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AN ABSTRACT

ON THE DESIGN OF LINEAR PROCESS

ADAPTIVE CONTROL SYSTEMS

by

Harry Nathan Yagoda

This dissertation treats the problem of control-

ling a stable, slowly time varying, linear process. A

solution is proposed that is simple, practical and applicable

to any finite order process. Use is made of a continuously

adjusted tandem compensator; a comparison of the weighted

histories of the input and output signals is used to control

this adjustment. System design is based upon the use of a

variable transfer function characterization for both the

compensator and the process. In effect, a compensator is

designed that attempts to cancel the variable poles of the

process with variable zeros, the variable zeros of the

process with variable poles and the variable process gain

with its reciprocal.



The design technique developed is applied to

several problems. The processes involved range from a

variable gain amplifier through a plant that contains a

variable gain and two pair of variable complex poles. The

processes are grouped in accordance with the number of vari-

able parameters in the process characterizing function.

Several adaptive processes are simulated on a

computer and the resulting operation of the adaptive circuitry

is presented for comparison with the theoretically predicted

operation. Among the processes investigated are:

1. a variable gain amplifier

2. a process with two variable real poles

3. a, process with a variable gain and two

pair of variable complex poles.

The adaptive circuitry is modified for the process with two

variable real poles and the resulting operation of that adap-

tive process is presented. The agreement between the theoret-

ically predicted results and the operation of the simulated

systems is good.,

The amenability to analysis of the technique pre-

sented, allows for the investigation of the effect of noise

on the adaptive process. In addition, stability is investi-

gated. Neither of these appears to offer a major problem in

the operation of the prQposed control systems.
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CHAPTER 1

Introduction

Considerable attention has been devoted during the

past five years to the design of adaptive control systems.

This work is being pursued in two directions. The first of

these considers the problem of maintaining a specified per-

formance in the presence of input parameter variations. Sys-

tems designed using this viewpoint are termed signal adaptive

control systems. The second problem considers maintaining a

specified performance in the presence of process parameter

variations. Systems designed using this viewpoint are termed

process adaptive control systems. The work in this disserta-

tion deals with the second of these problems under the re-

striction that the process is a stable, slowly time varying,

linear process. The technique developed is intended for use

in those problems which, due to excessively large process

variation, cannot be handled adequately using feedback theory.

A process in the class considered is described by

the linear differential equation that relates its output c(t)

to its input r(t). The coefficients of this equation are time

dependent; the constraint of "slowly time varying", however,

is taken to mean that the percentage variation in any coeffi-

cient during a time interval of length T is negligibly small

(T is assumed much greater than the largest process response

time). Thus over an interval of length T the process is han-

dled as if it were fixed.



Most of the process adaptive control system de-

sign techniques that exist apply only to processes in the

class considered. They are divided according to whether or

not they contain a separable control computer and subdivided

according to the intended function of the adaptive control

circuitry (i.e., to maintain a fixed transfer characteristic

between input and output or to minimize some given error

criterion). There are many examples of each of these

approaches. '3 ,4 Most suffer from one of two problems:

either they are highly impractical or they are highly specif-

ic and not applicable in general.

The approach used in this dissertation is to con-

struct adaptive circuitry that operates to maintain a fixed

transfer characteristic; the intent is to develop a method

for adaptive process design that is simple, general and gives

a practical solution. The resulting technique satisfies these

requirements and yields a control system, for any order

IE. Mishkin and L. Braun, "Adaptive Control Systems",
McGraw Hill, N.Y., (1961).

2J. A. Aseltine, A. R. Manicini, and C. W. Sarture, "A Survey

of Adaptive Control Systems", IRE Trans. on A.C., pp. 102-108t

Dec. 1958.
3p. C. Gregory (ed.), Proc. of the Self-Adaptive Flight Con-
trol Systems Symposium, WADC Tech Rept. 59-49, ASTIA
Document AD209389, Wright-Patterson Air Force Base, Ohio,
March 1959.

4 P. R. Stromer, Adaptive or Self-Optimizing Control Systems -

A Bibliography, IRE Trans. on Automatic Control, vol. AC.-6,

pp. 65-68, May 1959.
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process, that tends to maintain a fixed transfer characteris-

tic via parameter tracking. Figure 1-1 shows a block diagram

of the general system to be considered. The variable linear

tandem compensator is used to compensate the forward trans-

mission path for changes in the process. Adjustment of the

compensator is continuous and based upon a comparison of the

weighted histories of the input and output signals. The ad-

justment signals tend to drive any differences toward zero.

The compensator is designed expressly for the proc-

ess. It is equipped with one variable zero for each of the

variable poles of the process transfer characteristic, one

variable pole for each of the variable zeros of the process

transfer characteristic, and a variable gain if required.

Thus each of the variable parameters of the compensator is

matched to one of the variable parameters of the process.

The function of the adjusting circuitry is then to cause

parameter tracking. Although other process adaptive tech-

niques exist that employ some sort of tandem compensation

and parameter tracking, most of these are limited, either
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theoretically or practically, to one or two param-

eters. 5'6 '7 '8 '9 The design technique presented here is ap-

plied to several important multi-variable parameter processes

and the results of some computer simulations are presented.

The problem of designing a process-adaptive control

system is broken into three parts. The first involves choos-

ing an appropriate characterization for the process. A trans-

fer function with variable coefficients is selected. Next,

a tandem compensator is designed. This is also done using a

variable coefficient transfer function characterization.

Then a criterion for adjusting the compensator is selected.

The first portion of the paper is devoted to these efforts.

The technique that is developed is then applied to several

particular problems, including one that appears impossible

using feedback theory.

5 R. M. Corbin and E. Mishkin, On the Measurement Problem in
Adaptive Systems Utilizing Analog Computer Techniques,
Research Report 12-699-58, PIB 627, Poly-Inst. of Brooklyn,
MRI, 1958.

R. Staffin, "Executive-Controlled Adaptive Systems", doctoral

dissertation, Polytechnic Institute of Brooklyn, 1958.

7 M. Margolis and C. T. Leondes, "A Parameter Tracking Servo
for Adaptive Control Systems", IRE Trans. on Automatic Con-
trol, Vol. AC-4, No. 2, November 1959.

8 C. N. Weygandt and N. N. Puri, "Transfer Function Tracking

and Adaptive Control Systems", IRE Trans. on Automatic Con-
trol, Vol. AC-6, No. 2, May 1961.

9H. P. Whitaker, J. Yamron and A. Kezer, "Design of Model-
Reference Adaptive Control Systems for Aircraft", Report
R-164, MIT Instrumentation Laboratory, September 1958.



CHAPTER 2

The Process

One of the most important attributes of an adaptive

process control system design technique is the manner in

which the process is characterized. This directly affects

the form of the compensation, as well as the mathematical

difficulty involved in analyzing the model. It is for these

reasons that a process characterization using a transfer

function with variable coefficients is chosen. The error in.

volved in selecting such a characterization is discussed.

2.1 Differential Equations

The behavior of a process in the class being con-

sidered is completely characterized by a differential equa-

tion of the form:

n m

ai~) m~) £b(t M s c(t) (2-1)
iod dt

Using this characterization it is possible to specify a tan-

dem compensator with which to achieve an error-free control

system. This compensator is characterized by the differen-

tial equation

br(t) = ai(t ) = m(t) (2-2)

j=o i=O dt

6



Unfortunately the functions ai(t) and bj(t) are not all

known beforehand and thus this compensator cannot be con-

structed. No other compensator gives an error-free control

system. As a result, an approximate characterization is use-

ful providing it leads to a control system that is satisfac-

tory and simply constructed.

For a large class of control signals m(t) applied

to a process, the output c(t) is very closely approximated

over a time interval of length T preceding the time to by the

solution of
l

ni m

i~odt ao~ 0dt1-0 j-0

Thus it is possible to approximate the output of a variable

process during the T seconds preceding time t by the output0

of a fixed process during that interval, providing the param-

eters of the fixed process are properly chosen; the fixed

process parameters are taken equal to the variable process

parameters at the time instant t .

A variable process is thus characterized approxi-

mately by a family of fixed processes, one for each instant

of time. Since each of these fixed processes is character-

ized by a transfer function Ga(s), the variable process is

1Based on the restriction that the process is slowly varying.
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characterized by a family of transfer functions and is rep-

resented as a single transfer function with variable coeffi-

cients. This is defined to be the "process characterizing

function" and is denoted as G(s,t).

Use is made of the approach presented above in se-

lecting a tandem network with which to compensate the process.

The desired control system transfer function G(s) is divided

by G(s,t) and the resulting function, denoted by Gc(st), is

defined as the "compensator characterizing function". This

function then characterizes the network that is used for

compensation. At any instant the two characterizing func-

tions represent a pair of transfer functions; the product of

these transfer functions is the desired control system trans-

fer function. Process compensation is thus accomplished by

compensating each of the transfer functions in the family

characterizing the process by the corresponding transfer fuc-

tion in the family characterizing the compensator.

For physical systems there is a lack of complete

information concerning future variations in the process and

thus the process characterizing function is unknown before-

hand. A compensator is therefore used for which the compen-

sator characterizing function is experimentally generated on

the basis of measurements made on the compensated process.

As a result there are two errors present in this formulation

for the control system: one is due to the manner in which

the process and the compensator are characterized and the

0
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other is due to the need for experimental determination of

the compensator characterizing function. To discussing these

errors it is necessary to consider the impulse response of the

variable process. This is done next.

2.2 Impulse Response

The behavior of a process in the class considered

is completely characterized by an impulse characterizing func-

tion g(t ,t2 ) where t1 is the time the impulse is applied to

the process and t2 is the time elapsed since tI. The response.

of the process to an impulse applied at time ta is therefore

g(ta, t-ta). The behavior of a fixed process is also charac-

terized by an impulse characterizing function gf(t ,t2). The

response of this process to an impulse applied at time ta is

9f(ta, t-ta)j this function does not depend on ta and is written

an gf(t-ta).
For the processes being considered g(to, t-to) is

approximately equal to gfo(t-to), where

gfo(t-to) -i [0(s,t 0 )]; in fact g(ta, t-ta) is approximately

equal to gfo(t-ta) for any ta such that Ita-to 1< T. Thus the

response. of the process to any impulse that is applied during

a period of length T prior to the time to is approximately

gfo(t-ta). It is this approximation that is used in adjusting

the compensator; in effect, this corresponds to replacing the

variable impulse response function by a fixed impulse response

function during the interval between to-T and to.
The impulse response functions discussed above are

represented as surfaces in three dimensional space, as shown
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in figures 2-la, 2-1b, 2-2a and 2-2b. The response of the

fixed process to an impulse of amplitude m applied at time

to is mgfo(t-t0 ); the response of this process to an input

of m(t) is then given by:

Cf°(t) = J m(ta) gf°(t-ta) dta

- T

J m(ta) gfo(t-t ) dta

t
+ m(ta) gf°(t'ta) dta (2-4)

t o-T

since gfo(t-ta) equal zero for ta greater than t. The re-

sponse of the variable process to an impulse of amplitude m

applied at time ta is mg(ta, t-ta); the response of this

process to the input m(t) is given by:
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C(t) = 0 m(ta) g(ta l t-ta) dta
-00

t to-T
m(ta) g(ta, t-ta) dta

-00

t

(2-5)
to-T

since g(t , t-t) equal zero for t greater than t.

-a' t-a a

The output C(t) of the variable process and the

output Cfo(t) of the fixed process are now compared for a

period of time prior to t o  The difference between the two

is defined as the characterization error and equations 2-4

and 2-5 are used to evaluate this error.

2.3 Discussion of the Characterization Error

Consideration is now restricted to the time inter-

val between to-t + 5tr and to; tr is the largest of the re-

sponse time constants of the process characterizing function.

The characterization error is then defined to'be the differ-

ence between the output of the process and the output pre-

dicted by using a fixed process; this fixed process corres-

ponds to the process characterizing function evaluated at t

equal to. This error is denoted by e(t) and is given by:
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e(t) - c(t)

f t 0-T
- Cfo0(t) - J m(ta) g(ta, t-t) dta

0

St-T m(ta) gfo(t-ta) dta

it m~a) -ga' t-ta)'' gf°(t-ta),l' dt a

to-T

(2-6)

m(ta) is then divided into two parts; the first is that por-

tion of m(t a) that occurs before t a to - T and it is de-

noted as ml(ta). The second part is that portion of m(t)

that occurs after ta = to - T; it is denoted as m2 (ta).

Equation 2-6 is then rewritten as:

t -T

e(t)- m1(ta ) g(ta d t-ta) dta

-T Ml(ta) gfo(t-t 
a at

a

t M2(ta) [(taO t-ta)- gf6(t-ta)] 
dta

(2-6a)
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The first integral in equation 2-6a represents the output of

the variable process due to the energy storage caused by

m1 (ta). Since t occurs more than five time constants after

ml(ta) becomes identically equal to zero, this integral is

negligibly small when applied to physical processes that con-

tains noise. The second integral represents the output of

the fixed characterizing process due to the energy storage

caused by ml(ta). This integral is also negligibly small.

The third integral represents the error in the outputs

caused by m2 (ta); it is a result of the difference between

the impulse responses of the fixed and variable processes.

This contribution to the error is likewise negligibly small

since it relates directly to the definition of a slowly
2

varying process. The more slowly varying the process, the

smaller the error.

2.4 Conclusions

The process is characterized by a family or set

of transfer functions. This set is denoted in parametric

form, with time as the parametric variable ai.e., G(s, t).

For any given time the characterization gives a transfer

function that is usable in calculating the process output

during a time interval preceding that time. In addition, a

similar characterization is indicated for a tandem compensa-

tor. Using this characterization a tandem compensator is

investigated.

2This in effect is the defining criterion for a slowly vary-
ing process.



CHAPTER 3

The Compensator

Based on the characterization chosen for the proc-

ess a characterization for a tandem compensator is indicated.

This characterization is further developed and a general

method for constructing the compensator is presented. The

approach used is to build all compensators from five basic

compensating elements. It is assumed that the region over

which a given parameter varies is known; if this is not so,

an allowable region over which the parameter is to be com-

pensated is chosen.

3.1 General

For a desired control system transfer function of

G(s) and a process characterizing function of G(s,t), the

compensator characterizing function Gc(st) is given by:

Gc(St ) M I~s
C(9 t (3-1)

Since both G(3) and G(s,t) are functions of s, equation 3-1

is rewritten after factoring as:

(s+bl)*.(+b) (s 2 +C 1 s+dl)...(s +CmS+bM) asG c(e,t )  K Kc I(s+el)... (SI ep) (.. 2 +f 1 +gI )... ( s 2 +fq S+g )

(3-la)

16
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1
Any of the coefficients in equation 3-la may depend on time.

The problem of constructing a compensator is thus reduced to

a network synthesis problem. Prior to the investigation of

this problem, however, Gc(s't) is restricted.

Variations in the coefficient "a" are not amenable

to correction by the system presented; this is due to the

dependence on amplitude rather then phase information of the

compensator control circuitry. Variable terms of the form

eas are omitted from further consideration. As a result, it

is at most necessary to synthesize a compensator characteriz-

ing function that contains a variable gain, variable poles

and variable zeros. This is done by cascading a number of

individual compensator elements; each of these elements com-

pensates the process for Just one variable term. A general

compensator is shown in figure 3-1.

3,2 Variable Gain

There are many ways of constructing a compensator

element for the variable-gain term. The method presented

here consists of cascading a potentiometer with a constant

gain amplifier; the gain of the amplifier is made equal to

the maximum expected value of Kc . Compensator gains below

this value then correspond to settings of the potentiometer

lIt is assumed that the poles of G (s,t) remain in the left
half s-plane.



18

4.) 
a'1+

++
V. ) -, -



19

between zero and one. Adjustment of the gain compensating

element is then made by positioning the potentiometer; this

positioning is done by a small motor.

3.3 A Variable Real Zero

To compensate a process that contains a variable

real pole in its characterizing function, it is necessary to

synthesize a compensator characterizing function that contains

a variable real zero. This synthesis necessitates the use of

a compensator element that contains a variable real zero.

Such an element is constructed as follows: two fixed net-

works, each in series with a variable loss, are placed in

parallel as is shown in figure 3-2a. The fixed networks are

then chosen to be identical except for one zero; in each of

the networks this zero is chosen to correspond to one of the

extreme values in the position of the pole being compensated.

As a result the characterizing function of the compensator

element is identical to either of the fixed networks, except

for the variable zero. The position of this variable zero

is somewhere between the two zeros of the fixed network.

The characterizing function for a typical compensa-

tor element is given in equation 3-2 and a root locus plot

for it is shown in figure 3-3.

G 1(S't) s + [a+(b-a)K2 (t)] (3-2)
S+ d



P0

+7s l-K2 (t)

sb H+84d- K- 2 (t )

Figure 3-2a Compensator Element Cont. ning a Variable Real Zero

b-a K2(t)

_ 7

Figure 3-Pb Alternate Compensator for Variable Real Zero

-d -a

(K2:I) (K2:0)

G (s,t) : s+ a+(b-)K 2(t)

s+d

Figfure 3-3 Root Locus PlIof for a Vsr, able Zero
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From equation 3-2 it is noted that the position of the vari-

able zero is dependent upon a loss that varies between zero

and one. An alternate circuit configuration that gives this

characterizing function and requires only one motor that

positions one potentiometer is shown in figure 3-2b.

3.4 A Pair of Variable Complex Zeros

In constructing a compensator for a process that

contains a pair of variable complex poles in its characteriz-

ing function it is necessary to use a compensator element

that contains a pair of variable complex zeros in its char-

acterizing function. In the construction of such an element,

two approaches are considered: the first is based upon the

separate adjustment of the real component a and the imagi-

nary component 0 of the zeros; the second is based upon the

,separate adjustment of the natural frequency ah and the damp-

ing t of the zeros. In both cases two independent parameter

adjustments are required since two degrees of freedom are in-

volved. In addition, corresponding limits are required for

the maximum expected values of these parameters.

The construction of either of the above compensator

elements requires the use of several fixed networks in series

with variable losses. The circuits are interconnected as

shown in figures 3-4a and 3-5a. For the networks shown the

characterizing functions are respectively given by equations

3-3a and 3-3b.



22

K 3

2 (n"+e¢i) ( '

L s ) 2t 6,">

(91.-,) 2+P- +

2Bi -#i)b

s + )".K
Figure 3-4a Compensptor Element Conti..ngi a Pair of Variable

Complex Zeros

/ I
FIgure 3-.I.b Rloot; Lonu, Plot for Var/ale; Ze"ros

, ..." ...., -.. ._ .." .. _ , .+ , , ., , , <



23-

22

W2 I
P4K

+~~ a

+ +

Figure 3-5a Alte~rnate Compensntor Element for a Pair of Variable,
Complex Zeros

A'a

WA.

Figue 35b oot ocu fo theAltrnae Copenato



24

s -fa +(a -a )'K Mt) 2 + K 2

G2 (s)1 2 1 s 2[l+(2-1)4(t)] (3-3a)
(s-ee)2 + o

82 +2s[K (t)l[wcK6 (t)] + [wcK6 (t)] 2
G 2 (3-3b)

S + 2s~dwd wd

A plot showing the respective regions in which the

zeros are located is shown in figures 3-4b and 3-5b. The

positions of these zeros in the regions are determined by

the values of the two respective losses. A convenient method

of varying these loss values is thru the use of potentiome-

ters; in both cases these potentiometers are positioned by

two small motors.

3.5 Variable Poles

The compensation of a process that contains vari-

able zeros requires the use of compensator elements that con-

tains variable poles.1 The technique of linear combination

employed in constructing compensating elements that contains

variable zeros is not applicable to this problem. A modified

iFor subsequent reference the variable poles of the process
characterizing function are referred to as the variable poles
of the process, etc.
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approach is used: the construction of a compensator element

that contains a vnriable pole (pair of complex poles) is accom-

plished by placing a compensator element that contains a var-

iable zero (pair of complex zeros) in the feedback path of a

high gain amplifier. The region over which the zeros in the

feedback path vary is then the region over which the compen-

sator element poles vary; the position of the poles is the

same as the position of the zeros.

3.6 Conclusion

Any compensator characterizing function, that is

rational in s, is realizable using the technique presented

in this chapter; it is necessary however, that the poles of

this function remain in the left hand s-plane. For such a

compensator a tandem combination of some of the five basic

compensating elements is required. Each of these elements

contains a combination of fixed networks, fixed gains and

variable losses. It is proposed that these losses be ob-

tained by using potentiometers that are positioned by con-

trol motors. For such a system several potentiometers are

required, but only one control motor is required per degree

of freedom of the compensator. As a result, the compensator

is general, easy to design, simple to construct, and practi-

cal to adjust. The criterion used to adjust the compensator

is presented in the next chapter.



CHAPTER 4

Compensator Adjustment

Design of the compensator is accomplished on the

basis that all the fixed parameters of the compensator char-

acterizing function are known. These are determinable by

measurements made upon the process before control is at-

tempted. There remain then only the variable parameters:

some are known functions of time and some are unknown func-

tions of time. The known functions of time are fed to the

compensator from programmed generators; these offer little

difficulty. The unknown functions of time are generated by

the adaptive circuitry on the basis of measurements; these

constitute the major problem. As a result, consideration is

given only to those parameters which are unknown functions

of time. A measurement scheme is proposed for generating

the unknown parameter control functions and an effort is

made to construct a system that allows for analysis. A dis-

cussion of the errors involved is presented.

4.1 General

Adjustment of the variable parameters of the com-

pensator is based upon measurements made on the compensated

process. To do this involves the generating of several fre-

quency weighted signals by passing the input and output sig-

nals thru similar families of filters. The power in these

26
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signals are then time weighted and a comparison of the

energy in pairs of signals is used to generate error signals.

These error signals are then used to correct the errors that

exist in the compensated process. As a result of this effort,

approximations to the unknown parameter control functions are

generated. In general a more slowly varying process allows

for more accurately approximated control functions.

Selection of the filters and the time weighting

functions are important in determining the behavior of the

compensator. An effort is made in selecting the filters to

have each of the resulting signals particularly sensitive to

only one variable parameter. Failure to insure this intro-

duces coupling between correcting loops and thus makes pos-

sible multi-loop oscillations. Selection of the time weight-

ing function is made to achieve as great a measurement accu-

racy as possible with the process variations involved.

Choosing the time weighting function incorrectly leads to

either an inaccurate or an insensitive system.

4.2 Principle of Operation

The principle of operation of the proposed system

involes maintaining the magnitude of the transfer function

of the compensated process constant by checking its energy

transfer characteristic. To do this one of two approaches

is used: Either the output is passed thru a transfer func-

tion which is the reciprocal of the desired control system
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transfer function i or the input is passed thru a model for

which the transfer function is the one desired for the con-

trol system. Figures 4-la and 4-lb show examples of the

first and second approaches respectively. In the first meth-

od a signal denoted as r'(t) is generated; in the second

method the signal generated is denoted as c'(t). In either

case, the two signals [e.g., r(t) and r'(t) or c(t) and c'(t)]

are used to generate several filtered signals; one signal is

generated for each' variable (i.e., a, 8, Kc, W0 , U, etc.).

From this point on both methods are identical. A

root mean square value of' the time weighted history of each

of the signals is generated and these values are compared for

pni.r8 of filtered signals. If a difference is found for a

given pair (e.g., an error signal), it is used to vary the

parameter associated with that pair in an effort to reduce

the difference to zero.

For a perfectly compensated system the signal pair

are identical for any arbitrary input and the errors are

therefore all zero. Conversely, if the errors are all zero,

for any arbitrary input, the system is perfectly compensated.

This condition is a result of the choice of one error signal

per variable parameter. The proposed system is now mathe-

matically formulated.

1At least approximately over the band of interest.
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4.3 A Mathematical Model

Both system configurations are redrawn to exhibit

the operation of the ith loop for the time instant t. These

are shown in Figures 4-2a and 4-2b where it is seen that with

the exception of signal prefiltering both systems operate

identically. Each of the signals shown [i.e., pi(t), qi(t),

etc.] is then divided into three parts - the first part is

denoted by a second subscript of one [i.e., pil(t), qil(t),

etc.] and is that portion of the signal occurring prior to the

time to-T + 5tr; the second part is denoted by a second sub-

script of two and is that portion of the signal occurring be-

tween the time to-T + 5tr and the time to; the third part is

denoted by a second subscript of three and is that portion

of the signal occurring after the time to . A comparison be-

tween the root mean square values of Pi2(t) and q12(t) is then

made and the difference, which is considered to be due to an

adjustment error, is used to drive a compensator adjusting

control motor. This corresponds to using the rectangular

time weighting function shown in Figure 4-3 and assuming that

q12 (t) is the total output for an input of Pi2 (t). This second

assumption neglects so-called "end effects" and is reasonable

for those cases where T is much greater than tr. A discussion

of the approximation error involved is included subsequently.

For the systems being considered the error signal is

denoted by ei(to) and T-5tr is denoted by T giving
r0
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ei(t o) - p 2(t)dt - q 2(t)dt (4-i)

This is rewritten, using Parsevals Theorem and the approxima-

tion that q,2 (t) is the output due to pi2 (t), in equation

4-2.

e1(t.) / j I Pi2(w) du) ;- (Z 2 I i2'Go 2 -- ,d

- 4rf Pi2 (w) .

00 2 I G(to2

(4-2)

The choice of F( ) is now constrained so as to

insure that an increase or decrease in the ith parameter

causes either an increase or decrease in the term

00c(to') G(to,W )

L
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for all w for which P2() 0 0; thus the sign of ei(to)

always indicates the direction in which the ith compensator

parameter must be varied. Proper application of this signal

to the corresponding control motor then insures that correc-

tive compensator adjustments are made as required. In addi-

tion, defining

.", -(to12()) dw

and passing ei(t) thru an AGC amplifier with gain D/Pji(t 0 )

yields: 2

ik(to) - D eito)
( 0)

1O 1 I GC.(t°W)G(t u)) d u

aD 1 - ,P j iw I) ~ w
IL(t0) /.Tito,-

-'D [1-li(to)] (4-3)

2For physical systems Ti(to) is limited below by noise and

above by the saturation of the previous equipment.

t"
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With ki(to) applied to the control motor a signal

Ki(to) is generated which represents the approximation to the

it h compensator parameter control function. The accuracy of

the approximation depends on the adaptive loop.

4.4 Discussion of the Approximation Errors

In the investigation of the error involved in the

approximation of the energy in q12 (t), qi(t) is divided into

two parts: the first is denoted by qi(t) and is that portion

of qi(t) caused by pil(t)m; the second is denoted by q"(t) and

is that portion of qi(t) caused by P1 2 (t). Each of these

functions is then subdivided into three time intervals which

are denoted by the use of second subscripts, as in the pre-

vious section. The percentage approximation error eai(t) is

then given by equation 4-4. Applying Parsevals Theorem, sub-

stituting the terms above and simplifying them gives equa-

tion 4-5.

eai(t) " M 2 f

(4-4)
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0 0 2 2qt 2 (t)dt + [q 2 (t) dt - t M dt

t -T t -T 0 t

ea(t) 0 0 0 0

" dt + 0 [q13 (tfJ dt

(4-5)

The expression for eai(t) in equation 4-5 is now

interpreted. Since T0 is much greater than the largest proc-

ess response time constant all of the integrals in equation

4-5 except the first. integral in the denominator are approxi-

mately independent of T0 . As a result, for a properly chosen

T0 (e.g., sufficiently large) the error eai(t) is negligibly

small.

The third integral in the numerator and the second

integral in the denominator represent the energy output re-

sulting from the energy stored in the mathematical model at

time to (see Figure 4-2a or 4-2b). The second integral in

the numerator represents the energy in the output signal

caused by the energy stored in the mathematical model at

time to-To; the first integral in the numerator depends di-

rectly upon this signal. For a perfectly compensated process

the mathematical model has a transfer function of 1 and

hence these first four integrals are all equal to zero. The
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last remaining integral is the energy output during the in-

terval between t o-T and to, that is caused by the input

pi2 (t). This integral is exactly equal to the input energy,

during the interval between t -T and to, if the process is
00

perfectly compensated. As a result, the approximation error

is zero for a perfectly compensated process and negligibly

small for a properly compensated process.

4.5 Alternative Weighting Function

The rectangular weighting function discussed above

corresponds to selecting the filter block W(s), in the '-i

circuitry shown in Figure 4-2a and 4-2b, to have a transfer

function of

sT sT
- sinh -

esT
0

From practical considerations this transfer function is ap-
3/T

proximated by 3T which corresponds to an exponential

time weighting function. The area under the two weighting

functions are equal and a graph comparing the two functions

is shown in Figure 4-4.

The operation of the system with the exponential

weighting function is the same as the operation of the system

with the rectangular weighting function. The functions pi1 (t),

pi2 (t), qil(t) and q1 2 (t) are redefined to reflect this modi-

fication
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3Pi(t) U(t-t) e
e., P12(t) = e -2T °  Pit o t) etc

and an analysis similar to that presented in section 4.3 is

applied. The result is again equation 4-3, but the justifica-

tion for the approximations involved is slightly modified.

4.6 Conclusion

The measurement scheme presented for generating the

control functions necessary in adjusting the parameters of

the tandem compensator is based on an energy transfer crite-

tion. The interval of time over which such a measurement is

made is of necessity much larger than the response time con-

stants of the compensated process involved; this de-emphasizes

end effects. In addition, the measurement time interval is

of necessity small with respect to the time required for

significant process variation; this insures a sensitive,

properly adapting system. The time constant of the pro-

posed exponential weighting function is therefore a compro-

mise between these two requirements. As a result, there is

an "end effect error" introduced. This error is a part of

the measurement error expected in adjusting the compensator.

The balance of the measurement error results from

the choice made in generating the control function by inte-

grating the error signal. This part of the measurement error
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is similar to the error that exists in linear systems when a

signal is applied to an integrator having a unity-gain feed-

back loop (see Figure 4-5). The system does, however, con-

tinually try to maintain a fixed appearance by driving the

compensator parameters so as to track the process parameters

and thereby cause cancellation. The operation of some ex-

ample adapted processes is investigated next.
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Chapter 5

Processes With One Variable Coefficient

The previous chapters are devoted to the develop-

ment and presentation of a general, simple, practical design

technique for use in the solution of variable process control

problems. Throughout these sections an effort is made to

create a system that allows for analysis. It is thus appropri-

ate at this point to investigate the application of this

technique to several different processes. This chapter is

devoted to such investigation for those processes which con-

tain only one variable coefficient in their process character-

izing function. A process that exhibits a variable gain is

considered first. A process that contains a variable real

pole and a process that contains a variable real zero are then

considered and compared. Several examples are included among

which is a problem that appears impossible to solve using

linear feedback theory. The problem of controlling a process

that contains a pair of variable complex poles or zeros, for

which only one paramecer varies, (i.e. a, , , or a%) is

deferred to the next chapter since it is a special case of

a more general problem.

5.1A Process With Variable Gain

A process that contains a variable gain term 'in its

characterizing function is compensated by the use of a single

tandem variable gain compensator and a single adaptive loop,
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as shown in figure 5-1a. For this process, the characterizing

function is

0 (s,t) = Km Gl(s)/Ko(t) (5-1)

The assumption is made that all of the desired signal shaping

networks are included with the process and thus when the variable

parameter is fixed at its nominal value a satisfactory control

system is obtained (this assumption is made for all systems

subsequently considered). As a result, a model for the opera-

tion of the adaptive loop is shown in figure 5-lb. The sig-

nal filtering block that generates p(t) given r(t) is labeled

H(s); it is equal to either F(s) or F(s) Gm(s) and depends

upon whether a system that uses r'(t) or one that uses cl(t)

is selected. Since this does not directly effect the operation

of the system H(s) is neglected from further consideration.

System operation is investigated in terms of p(t).

In equation (5-1) Km is the minimum value of the pro-

cess gain and hence Ko(t) varies between zero and one. The

compensator as a result is chosen to have the characterizing

function

Gc(st) = KnKc(t)/Km (5-2)

Since Kn is the desired process gain, Kc(t) also varies between

zero and one. To compensate the process Kc(t) must be equal

to K0 (t) and thus the adaptive loop operates to cause the track-

ing of K (t) by Kc(t) in an effort to achieve this equality.
0
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For the system being considered equation (4-3)

Kc(t) = A [1 - Gi(to)] (4-3)

is rewritten as

Kc(t) A [1 - Kc(t)/Ko(t) ] (5-3)

since Gi(t) = Kc(to)/Ko(to). The regrouping of terms gives

the first order linear differential equation

Kc(t) + [A/K 0 (t)] Kc(t) = A (5-4)

The general solution to this equation is

t Adt t pt Adt

Kc(t) = e A e dt (5-5)

Using equation (5-5) the output of the adaptive process is

then

C(t) = [r(t) KnKc(t)/Ko(t)]* l[G(s)) (5-6)

where C1 [G(s)] is the impulse response ofthe desired con-

trol system.

Thus the operation of the adaptive process is com-

pletely described; use, however, is primarily made of equation

(5-5) in the investigation of the operation of the system

since this equation indicates how well the adaptive circuitry

is functioning. Several examples are presented in section

5.4.

A



5.2 A Process With A Variable Real Pole

A process that containij a v).r'1.able real pole in its

characterizing function is compensiated by the system shown in

figure 5-2a. The process is assumed to contain all the re-

quired fixed shaping circuitry and for a process characterized

by Gs
b(st) G. 

(5-7)
[s + a K0 (t)]

a tandem compensator that is characterized by

[s + a Kc(t)]
Gc(sit) [i + a] (5-8)

is used.

A model for this adaptive system is shown in figure 5-2b.

For "a" defined as the largest allowable value for

the real pole, both K0 (t) and Kc(t) vary between zero and

one. In addition, for am defined as the minimum value of

the real pole and for F(jw) a low pass filter with cutoff

frequency well below w = am, Gi(to) in equation (4-3) is

approximated for the frequencies of interest by

1 2 c2 + a2 K(t o )

,i(to) - (t 72) (2 + dm

C 0 +am aK + (t

K K(t )/K (t) (5-9b)

C 0 0-0
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Using this approximation, equation (4-3) is rewritten and

solved; the solution is identical to the solution shown in

equation (5-5). This equation allows for the analytic in-

vestigation of the operation of the compensator, for arbitrary

pole variation, on the basis of low frequency gain.

For the case presented, the operation of the adaptive

loop is similar to that of a variable gain adaptive loop;

this is a result of the choice of a low pass filter for F(s)

and thus, the choice of an adaptive loop which is only sensi-

tive to the "d.c. gain." Since the gain at any frequency is

such as to insure tracking of K0(t ) by Kc(t)
l , any choice f6r

F(s) is acceptable. Arbitrary choice of F(s), however, does

not lead to as simple a solution for Kc(t) as does the choice

considered.

5.3 A Process With A Variable Real Zero

A process that contains one variable real zero in

its characterizing function is similar to a process that

contains one variable real pole. The characterizing function

for this process is

G(s,t) = (s + b K 0(t)] G2(s) (5-10)

For a tandem compensator, a network with a characterizing

function of

h.s + bomGc(8S0t) = [s4bK(t}] (5-11)

1This can simply be seen from a pole-zero diagram for the model.
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is used. An adaptive system for this process is shown in

figure 5-3a and a model for the operation of this adaptive

loop is shown in figure 5-3b. The similarity between this

system and the variable pole system is obvious from comparison

of the models.

The operation of the adaptive loop with F(s) re-

stricted as in the variable pole case is also given by equation,

(5-5). Since the gain at any frequency is such as to insure

tracking of Ko(t) by Kc(t), any choice for F(s) is again

acceptable. The similarity in design between variable pole

and variable zero systems thus indicates that only one of the

two need be investigated. Subsequent discussions are,therefore,

restricted to variable pole terms; a variable zero term is

handled in a manner analogous to that used to handle the

corresponding variable pole term.

5.4 Examples

In each of the three systems considered the variable

parameter is normalized so as to reduce the problem to one

involving a coefficient that varies between zero and one.

This coefficient corresponds exactly to that variable gain

in the compensator with which compensation is achieved.

Under certain restrictions the behavior of the compensator

variable gain term is governed by the same differential

equation for all three systems; as a result all of the sys-

tems respond identically to a given type of process variation.

This response is given by
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At dt

Kc(t) e -0o A e 0 dt (5-5)

For the three systems investigated two examples are

considered. The first involves a step variation in the vari-

able parameter; the second involves a parameter that starts at

some nominal value and decreases with time. For the first

problem Ko(t) is given by

Ko(t) = Kol + (Ko2 - Kol) U.l(t) (5-12)

This corresponds to a step' vriation from Kol to Ko2. The

response of Kc(t) to this input is exponential and given by

Ko 01t < 0

Kc(t) - At (5-13)

Ko2 + (K0 1 - Ko2) e 02 t > 0

It is obtained by substituting equation (5-12) into equation

(5-5) and shows that the time constant of the step response

of the adaptive loop depends directly on the magnitude of the

variable involved.

For the second problem Ko(t) is given by

K(t) - Kol /I + aU_ 2 (t)] (5-14)

This corresponds to an inverse process gain that starts at a

given value and then decreases with time. Substituting
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equation (5-14) into equation (5-5) and integrating gives,

after some manipulation., a series expansion for K (t)

K01 t <0

(t)A 00( n+1 in A a)2

0 (2n+l)n! - (1-t)] e t

n=O (5-15)

Unfortunately, this expression does not give insight into the

operation of the adaptive system. A family of curves is there-

fore presented which shows the behavior of Kc (t) as a function

of time with Kol and m as parameters.

For the curves shown time is normalized with respect

to the adaptive loop gain A and hence figure 5-4 shows Kc(t)

vs At for Ko 0 1 and m = O.1A, O.5A and 1.OA. Figure 5-5

shows the tracking errors for the above cases. It is note-

worthy that for a larger rate of decrease in a parameter there

is a larger maximum error but a faster convergence toward

zero thereafter.

The operation of a variable gain process subject to

the. ramp variation considered above was simulated on a com-

puter. The results of this investigation, a comparison with

the results obtained above and a discussion of discrepancies

is presented in the section on computer simulated systems.

5.5 A Problem That Appears Impossible to Solve

Prior to applying the design technique under con-

sideration to more complex processes, it is worth-while to
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demonstrate the usefulness of. this approach. To do this, a

problem that appears impossible to solve using linear feed-

back theory is selected and a simple practical solution is

obtained. The problem is to design a control system for a

variable gain process; the fixed part of the process is denoted

by G (s) and is given by
p

By

G s) + 0.4 eF (5-16)

The variable gain is denoted by K (t) and is subject to change
p

by fixed amounts at discrete intervals of time. This corres-

ponds to a simple production process that is subject to load-

ing and unloading at discrete times. The process gain is

bounded as described by

1 Kp(t) ' 1000 (5-17a)

and is subject to changes in accordance with

Kp(t) - 1 + 7 0.1 P(nT) UI(t-nT) (5-17b)

n=1
where p(nT) is a discrete random variable, from an unknown

distribution, that assumes the values -1, 0 and 1. The process

is thus characterized by Kp(t) G p(S).

From production considerations, two requirements

exist for any control system. These are:

1) The control system transfer characteristic must not

vary (with time) in excess of 20% for any input signal fre-

quency component below 0.4 radians per second.
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2) The control system transfer characteristic bandwidth

must remain as close to 0.4 radians per second as possible;

The existance of high frequency noise prohibits the use of

system bandwidth in excess of 16 radians per second.

For the above process, loop stability is a major

problem when a control system is designed using linear feed-

back theory. The process gain variation of 60 db requires

extensive shaping of the system open loop gain, to insure a

stable system, since gain crossover varies over a frequency

span of three decades. The possibility of the system band-

width exceeding 800 radians per second therefore exists. As

a result, a single loop system is not acceptable but a multi-

loop approach, as suggested by Horowitz 2 , is possible; for

such a system the noise requirement is reformulated.

The possibility of an 800 radian per second system

bandwidth in the multi-loop case remains. This is apparent when

the system is redrawn to display the input-output feedback loop

(such a loop exists for all multi-loop control system when the

output is generated solely by a single-input single-output

process). 3 As a result, a compensator network is required

21. M. Horowitz, "Design of Multiple-Loop Feedback Control

Systems", I.R.E. Trans. on Automatic Control, Vol. AC-7,
April, 1962.

3I. M. Horowitz, "Fundamental Theory of Automatic Linear
Feedback Control Systems" I.R.E. Trans. on Automatic Control,
Vol. AC-4 December, 1959.
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to cancel the effect of the process delay term over the 800

radian per second band of interest. This corresponds to

compensating for a maximum phase delay of 9000; the required

network is therefore unobtainable because- of practical limit-

ations and the problem appears impossible to solve.

Application of the design technique developed shows

that this problem is identical to the first problem considered

in section 5.4 under the condition that the adaptive loop

settles between steps. Based on this assumption the charac-

terizing function of the compensated process, subsequent to

the occurance of a step in K P(t), is given by
AT -K ol o

T(s) - ( - l)I e Gp(s) (5-18)

It is obtained by using the results of equation (5-13).

The requirement for less than 20% variation in the

gain of the process is immediately satisfied since the magni-
Ko01

tude of [1 - is bounded above by 0.1, for the allowable
o2

steps in process gain. The problem is then one of insuring

-AtKha ol K°I
that (- e is negligibly small for t = T (i.e.

o2

less than e )j a choice of A > .2satisfies this requirement

for co 10-3. Hence for a typical problem and a time interval

of one minute between changes in the process gain, an adaptive

loop with a gain A = 0.1 is sufficientto give a satisfactory



56

solution to the problem. A circuit corresponding to such a

solution is shown in figure 5-6.

5.6 Conclusion

In each of the variable parameter problems investi-

gated,-care is taken in the selection of components to create

a situation that permits analysis. In so doing all three

adaptive systems are made to function in accordance with the

same response equation., It is noted, however, that an alter-

nate choice in adaptive loop oircuitry is allowable. The

square root circuits, for example, are included only for their

value in simplifying the analysis; their omission may at times

improve system operation. The choice made for F(w) in the

variable pole and variable zero problems is likewise intended

to simplify analysis. Any alternate choice for F(co) is allow..i

able and some other filter may even improve system operation.

The cost of making such changes is in general in the difficulty

in analyzing the resulting system.

The results of the examples considered point out

that in both cases the adaptive circuitry caused Kc(t) to track

Ko(t) in such a manner as to reduce the tracking error toward

zero. This indicates that the simple systemstconsidered are

stable for the types of process variations investigated.

For some systems, however, the eventual decay of the error

toward zero is not sufficient; a temporary error is intolerable.

To remedy this problem a linear feedback loop is added around

the adapted process; its function is to desensitize the
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control system to the remaining variations. The advantages of

each of the two systems is therefore incorporated into the

control system.
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Chapter 6

Processes With Two Variable Coefficients

The previous chapter deals only with processes that

contain one variable coefficient in their characterizing func-

tion. These constitute the simplest examples of variable

processes in the class being considered. Next in order of

complexity are processes that contain two variable coefficients.

These represent problems which are of more practical significance,

Three processes from this class are investigated. The first is

a process with a characterizing function that contains a vari-

able real pole and a variable gain. The second is a process

with a characterizing function that contains two variable

real poles; the third is a process with a pair of variable com-

plex poles. This last process requires a slight modification

in the adaptive circuitry to facilitate analysis.

6.1 A Process With A Variable Pole and A Variable Gain

The characterizing function for a process that con-

tains a variable real pole and a variable gain is

~K, oI (s)
G (s,t) = (6-1)= KI O (t) Ls + a K2 0 (t) ]

* The characterizing function for a tandem compensator for this

process is

Kn Klc(t) [s + a K2c(t)]
Gc(s5t) K ns + a (6-2)

Km (s+b)
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This compensator has two variable gain terms and thus it

requires two adjusting loop ,; the selection of the filters for

the'se adjusting loops constitutes the only new design problem.

For the characterizing functions shown "a" is again

taken to be the largest value that the pole achieves; K20 (t)

and K2 c(t) are thus both constrained to lie between zero and

one. In addition, the constants Km and Kn are respectively

the smallest and desired values of the process gain; hence

K10 (t) and Klc(t) are also constrained to lie between zero

and one.

Now turning to the system block diagram shown in

figure 6-la it is apparent that for frequencies well above

= a, gain variations in the forward transmission path depend

only on Klc(t)/K10 (t). As a result, FI(8) is chosen to be a

high pass filter with low frequency cutoff well above w = a.

A model for the operation of this gain adaptive loop is shown

in figure 6-lb. This loop thus operates to compensate the

process gain constant and it functions in the same manner as

the gain correcting loop considered in the previous chapter;

this loop is approximately independent of the behavior of the

other loop in the system.

Low frequency gain variations in the forward trans-

mission path of the adapted process depend on

[Klc(t)/K1o(t)] [K2c(t)/K 20 (t)]•
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F2 (s) is therefore chosen to be a low pass filter with cutoff

frequency well below the minimum value of aK20(t). As a re-

sult, when the gain constant is approximately compensated,

the model for the operation of this second loop is shown in

figure 6-1c. The loop thus operates to compensate for pole

variations, once the gain compensator has operated, in the same

manner as previously considered systems.

Any choice for F2 (s) is acceptablej this is true

since the gain at all frequencies is of the proper magnitude

to cause pole compensation, once the gain variation is assumed

properly compensated. As a result of the gain compensator oper-

ating independently of the pole compensator, this assumption

is reasonable. Arbitrary choice of F2 (s) however, complicates

system analysis. For the system proposed, the behavior of

both loops is of the form shown in equation (5-5).

6.2 A Process With Two Variable Real Poles

The characterizing equations for the process and for

the compensator, in a problem concerned with two variable

real poles, are given by

Gl(s)
G(s,t) I + b (6-3)bKlo(t) ts + c K20 (t)]

[s + b Kl (t)][s + c K2c(t)
Gc(St) I S + d ]is + d2 (6-4)
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The constants b and c are the largest values that the re-

spective poles achieve; the terms Kl0 (t), K 2 0 (t), Klc(t)

and K2 (t) are thus all constrained to lie between zero and

one.

A block diagram for the system is shown in figure

6-2a and the forward transmission path of an adaptive loop

model is shown in figure 6-2b. Investigation of this trans-

mission path and of the four possible types of Bode Plots

(shown in figure 6-3) that correspond to this path, indicate

the following choice for F,(s) and F2 (s): Fl(s) is a low

pass filter with cutoff frequency in region #1 of the Bode

PlotsJ F2 (s) is a band pass filler with pass band in region

#2 of the Bode Plots. Signals passing thru F2 (s) thus allow

for the compensation of the shorter time constant of the pro-

cess while signals passing thru Fl(s) allow for the compensa-

tion of the longer time constant of the process, once the short

time constant is compensated.

The selection made implies that the two regions

remain disjointj if this is not true the same approach is still

applicable but analysis becomes difficult. For the disjoint

case variations in the transmission of signal frequency com-

ponents in the pass band section of region #2 are proportional,

to K2 c(t)/K 2 0 (t). The response of the "short time constant"

adaptive loop is, therefore, of the form shown in equation

(5-5). Variations in the transmission of signal frequency

components in the low pass section of region #1 are propor-

tional. to [Klc(t)/Klo(t)] [K2 c(t). K2 0 (t)]. With the ishort
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time constant" variation properly compensated, [K2c(t)/K 20(t)]

is approximately one and thus variation on the low pass region

become proportional to [Klc(t)/Klo(t)]j the response of the

"long time constant" adaptive loop is then also of the form

shown in equation (5-5). For the non-disjoint case the above

statements are approximately true. The choice of filters,

however, is restricted by the desire to avoid multi-loop

oscillations which may result from inter-loop coupling.

6.3 A Process With A Variable Pair of Complex Poles

One of the more common control system problems is

to control a process which contains a variable pair of complex

poles in its characterizing function; such a function is

given by

al(s)

s(s,t) = 82 + 2s [Go Kl0(t)][ o K20(t)] + [o K(6-a)

The characterizing function of the tandem network used to

compensate this process is given by

s2 + 2s [P K (t)[o (t)] + [o K(t)]2
Gc (s,t) = K2 Ks C 2 0 (6-5b)82 + 2s

A block diagram of the adaptive process is shown in figure

6-4j a model of this process is shown in figure 6-5a.

For the forward transmission path of the model,

the gain for low frequency signal components depends on
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Figure 6-5a Model for the Adaptive Process

K .(t)] P j~

r(t) )2(s 2( t)

K (t) K

Af o t) 
Kl(t

1u~r + Squs~ qqua

First Loop
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2[K2 c(t)/K 2 0 (t)]2 j a low pass filter with cutoff well below

the minimum value of wo K20 (t) is, therefore, chosen for F2(s ) .

A model for the operation of this "natural frequency" adaptive

loop is shown in figure 6-5b. This loop is a modification

of the standard loop since a double square root operation is

indicated. The double square root operation is used to main-

tain both an analyzable system and'a linear dependence of pole

position upon gain value. The operation of this loop is

independent of the operation of the "damping" adaptive loop.

The response of this "natural frequency" adaptive loop de-

pends on [K2 c(t)/K 20 (t)] and is thus of the general form of

equation (5-5).

With the variations in the natural frequency proper-

ly compensated, the gain of the forward transmission path of

the model, at all frequencies, is of proper magnitude to cause

compensation for variations in the damping ratio. As a result,

any choice for Fl(s) is acceptablej analysis of the operation

of this "damping" adaptive loop is, however, difficult. For

the special case where the percentage variation in the natural

frequency is small analysis of this loop is possible. Fl(s) is

chosen to be a band pass filter with center frequency at the

nominal natural frequency. The gain for signal frequency com-

ponents in this pass band then depends on [Klc(t)/Klo(t)]

and the standard adaptive loop with the standard response form

(i.e., equation 5-1 apply.
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The process considered above degenerates to a one

variable-coefficient problem when either K10 (t) or K20 (t) is

fixed. For these special cases simplification of the compen-

sator is possible; in addition the adaptive circuitry used in

the general problem is simplified by the removal of the loop

that is not required, and the problem is solved.

6.4 Conclusion

The three processes discussed in this chapter, are

typical of the two variable coefficient problems that exist.

Only minor modification is required when one or more of the

poles considered is replaced with a zero. As a result, the

solution of many of the two variable coefficient problems

that exist are similar to the solutions shown. The main

exception to this statement is the two variable coefficient

problem that is a special case of a more complicated varia-

tion problem; an example of this is a process with two pairs of

complex poles that each have variable natural frequencies.

These problems are considered in the next chapter.

Each of the solution, presented in this chapter

contains at least one adaptive loop that operates independently

of the other loop. The response for each of these independent

loops is given by equation (5-5); this equation shows that

the loop response to a step displacement of the variable

coefficient is the same as the step response of a low pass

R-C network. The time constant of this response, however,
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depends linearly on the final magnitude of the step. The

response of any of the other loops is also given by equation

(5-5) under the restricted condition that the independent loop

has already properly operated.
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Chapter 7

Multi-Variation Processes and System Limitations

At this point in the presentation it is appropriate

to consider multi-variation processes. Since processes that

contain variable complex poles are among the most difficult

to handle, and since the technique presented is particularly

suited to these problems, processes containing variable com-

plex poles are chosen for consideration. As an example of a

three variable coefficient problem, a process with a charac-

terizing function that contains a variable gain and a pair

of variable complex poles is considered. For a problem that

contains four variable coefficients, a process with a charac-

terizing function that contains two pair of variable complex

poles is used. A process with a characterizing function that

contains two pair of variable complex poles and a variable gain

is the example chosen for use as a five variable coefficient

problem; this is the most complex problem considered.

The allowable regions overwhich the poles and zeros

of a process characterizing function vary, directly affects

the analysis and the usefulness of'a proposed system. The

limitations caused by these variations and the limitations

caused by noise are investigated in this chapter. In addition,

the problem of stability is discussed.
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7.1 A Process With Three Variable Coefficients

The first multi-variation process considered has a

characterizing function that contains a variable gain and a

pair of variable complex poles. This process is compensated

thru the use of a tandem network with a characterizing func-

tion that contains a variable gain and a pair of variable com-

plex zeros. Three adaptive loops are used to adjust the com-

pensator.

For the process being considered, the natural fre-

quency of the complex poles is constrained to remain between

)Ol and 0021 while the damping ratio of the poles varies be-

tween t and 0. A plot of the possible location of these

poles in the s-plane is shown in figure 7-1a. Based upon

these restrictions, the three adaptive loops are constructed

as follows:

The first loop, denoted as the gain loop, is identical

to the gain adaptive loop in section 6.1. It contains a high

pass filter with low frequency cutoff well above a) = 10 1j

thus this loop is only sensitive to variations in the process

gain and responds in accordance with equation (5-5). The

second loop, denoted as the natural frequency loop, is identical

to the natural frequency adaptive loop considered in section

6.3. This loop uses a low pass filter with high frequency

cutoff well below a = ')02j with the gain variation compensated

this loop is sensitive to variations in the natural frequency
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of the variable poles and it too responds in accordance with

equation (5-5). The third loop is denoted as the damping

loopj it operates to compensate the process for variations in

the damping ratio of the variable poles and is identical to

the damping ratio adaptive loop considered in section 6.3.

For this loop any filter is acceptable. With the gain and

natural frequency variations compensated, the adaptive process

gain for all signal frequency components is proper to cause

compensation by the damping loop. As a result, a band pass fil-

ter with pass band between co0 1 and 030 2 is selected. This selec-

tion insures that no portion of the signal spectrum is used

in more than one adaptive loop and thus helps to eliminate inter-

loop coupling.

7.2 A Process With Four Variable Coefficients

The second multi-variation process considered has a

characterizing function that contain two pair of variable com-

plex poles. For this process, compensation is accomplished

thru the use of a tandem network with a characterizing func-

tion that contains two pair of variable complex zeros. These

zeros are adjusted on the basis of signals generated in four

separate adaptive loops. The design of these loops depends

upon the restrictions governing the location of the variable

poles in the s-plane.

For a process with variable complex poles located

in disjoint regions of the s-plane, as shown in figure 7-lb,
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two pair of adaptive loops are required. One pair adjusts

for variations in natural frequency and the other pair adjusts

for Variations in the damping ratio. Por the poles shown,

the natural frequency of the "high frequency pair" remains

between cDO and 02 while its damping ratio varies between t1

and Oj the natural frequency of the "low frequency pair" re-

mains between w03 and (04 while its damping ratio varies be-

tween t2 and 0. As a result, the filters for the four loop

are selected as follows:

The filter in the natural frequency loop for the

"high frequency pair" is band passj its low frequency cutoff

is well above )03 while its high frequency cutoff is well

below 02. This loop is thus sensitive to variations of the

appropriate natural frequency and responds in accordance with

equation (5-5). The filter in the natural frequency loop for

the "low frequency pair" is low passj the cutoff frequency

for this filter is well below c - w04. This second loop is

then sensitive to variations in both natural frequencies and,

when the first loop has compensated for variations in the

natural frequency of the "high frequency paif", the second

loop then compensates the natural frequency of the "low

frequency pair". The response of this loop is then in accor-

dance with equation (5-5).

The remaining two filters are chosen to be band passj

the cutoff frequencies of these filters correspond to the
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frequency limits on their respective natural frequencies.

As a result, when the variations in natural frequency are

compensated, the "high frequency pair" damping loop operates
1

to cause compensation. With this completed the last damping

loop compensates for any variation in the "low frequency pair"

damping ratio. Thus the process is compensated.

7.3 A Process With Five Variable Coefficients

The inclusion of a variable gain term in the process

characterizing function above change that four variable co-

efficient problem into a five variable coefficient problem

'(e.g. one variable gain and two pair of variable complex poles).

The solution to this five variable problem is then simply an

extention of the solution above. One additional adaptive loop

is added to compensate for the gain term. This loop uses a

high pass filter with cutoff frequency well above aOl and is thus

only sensitle to gain variations. The response of the loop is

given by equation (5-5). Once gain compensation is accomplished

the remaining four loops function as described in the previous

section.

The characterizing functions for the processes

and compensators considered above are shown in table 7-1.

In addition, an approximate expression for the error signal

in each of the loops is given; these expressions are ordered in

accordance with increasing loop dependence.

1The "low frequency zeros" of the compensator approximately
cancel the effect of the "low frequency poles" of the process,

for the signal frequency components used by this loop.
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7.4 Stability

With the completion of the discussion of the multi-

variable coefficient processes considered above, the problem

that next requires attention is that of process stability.

The questions of adaptive process stability is in general a

difficult one to answerj this difficulty arises since the

process output depends not only upon the input signal but also

upon the process variation involved. As a result, there are

two degrees of freedom for the problem and analysis is diffi-

cult.

In this dissertation the assumption is made that the

allowable variations of the process and the compensator are

boundedj this insures that all variable coefficients remain

finite. In addition, it is assumed that when the time

dependent factors in the characterizing function of the

adaptive proocess cancel [ i.e. T(s) - G(o,t) G (s,t) is not a

function of time] the output satisfactorily approximates the

2
input . An adaptive process in the class considered is

therefore defined as stable if

Lim [G(s,t) Ga(s,t)] - Gm(s) (71)

for any step variation in the coefficients of the process

2This is implied in the choice of a tandem compensator.
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characterizing function G(s,t). This definition is identical

to the requirement that: given step displacements in the

Kio values in accordance with

K 0(t) K 1 + [K - Ki] (7-2)

then for all i

Lim Kio(t) = Ki2  (7-3)

t Co

under the restriction that 0 < K1 2 1 1.

Any adaptive loop that behaves according to equation

(5-5), satisfies the requirements of equation (7-3)j for this

loop Kic(t) approaches KOO(t) exponentially. As a result any

adaptive process, for which all of the adaptive loops behave

according to equation (5-5), is stable. In addition, any

adaptive process for which each of the adaptive loops operate

to independently track its respective variable coefficient, is

stable. Thus an adaptive process for which each adaptive loop

is sensitive to only one variable coefficient, and for which

any allowable input causes each of the loop error signals to

drive toward zero (in response to a step coefficient displace-

ment) is stable. This class of process is defined as "inde-

pendently" stable.

There are many adaptive processes that are stable

for which the operation of the adaptive loops are not inde-

pendent. From this class a subclass is chosen which is
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denoted as "sequentially independent." A process that is

sequentially independent has the property that a listing of

the loops exists for whioh:

1) The first loop is sensitive to only one coef-

ficient and operates to track this coefficient

independently of the other loops.

2) Each loop on the list is sensitive to one and

only one variable coefficient that is not sensed

by any loop with prior listing; this variable is

denoted by the position of the loop on the list.

3) With each of the first M variable coefficients

properly compensated, the M+l loop operates

independently to compensate the M+lth variable

coefficient.

Thus a sequentially independent process is one that

contains a set of loop that will null in sequence. This

corresponds to the existance of at least one loop that nulls

independently of the other loops, a second loop that nulls

independently of all but the first loop, a third loop that

nulls independently of all but the first two loops, etc. As

a result, every loop of a sequentially independent process

will eventually null in response to any step displacement in

the variable coefficients of the process characterizing

function; a sequentially independent process is therefore

stable.
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Stability for adaptive process with interdependent

adaptive loops is difficult to investigate. For an n variable

coefficient process the problem is formulated in terms of

two points in an n-dimensional space. Each coordinate axis

of this space corresponds to one pair of variable coefficients

of the adaptive process [i.e., Kio(t) and Kic(t)]. Hence one

point in the space corresponds to the state of the process

characterizing function and the other corresponds to the

state of compensator characterizing function. A stable system

is thus one for which the point that corresponds to the com-

pensator approaches the point that corresponds to the process.

The behavior of the compensator depends upon the initial

states of the process and the compensator, as well as the

input signal; hence,the path of the point representing the

compensator in n-dimensional space also depends on these

quantities.

The question of stability thus reduces to the follow-

ing question - Given any two points in the n-dimensional space

and any input from the allowable class of inputs, does the

point corresponding to the compensator approach the point

corresponding to the process? Those processes for which the

answer is yes, are stable. All other processes are unstable.

One final note concerning unstable processes is

appropriate - A process that is unstable does not necessarily

function improperlyj the problem is that it might function

improperly.
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7.5 Noise

Any physical process is subject to noise. The

problems introduced into the operation of an adaptive process

by this noise are therefore investigated. Four noise signal

are considered: The first is the noise that accompanies the

input signal; this noise is desirable for insuring the oper-

ation of the adaptive loops in the absence of actual input

signals since the two are indistinguishable. Noise that is

internally generated in the process is considered next. Since

this noise is reflected to the output of the process without

loss of generality, it is considered simultaneously with

external noise signals that are applied to the process output

(e.g. wind signals on a radar antenna). These are undesirable

signals. The last noise signal considered is the one gener-

ated in the adaptive circuitryj it too is undesirable.

The effect of the noise that accompanies the input

signal is two-fold. First it affects the selection of the

desired control system transfer function. This occurs in the

design stages of the problem3 . Next, it functions in the

same manner as an input signal and thus enables the adaptive

circuitry to function even when the intended input signal is

zero. The overall effect of the presence of this signal on

the adaptive circuitry is desirable.

3Unless the process is signal adaptive.
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For the process being considered, all internally

generated noise is reflected to the output. This noise is

thus combined with all of the noise signals present at the

output that are the result of external sources. The combined

signal is then attributed to an equivalent generator and the

effect of this generator upon the operation of the adaptive

process is apparent; the noise generator effects the output

signal adaptive circuitry but does not effect the input signal

adaptive circuitry. As a result, the adaptive loop error

signals are biased and the compensator nulls incorrectly. A

small bias is not a problem, in general.

When the effect of the noise generator is excessive,

the operation of the adaptive process is improved using three

corrective measures. The first involves the use of feedback

around the adaptive process; the effect of the noise generator

upon the output and thus upon the operation of the adaptive

circuitry is thereby reduced. The second measure involves the

use of a fixed bias; this bias is used to offset the average

bias that is introduced into the adaptive loop error signals

by the noise generator. The last measure involves the use of

an interrupter switch. When the input power for an adaptive

loop is low enough to allow the output noise generator to

cause an appreciable error, operation of that loop is inter-

rupted. One of the last two measures is normally required for

all systems where the equivalent noise generator contributes
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a significant portion of the noise in the output. This in-

clusion protects against the problem of the compensator re-

adjusting toward an extreme position when the adaptive pro-

cess input signal is removed.

Since the adaptive loops operate in a balanced mode

coherent noise generated in the adaptive circuitry tends to

cancel. In addition, since the two circuits are identical,

any average value of noise-present in the adaptive circuits

also tends to cancel. The net effect of 'noise generated in

the adaptive circuitry is therefore minor and is lumped with

the noise effects considered above.

7.6 Limitations

The example systems considered in this dissertation

are all restricted by the requirement that the variable poles

and zeros are confined to disjoint regions in the s-plane.

Under this restriction the systems that are designed contain

adaptive loops that are either independent or sequentially

independent. As a result, the adaptive process involved is

stable and its operation is analyzable. For the general sys-

tem where this disjoint restriction does not apply, a prob-

lem in selecting independent or sequentially independent

adaptive loops arises. Although such a set of loops may exist

for a given process, they are difficult to find: if interde-

pendent loops are used instead, analysis of the operation of

the adaptive process is arduous. In addition the possibility

of designing an unstable system exists.
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The restriction of disjoint allowable regions for

the poles and zeros of a process is very reasonable for pro-

cesses With less thansix variable coefficients. For more com-

plex processes, where this requirement is not satisfied, an

alternate approach is possible; this approach involves

combining all the connected regions into disjoint super-

regions and designing loops for the super-regions on the

basis of a multiple pole (or zero) at the center of gravity

of all the poles and zeros in the region. These center of

gravity adaptive loops are then used for average regional

compensation or when it is desirable, several single parameter

loops are designed to replace a given multiple parameter loop.

This is in general a difficult problem.

On several occasions in this presentation the possi-

bility of multi-loop coupling is mentioned. Such coupling

occurs if two or more adaptive loops are sensitive to the

same variable coefficient or the same signal frequency com-

ponents. Although the existance of this coupling is not a

sufficient condition for instability it does introduce the

possibility into the problem.

Systems where the adaptive loops are sequentially

independent are stable. In addition, in any system in which

the coupling between loops is light, the possibility of

instability is remote; this is usually the case in the pro-

cesses with six or less variable coefficients. As a result,
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coupling is not a problem for simple systems. In processes

containing many variable coefficients, the coupling between

adaptive loops is more pronounced; the possibility of

instability is therefore greater. The occurrence of insta-

bility, however, is not always a problem.

In many cases instability is acceptable. A process

with two variable real poles for example, may be adequately

compensated by a pair of variable real zeros, even if the

zeros do not cancel the poles; proper compensation may be

achieved by the system when the center of gravity of the poles

and the center of gravity of the zeros concur. This is the

case when only the! high and low frequency transmissions are

of interest. Thus an unstable system performs adequately.

The final limitation discussed, is that imposed by

the requirement that the process is linear and slowly time

varying. This requirement is necessary for analysis. Non-

compliance to these restrictions by a process, however, does

not necessarily give a control system that is unsatisfactory.

In fact, it is possible that some nonlinear processes, or somc.

processes that are not slowly time varying, perform properly

when compensated as described above. Unfortunately analysis

under these unrestricted conditions is extremely difficult.

7,7 Conclusion

The multi-variation processes considered in this

chapter constitute a fair cross section of the variable
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process control system problems that are solved using the

adaptive process design technique of this dissertation. The

five variable coefficient process treated in section 7.3 is

as complicated a problem as is normally of practical interest.

Since the technique is applicable to more complex systems, the

conclusion that the approach is general, is reasonable. In

addition, noise and stability constitute two major problems

in the design of any control system. Based on the discussion

presented in section 7.5 and 7.6, these do not constitute a

major drawback. The systems are, in general, stable and not

overly sensitive to the problem of noise. These considerations,

when added to the reasonable analysis that is required to

investigate the operation of the adaptive process, make the

technique appear practical. This practicability is borne out

by the results of simulations presented in the next chapter.

Finally, an investigation of the solutions presented in this

chapter testifies to the simplicity of the technique presented.

I.
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Chapter 8

Results of Computer Simulations

Solutions are presented in the preceding chapters

to many variable process problems. These solutions are all

very attractive on a theoretical basis; there remains, however,

two additional questions that require answers. These are:

How well does the actual performance of a system compare with

the theoretically predicted performance, and how does the

system perform when the circuitry is slightly modified?

To answer the, first question three adaptive processes

are investigated. These include a variable gain process, a

process with a variable gain and a variable real pole, and a

process that contains a variable gain and two pair of variable

complex poles. The second question is answered by modifying

the circuitry in the solution of the process with a variable

gain and a variable real pole, and observing the modifications

in the behavior of the compensator.

The operation of each of the adaptive processes

listed above was simulated on a digital computer and the

results presented are based on the data thus obtained. All

input signal are either sinusoids or sums of sinusoids; this

simplifies the simulation but is not necessary for proper
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operation. The AGC amplifiers are omitted since the average

woighted input power is approximately constant; this further

simplifies the simulation.

8.1 The Variable Gain Process

The first adaptive process simulated is that shown

in figure 8-1; the process is a variable gain amplifier. For

this circuit two variations are investigated. The first

involves a step displacement in the gain of the amplifier and

the second involves a, gain that increases with time. The

results of section 5.1 are used to calculate a theoretical

behavior for the adaptive process.

The results of the simulation are presented in

figures 8-2 and 8-3. The curves corresponding to the theo-

retically predicted response and the perfect response for the

compensator, are also presented for comparison. From these

curves it is apparent that the actual response and the pre-

dicted response differ only slightly; this discrepancy is

attributed in part to the omission of the AGC amplifier and

in part to the delay in the averaging circuits.

8.2 A Process with Variable Gain and a Variable Real Pole

The second adaptive process simulated is shown in

figure 8-4. For this process both the gain term and the

time constant suffer a step displacement. The responses of

the two variable gains of the compensator to this disturbance

are presented in figures 8-5 and 8-6. For comparison the

perfect and predicted. responses are also presented.
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This adaptive process is then modified. The square

root operations are omitted and the compensator response is

obtainedj this is added to figures 8-5 and 8-6. The square

operation is then replaced by a full wave rectifier and the

response of the compensator is again obtained; this too is

plotted in figures 8-5 and 8-6. The effect of changes on the

operation is thus displayed; the asymptotic behavior, however,

remains approximately constant.

8.3 A Process with a Variable Gain and Two Pair of Variable

Comples Poles.

The last adaptive process considered is shown in

figure 8-7. The process contains a variable gain and two

pair of variable complex poles; these poles have variable

natural frequencies. The damping ratio for each pair of

poles is fixed.

The three variable coefficients are subjected to

step displacements and the responses of the variable gains in

the compensator are obtained. These responses are presented

in figure 8-8. The theoretically predicted responses for these

three gain terms are also 1.. 3ented and the agreement between

the two sets of curves is good.

8.4 Conclusion

The results of the computer simulations, for the

adaptive processes investigated, indicate that the operation

of processes designed in accordance with the technique pre-

sented in this dissertation are quite satisfactory. The
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agreement between the predicted process response and the

actual process response is excellent; comparison of the

actual response of the adaptive circuitry with the response

required for "perfect" compensation is likewise good. The

performance of each of the systems is satisfa,.tory. In

additon, the system performance, when subjected to major

modifications in the adaptive circuitry, remains acceptable.

Removal of the square root operations and rep .1cement of the

square operation by a full wave rectifier cause no problems

in the operation of the two variable parameter process investi-

gated.
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