compression wave reflected forward
from the rear end arrives at the forward gage position. Another point of

interest is that the time interval from the instant of impact to the occurance of
zero strain on this experiment (11.5 ft/sec impact velocity) is almost exactly

four times as long as the previous experiment in which the impact velocity was
four times as large (46 ft/sec.). These characteristics are being examined at

the present time to determine their significance.

Results from an experiment conducted at an intermediate velocity of
25 ft/sec similarly appear to be in agreement with the theory. At this velocity,
——1628500 = .00149 in/in. The measured
strain as shown in Figure 11 is initially .00146 in/in. or within 2% of the
predicted value. Thereafter the strain fluctuates at a mean value similar to
the above and drops off rapidly. Only the initial portion of the trace, however,
is given as evidence since the measurement is due to a single axial gage.
Bending strain components, therefore, are present in a substantial part of the
later portion of the trace. Experience shows that the initial portion of the strain
recorded from a single gage is valid as a measure of the axial strain.

the theory predicts a critical strain of

The magnitudes of the initial strains corresponding to the three velocities
under consideration agree reasonably closely with the values predicted from the
theory. The experimental values are compared with the predicted values in
Table 1.

Table 1
Impact Velocity Measured Strain Predicted Strain Error
ft/sec. in/in in/in %
46 .00214 .00274 -22%
25 .00146 .00149 -2%
11.5 .000802 .000684 +17%
.000622%* -9%

*Average Strain during first passage of compression wave.

After buckling has been initiated, as indicated by the first reduction of
axial strain, relatively small strains were measured during the entire long time
trace. This was expected as previously discussed. In addition to the low total
compression strain during this interval the measurements showed a considerable
amount of bending of the shell wall. This is shown in Figures 12a and 12b which
pertain to the test conducted at 11.5 ft/sec. These traces are from a pair of
axial strain gages mounted back-to-back and wired to read separately. The
time scale (horizontal axis) is 500u sec. per grid spacing and the strain scales
(vertical) are .000785 in/in (Fig. 12a) and .000783 in/in (Fig. 12b). After impact
begins (at the extreme left) both traces show the compression strain pulse which
is associated with the initiation of buckling. At about 400 usec. the traces run



opposite each other, one reading tension and the other compression, thereby
demonstrating axial bending of the wall. The bending strains run off the scale
but the magnitude appears to be about .002 in/in or 2.5 times the maximum
compression strain in the initial pulse. A composite plot of Figures 12a and
12b is shown in Figure 13, which reveals that the total compression strain
present simultaneously with the bending strains is relatively low during the
entire long time trace.

In conjunction with the measurement of strains in the shell during the
impact, high speed photography was employed to record the deformational
process during buckling. Using a Fastax camera, pictures were taken at a
rate of 16,000 frames per second. Examples of these photographs are shown
in Figure 14. The photographs show the behavior of a stainless steel cylinder
(5.70 in. diameter, 22.8 in. length, and .019 in. thickness) impacted at 23
ft/sec. The pictures begin at impact and show buckling initiating in the form
of an extensional type buckle (Fig. 14, plate 1). This buckle progresses through
full collapse in one wave length. As full collapse of this buckle is almost com-
plete, the circular cross section at the rear end of the buckle changes into the
polygonal form (plate 2). In this region the diameter of the shell is less than
the initial (unloaded) diameter and hence a state of compression stress exists.
This stress apparently is the immediate cause of the inextensional type buckling.
As the motion of the impact head proceeds, deformations of the inextensional type
grow in a continuous fashion. The axial length of the buckles (plates 3-6) does
not shorten as rapidly as has been observed for very thin shells (D/h = 700-1400),
the shortening in the present case being due primarily to the motion of the im-
pact head. This shows the presence of a relatively larger degree of extensional
strain in the buckling surface since shortening due to the backward motion of the
apex of the triangles is small, if any.

It is interesting to note how naturally and continuously the cylindrical
surface changes from circular to polygonal cross-sections. It appears, from
Figure 14, that the symmetrical buckle form serves as a transition from the
circularly constrained form of the impacted end to a configuration which is
rather independent of the edge constraint.

This transition 1s indicated even in very thin shells but in such cases,
the symmetrical form of buckling only begins to develop and quickly degenerates
into an inextension~]l type pattern which then serves as a transition to the buckling
configuration more natural to the shell.

The experimentation on conical shells was chiefly exploratory in nature.
A number of shells were subjected to impacts at velocities varying from 16 to
36 ft/sec. Several semi-vertex angles were tested ranging from 5° to 16°.
The conical frusta buckled and collapsed in the orderly step-by-step fashion so
typical of cylindrical shells in which some internal pressurization is present.
The pressurization involved in these tests was that which occurred as a result
of the reduction of the internal volume as collapse progressed. The experi-
mental set-up for testing the conical shells is shown in Figure 15, which is
essentially the same as used for the unpressurized, cylindrical shells. Shown
in Figure 15 is the lighting array which was employed in the high speed photo-
graphy of the buckling process.
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The conical shell, before and after impact, is shown in Figure 16.
The shell as fabricated has diameters of 6 and 3 in., length of 22.8 in, thick-
ness of .008 in., and is of 5052 H-38 material. The shell is shown to have
reduced to 42% of its initial length. The shell absorbed 740 lb. ft. through a
distance of 1.1 ft.

A series of five conical shells as described above were instrumented
for measurement of the initiation of buckling. The results of these tests are
not available at this time.

(b) Non-Rigid Impact

Experiments were conducted in which thin aluminum shells were sub-
jected to impacts with an undisturbed water surface. The experiments were
conducted with the apparatus shown on Figures 6 and 7. The models used in
these tests consisted of aluminum shells mounted in circular plates at both
ends. The shells had the following dimensions: diameter = 5.700 in., length
12 and 22.8 in., thicknesses = .004 and .008 in. One of the models in its
initial form is shown in Figure 17 at the left. The upper plate supported the
model during the fall and served to impose inertia loading on the shell during
impact. The lower plate was a circular plate of micarta plastic. This was
designed to have a small inertia during water impact and a high penetration
resistance.

The experiments ronsisted of the following: .004 thickness, 12 in.
length shells impacted at initial velocities of 11.5 and 23 ft/sec. and a .008
thick, 22.8 in. length shell impacted at 32 ft/sec. In all cases Fastax motion
pictures were taken and buckling was seen to initiate immediately after impact
with the water surface. A photograph of one of the 12 in. length shell models
is shown in Figure 18. The model is seen to have penetrated 60/ of its length.
A well defined cavitation envelope is seen extending from the flat disk to the
water surface which except for the axially symmetrical splash is undisturhed.
Some buckling deformation of the quasi-inextensional form is evident immediately
behind the frontal plate. The high speed motion pictures show that the cavity
is maintained until the velocity of the model is quite low, its shape, of course,
varying from that of a slightly bulged conical frustum to a negatively bulged
frustum. Finally the cavity collapses on the shell and causes buckling common
to externally pressurized shells. This is evident in the shells shown in
Figure 17. The buckling at the lower ends of the shells is due to the axial
impact while the overall buckling is due to the subsequent collapse of the water
cavity. It is clear that the deformation due to both causes is greater in the
shell (extreme right of Fig. 17) which was subjected to the higher velocity
impact (23 ft/sec compared with 11.5 ft/sec for the middle one).

(2) Phase 2 — The Effect of Internal Pressure

A series of experiments was conducted on cylindrical shells with initial
internal pressure and subjected to axial impact. The impact velocities used
were 11.5 and 23 ft/sec., a set of velocities common to the other portions of
this program. The pressures used were 8.5 and 17 psig which were selected
to correspond with those used by Thielemann (Ref. 8) in studies of internally
pressurized shells under static axial compression.
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Results of strain measurements are shown in Figures 19 to 24 inclusive.
Strains were measured at three circumferential positions equally spaced at a
station two inches beyond the impacted end. At each position, the gages were
mounted directly opposite each other on the shell wall. Most gages were wired
in series to cancel out the be: ding strain components. In some instances,
however, they were wired separately in order to observe the bending strains.

Figure 19 shows the axial strains measured at two circumferential locations
on a cylinder impactod at a velocity of 11.5 ft/sec. The initial internal pres-
sure was 8.5 psig. At impact the strain proceeds into tension to a significant
degree and after 120 to 200 pseconds it rapidly goes into compression. The
strains shown in Figures 19a and 19b peak at magnitudes of .000826 and
.000750 in/in. By comparison the one dimensional elastic impact strain is
.000685 in/in.

A composite of Figures 19a and 19b is shown in Figure 20. The strain
rises to a peak of .000572 in/in at 410 u seconds after impact and decreases to
zero at 590 u seconds. Thereafter severalpeaksofabout, 00040 in/instrainoccur,

A trace of the strain measured in an experiment conducted at the same
value of internal pressure but at twice the velocity as the previous test is
shown in Figure 2la. The strain rises rapidly to a peak value of .00117 in/in
and decreases to zero at 150 pu seconds, thereafter remaining at relatively low
levels. The one dimensional elastic impact strain is by comparison .00149
in/in. The measured initial strain is, therefore within 21% of the predicted
value.

The longer time trace of the above measurement is much more interesting
and is shown in Fig. 2lb. After the initial peak (which in this figure runs off
the scale) occurs, other peaks are present having lower magnitudes than the
initial peak. Considering these secondary peaks grossly, the first, which consists
of many short duration pulses, has a strain level of .000545 in/in. and the
next three have almost identical levels of .000828 in/in. Thesestrain variations
have durations of roughly one millisecond each, and probably correspond to the
formation and collapse of buckles of the quasi-inextensional form. From motion
pictures of the buckling of the cylinder with 8.5 psig pressure and a velocity of
11.5 ft/sec, it was observed that triangular buckles required times on the order
of one millisecond to collapse fully.

Axial strain traces from three equally spaced circumferential positions were
obtained from a test conducted at a velocity of 11.5 ft/sec and an internal pres-
sure of 17 psig, twice that used in the previously described experiments. The
initial strain peaks were as follows: .000827, .000666, and .00150 in/in. This
latter value is greatly in excess of the value predicted by the one dimensional
elastic impact theory of .000684 in/in. and its significance is being investigated.
The three traces extended from the initiation of impact to 10 milliseconds
thereafter. A composite of the three is shown in Figure 22. The strain rises
to a peak value of .000580 in/in. at 300 u second after impact and decreases to
zero at 450 u seconds. Thereafter many fluctuations occur whose mean magni-
tude rises to .0003 in/in compression and falls to about .00015 in/in. tension.
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From this point the strain rises rapidly to a maximum compression strain of
about .0011 in/in. at 9 milliseconds after impact. The strains on the individual
traces at this time show .000790, .001090, and .001366 in/in.

The high speed motion pictures obtained from this test were studied to determine
the reason for this unexpected behavior, especially the interval between 2.5 and 5.5
milliseconds in which the strain varied about zero and went into tension. Also the
pictures were studied in order to understand the rapid rise at 6 milliseconds and
the sustained high level of compression. No visual phenomena were ohserved in the
brief study made up to this time, but a more extensive examination will he made.

In Figure 23 the initial strain from two locations are shown for an experi-
ment run at a velocity of 23 ft/sec and a pressure of 17 psig. The initial
strains were .00104 and .00158 in/in. compared with an expected value of
.00149 in/in. A composite plot of three individual long strain traces, two of
which include the short time traces of Figure 23, is shown in Figure 24.

This shows what seems to be a more reasonable strain history than Figure 22.
After the initial peak, the strain exhibits a number of peaks ranging in magni-
tude from .00064 to .00085 in/in. This behavior continues to 4 milliseconds
after impact at which time the strain rises to a value of .0012 in/in at the
end of the available trace.

Further experiments with initially pressurized shells subject to axial
impact are being planned. Instrumentation will be designed to obtain an
integrated average of the axial resistance of the shell during impact rather
than a detailed measure of the strains at selected points. Definite and
final conclusions regarding the behavior of shells under the loading conditions
studied must await the completion of these further experiments. According to
the pressurized experiments completed thus far, it can be stated that the initial
peak value of the measured strain does in general agree well with the one
dimensional elastic theory. The effect of the pressure on the overall defor-
mations of the shell are decided, a higher energy mode corresponding to
higher pressure.

The specimens tested at a velocity of 23 ft/sec are shown in Figure 25,
the left and right cylinders corresponding to internal pressures of 17 and 8.5
psig respectively. The shells buckled in a very orderly manner but were
damaged when the impact head struck them subsequent to rebound. The larger
amount of axial shortening in the lower pressurized shell (right hand specimen)
is evident.

(3) Phase 3 — Optimization of the Energy Absorption
a. Optimization by Internal Pressure

Experiments on cylindrical shells conducted during this program have
shown that the presence of an internal radial pressure strongly influences the buckling
behavior under impact loading. The effect of pressurizationdiminishes with decreasing
diameter to thickness ratios. Tests onaluminum shells of D/h ratio ranging from 1425
to 712 showed orderly collapse in the asymmetric mode when internal pressure
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was present. Figure 26 shows the collapse deformations in an aluminum shell
of D/h = 1425.

In the absence of internal pressure the collapse was quite disorderly
as should be expected for very thin shells. A full hard 301 stainless steel
shell having a D/h = 356, which buckled in a disorderly manner without
internal pressure was stabilized into collapsing in an orderly manner by a
polystyrene core having a density of only 1.1 lb. per cu. ft. Hence, it is
apparent that the proper stabilization of thin shells strongly increases the
amount of energy that can be absorbed per unit combined weight of shell and
pressurized agent.

Calculations were made of the energy absorption performance of
cylindrical shells pressurized by air and helium. These are presented in
Figures 27—29. Figures 27 and 28 show the ratio of the weight of the shell
plus pressurizing agent to the weight of the payload whose velocity Vo at
impact is to be reduced to zero. Figure 29 compares the performance
(including the deceleration imparted to the payload) of air and helium pres-
surized systems.

A constant internal pressure is assumed throughout the deceleration
stroke. This implies the discharge of internal gas during the collapse of
the volume.

b. Optimization by Constraint

Another approach taken toward increasing the energy absorption of
collapsing shells was stiffenning the shells by the mutual constraints imposed
by attaching them together. The motivation for this approach was the re-
portedly large amounts of energy that can be absorbed by honeycomb structure
without the effect of internal pressurization. This effect and its relationship
with the collapse of thin cylindrical shells was discussed in Reference 9.

Arrays of cylindrical shells were designed to test for the effect of
mutual constraints. The arrays consisted of aluminum sheet metal tubes
having the following dimensions, diameter of 1 in. length of 8 in. Two wall
thicknesses were employed:.002 and .004 inches. The arrays, shown in
Figure 30, were made by joining the tubes tangent to each other, this resulting
in a hexagonal periphery. The number of tubes per array increases in the
following order: 7, 19, 37 and the hexagonal configurations corresponding to
these have sides composed of two, three, and four tubes per side. The num-
ber of mutual constraints increases in the following sequence: 12, 42, and
89 for the three sizes and the numbers of constraints per tube are: 1.72,
2.21, and 2.40 for the three sizes in increasing order.

Since the number of constraints per tube increased with increasing
size of the array it was expected that the energy absorbed per unit weight of
material would increase. This however was not apparent from the experimental
results. The specific energy turned out to vary between 4000 and 5000 lb. ft.
per lb. with no apparent relationship between it and the size of the array.
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The reason for this may have been the fact that the bond which joined the
tubes together failed in a number of cases, thereby reducing the effect which
was under study. Further work will be done in which adequately strong
intertube bonds will be used.

The mutual constraints on the other hand did produce extremely well
formed collapse patterns and in addition a moderately high value of specific
energy. Pressure stabilization was present only in the tubes located on the
periphery of the array whereas in all other tubes the pressure differential
across the wall was negligible due to the pressure balance in adjacent tubes.
Therefore the stabilization of the collapse of cylindrical shells by mutual
constraints is evident.

Both for single tubes and the arrays, collapse would be readily
accomplished over a very large percentage of the initial length. Single tubes
having a length/diameter ratio of 8 were repeatedly crushed through 90% of
their initial length, and arrays exhibited this behavior as well. Several arrays
are shown after impact in Figure 31, The tubes in these arrays are of
.002 in wall thickness. Failure of some of the intertubular bonds, apparent
in the figure, is responsible for the imperfections in the collapse patterns.
When the intertubular bonds are maintained, deformations are confined to the
impacted end with essentially no deformation elsewhere.
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IV. ANALYTICAL INVESTIGATION
A. Introduction

For the past several decades it has been well recognized that the problem
of buckling of thin elastic shells must be attacked by nonlinear finite-
deflection theory. This type of analysis thus stands in contrast to the problem
of elastic buckling of bars, rings, and plates that may be successfully analyzed
by classical infinitesimal deflection theory. For the case of these latter struc-
tures, the results of infinitesimal deflection theory are in satisfactory agree-
ment with experimental evidence. For the case of buckling of a shell, however,
this agreement no longer exists. For example, for the case of static axial
compression of a circular cylindrical shell, experimental results range from
twenty percent to sixty percent of the values predicted by linear small deflec-
tion theory.

In an effort to present a theory whose predictions are in more satisfactory
agreement with experimental evidence, Donnell, in 1934, (Ref. 10) presented
a theory based upon finite deformations together with a consideration of the
initial imperfections present in the specimen. That theory was for statically
applied axial compression of a circular cylindrical shell. Because of lack of
suitable computers, certain drastic mathematical assumptions were introduced
that rendered the final results somewhat less than satisfactory, but nevertheless,
the beginnings had been made on a new type of analysis that showed promise
of being in better agreement with experimental data. This work was continued
by von Karman and Tsien (Ref. 11) in 1941 for the same case of axial com-
pression of a cylindrical shell. These same authors in 1939 (Ref. 12) had
studied the case of static buckling of a spherical shell by uniform external
pressure. Perhaps the most satisfactory explanation of the static buckling of
the axially compressed cylindrical shell has been offered by Kempner (Ref. 13).
His analysis was on a sounder basis than any of its predecessors and presented
an entirely realistic picture of the load-deflection characteristics of the shell.
The analysis was based upon the principle of minimum potential energy of the
system. More complete resumeés of the finite-deflection buckling analyses of
elastic shells are to be found in the survey papers by Fung and Sechler (Ref.
14) and the present author (Ref. 15). Another summary and critique, as well
as an investigation of the effects of internal pressurization on buckling of an
axially compressed cylinder, has been offered by Thielemann (Ref. 8).

The problem of dynamic buckling of thin elastic shells has only come into
prominence in the past few years. One of the first treatments is due to
Volmir (Ref. 5) who investigated the buckling of a shallow circular cylindrical
panel subject to rapidly applied axial compression along its generators. The
panel edges were taken to be simply supported. Finite deflection equations,
incorporating a consideration of initial imperfections present in the specimen,
were formulated and an approximate solution to these nonlinear equations was
obtained by the Galerkin procedure. The final results were presented in the
form of dimensionless axial load vs. time. It is interesting to observe that
Volmir's solution indicates that the dynamically applied load increases to a
value sixty-five percent greater than the upper critical load found from linear
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theory for the case of static compression of such a panel. After this peak
load is reached, there occurs an abrupt drop in axial load, and for a very
short interval of time the load actually becomes negative, corresponding to an
extension of the panel. As time increases still further the load fluctuates,
indicating nonlinear oscillations of the panel.

Another study closely related to Reference 5 has been presented by
Agamirov and Volmir (Ref. 4). Here, the authors apply finite deflection
analysis, together with a consideration of initial imperfections, to the problem
of dynamic buckling of a cylindrical shell subject to either hydrostatic pres-
sure or axial compression. The analytic approach is identical to that employed
by Volmir in Reference 5. However, the authors greatly simplified the mathe-
matics by taking the values of certain parameters to be the same as formed
for static analysis. This, of course, introduces an error of unknown magni-
tude. No numerical results were presented for the axial compression case.
For the case of hydrostatic loading the authors found a critical pressure
approximately twice the upper critical load formed from linear theory for the
case of static compression.

An experimental investigation of buckling of cylindrical shells by dyna-
mically applied hydrostatic pressure has been reported by Volmir and Mineev
(Ref. 16). The shells were duraluminum, having a radius-thickness ratio of
112, and buckling loads up to four times the upper critical load formed from
linear theory for static compression were measured. Further, it was found
that with an increase in loading rate the number of waves around the circum-
ference also increased.

B. Analysis

Let us consider the axially compressed cylindrical shell shown in
Figure 32. The coordinate system consists of a coordinate x along a generator,
y in the circumferential direction, and z in the inward radial direction. The
components of displacement of a point in the middle surface of the shell in
these directions are designated by u, v, and w respectively. Further, L
denotes the length of the shell, R the radius to the middle surface, h the
wall thickness, P the total axial compressive force, p the ntean axial stress,
and q the intensity of internal pressure.

We shall employ the following approximate nonlinear strain-displacement
relations to describe the membrane strains:

2 2
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In these equations, € x and €y denote normal strains of the middle
surface and € xy the shearing strain of that surface. The initial imperfec-
tions of the shell are represented by wg , the total deflection by w,, and
consequently the net deflection by w = wj-w, . By appropriate differentia-
tions and linear combinations of equations (8) we obtain

2%y | 3%,  a%eyy :[<52 W, )a- a%w, acw ]

aya dx 2 ox dy Ox dy ax? ayz
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Let us now introduce the Airy function ¢ (x,y) of the membrane stresses.
This function is defined by the relations
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where Oy and Oy denote normal stresses of the middle surface and Txy
represents the shearing stress of that surface. If the relations (10) together
with the biaxial stress-strain relations are introduced into equation (9), one
obtains the compatibility equation
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where

94 o 94

4 .2 _ 4>
VI 237 it 5,0

and E represents Young's modulus.

We shall now consider the equilibrium of an element of the shell. A
free-body diagram is shown in Figure 33. There, double-headed vector
representations are employed for the bending moments M, and M, and the
twisting moment Mxy . Further, Qu and Q denote the resultant transverse
shearing forces. It is to be obser\ed that M, , Mgy, Qx ., and Qy are
all resultants per unit length of the middle surface of the shell.

Summing moments about the x and y axes and neglecting higher order
terms, we obtain

aM‘ + aMxx ~Qx =0

ox dy
(12)
aML + oMxL . Qy 0
dy dx
Summing forces in the radial direction we obtain
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Here Y denotes the weight density of the shell material and g represents the
gravitational acceleration.

We shall employ the usual moment-curvature relations of shell theory:
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where G represents the shear modulus of the material, ¥ is Poisson's
ratio, and D is the flexural rigidity defined by

end
12 (1 -v2)

Here w, rather than wj, appears in (14) because the moments depend only
upon changes of curvature. If the relations (14) are now substituted in (12),
we find Q¢ and Qy as functions of w. These results, together with the
relations (10) may now be substituted in (13) to yield the equilibrium equation
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We now select for wo and w; the functions
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where a = and B=-—— . Here m is the number of half waves in the

axial direction of the shell and n the number of half waves in the circum-
ferential direction. In equations (16) fo and Y, are initial deflection para-
meters of the shell, which will either be known or will be assumed. Further,
f1, and W, are time-dependent deflection parameters of the deformed shell.
The configuration (16) implies diamond-shaped buckles. The relations (16)
correspond to an elastically supported shell, one whose ends are neither
damped nor simply supported. However, as in the case of static buckling of
shells, it is unlikely that boundary conditions are of extreme significance
provided the length of the shell is greater than approximately 1.5 diameters.

If the relations (16) are substituted in the compatibility equation (11), we
obtain the following solution of (11) for the Airy stress function

$=K SINa X SINBy + Kz SIN3a XSIN By

+Kz SINa@ X SIN 3By+Kg4 COS 2a X+ Kg COS 2 By

+Ke COS 2ax CoS 2 By +k7CO0S 4ax +Kg COS 4 By
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+Kg COS 4@ X CO0S 2By + K, COS 2a X COS 48y

(17)
where

2
(f,-f) (R )= (f, ¥ t, Vo) @2 B2

K|= Al
. 3(F, ¥~ fo Wo) a2 B
2 2A,
. 34V - to¥1a? B2
3 244
2 g2
2 .2 2 ,2,,8°8B 2
K. = (fl -fo + q’I "WO )( 2 )‘(%-Wo)(gh‘)
2 22
K= (f|2_f°2+%-w°2)a B (18)
5 2A 5
2
. Wi (R ) -wP-yd a® BE
Kg = P
Ko = (\"|2—w°2)0232
e -
2A9
2 2
cge — ¥~ ¥o )a2 g2
2Ag
(V’|2 _WOZ)QZBZ
Ka =
9 28
(¥, 2-¥o%1a2 B2
KIO' ZAI

0
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and

(¢12+Bz)2

(9 a% 82)2

(02_'_932)2
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E

16 (a%+ 822
E

256 a4
E

256 B¢
E

16 (4 a2+82)2
€

16 (a2+ 4 822
3
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We have now found a stress function satisfying compatibility. Equilibrium
must now be satisfied. If we substitute the above values of wq, Wy, and ¢
in the equilibrium equation, it will not in general be satisfied. However,
we may satisfy it approximately by the Galerkin technique. For this purpose,

let 2
329 a%w,  9%¢ d%w
9x2 9gy2  gy2 92
2 2 2 (20)
_p9%¢ %W 1 0%¢ _y 9%w ]+
Oxdy Ox dy R 5x2 9 912

H=DV4 (W-W,)-h

That is, H is the residual of the equilibrium equation after approximate
values of w;, w_, and ¢ have been substituted. To minimize H we employ
the Galerkin me?hod, viz.

2 TR L
fo fo H:x

dxdy =0
2TR L (21)
f f H-2¥ 4 ay=0
0 (-] 0 Vl|
These equations become
2 TR L
f f HSINa X SIN By dxdy=0
0 0
(22)

27R L
f f H SIN2 a x sIN2 By dxdy=0
0 0

For the above values of w;, w,, and ¢, H may now be determined from
equation (20). This value of H, together with the above Galerkin equations,
yields the coupled nonlinear differential equations in f; and Wl :

y 42 3 2 (23)

(24)

9y d%y, . 2 3 2. . .2
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where the coefficients are defined as follows:

o(a%+2 a28%+8%

4 94,2, 42y ('
R, =— + a B"o*“‘o’(A‘,

I~ h

442 4 2
a R

2a’'B V’o - + p02+ Q___B
RA4 R2 A h

Ag Asg
2 2
R='0432[R%/9-' S Vo B” (!
3 RA, 4 Aj
. 2 a* p? (- + 9
4 R A A4
4 o4 ! 9 9 |
2 - + -+ +
R5 a ﬁ ( Al + 4A2 4A3 A4
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t, a4

fo O 4 2 R2, pé 2
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— (a* +2a% B B%) . 5 Y ( RYo BE-1)
b (12a%+8 a?B% 12 g% ‘s 434[fz (- +)
h e 0 A4 As
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It is to be observed that Ry and S, each contain p, the mean axial stress,
which is defined by the relation

P

TR @n
mw

where P is the applied axial load. Let us consider the relation between end
shortening e and axial displacement which is given by

L du
= —_—d 28
‘ '}; dx " (23)

If now the first of equations (8) is solved for du/ dx and this value,
together with the value of €, found from Hooke's law, substituted in (28),
we obtain

2
_PL a%L 2 3 ,2 vqRL (29)
o= E + 8 (f' + ry W ) + Eh

If V denotes the constant rate of end shortening, from which e = Vt where t
denotes time, we have from (29)

_Evt _Ea? » 3 .2, ¥aR
L I AR (30)

This result may now be substituted in equations (23) and (24) to obtain the
governing equations for constant rate of end shortening, viz:

Y & ¢h
g are Vo f T T VIfL VTVt ¥ HVs YT
9y d3y (32)

1. 2
49 g¢2 SWoy t +W Y +Wa y "+ Wy 4’,3+w4'|

+Wgt2 + Wgt2 Y +W,
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where

_ Ea?v

Vo = -
2, 2,2
D(a%+ B%) a .4, ,2 2 I |
V 2 ————— + a (f5+ W) (— +—)
} h B fo WO (A4 45
42 4 2 2
2a%B2y, a vqRa aRB
e T RER +
RAg REA, h h
Eat
2 Roe cmmme—
Vz s
V3=R3
V4 = Rg
3€q¢ (33)
Ve 2 Rg=-
5 5 32
V6=R6
3Eav
W, = -
4 22
D (12 a%+8 a?8% 12 8% 4gal.2({ L, L
w =- - +4 ap [fo(A4+A5)

"'VZ(L +_'. + 2 4L L L +_)]

Ag Ag A7 Ag 2Ag 2Ag
_8a%8%y (1, PR sa?
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_3vqRa? SQREZ
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2
9t a
Wy = S3-—33
Wg =S4
(34)
Wg = Sg
2
3Ea
Ws - 36' 8
w, =S,

Because of the complexity of the quantities involved in equations (33) and
(34), it is desirable to proceed from this stage onward only by numerical
techniques. Since the equations (31) and (32) are coupled nonlinear equations,
no closed-form solution is known to exist. However, with given initial condi-
tions, these two equations may be readily integrated numerically by the Runge-
Kutte method. We shall investigate the initial conditions

fl-.-f

¥ = Yo

0

] (39)
a4 .

dt °

dl' 2 0

dt

The numerical solutions of equations (31) and (32) have been carried out on
an IBM 1620 for shells having the following constants

= 10.6 X 105#/ N2
v= 033
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L=228IN
R= 285 IN
h = 0004IN AND 0.008IN

vVell5,23, AND 46 ft/sec

fo: Vo= h/2

Further, @ was taken to be equal to B , which implies a wave aspect ratio
of unity. Figures 34-45 on the following pages illustrate the results of these
computations. For each set of parameters, both a dimensionless axial stress

o = pR/EN
and a dimensionless lateral deflection

(e
L 5

were plotted as functions of time.
Since the rate of end shortening has been taken to be constant, this implies
that these same two quantities are just as readily presented as functions of
unit end shortening. It is to be observed from these figures that it is neces-
sary to make a selection of which curve is the appropriate one to consider,
i.e. for a given rate of end shortening and a given thickness shell, there is
plotted a family of curves for various values of n, the number of half waves
in the circumferential direction. The question arises as to which curve is
the one that realistically describes the load-time relation of the shell. The
criteria was adopted that the{.¢curve that is first to deviate from the
abscissa axis and is also first to reach its peak value is the one that should
be considered.

C. Conclusion

On the basis of this criteria, inspection of the curves reveals certain
extremely interesting results:

a) With increasing rates of end shortening, the first maximum load,
termed the buckling load, corresponding to the first maximum dimen-
sionless axial stress, is attained sooner.

b) With increasing rates of end shortening, the buckling load as defined
in (a) is increased.

¢) With increasing rates of end shortening, the number of half waves
that form around the circumference increases.

It is interesting to observe that these results are in qualitative agreement
with those found by Agamirov and Volmir (Ref. 4) for the case of a cylindrical
shell loaded by hydrostatic pressure. Further, for the parameters investigated
here, the maximum load was always greater than would be anticipated for static
buckling. A reliable estimate of the static buckling 1oad may be found from

29



Kempner's theory (Ref. 13). Obviously it is desirable to obtain more infor-
mation concerning behavior of these same geometries, particularly when
different initial imperfections and still greater rates of end shortening are
considered.
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Figure l. Impact Test Apparatus for Impacting Unpressurized Shells
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Figure 2.

40 ft. Precision Impact Test Apparatus
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Figure 5. Internal Pressurization Scheme
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Figure 7.

Test Set-Up for Hydrodynamic
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PREBUCKLING STRAIN,e* = —-

POST BUCKLING STRAIN

SECOND ROW
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Figure 8. Resultant Axial Strain in the Buckling Part
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«—— Compression

Axial Strain (.00196 in/in/grid spacing)

Time (10 psec/grid spacing)

Figure 9. Initial Strain Pulse After Impact
(2024 H-19 Al Cylindrical Shell,
5.700" Dia., 22.8" Lgth, .008"
Thk. Impact Velocity = 46 ft/sec)
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Time After Impact (50 usec/grid spacing)

Figure 10.

Initial Strain Pulse After Impact
(2024 H-~19 Al Cylindrical Shell,
5.700" Dia., 22.8" Lgth, .008"
Thk. Impact Velocity = 11.5 ft/sec)
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Axial Strain (.00196 in./in./grid spacing)

Compression ————»

Time (10 psec/grid spacing)

Figure 11. Initial Strain Pulse After Impact
(2024 H-19 Al Cylindrical Shell,
5.700" Dia., 22.8" Lgth, .008"
Thk. Impact Velocity = 25 ft/sec)
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Axial Strain (.000785 in/in/grid spacing)

Time After Impact (500 usec/grid spacing)

Axial Strain (.000783 in/in/grid spacing)
Compression ——

b
Time After Impact (500 usec/grid Spacing)

Figure 12. Strain Pulse After Impact (2024 H-19 Al Cylindrical Shell, 5.700" Dia.,
22.8" Lgth, .008" Thk. Impact Velocity = 11.5 ft/sec)
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4 5 6

figure 1.1, Buckling Process of a Cylindrical Shell Due to Axial Impacet at 23 ft/see
(301 Staintess Steel. 5,700 Dia., 22,587 Loth, . 019" Thk.)
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Figure 16. Conical Shell Before and After Impact (5052 H-38 Aluminum,
3" and 6" Dia. at ends, 22.8" Lgth, .008" Thk.
Impact Velocity 36 ft/sce)
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Figure 18. Impact Penetration of a Cylindrical Shell Model into Water
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€, Axial Strain (188 pin/in/grid spacing )
Compression ~—»

Time (100 u sec/grid spacing) ——»

Figure 19a. (Impact Begins at 130 usec from left)

Compression ——»

€, Axial Strain (188 pin/in/grid spacing)

Time (100 ysec/grid spacing) ———»

Figure 19b. (Impact Begins at 90 usec from left)

Figure 19. Axial Strain vs. Time at Two Circumferential Positions 120° Apart
and 2 in. behind Impacted End. Pressurized Cylindrical Shell
(Vo = 11.5 ft/sec, po = 8.5 psig, P= .165, h = . 008", Aluminum)
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?

Compression ———»

€, Axial Strain (671 Min/in/grid spacing)

Time (50 ysec/grid spacing) —
(Impact Begins at 60 usec. from left)
a. Short Time Trace

Compression —>

€, Axial Strain (188 pin/in/grid spacing)

Time (2 milliseconds/grid spacing)

b. Long Time Trace

Figure 21. Axial Strain vs. Time for an Internally Pressurized
Cylindrical Shell (V, = 23 ft/sec, p, = 8.5 psig,
p=.165, h = .008", Aluminum)
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€, Axial Strain (428 uin/in/grid spacing)
Compression ————»

Time (50 u sec/grid spacing) ——>

Figure 23a. (Impact Begins at 80 usec. from left)

|

€, Axial Strain (428 pin/in/grid spacing)
Compression ———»

Time (50 yu sec/grid spacing) ——

Figure 23b. (Impact Begins at 60 usec. from left)

Figure 23. Axial Strain vs. Time at Two Circumferential Positions 120° Apart
and 2 in. behind Impacted End. Pressurized Cylindrical Shell
(Vo = 23 ft/sec, p, = 17.0 psig, P = .330, h = .008", Aluminum)
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Figure 25. Cylindrical Shells after Impact (V, = 23 ft/sec, p, = 17 psig (left)
Po = 8.5 psig (right), h = .008", Aluminum)
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Figure 26. Partially Expanded Cylindrical Shell Showing Collapse Pattern
(Aluminum, .004" Thk, 5.700" Dia., 30" initial length)
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, DIMENSIONLESS LATERAL DEFLECTION
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Figure 35. Lateral Deflection of Shell Wall vs. Time
(Vo = 11.5 ft/sec, h = .004", Aluminum)
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Figure 36. Axial Stress vs. Time (V, = 23 ft/sec, h = .004", Aluminum)
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Figure 38. Axial Stress vs. Time (V, = 46 ft/sec, h = .004", Alumunum)
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(Vo = 46 ft/sec, h = .004", Aluminum)
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Figure 42. Axial Stress vs. Time (V, = 23 ft/sec, h = .008", Aluminum)
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Figure 43. Lateral Deflection of the Shell Wall va. Time
(Vo = 23 ft/sec, h = .008", Aluminum)
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Figure 44. Axial Stress vs. Time (V, = 46 ft/sec, h = .008", Aluminum)
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