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ABSTRACT

The requirements for hypersonic test facilities are evaluated on the
basis of chemical kinetic phenomena. Flight conditions are divided into
three broad chemical kinetic regimes, CHEMICAL EFFECTS NEGLI-
GIBLE, NON-EQUILIBRIUM CHEMISTRY, and CHEMISTRY IN EQUI-
LIBRIUM. On the basis of this division, it is recommended that a wide
class of hypersonic testing, particularly that relating to low density
phenomena, be accomplished without full simulation of flight conditions.
Approaches to the simulation of flight in the non-equilibrium regime are
suggested, and a brief review of the equilibrium regime indicates that
test capability may be limited more from economic rather than technical
considerations.
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1.0 INTRODUCTION

The adequacy of hypersonic test facilities is evaluated on the basis
of chemical kinetic phenomena. This study is particularly important if
attention is focused on complex manned flight vehicles. Such a goal
implies a requirement for extensive research and development in ground
test facilities, such as shock tunnels, aeroballistic ranges, perfect gas
hypersonic tunnels, and arc- and magnetogasdynamic-driven hypervelocity
facilities. A program which exploits the capabilities of each type of
facility must be based upon a clear definition of the magnitude of the dom-
inant aerodynamic phenomena. One such phenomenon, considered here
from the viewpoint of facility requirements, is the chemical kinetics of
air produced by the high temperatures aft of hypersonic shock waves.

On the basis of chemical kinetic phenomena, flight conditions are
divided inio three areas of importance as follows:

a. CHEMICAL EFFECTS NEGLIGIBLE - Chemical effects may
be defined as being negligible under two separate conditions--
either the flight velocity and air temperatures about a vehicle
are not high enough to produce dissociation or the air density
is low to the point that the flow is essentially frozen at the
atmospheric composition, i. e., dissociative relaxation lengths
are large compared to the size of the vehicle.

b. NON-EQUILIBRIUM CHEMISTRY - In this regime, chemical
reactions are calorically important, although the air density
is not high enough to produce equilibrium chemistry.

c. CHEMISTRY IN EQUILIBRIUM - At lower altitudes the
chemistry is essentially in equilibrium in regions of com-
pressive flow, i. e., in the stagnation region of a blunt-nose
body and on the windward side of a body at an angle of attack.
Even in this case, portions of the flow may be frozen or in
non-equilibrium in the reverse rate (recombination) direction,
such as occurs in regions of expansive flow downstream of a
blunt nose (Ref. 12). A further division between this case
and the case where equilibrium exists throughout the flow
field is not attempted.

In all cases, the divisions depend upon the vehicle configuration and
orientation. A few characteristic cases will serve to demonstrate the
differences.

Manuscript received January 1963.
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2.0 CRITERIA FOR CHEMICAL EFFECTS NEGLIGIBLE

A dividing line is established between the regimes of CHEMICAL
EFFECTS NEGLIGIBLE and NON-EQUILIBRIUM CHEMISTRY based
upon the criterion that no more than 10 percent of the oxygen is disso-
ciated over the flow region of interest. Two different flow regions of
interest representing two characteristic flight configurations are con-
sidered (Fig. 1). In the first case, the flow is that in the nose region
of an axisymmetric body with a nose radius of one foot, and in the second
case, the flow behind a 45-deg planar shock is considered as representa-
tive of the flow on the windward side of a winged body at an angle of attack.

By considering only the oxygen dissociation reaction in establishing
when the chemistry is calorically important, it is implied that all other
reactions, notably the dissociation of N2, are energetically of less or at
most of equal importance. Inspection of particular solutions for normal
shocks (Refs. 5 and 9) and for the blunt-nose region (Ref. 6) in air indi-
cates that when oxygen is 10 percent dissociated the atomic nitrogen is
always less than 10 percent of its equilibrium value and, at least for
velocities less than 20, 000 ft/sec, the nitrogen concentration is always
less than the oxygen concentration. The caloric or gasdynamic effect of
the other reactions is included in the already somewhat arbitrary defini-
tion of the criteria.

2,1 FLOW IN THE NOSE REGION OF A BLUNT BODY

Behind the bow shock, it is assumed that dissociation is zero while
the translational and rotational energy of the air are equilibrated.
Relaxation of the vibrational energy is roughly accounted for by assuming
that vibration is excited to one-half its classical maximum, i. e., vibra-
tion of the diatomic species adds one classical degree of freedom to the
internal energy of the molecule. This is similar to the simplification
made by Lighthill (Ref. 1) for a two-component dissociating gas. Each
molecular species, then, behaves calorically like a Lighthill gas, although
the reason for the assumption differs from that of Lighthill. In this
report the simplification is introduced to account for vibrational relaxa-
tion, whereas Lighthill employed it to simplify the analyses of both equi-
librium and non-equilibrium flow on the basis that, where the errors in
vibrational energy are largest, the errors in the total energy are small
because of the overpowering effect of dissociation. It should be empha-
sized that the vibrational relaxation being considered now applies in a
gross way only to gasdynamics. Its effect on dissociation rates is dis-
cussed separately in section 2. 3.
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With the above assumptions, the conditions behind the shock may be
calculated for a thermally and calorically perfect gas. The enthalpy of
the gas, summing over all i'th species,

h= Zx [fc,,l dT + hoy] (1)

becomes, simply,
h =4RT (2)

when minor species such as argon, water vapor, etc., and the enthalpy
at T = 0, hgy, are neglected.

The gas constant, R, is based upon an air model with mole fractions
of 0.21 of Og and 0. 79 of N2, giving a molecular weight of 28. 85.

Assuming strong shock conditions, the density ratio across the bow
shock is (Ref. 2)

P . z+l
P y +1 (3)

where the ratio of specific heats based upon assumed caloric gas prop-
erties is
o4

giving

p’ _ 7

[N
The following post-shock conditions on the stagnation streamline are
then established:

Velocity: v, - V,\/? V in ft/sec (4)
Enthalpy: h, = h, + 0.4898 V, h in ft'/sec’ \ (5)
Pressure: P, - p, + 0.8572 p V p in slugs/ft’ (6)
Temperature: T, - 8.08 x 10™° h, p in Ib/fe (7
o |

The characteristic dimension for the flow in the nose region of a
blunt axisymmetric body is taken to be the shock stand-off distance.
From Ref. 3 the approximate constant density solution for the shock
stand-off distance, 4, is

R 1a VI ©
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where € = py/pg and Rg is the radius of curvature of the shock at the
axis. In terms of the nose radius of the body, Rp,

ww (w) (®

and for € = 1/17

%—b = 0.0961 (10)

The criterion for frozen chemistry in blunt-nose flow is that no
more than 10 percent of O2 is dissociated over a length approximately
equal to the shock stand-off distance. Employing normal shock solutions,
the flow in the neighborhood of the stagnation point where equilibrium
will always be attained if viscous effects are neglected is not considered
in detail. This is a reasonable approach since viscous and heat transfer
effects are quite pronounced at the conditions where chemistry is frozen
and the assumption of an inviscid stagnation point is no longer valid
(Ref. 4).

2,2 CHEMICAL RATE EQUATIONS

The problem is simplified by considering the oxygen dissociation
reaction as an indicator for all reactions occurring behind the bow shock.
From Ref. 5, it is seen that the depletion of O2 is dominated by the
reaction

k
O,oM:;::'IO+O+M (11)
and, for the early times in the reaction which are of interest here, the
rate of depletion is nearly constant. Therefore, only the initial reaction
rate behind the shock needs to be calculated; this required consideration
only of O2 and N2 as the collision partner, M.

With parenthesized quantities indicating concentrations in the units
of moles per cm3, the depletion rate of O2 via the dissociative reaction is

209) - —(0,) [k, (0,) + kiy, (N,)] (12)

The forward reaction rate coefficients kfg, and kfjy, for collision

partners O2 and N2, respectively, are calculated in two ways: as recom-
mended by Wray (Ref. 5) based upon the measurement of Camac and
Vaughan (Ref. 7) and as employed by Hall (Ref. 6) based upon the meas-
urements of Byron (Ref. 8). These rates, in cm3/mole-sec, are shown
on the following page.
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ko, Kin,
. 59,380
Wray 3.2 x 10077 T 2y (13)
9 “fo,
) -~ 59,380
Hall 36 x 10075 T 1k, (14)

The criteria for frozen chemistry establishes a depletion rate in
terms of moles per original mole of air which produces a reduction of
O2 of 0.021 mole/original mole over a distance of 0.0961 ft. From the
rate equation, assuming p9, V3, and the chemical reaction rates con-
stant over this distance, the density at altitude in grams/cm3 as a func-
tion of velocity in ft/sec which defines the regime CHEMICAL EFFECTS
NEGLIGIBLE is, for each of the reaction rate coefficients,

59,380
Wray Py = 496 x 107V, Te 7 (15)

-2 VT A . é?"nr_-Q (16)

Hall P - 358 x 10

These equations are plotted in Fig. 2, where density altitude cor-
responds to the 1959 ARDC Model Atmosphere, and are seen to give
essentially the same result. Equation (13) is taken to be representative
of both Eqs. (13) and (14) for further comparisons which consider the
effects of vibrational lag.

2.3 VIBRATION-DISSOCIATION COUPLING

While a previous assumption (Eq. (2)) accounts in a gross way for
the effect of vibrational relaxation on the gasdynamic equations, the
detailed effect of vibration lag on dissociation rates has yet to be con-
sidered. The reaction rate coefficients (Eqs. (13) and (14)) are both
based upon shock tube data for which vibration and dissociation are
uncoupled, i. e., vibrational excitation equilibrates before any appreci-
able dissociation. The data of Byron were obtained at temperatures in
the range from 2, 800 to 5, 000°K, whereas those reported by Camac and
Vaughan cover the range from 3, 400 to 7, 500°K. Data obtained by Camac
and Vaughan at temperatures up to 12, 000°K were not reported in Ref. 7
for the stated reason that those data could not be analyzed because of the
coupling of vibration and dissociation. The reported data are limited
below 8, 000°K, the temperature at which vibration and dissociation rates
become comparable. For temperatures where vibration-dissociation
coupling is expected to be important, a number of studies (Refs. 5, 6, 7,
and 9) have employed the correction factor to the dissociation rate
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coefficient developed by Hammerling, Teare, and Kivel (Ref. 10) which
accounts for non-equilibrium vibration. As given by Camac (Ref. 7)
this correction factor immediately behind a translation-rotation shock
when all molecules are in the ground state is, for oxygen,

ke 1

k. 40(1 - «2228/T) (17)
equil

where kfequn is the dissociation rate coefficient for vibration in equilib-
rium.

Equation (17) is plotted in Fig. 3 in which, for convenience, the
temperature has been related to velocity according to the approximate
Egs. (5) and (7). Also shown are three calculated points of Wray (Ref. 5)
which include the coupling correction of Hammerling et al. ; the initial
rates of Wray were non-dimensionalized by the vibrational equilibrium
rates of Eq. (13). The faired curve indicates that for velocities above
about 20, 000 ft/sec the initial O2-dissociation rates follow Eq. (17).
The result of using this faired curve to correct Eq. (15) for vibration-
dissociation coupling is shown in Fig. 4. Also shown in this figure is a
curve derived from the data of Schexnayder and Evans (Ref. 11) based
on their empirical dissociation rate coefficient for Og - Og collisions:

_ 37,400

kf = 7,74 x 10%e T (18)

Assuming, as in Eq. (13), that kaz =2/9 kf02' the criterion for frozen
chemistry based on Eq. (18) is

37,300
Py = 205 x 107"V, e T (19)

No correction for vibration lag has been applied in this case since the
rate coefficient has been established for temperatures up to 10, 000°K,
where, if measurable effects exist, vibration-dissociation coupling is
included in the data. On the basis of arguments relating to the resolu-
tion time of the equipment and the relative magnitudes of vibration and
dissociation relaxation times, Schexnayder disclaims any measurable
effects of vibration lag on both his own data and those of Ref. 7. The
conflicting conclusions of Refs. 7 and 11 are not discussed further in
this report since for the present purposes the results are essentially

the same. That is, the criterion for frozen chemistry employing the
empirical rate equation of Ref. 11 is not significantly different from that
obtained by applying the vibration-dissociating coupling correction to the
rate equation of Ref. 7. The latter method is accepted here as giving
the more reasonable specification for the frozen chemistry criterion. At
the higher velocities, somewhat faster reaction rates would be obtained
if the vibration were considered unexcited rather than excited to one-half
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its classical value. On the other hand, the estimated reaction rates
would be somewhat slower if a vibration-rotation coupling were applied
to the data of Ref. 11,

Treanor and Marrone (Ref. 19) have extended the treatment of
vibration-dissociation coupling to include the reverse effect of dissocia-
tion on the rate of vibrational excitation. As dissociation proceeds, the
rate of vibrational excitation is depressed because of a drain on the
vibrational energy. Further consideration of this mechanism is not
required here, since it has no effect on the initial vibration and dissocia-
tion rates immediately behind an assumed translation-rotation shock.

The principal source of possible errors in the calculations appears
to be the extrapolation of reaction rate data above velocities of about
15, 000 ft/sec, with the magnitude at the vibration-dissociation coupling
being but one questionable aspect of the extrapolation. Other factors,
such as the neglect of electronic excitation and ionization coupling with
the che.. “~try, appear to be important only above about 33, 000 ft/sec
(Ref. ¢). Tinally, known and calculable errors in the estimated criterion
for frows.:. chemistry caused by the simplifications introduced into the
gasdynamic equations are on the order of 10, 000 ft of altitude, which
could change the overall picture very little.

2,4 OTHER CASES - EQUILIBRIUM ASSUMED AND OBLIQUE SHOCK FLOW

For comparison, other conditions for which chemical effects are
small may be calculated. First, the condition for which 10 percent of
the O2 in the air is dissociated behind a normal shock, assuming equilib-
rium flow, may be readily obtained from a Mollier diagram for high tem-
perature air (from Ref. 13, for example) using post-shock conditions for
which Z = p/RT = 1.021. This is shown in Fig. 5 which demonstrates
the very strong effect of non-equilibrium chemistry at the higher altitudes.
Secondly, as representative of a winged hypersonic vehicle, the same
criterion of 10 percent of O2 dissociated is applied to the flow behind a
45-deg planar shock. In this case the length provided for dissociation to
occur is taken to be 10 ft. Retaining the assumption of a strong shock
which gives p3/p1 = 7 and the caloric properties of Eq. (2), the reaction
rate coefficient as recommended by Wray gives as the criteria for
CHEMICAL EFFECTS NEGLIGIBLE:

59,380

V,Te T (20)

After applying a vibration-dissociation coupling correction similar to
that in Fig. 3, the result is shown in Fig. 5.

Py = 2,386 x 10
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2.5 VARIATIONS ATTRIBUTABLE TO SCALE AND ORIENTATION

Since the density may be scaled inversely as the characteristic length,
the line for blunt-nose flow in Fig. 5 is approximately 40, 000 ft higher
for a 10-ft nose radius and 40, 000 ft lower for a 0. 1-ft nose radius. A
similar variation of the line for oblique shock flows results from increas-
ing or decreasing the shock angle by 15 deg, i. e., 40, 000 ft higher for a
60-deg shock and 40, 000 ft lower for a 30-deg shock. Approximate angles
of attack which correspond to the 60-, 45~-, and 30-deg shock angles are
46, 37, and 29 deg, respectively.

3.0 CRITERIA FOR CHEMICAL EQUILIBRIUM

The definition of the region in which chemistry is in equilibrium is
considerably more dependent upon the flight vehicle configuration and
orientation. Where regions of expansive flow downstream of a blunt nose
or leading edge are of importance, non-equilibrium in recombination
must be considered even though regions of compressive flow are in equilib-
rium. While such expansive flows are of considerable interest, the n.ajor
problem areas in the development of complex flight hardware requires
more accurate simulation of the regions of compressive flows where heat
transfer rates and pressures are severe. Thus, the region of equilibrium
chemistry is based upon the same blunt-nose flow and the flow behind a
strong oblique shock as used to define the region CHEMICAL EFFECTS
NEGLIGIBLE.

The approach to equilibrium behind a shock is governed by net reac-
tion rates which are much slower than those immediately downstream of
the shock. For example, the distance for atomic nitrogen to reach
90 percent of its equilibrium value may be as much as three orders of
magnitude greater than the distance for 10 percent of the Og to dissociate.
Employing the criteria for equilibrium that atomic nitrogen reaches
90 percent of its equilibrium value over one-tenth the characteristic
length, i. e., & = 0.096 ft for blunt nose and L = 10 ft for a strong 45-deg
planar shock flow, the equilibrium flight conditions are as shown in Fig. 6.
The shaded division is enclosed by intersecting curves for blunt-nose and
oblique shock flows which are established from the normal shock solutions
of Ref. 9. These solutions provide a ratio of the equilibrium length to the
frozen flow length as defined by the criteria and include at the same time
appreciable density and velocity changes which could be neglected in the
simplified gasdynamic equations for essentially frozen flow.
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4.0 DISCUSSION

The purpose of this study is to establish the effect of chemical
kinetic phenomena on requirements for ground test facilities. The most
obvious conclusion that may be drawn from the chemical kinetic regimes
shown in Fig. 6 relates to the area where chemical effects are negligibly
small. Here, aerodynamic forces, moments, and heat transfer coef-
ficients may be accurately established employing simulation in terms of
Mach number and Reynolds number as well as the appropriate combina-
tion of these two in the low density regimes. At the higher altitudes, the
energy density required for chemical reactions need not be reproduced
since time is not available for any appreciable reaction to occur.

4.1 LOW DENSITY FROZEN FLOW

For the aerodynamic simulation of flight above an altitude of
200, 000 ft, viscous and molecular effects are pronounced. The increas-
ing importance of the viscous and molecular properties of the flow is
demonstrated in Fig. 7 where the rarefied gas regimes as defined by
Probstein (Ref. 14) are compared to the chemical kinetic regimes for a
body with a nose radius of one foot. Proceeding downward from altitudes
above 400, 000 ft where free-molecule flow exists, the flow field develops
a shock structure in which the viscous layer is merged with the shock
layer. A viscous layer, distinguishable from the shock layer, eventually
thins to the point where boundary-layer theory is applicable below about
250, 000 ft.

The aerodynamics of flight above 300, 000 ft are difficult to simulate
in a low density hypersonic wind tunnel because of such problems as
nozzle boundary-layer growth. The degree of difficulty is further com-
pounded if one requires that hypervelocity flight conditions be duplicated
at these altitudes. The futility of such an attempt is demonstrated in
Fig. 8 which compares the degree of dissociation in the atmosphere
based upon the 1956 ARDC Model Atmosphere* and U.S.S. R. probe
measurements to the frozen degree of dissociation in a wind tunnel test
section. The frozen degree of dissociation for the wind tunnel is repre-
sentative of the results calculated for a nozzle expansion process from
reservoir conditions which would produce the correct ambient atmos-
phere if the flow expanded isentropically (chemistry in equilibrium). At

*As stated in the text of the 1959 ARDC Model Atmosphere (Ref. 17)
the earlier 1956 edition probably gives a better representation of com-
position in the altitude range of interest here.
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an altitude of 300, 000 ft, the degree of dissociation resulting from the
non-equilibrium in the wind tunnel nozzle is at least three times that
expected in the atmosphere. Although the correct velocity is not re-
quired in a low density tunnel, if need be, the wind tunnel nozzle expan-
sion may be tailored to simulate the desired free-stream degree of
dissociation which will then persist throughout the flow field because of
the long chemical relaxation times behind the shock.

4.2 NON-EQUILIBRIUM REGIME

The simulation of flight conditions is a considerably more complex
problem in the region where chemical reactions are calorically impor-
tant although not in equilibrium. Scaling laws are applicable to this
region as pointed out by Camm, et al. (Ref. 15), for the flow behind a
normal shock and as extended by Gibson (Ref. 4) for more generalized
flows. The scaling laws are valid where the predominant chemical
reactions occur through binary collisions in which case the reaction
time is inversely proportional to the gas density. Flow fields are simi-
lar, then, if the ratio of the reaction time to particle transit time
(proportional to L./Vy) is the same, i. e., for V1/p1L constant. In the
simplest case, the reaction time is made to depend upon p; alone by
requiring that the temperature be constant. This is satisfied approxi-
mately if V is constant. Thus, the two conditions V; = constant and
plL = constant define the scaling law and allow model size to be varied.
Although this binary collision scaling law is a significant simplification,
it provides little immediate help in the correlation of wind tunnel data
with the free-flight case since the problem of attaining the desired free-
stream velocity without excessive dissociation frozen-in still remains
to be solved. Some immediate application of the simplified binary scaling
law may be expected in shock tunnels and aeroballistic ranges.

Definite possibilities exist for extending our large developmental
wind tunnel test capabilities into the non-equilibrium chemistry regime.
One promising technique under investigation is the magnetogasdynamic
acceleration of air to velocities in excess of 20, 000 ft/sec with special
attention being paid to minimizing the degree of free-stream dissocia-
tion. Another and simpler test technique requiring further study is the
use of high pressure arc-heated wind tunnels in conjunction with more
complex similarity laws which, for example, remove the restriction of
V4 = constant in the simple binary scaling law.

4.3 EQUILIBRIUM REGIME

In the low altitude flight regime where chemistry is in equilibrium,
test requirements relating to ballistic weapons and instrument package

10
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re-entry are rather crude in comparison to the test requirements of the
more complex manned vehicles which operate in the non-equilibrium
chemistry regime and which are excluded from the lower altitudes be-
cause of dynamic force, acceleration, and heat transfer limits. The
nature of the tests plus the lessened importance of the degree of dis-
sociation in the flow upstream of the shock relaxes the requirement for
the high reservoir pressure needed to duplicate Mach numbers and to
suppress the free-stream dissociation. This appreciably reduces the
technical obstacle to providing a useful ground test capability in the
region where chemistry is in equilibrium. Here, large-scale develop-
mental testing may be precluded more from economic rather than
technical considerations.
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