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GENERALIZATION OF THE THEORY OF REGULAR THERMAL REGIME

FOR THE CASE OF VARIABLE COEFFICIENTS OF HEAT

CONDUCTIVITY AND SPECIFIC HEAT

Prof. L. I. Kudryashev and L. I. Zhemkov

Theoretical Section

The regular heat regime method has for some time past been more

and more practically used in various heat calculations. Its simplicity

and the great accuracy of the results explains this.

BoL.3sinesq first directed our attention to the property of regu-

larity. He noted that parabolic linear differential equations possess

the quality of regularity consisting in the relative rate of change in

the variable on the left side of the equation remaining a constant value

after the completion of a certain change in the independent variable.

G. M. Kondratyev's profound analysis of this property applicable to

Fourier's heat conductivity equation also laid the foundation of the

theory of regular heat regime.

At present the theory of regular heat regime is used without excep-

tion in all the problems of heat physics. The First Inter-University

Conference on the Regular Heat Regime in Leningrad in March 1958
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demonstrated this convincingly.

Nevertheless the theory of regular heat regime continues to be

based on the analysis of a Fourier differential equation with constant

coefficients, i.e., specific heat and the coefficient of heat conduc-

tivity are considered constants.

This artificial procedure simplifying mathematical analysis of the

phenomena at the same time substantially narrows the circle of questions

which the regular regime theory may solve.

In actual fact, the thermophysical properties of substances change

with temperature and consequently a Fourier heat conductivity equation

will represent a non-linear equation to which is not applicable the

Fourier solution according to which the desired solution appears in

the form of a product of two functions independent of each other-the

time function and the coordinate function.

Therefore, having set the task of generalizing the theory of regu-

lar heat regime for the case of variable coefficients of thermal con-

ductivity and specific heat it is first necessary to analyze and solve

the problem of linearizing the non-linear differential equation of

thermal conductivity. This task is the central one.

Numerous experimental data indicate that the rate of change of

temperature in time when a = const does not remain constant. The cause

of these deviations is the dependence of thermophysical properties of

the calorimeter material on temperature.

This indicates that the temperature regularity cannot be taken

as the base if one analyzes the phenomena with regard to the varia-

bility of X and C p. In this case the temperature no longer exhausts

the nature of the process. Thus one must direct his attention to

searching for a new thermal function, a new thermodynamic potential,

which will describe the heat process with a parabolic linear equation.
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A frequent case of regularity of such a function (when X and Cp = const)

will be the temperature regularity which is the subject of G. M.

Kondrattyevs research and that of all the other authors.

The fact that treating the experimental data with respect to

excess heat content iexc. = ibody- isurr" med.' and not with respect

to excess temperature, gives a more constant rate in time than the

rate with respect to temperature.

This indicates that the desired potential must necessarily cor-

respond in its constitution to the dependence of X and Cp on the tem-

perature and in the end must characterize as heat both that accumulated

by the body and that transferred by thermal conductivity to the heat

exchanging surface.

In addition, for completely rigid linearization, as will be dem-

onstrated below, there will also be needed a transformation of the

time variable.

Designations: t- temperature, T- time, X -coefficient of heat

conductivity, C p- specific heat, y-specific gravity, i-enthalpy,

a-temperature conductivity, V-volume of the body, F-body surface

participating in heat exchange, qv -intensity of internal source of

heat in a unit of volume q n- vector of heat flow, vtbody -tmedium-

excess temperature, a-coefficient of heat delivery, Y- coefficient

of non-uniformity of the temperature field, m. rate of change of

function of the state, d- characteristic size of the calorimeter.

Subscripts: w- value on the surface or average value over the

surface, v- average value throughout the volume, o- initial value,

mv:mf:mf.-rates of change of the different functions.

Passing to the mathematical formulation of the problem, let us

ma3e the two following remarks.

In the overwhelming majority of textbooks the heat conductivity
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equation is derived without regard to the dependence of the coefficients

of heat conductivity and specific heat on the temperature, since no

problems with respect to these relations were posed. Such an approach

is wrong, since from the very beginning the analysis is carried out

based on a particular case of the Fourier equation. Only in G. M.

Kondratlevts last monograpgh is a conclusion from this equation adduced

with regard to the variability in the thermophysical properties of

the material.

Further, in our opinion the problem of non-steady heat conductivity

is more elegantly and strictly formulated by adducing the equation of

the conservation of mass. Here the formulation of the problem turns

out to be of the most general form, from which all particular cases

follow.

Let us examine the non-steady process of cooling or heating a body

of volume V and with a surface of heat exchange F situated in some

medium or other.

If we regard the process of heating or cooling as isobaric, the

equation of the balance of the body's energy in the integral form is

I' IF

Thus the amount of heat given off by internal sources is expended

in changing the body' s enthalpy and transferring heat by thermal con-

ductivity to the surface of the body where heat exchange with the sur-

rounding medium occurs according to one law or another.

That the problem may be a closed one, let us add to Eq. (1) the

equation of the conservation of mass in the form

"- "; V -0. (2)
$,



The first integral on the right side of Eq. 1 can be written

in explicit form thus

V V V

or with regard to Eq. (2):

,,. -;,l = .., d . (3)
IV

According to Ostrogradskliy's theorem

.q,1dF - .diuq,, dv. (4)
F ,

In view of the Fourier hypothesis

q , .i graI t, (5)

we have

.qdF - (i ,. grad i)dV. (6)
F 

(6

Substituting (3) and (6) in Eq. (1) and by passing to the limit, we

obtain the differential equation

di div( (7)

Enthalpy i is a function of the temperature, i.e.,

i . (t)

and consequently we can write

But according to the definition of specific heat

-C (8)

Consequently,

-(9)
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Substituting (9) in (7) we have

at " M " div( gradI t) + qI, •1

For a full mathematical formulation of the non-steady heat conductivity

problem we must add to Eq. (10) the relationships of the thermophysical

properties of the material to the temperature:

;. a,, (1); (11)
C', -. Cj.().

and also the initial conditions in the form:

when - = 0 = '(x, y,. z) (12a)

and the bounding conditions, assuming that heat exchange on the surface

of the body takes place according to Newton's law:

(at (12b)

The system of differential equations (10), (11), (12) is a system of

non-linear equations relative to temperature and therefore. it is

impossible to present the sought-for solution as a product of two

functions, the function of time and that of the coordinates. Equation

(10) has no property of regularity.

We shall demonstrate that introducing the new function . .C

in place of temperature t and the integral argument in place

of time 7 enables the indicated system of non-linear differential

equations to be transformed into a system of linear differential equa-

tions.

First we shall prove the two following correlations:

a) grdi/=C,.."rad,' (13)
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b) div (Agrad I)=V (14i)

The first correlation is proved simply if we take into account that

i = i (t)

In this case the expression for -ad i may be written in the explicit

form

a.Oi, . ,Ai Oi dI i da t 9. i t

-i t i +1 + +-P)-grad i.

2. On the basis of the first correlation proved the socond may

also be proved:
div ( .grad t) = r4PJ.

First of all, it is obvious that

div ().grad 1) - div (. grad i). (15)

Further considering (11) we may write

*5-(Q =f(i). (16)

This gives reason for writing (15) in the explicit form

, .T [ y aZ12~ di )

a(1) . (17
- ay- +, (a.. I &'

Now introducing the new integral function

'" ,di. (18)
0

one can write

dt-h d - & + dx 1. Ld d y + L dzdx Zdy 0

d- + dx + - du + - dz).
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From the last expression it is seen that

80 ). 8 (19)

With regard to (16) we find that

ago z'l d ( d/i'

. . . . . . . . . . . . . . . . (2 0 )
S. . . . . . . . . . . . . . .

Adding the right and left sides of the equations in (20) we will have

' 9 + ' + a l t , ) . ' a ' , + L "
= )'% 82 62, i Up- l 82 1.8 OV21)+

+ _) + (L )I+ Cp v Ikgadii k(21)

Now, using the proven relations (13) and (14), it is easy to reduce

Eq. (10) to the form:

-TOO. .=v +,q,.

or

80 + (22)- =aov' J+ aq..

The coefficient of temperature conductivity a =V is a

function of the temperature.

Equation (22) is quasi-linear for function D, since the coeffi-

cient of temperature conductivity a(t), not depending explicitly on D,

nevertheless is connected with 0 via the temperature. Therefore a

supplementary scrutiny of the behavior of function a(t) is demanded.

It may, however, be shown that linearization of Eq. (22) can be

concluded by passing to the new integral argument:

= X dT (23)
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in place of time T.

With the introduction of this argument Eq. (22) passes into a

strictly linear differential equation for function 0.

Actually, introducing argument t into (22), we will get

80 (24)

Equation (24) is a rigorously differential equation of the para-

bolic type for function 0. This equation, as is easy to see, is

analogous to the Fourier differential equation for heat conductivity

for the temperature, if we replace temperature t with function 4, time

T with argument t, and set a = 1.

So the task of linearizing the non-linear differential equation

of heat conductivity is done.

The new function 0(, x, y, z) describes the thermal process in

the body as a linear differential equation of the parabolic type, to

which we can in full measure apply the Fourier method of solution.

We may now proceed to the examination of other questions, one

of which is the generalization of the theory of regular heat regime

for the case of variable coefficients of heat conductivity and specific

heat.

Let us examine the case wide-spread in practice, where the internal

sources of heat are lacking, qv = 0.

Equation (24) will take on a simpler form

4'=  (24a)

To linear equation (24a) will apply in full measure the Fourier method

of solution, i.e.,

, y z)- ( .)= (x, ., z). (25)
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This affords reason for writing Eq. (14a) in the form

(.) (xT...% (26 )

In other words Eq. (26) satisfies the Fourier condition for

function D.

The above presentation enables us to formulate the regularity

condition in the form of the following supposition: if into the non-

linear differential equation is introduced a new integral function

C11. instead of temperature t and the new integral argument

ad. instead of time T, the non-linear differential equation of

heat conductivity becomes a linear differential equation and possesses

the property of regularity with respect to the new function.

We will now carry out an analysis of the variation factor in a

temperature field *, which occupies one of the central places in the

theory of regular temperature regime equally with the concept of rate

of temperature change mv . The actual temperature field in the body

with the variables X and Cp will not coincide with the temperature

field when it is assumed that X and Cp = const.

As we will be able to see, it is not difficult to allow for this

deformation of the temperature field, if one operates with the field

of function 0 in the body, i.e., conducting the analysis of the basis

of Eq. (24a). The necessary transformations are simple and obvious.

By virtue of (14) we have V-- = div(Xgrad t), but at the same

time, from (24a):vr=--.

Consequently,
O" div (, grad t).

Integrating both sides of this equation over the volume and using

Ostrogradskiyts theorem, we get

-10-



?'dv-dv(X grad I) dv- - Sq,idF. (27)
V V

The heat transmitted by heat exchange may be expressed according to

Newton's law as follows:

Q=q~dp-, .tw.F. (28)

Substituting (28) in (27) and averaging the left side over the volume,

we get

(),.. v=-,..F. (29)

Dividing both sides of relation (29) by the value of function 0V aver-

aged over the volume, we get

'.f L V"" (30)

By virtue of (25) it is easy to show that the left side of the equality

(30) is a constant value.

We will call this constant value the rate of change of function

0 with respect to the argument a- .

Consequently,

d"P M (31)

Integration of Eq. (31) leads to an expression for determining rate MV

for the excess temperature according to G. M. Kondratlyevts theory.

-11-



After integrating:

In c h - , . + const. (32)

And further for two successive values of argument .

In 0,- In. = 41(.,- 3) (33)

Consequently,

In ,- In o,
(34)

The calculations are interesting and valuable because they enable us

to find a connection between the rate of change of (D with respect to

argument -- and the rate of change of the fzction 0 with respect

to time T-m. This connection makes it possible to evaluate the "degree"

of linearization of the heat conductivity equation when only function

0 is introduced.

This is practically valuable because it enables us to estimate

whether complete, rigorous linearization is necessary or whether it

can be avoided by partial linearization, depending on the nature of

the material's properties.

To the expression

2 dT dT

let us apply the theorem of the average, which is completely legal,

since a = - is a continuous function without any exceptions at

all in the whole investigated temperature range for isotropic solid

bodies (the temperature ranges are examined without changes in the

aggregate state).

-12-



Consequently

U (35)

where (CX)m is the average value in the investigated interval of
P

time (temperature range).

Substituting (35) in the expression for n , we get

In 0- In 02 (36)L,, L- ) 0., - .-- )

WT

Or

TsI1 -1n (37)

here is the rate of change of 0 In time, hence the connection

between m and

i (38)

Taking (38) into account we will write expression (31) in the form

o"- (39)

From comparison with the ordinary form of notation for rate mv we get

an expression for coefficient T.

II. (40)

Coefficient I by analogy with the variation factor of the temperature

field '-,=I. according to Kondrattyev characterizes this field, but

allows for the variability of thermophysical properties.

In distinction to the variation factor of the temperature field

in the theory of regular temperature regime this coefficient, as is

-13-



seen from (4), represents an already complicated complex into which

X and Cp enter as functions of the temperature.

The results obtained are of interest from both the theoretical

and the practical point of view.

That the structure of the very simple and practically convenient

formulas for the regular temperature regime be preserved is, above all,

highly valuable. But now these formulas have a qualitatively new sense,

since there is taken into account in them the change in the thermo-

physical properties of the material during the non-steady process of

heat exchange.

The congruity of the expressions for rates and variable factors

of the temperature field indicates that the theory of regular tempera-

ture regime is a particular case in the generalized theory of regular

heat regime. Actually, taking X and Cp = const, as is done in the

theory of temperature regularity, we immediately obtain from formulas

(06) and (40) expressions for the rate and variation factor used in

KondrattyeV' s theory.

The rate for the temperature will be a constant value only in

case X and Cp = const (when there is a constant value a), but actually

there is no such situation, and hence on studying non-steady thermal

processes there appear various requirements in relation to the material

of the calorimeter, its dimensions and shalie, temperature range, etc.,

which complicate the work. These requirements are not always com-

patible with each other.

In the generalized theory of regular temperature regime, as we

were able to satisfy ourselves, no simplifying assumptions were made

in the theoretical section in respect to the thermophysical properties

of the material.
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Therefore it is to be expected that this makes it possible to

extend the limits of use of the theory of thermal regularity in regard

to the kinds of materials, temperature ranges, calorimeter dimensions

and shapes, etc.

Actually, experimental verification corroborated the theses of

the generalized theory.

Experimental Section

The set of experiments was carried out on the basis of the theory

of simulation. A number of features of the tests resulted from the

propositions of the theory. These exceptions consisted in corrobo-

rating the theoretical propositions with the example of a material with

very greatly changing thermophysical properties.

In solving the problem formulated 1 y the system of equations (10),

(11), and (12) there appear the invariants F. and Bi.

In the experiments it was consequently necessary to fulfil the

requirement

FO , idem (
Bi idem i (48)

or 7, =.idetj#-d : idemn
S"idein

Starting from the conditions (48) and also allowing for the theoretical

propositions, in the experiments we used as the material for the cal-

orimeter graphite, which has a low valued coefficient of heat con-

ductivity and whose thermophysical properties are strongly dependent

on temperature.

An experimental specimen was made in the form of a graphite

cylinder 50 nn in diameter and 400 mm in length.

-15-



In one of the cross-sections of the specimen were embedded four

thermocouples (copper-constantan) which permitted the approximate

evaluation of the temperature field.

The specimen was placed in an aerodynamic tunnel and after heat-

ing with a special furnace was blasted with a stream of air. Tempera-

ture changes were read off with a PP type potentiometer, since the

rate of cooling in all experiments enabled us to make measurements

from all four thermocouples.

In the experiments the air velocity was varied from 0 to 25 m/sec

(which corresponded with Reynolds numbers up to 50,000); the tempera-

ture to which the cylinder was heated, and the position of the thermo-

couples in respect to the air current were also changed.

To process the experimental data the curve 0 = 0(t) is plotted.

This curve (or table) is suitable for any bodies of a given material,

since 0 is a function of the state.

As in the theory of regular temperature regime, where excess values

of the temperature are used to find rate N, in the generalized theory

it is also necessary to calculate the excess values

0 = Obody - Osurr. medium.

In processing the experimental data for many materials cooled in

air there occurs an interesting detail which facilitates treatment of

the experiments.

It turns out that in this caae 0 of the body is much greater than

Oair and therefore it is possible without perceptible error to use not

the excess but the absolute values of 0 of the body to find rate i.

To illustrate-at 25 °C

Oai ' 11kcal,

1air
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and

0graphite = 390 kcal

Of course, in every case one must compare body and 0 of the surround-

ing medium.

For example, when cooling in liquids 0 of the liquid may prove

to be of the same order as 0 of the cooled body.

The indicated feature discoveved when processing the experimental

data, showed that introduction of the function 4 allows for the varia-

bility on the thermophysical properties not only in the cooled body

but also in the cooling medium.

Thus in calculating the difference b)body " surr. med. allowance

is made for the variability in thermophysical properties even of the

system "body-surrounding medium."

This permits the solution of the problem of cooling bodies in

bounded volumes of cooling medium, cooling composite bodies, etc.

From the experiments result the data

v - v (Tr).

On graphically representing these relations it turned out that they

are not exponents, since the rate mv is a variable value. In all

experiments a tendency on the part of rate mv to increase with time

was discovered. This fact is a result of the change in thermophysical

properties, since the coefficient of heat emission does not change

during the experiments (each experiment was conducted at a fixed value

Re).

With the growth of Re the rate increase during the experiment

becomes sharper. For example, when Re- 50,000, rate mv increases

-17-



threefold during the 10 minutes of the experiment.

The variability of the rate, especially clearly seen in the case

of graphite, is also noticeable in experiments with steel, although

steel possesses a much greater thermal conductivity.

Thus the experiments confirmed the proposition of the theory that

with variable X and C rate mv is no longer stable during the experi-

ments and, as a result of thisheat emission a cannot be uniquely

determined. With regular temperature regime we can determine only an

approximate value of heat emission, and even that not always. To

improve the results, as has already been indicated, there are usually

recommendations as to dimensions, shape, and material of the calo-

rimeter. This does not always satisfy the researcher, especially in

experiments on natural objects. It is easy to bring about the transi-

tion to the new function 0 = 0(r) based on the curves 0 = 0(t). The

experiments have shown that these curves are not exponents either (they

are derived from a quasi-linear equation).

Nevertheless the instability of rate % is here considerably less

than in rate m. This indicates that the determined degree of lineari-

zation has been accomplished.

Finally, to conduct a final verification of the theory it is

necessary to plot 0 = 0(t). To do this we must replot 0 along a

abscissa instead of a T one. There is a connection between e and T,

and the values of t are easy to figure, since we know the values

a = = a (t), and (T). All the experiments conducted with graphite,a a

p
and in addition those with steel, showed that the rate of function 0

with respect to argument t is a constant value in the whole range of

values of argument t corresponding to the duration of the experiment.

Consequently 0 = O (E) is the exponent. The constancy of rate

with respect to the argument enables us to determine uniquely the

-18-



coefficient of heat emission a.

To do this we can use any instant of the experiment since rate

= const. This corresponds to the physical picture of heat exchange

occurring at a constant rate and temperature of the air bathing the

calorimeter.

Thus the propositions of the theory are completely confirmed for

all the experiments which were conducted at an Re from 1,000 to 50,000.

The theory was confirmed also by experiments with 3 Steel a

cylinder $ 50 mm, 400 mm in length), But for steel a severe instability

in rate mv is discovered only at high values of Re. i.e., at high values

of a as a result of high thermal conductivity and its lesser depend-

ence on temperature than that of graphite.

In addition to this, the experiments confirmed one more proposi-

tion of the theory. In the theory of regular temperature regime it is

demonstrated that the rate does not depend on the coordinate. This

property of the rate is included in the generalized theory for rate

MO .

The experiments corroborate the uniformity of the rate at any

point in the body. The changes registered by the four thermocouples,

two on the surface and two inside the calorimeter, showed that rate

N is the same at all points. This determines the average coefficient

of heat emission with respect to the surface.

Conclusions

1. By introducting a new thermodynamic potential 0 in place of

temperature t and the integral argument t in place of time T, lineari-

zation of the differential equation of heat conductivity is accomplished.

2. Based on the linearized heat conductivity equation the gen-

eralization of the theory of regular heat regime is accomplished for

FTD-TT-62-1200/+2+4 -19-



the case of variable coefficients of heat conductivity and specific

heat.

3. Based on the analysis carried out an expression for rate n)

kas been derived which makes allowances for the variability of the

thermophysical properties of the material during a non-steady process.

4. The general concept of a variability factor of a temperature

field with variable coefficients of heat conductivity and specific

heat has been established.

5. The establishment of a unique relation between cooling rate

n and coefficient of heat emission a by the generalized variability

factor of the temperature field has enabled us with the help of rela-

tions (31) and (39) to map out ways to use a-calorimetersdeveloped

by G. M. Kondratlyev with X = ccnst mid Cp= cnst, in the general case

where these coefficients are variable.

6. The experimental verification of the basic propositions of

the theory has given a positive result. Experiments conducted on

specimens of graphite and 3 Steel showed that the generalized theory

of regular heat regime can be recommended as a reliable, method of

calculation in the most varied problems of thermal physics.
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REGULAR HEAT REGIME IN BODIES WITH INTERNAL SOURCES OF

ENERGY AND VARIABLE THERMOPHYSICAL PROPERTIES

Prof. L. I. Kudryashev, Doctor of Technical Sciences

and L. I. Zhemkov, Graduate Student

The subject of the present article is an examination of heat

emission by a body inside of which a source of energy is active.

An extraordinary number of examples may be adduced since processes

like this are very widely used in technology.

During work heat is given off by electrical conductors, cables,

busbars, electric heating apparatus, various radio components, elec-

trical devices, nuclear reactors, etc. It is highly important to

study the heat regime of such systems, since it is directly connected

with service life, reliability, and often, operational safety.

Thermal calculations of the work regimes of different electrical

devices, measuring instruments, metal treating processes, etc., have

lately been attracting more and more attention and they undoubtedly

will occupy the place due them along with specific calculations, as,

for example, those of strength, and electrical calculations.

A number of works, of which those of G. M. Kondrat'ev and G. N.

Dul'nev [i, 2] are to be acknowledged the most complete, have been
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devoted to the matter of investigating the heat regime of systems with

internal sources of heat.

In these works, however, the analysis has been based on a Fourier

equation with constant coefficients, i.e., as in the theory of regular

temperature regime, it is considered that heat conductivity and

specific heat are constants. It is understandable that quite a number

of features associated with the dependence of X and C on temperature

cannot be explained here. With this equation as a basis we can derive

regularity only in respect to temperature, which, as has already been

noted by the authors in a previous article [3], cannot exhaustively

characterize the process in the case of variable thermophysical prop-

erties.

An attempt to generalize the theory of heat regularity for the

case of variable coefficients of heat conductivity and specific heat

has not been made .

Experiments based on temperature regularity, as in the case of

heat exchange without heat sources, show that rate mv is a value var-

iable in time and unable to be taken as a basis for determining the

value of heat emission.

Proceeding from the authors' methods of linearizing a nor-linear

differential heat conductivity equation by introducing a new function

(15 di in place of the temperature, and the argument ad: in

place of the time, we may propose a generalization of the theory of

regular heat regime for that more complex case, too.

In a previous article the authors showed that, when function *
and argument t are introduced, the heat conductivity equation becomes

linear, transforming into the following:

FTD-TT-62-1200/i+2+4
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where q v is the internal source of heat. We can show that Eq. (i)

possesses the property of regularity if the change in function 0

follows a change in intensity of heat source qv.

In other words, if this equality holds:

qv = PV' (2)

then Eq. (i) is regular.

The coefficient of proportionality 0 is only a function of the

coordinates and cannot include within itself the thermophysical con-

stants which enter function 0. A similar connection holds also for

temperature, but only in case the thermophysical properties are invar-

iable. But in case of variable thermophysical properties the coeffi-

cient of proportionality will no longer be a constant but will depend

on the temperature.

In this case a change in the temperature will not follow a change

in heat source intensity according to law (2).

We thus see that the linearization of the heat conductivity

equation which we have carried out has enabled us to realize relation

(2) also for the case of variable thermophysical properties.

Let us divide Eq. (I) by 0 V,

We obtain

Here an equation with average values has been examined.

Then integrating Eq. (3) we have
qV

ln~v =- mot + f Vdt + const. (4)

VV

If the condition (4 - 2) is fulfilled, then
qv

f F T -- Pt,
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and therefore Eq. (4) takes on the form:

ln"V - m¢ + pt + const. (5)

Letting

N- S m', (6)

we obtain

ln - m't + const. (7)

From Eq. (7) it is seen that to determine m' we use the usual procedure

-t M !Il) - In II (B)

Here again the rate with respect to time T and the rate with

respect to argument t are connected just as the rates without heat

sources (3).

The analysis which we have carried out, in our opinion, differs

advantageously from the work of other authors in that it enables us to

present very clearly the role of the heat source in the general thermal

process.

This is easily demonstrable on the basis of the two expressions

(6) and (7).

Actually, if P - 0 the regular heat regime without a beat source

holds true. If P = m, then that corresponds to a steady regime. There

is no regularity and the temperature remains invariable, since the heat

source completely covers the heat losses.

Intermediate cases where 0 < P < m correspond to different regimes

of regular cooling.

During the transition to P > m is accomplished the transition

to a regular regime of heating the body.

We thus see that in respect to rates we use the principle of
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superposition in full measure. This is entirely understandable, since

the mechanism for transmitting heat within the body is the same both

fbr the case with a heat source and the case without one.

We should particularly examine the case where m = 0. This corre-

sponds to the state of the body in ideal insulation, i.e., when %w - 0.

In this case a regularity will prevail, but one of a special sort.

When P > 0 heating will proceed, but when P < 0 there will be

cooling of the body. The rate of heating or cooling will be determined

only by the intensity of the source (or of the outflow) and by the

thermophysical properties of the body.

Conclusions

i. By introducing the integral function PI.\ di and the integral
T 0

argument Z-Sad. we obtain a linearized equation of heat conductivity
0

with sources of heat.

2. We have demonstrated the property of regularity in the derived

equation and derived an expression for the rate of function 0 in

respect to argument e when an internal source of heat is active.

3. The different cases or correlation of heat source and heat

losses through the surface of the surface of the body have been

clearly analyzed.
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GENERALIZATION OF G.M. KONDRAT'EV'S THEOREM

FOR THE CASE OF VARIABLE COEFFICIENTS OF HEAT

CONDUCTIVITY AND SPECIFIC HEAT AND THE USE OF

THIS GENERALIZED THEOREM TO DETERMINE THERMO-

PHYSICAL PROPERTIES OF MATERIALS

Prof. L. I. Kudryachev, Doctor of Technical
Sciences and L. I. Zhemkov, Graduate Student

The theorem of G. M. Kondrat'ev occupies a central position in

the theory of regular temperature regime. This theory formulates the

basic properties of rate of temperature change of a body in time while

assuming the stability of its thermophysical properties, namely:

i. The rate of regular cooling of a homogeneous and isotropic

body mv with finite value of coefficient of heat emission %w is

proportional to the surface of the body and inversely proportional to

the specific heat of the body.

The coefficient of proportionality is the product of %w by the

criterion #, monotonically decreasing as aw increases and appearing
Lo • w

as a function of Biot's criterion or of the numbers - ;
L and of the shape of the body.

2. The ].idt~ng xalue of rate mV = mvIw and the temperature

conductivity a of the material are proportional: a = k-mv , the

coefficient of proportionality k being a purely geometrical value,

depending on the size and shape of the body [i].

G. M. Kondrat'ev's theorem opens the way for creating methods
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Q deterMlning the coefficients of heat emission and of the thermo-

physical properties.

This theorem, however, has been proven only for the case X = const

and Cp = const. No attempts have been made to generalize Kondrat'ev's

theorem for the case of variable thermophysical properties.

The authors have shown in previous works that the introduction

of the new thermodyramic potential 0. X di and of the new argument

dt linearizes the non-linear Fourier differential equation
0

of heat conductivity [2]. Based on this linearization the theory of

heat regularity has been generalized for the case of variable thermo-

physical properties in the section dealing with the connection of

the rate of function 0 with the heat-emission conditions on the surface

of the body. The relation between rate mf and the intensity of heat

exchange and a similar relation of mv to %o, but already taking the

variability of X and Cp into consideration, were derived.

This proved in essence the first part of the Kondrat'ev theorem

for the case of variable thermophysical properties.

It is now necessary to generalize the second section of the

Kondrat'ev theorem concerning the limiting value of the rate when

the coefficient of heat emission on the surface of the body is infinite

in value.

Let to examine the physical side of the process which goes on

when aw -4 G . As is known, in this limiting case the rate of cooling

will be determined only by the rapidity of heat transmission in the

body, i.e., by the magnitude of the coefficient of temperature condu.
x

tity a = % .
p

The problem becomes a purely internal one. If X and Cp are

constant, then rate mva w will also have a finite value determined
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oMly by the magnitude of a and the geonetrical characteristics of

the body. In the case where X and Cp are also variable we should

also expect that the sense of the second section of Kondrat'ev's

theorem be maintained, since in this case, too, the rate will be

determined only by the thermophysical properties of the material,

which, notwithstanding the variability, are unable, nevertheless,

to take on infinite values.

Let us turn to the heat-exchange equation in its linearized form:

Or

(2)

Reasoning along the lines of Kondratlevts proof [i] we may notice

that the magnitude (v, numerically equal to the flow of heat through

the surface, cannot equal zero or infinity when c-+

When ) =0 the very process of heat exchange between the body

and the surrounding medium would be lacking, and this is incompatible

with the examined case where a- m . An infinite value for (W.

cannot occur either, for that would mean the presence of a step in

function 0 near the surface of the body, which is impossible by virtue

of the homogeneity of the body and the finite value of its thermophysi-

cal properties, which under no conditions take on infinite values,

notwithstanding their variability in the process.

Consequently, we come anew to the conclusion that rate m. has

a finite value when aw ) .

Further, for greater concreteness in exposition let us turn to

the example of heat exchange of an unbounded wall.
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Let us examine the solution for the linearized heat conductivity

equation for this case:

S-(-(

In the phase of the regular regime with respect to function 0

we have

CUS(2- x) (4)

From eq. (4) it is seen that the desired limiting rate is equal to
,,_.. . ( n 2. = Co,,,t.( )

The equality (5) is highly interesting. The fact is that the value

of (")'.-' , where the factor K is the so-called coefficient of

the shape of the body, first introduced by G. M. Kondrat'ev (i] when

proving the theorem of the limiting value of rate ow aw_, s •

Passing from the particular case of cooling a wall to the

general law for any bodies, we obtain

"' k= . (6)

Thus, in the case where aw-) w the value of the limiting rate

of change of function 0 with respect to argument t is equal to a

magnitude which is inverse to the coefficient of shape of the given

body, independent of the properties of the material itself. This

value is asymptotic for the rates of m0 = mO(aw) for bodies of the

given shape made of any material.

The expression (6) shows that the rate of m0 may change within

the limits zero (steady state) to K for a given body shape. On the

basis of the given property we may stipulate beforehand the expected

14/



value of the rate and in the best way choose the apparatus for record-

ing it, or, taking a body of another shape and size, we may pre-deter-

mine the value of the rate so as to attain the best results in the

experiments.

The generalization of the second section of Kondrat'ev's theorem,

which we have ca.Tried out for the case of variable thermophysical

properties has a very important practical signification. When deter-

mining the coefficient of temperature conductivity in accordance with

Kondrat'ev's method a = k.mvI a , the assumption is that X = const

and Cp = const. Since indeed this is incorrect, the value of a to

be deter'mined is some average value for the temperature range which is

taken to determine the rate mvljw_ .

Generalizing the Kondrat'ev theorem enables us to show the new,

practically important property of temperature change in time when

aW -+ s .

From the calculations in (6) we have
I 0, I

a - .(7)

Starting from the definition of function 0 and using the value

theorem, we can write

1, i( 8 )
0 I

where a = a(i). Expression (7) may be written otherwise

dO (9" -Td: (9)

and from it, substituting (8), we may obtain

.¢ ..d iI)
(P ;'.j. 1t 4 0)

Since the average and the true values of a(i) change equally, we may

write
di d,.ii)



Flrther, by virtue of defining - ad:

I ad (12)

But, according to definition, i = Cp t and di = C • dt; and therefore

we will finally get
I Ot a

-t (1 3 )

Formula (13) thus shows that in the case of variable thermophysi-

cal properties the limiting rate of temperature change in time alters

Xas the coefficient of temperature conductivity a = = .

Detection of this very important property became possible only

on the basis of the linearization and generalization of the Kondrat'ev

theorem for the case of variable thermophysical properties.

The practical value of expression (13) is obvious since it turns

out that law of change of mw, is the same as for the coefficient of

temperature conductivity.

The method of conducting the experiments remains the same as in

the theory of temperature regularity, i.e., a body of the material

to be investigated with a known coefficient of shape K is cooled under

conditions as close as possible to the condition of aw-+ 4 , and the

relation t = t(r) is recorded.

Now, however, on the basis of expression (13) the results of

such an experiment enable us to determine even the course of the change

in temperature conductivity a = a(t) and not the unique value of a,

as in the theory of temperature regularity.

The property of rate mv expressed in relation (13) substantially

raises the value of the methods of the regular regime in problems of

determining the thermophysical properties of materials.

The generalization of the Kondrat'ev theorem has made it possible
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QaQe more to become convinced that the assumption of x = const in

number of cases not only leads to considerable quantitative errors in

the calculations, but also hides important qualtitative aspects of

the processes.

It is easy to be convinced that the theorem proved by Kondrat'ev

for the case where of X = const and Cp = const is a particular case

of the generalized theorem.

Really, taking X = const and Cp - const in Formula (13), we obtain

the relationship first derived by 0. M. Kondrat'ev [i].

A considerable place is given in the theory of regular temperature

regime to tests of materials according to calorimeter method "d". In

this method, as is easy to see, the accuracy of the results depends to

a certain degree on fulfilling the condition aw -+ g. The question

arises whether one cannot propose a method of determining the coeffi-

cient of temperature conductivity in a material based on the theory

of heat regularity, but not necessarily demanding the creation of

special conditions where a-+ a .

The theory of regular temperature regime gives no answer to this

question.

It turns out that one can answer this question by basing himself

on the generalized theory of heat regularity.

The problem consists in finding a connection between the rate of

change of the excess temperature in time and the coefficient of tempera-

ture conductivity for any value of the coefficient of heat emission.

We will note the rate of function 0 with respect to argument

As is known, mO = const for each fixed value of heat emission by virtue

of the linearity of the equation
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Further, by analogy with (10) we may write

O i (di. .

By virtue of the definition: d = a'd, and also i = Cpt;

di = C pdt. Let us substitute these expressions in (i4) and we will

finally obtain

my=- l_ ta moa. (15)

Here m,, is a constant under the conditions of each experiment,

so we see that a relation of type (43) is preserved also for the cases

where ww 4 a .

Rate mf, appearing here as the coefficient of proportionality,

changes, as has already been indicated, within the limits zero to

depending on a., This change for the different materials is repre-

sented by a family of curves with a common beginning (m@ =
aw

In these two limiting states the internal thermophysical proper-

ties of the materials have no influence on the magnitude of rate Mi,

as was demonstrated above.

But in the range 0 < aw < m each body has its own rate M, deter-

mined by the thermophysical properties.

We should remember that from formulas (13) and (15) the coefficient

of temperature conductivity is derived as a function of the time, so

that for the same material, but for different aw (different %¢),

different a( ) will be obtained. The transition itself to the relation-

ship a = a(t) is accomplished by means of the curve t = t(T) derived

from the experiment and must give the same result for the different

experiments.

Such are the new qualitative aspects of the theorem of G. M.

Kondrat'ev uncovered on generalizing the theory of regular heat regime
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for the cae of variable thermophysical properties of the materials.

Conclusions

i. On the basis of the theory of heat regularity generalized

for the case of variable thermophysical properties it has been demon-

strated that in the case of variable coefficients of heat conductivity

and specific heat the rate of function 0 with respect to argument

when %-4 m has a finite value depending only on the shape of the

body.

2. On the basis of G. M. Kondrat'ev's generalized theory it has

been ascertained that when X and Cp are variable the rate of excess

temperature changes in time as the temperature conductivity of the

calorimeter material a( ).

3. The Kondrat'ev theory has been generalized not only for the

case of %-w but also for the case of any value of the coefficient

of heat emission.

Kondrat'ev's theorem, generalized for the case of variable

coefficients of heat conductivity and specific heat, and also for the

case of random aw, enables us more effectively than with the theory

of temperature regularity to study the thermophysical properties of

material, in particular, to determine the coefficient of temperature

conductivity a(t).
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