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I

SUMMARY

A one-dimensional model for the Boltzmann equation of kinetic
theory of gases is proposed, in order to study the validity of the usual
approximation method and the behavior of the solutions near the free mole-
cule limit. The interaction term is very similar to the Fokker Planck

term. The conservation of mass, momentum and energy results from the

particular form assumed for the interaction term and the only equilibrium

solutions are shown to be of Maxwell-type. Hydrodynamic equations similar
to the Navier-Stokes- Fourier equations are derived in the usua4 wa under
the assumption of small 'gradients. Shock waves are shown to exist in

supersonic flows.

The distribution function is obtained in the case of a
spatially uniform condition, and the existence of an infinite number of
relaxation modes and corresponding relaxation times is shown.

The linearized versions of the model equation are established
with particular emphasis on the simplest problems of heat conduction and
wave propagation and the usefulness of Fourier transformation with respect

to the velocity component is indicated.

Finally, the behavior of the solutions near the free mol-
ecule limit is briefly investigated for steady state conditions. Exist-

ence of a singular behavior for slow molecules, analogous to boundary
layer phenomenon, is indicated and the equation is shown to reduce to a
singular parabolic equation studied by Gevrey, in the region of interest.

The leading terms in the deviation from free molecule data
ate found to be of the order of the cube root of an interaction parameter,

playing a role analogous to the Knudsen number.
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1. Usefulness and Limitations of a Mathematical Model

The mathematical difficulties arising in the treatment of

the Boltzmann equation for the velocity distribution function f in a mon-

atomic gas at moderate or low densities are known to be formidable, a fact

which has precluded, so far, the obtaining of any exact particular solution

of interest for conditions far removed from equilibrium.

The Boltzmann equation may be written in the standard form

(ref. 1)

~ 4 L~Xffjjf _f1 f

In this equation, the distribution function f is a (unknown)

function of the variables t (time), x , x2, x3 (space coordinates), -l2),T

(molecular velocity components). In the integral of the second member,

the so-called collision integral, there appear the variables b and & which

define the geometry of a particular collision (b being the distance of

closest approach in the absence of interaction and E an angle defining

the position, in space, of the plane of relative motion 6f the molecules

with respect to the center of mass of the system). The dashes indicate

the velocity components of the partner molecule in the encounter. The

stars indicate the values of velocity components after the encounter, so

that 1 2- and are functions of the initial velo-

city components and of b and . . Stars and dashes attached to the symbol

f indicate which velocity components should be taken as arguments. The

integral is extended to all possible encounters and all possible partners.

The velocity distribution function f is, of course, defined

in the usual manner as indicating the number density of molecules in con-

figuration space (i.e. the space with coordinates x , x2 , x3 , 4 > ,LE ),
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so that the number dn of molecules in an infinitesimal volume dxl, dx2,

dx3 of space, centered at the point (xl, x2, x3 ) which have molecular

velocity components in the ranges ( 1 d ), ( , ) and

( 7, + ) is given by

It is seen that all the possible mathematical complications

are represented in eq. 1; this equation being simultaneously non linear,

partial differential, integral and functional. It is not surprising,

therefore, that most of the available information concerning its solutions

refer almost exclusively to two extreme limiting cases: the near equilibrium

case and the free molecule regime (which is somewhat trivial in that the

second member of 1, which contains all the mathematical difficulties, is

neglected).

In the near equilibrium case, f differs but little from the

well known Maxwellian velocity distribution, given by (ref. 1)

n 5/21.2

Here, n represents the number density of molecules (in the ordinary sen4

i.e. in physical space), m the mass of a molecule, T the absolute tempe-

ature, u the macroscopic, or bulk, velocity and k the Boltzmann constant.

Different linearization or expansion techniques are appli-

cable in cases where f is closely approximated by this Maxwellian distri-

btion, the best known being, probably, the Chapman Enskog expansion (ref. 2).

This technique assumes small gradients for the macroscopical quantities

(bulk velocity, density, pressure or temperature) and lead to the classical

Navier-Stokes-Fourier equations as a first approximation, describing the

so-called continuum flow regime.
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At the other end of the range, the free molecule regime,

the collision term becomes negligible, and equation (1.1) reduces to a near

trivial first order differential equation. The interaction between mol-

ecules and solid boundaries then represents the central problem but no

major mathematical difficulties are encountered.

All other regimes, between the two extremes quoted, require

a full treatment of the Boltzmann equation. Usually, a distinction is made

between several such regimes: slip flow, transitional regime and near free

molecule flow (ref. 3).

One must also be aware of the fact that equation (1.1) only

accurately describes monatomic gases, and should only be considered as a

physically simplified model for the complicated behavior of the technically

important diatomic gases. In many attempts at solving eq. (1.1), one goes

even farther than this and assumes a particular interaction potential for

the molecules in order to simplify the collision term.

These particular potentials are sometimes very far from

realistic. The most spectacular simplification, as already indicated by

Maxwell, occurs when a repulsion proportional to the inverse of the fifth

power of intermolecular distance is chosen (ref. 2). This Maxwell molecular

model is not realistic either.

However, it appears that no physical model will lead to a

collision term simple enough to allow an exact solution to be obtained in

the general case or in non equilibrium cases of practical interest.

Many important mathematical questions appear in connection

with equation 1, such as its behavior in the vicinity of the free molecule

regime, the validity of expansion procedures and of several important
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approximative methods. Such methods are usually introduced without attempt-

ing rigorous mathematical justifications (see for instance, Mott Smith's

treatment of the shock wave in ref. 4 and Lee's discontinuous distribution

function technique in ref. 5).

It seems, therefore, that a mathematical model without

immediate physical significance, but which would present most of the main

features of eq. 1.1, would be valuable if exact solutions could be obtained

for significant cases.

First of all, one should know what are the most significant

features of equation 1.1, from the mathematical standpoint. This is not

easy because so little is known about the properties of the solutions.

The mathematical model studied in this report presents the

following basic properties in common with eq. 1.1:

a) It has the same structure, involving space and time

derivatives in the first member and a "collision term" in the second member.

b) There are collisional invariants as in equation 1 (the

number of molecules, the momentum and the kinetic energy), so that a set

of hydrodynamical equations may be derived in the usual way.

c) The only equilibrium solutions are also of Maxwellian

type, as given by eq. 1.2.

d) Though no property analogous to Boltzmann's H theorem

(ref. 1) could be obtained for the model equation, it appears from its

analogy to the Fokker Planck equation (ref. 6) that the collision provides

a dissipative mechanism.
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e) The boundary conditions that have to be imposed in order

to define a solution are the ones that would be physically encountered for

an actual gas kinetic system.

f) It can be shown (see paragraph 4) that the model equation

exhibits an infinite number of relaxation times, just as the Boltzmann

equation (a condition that is not satisfied, for instance, by the simple

Krook model of ref. 7).

These appear to be the widest possible similarity to the

Boltzmann equation one can hope to obtain using a reasonably simple mathe-

matical model (as distinct from a physical model).

One of the difficulties one might fear because of the

absence of direct physical meaning, is that solutions for f corresponding

to reasonable boundary or initial conditions would turn out to be meaning-

less because f would take negative values in some regions of the field*

or exhibit singularities. The same difficulty, of course, could arise in

applying approximate methods which are not mathematically justified to

equation 1.1.

However, the analogy with a Fokker Planck equation again

enables one to hope that negative f values will not occur in solutions

corresponding to physically acceptable boundary and initial conditions

(i.e. conditions defining entirely the solution and such that the initial

and boundary values of f are everywhere positive).

It is possible, of course, that the positive definiteness

It is clear that such difficulty could never occur in a small disturbance

treatment where f - f + a f and f is always positive and I6fI<< o
O 0
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of f could be proved for the model and for all valid boundary and initial

conditions but such a proof has not been attempted.

Attempts will be made to obtain exact solutions for boundary

and initial conditions of physical interest such as steady heat conduction,

wave propagation, steady shock waves, etc. The behaviour close to the free

molecule regime and the validity of the usual approximation methods will

then be studied.

2. The One Dimensional Model

An important simplification of eq. 1.1 would arise if a

fully one dimensional situation could be considered. This would lead to

the physical model of a system of molecules restricted to move on a straight

line, say, the x1 axis. The number of independent variables would then be

reduced from seven to three in the general case and from six to two in

stationary situations.

However, such a model is useless if a physical collision

process, with the usual conservation of momentum and energy, is assumed.

Simple exchange of velocity would then occur for each collision ( 4

and f = j ) so that the collision term would be identically zero (a

one dimensional gas is therefore always in the free molecule regime!).

The relaxation of one conservation condition could, perhaps,

save the one dimensional model. However, with the energy condition dropped,

one cannot expect a Maxwell type equilibrium distribution to exist, while

on the other hand, to keep the conservation of energy and drop the conserva-

tion of momentum does not seem to lead to clear physical interpretations.
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It thus appears that no simple one dimensional physical model

can be imagined.

The mathematical model proposed here is suggested by the

study of theBoltzmann collision term for weak collisions. This term, which

turns out to be quite comparable to the Fokker Planck interaction term used

in the treatment of ionized gases (ref. 6), is mentioned in ref. I without

details or reference to other papers.

This term is therefore calculated in appendix I.

Initially, it was hoped to use the weak interaction term

and some further simplifications (involving quite eccentric interaction

laws, as shown in appendix I) in order to obtain a simple physical model.

The resulting equation is still very complicated, as shown below

2f _ I-~+ C1JL-44 :f - (2.1)

where X is a parameter depending on the law of interaction, -)Rthe stress

tensor and _ g-. is the Laplace operator in the velocity space. C

denotes the random velocity of the molecules:

This equation is again a non linear integro-differential

equation for f, but the integral aspect is simplified by the fact that

only a finite number of "moments" appear which involve integrals over f,

namely the ten moments

iff=# ff
nv -Jjf f~ ~d~.

.Y i fC
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We have then tried to obtain a one dimensional mathematical

model of similar structure namely

2_1 J +B + Ci (2.2)

at R 2-x

where A, B, C must be functions of F and simple moments such as n, u and

The only significant difference with (2.1) appears to be

the acceptance of a first derivative with respect to the velocity. It is

not clear whether this has a particular physical or mathematical signifi-

cance.

We now require conditions (b) and (c) of paragraph I to be

satisfied, i.e. that eq. 2.2 would satisfy the conservation of number of

particles, momentum and energy and that the equilibrium solutions (i.e.

solutions of the equation obtained by equating the collision term to zero)

would lead to a Maxwellian distribution (1.2). As shown in appendix II,

A, B and C are entirely defined by these conditions up to a common factor.

Logically, this factor could be a function of n and C7 (not of u, of

course, because of the principle of Galilean relativity).

Physically, one must expect that a collision term , involv-

ing pairs of molecules, should be proportional to the square of the density.

The factor is thus written as X , where I may bi a function of 0 L

For simplicity we will take a constant value for this parameter. The

resulting equation then becomes

0 (2.3)
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with 2 Corsb

rLzfft ,nefgt (2.4)

This is the mathematical model we intend to study. The

interaction term is very similar to the Fokker Planck term, except that

the coefficients of the derivatives involve integrals of the distribution

function which greatly complicate the mathematical nature of the equation

by making it non linear and integral.

3. Basic properties of the model equation 2.3

Equation 2.3 has been obtained under the conditions that

the number of molecules, momentum and energy are collisional invariants.

This means that the "collision term" has no global effect on total density,

momentum and energy. Integration over the velocity ,of equation 2.3,

when multiplied successively by IMl, 'WV , and In yield the usual

macroscopic equations of continuity, momentum and energy.

--e 0 - r + o (3.1)

+ b ( or

07- ) (3.2)

Ot 9 X-
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Where the density p the pressure p and the heat flux

are defined as usual in kinetic theories:

- K (3.5)

Equations (3.1), (3.2), (3.3) are entirely analogous to the

system of equations describing the one dimensional motion of a hypothetical

gas with a ratio of specific heats ff equal to three* and without viscosity.

It is clear that viscosity cannot occur in purely one dimensional molecular

motions.

Temperature may be defined, of course, through the funda-

mental relation of statistical mechanics:

- T = average kinetic energy of random motion for a molecule
.-, j)'.. E so that the usual equation of state for a perfect

gas applies:

The only deviation from ideal fluid flow results, in the

absence of viscosity, from the presence of the heat flux term in the

energy equation.

This is, of course, the value to be expected, from statistical mechanics,

for a gas with molecules having only one single degree of freedom (i.e.
translation along the x-axis).
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The macroscopic equations (3.1), (3.2) aid (3.3) are studied

in more details in appendix III, where the corresponding Navier-Stokes-

Fourier equations are derived in the usual way, as a first approximation

for small gradients. Also, the existence of a shock wave is shown, and

its fine structure analyzed according to these Navier-Stokes-Fourier type

equations.

In appendix II, the condition that the equilibrium solutions

be of Maxwellian type was used to obtain a necessary condition for the

coefficients. We must now analyze whether this condition is sufficient

to ensure that these are the only equilibrium solutions.

The equilibrium solutions must satisfy

and the general solution of this ordinary linear differential equation for

f is immediately obtained as

f= C, e .2Ce- c

C1 and C2 being arbitrary constants.

The second term is of course a particular solution of the

non homogeneous equation

Ct

which is readily seen to be unacceptable. Indeed, f must tend to zero

for large values of iand so must j . Therefore, f would behave

asymptotically like for large [-.I.j and the momentum and total

energy would diverge.
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We may thus conclude that all meaningful equilibrium solu-

tions of eq. (2.3), yielding finite density, momentum and energy must be

of Maxwellian type.

4. Mathematical Nature of the Model Equation

The model equation (2.3) unfortunately exhibits some basic

mathematical complications in common with the full Boltzmann equation as

well as with some other models extensively used (such as the Krook equation

of ref. 7), namely in being non linear and integral.

However, one can imagine a procedure for solution which

formally bypasses these difficulties, because they both arise from the

appearance of the parameters Y1 Lt. in the coefficients of the equa-

tion.

If one observes, then, that equations (3.1) and (3.2),

resulting from (2.3), provide two equations for these parameters, one can

visualize the following formal procedure for a solution.

Assume a given set of initial and boundary conditions, suf-

ficient to define the solution f. The character of this set is of course

defined by the mathematical nature of equation (2.3), considered as a

partial differential equation for f, whatever the nature of the functions

n 1* . C , n being essentially positive. The linear partial dif-

ferential equation in f can then be solved for arbitrary functions l," C2

and the resulting function f will be a functional of 1, x, c

Writing 
-"
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we get a functionsl equation which is expected to completely define va, Y

when coupled with the two differential equations (3.1) and (3.2).

One could, of course, also devise an iterative scheme,

whereby n, for instance, is chosen arbitrarily, or better, realistically,

V) Ct calculated from (3.1) and (3.2) and the resulting set n, I, it)

substituted in (2.3) and the resulting linear partial differential equation

solved for f taking into account the boundary conditions. nfII , C are

then recalculated from this function and the process repeated indefinitely.

In order to justify these procedures, one must of course analyze the nature

of the functional relationship between f and ' ,V, c,' in the first case,

or the convergence in the second case. This has not yet been attempted.

However, if one assumes at least one of the precedures to

be valid, the study of the boundary and initial conditions pertinent to

the problem may be made for equation (2.3) considered as a linear partial

differential equation for f, assuming *n, IL , CF to be known functions of

x, t (with the restriction that n. and - sho l:d always be positive). If

these functions were constants, equation (2.3) would reduce to the standard

Fokker-Planck equation, and it is therefore likely that the initial and

boundary conditions suggested by the physical origin of the equation will

apply. These are, of course, the same as would be considered natural for

equation (2.3).

The question of boundary conditions is analyzed in more

detail , for the steady state case in the next paragraph.

5. Mathematical Nature of the Model Equation for Steady State

For steady states (f independent of t), equation (2.3)

reduces to
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Furthermore, (3.1) and (3.2) simplify to

2L3d crr 7 4 - -1 (5.2)

)J. 0 -- n " ,(5.3)

Hence mA represents the mass flow and mB the total x-impulse (momentum flow

plus pressure).

Finally, equation (2.3) becomes, in the steady state

(r -~ (5.4)

with the auxiliary condition

410

nz f id (5.5)
- 0

The constants A and B must be determined after solution by

solving the equations(for some particular abscissa x 0
0

log +00

A~ f f z,~A J3 Xc*(7.

This is a set of two equations for the two unknowns A and B.

If, in view of the formal procedures described in paragraph 4, one may,

for a moment, consider n as a given function of x, the equation (5.4) is

seen to be a partial differential equation of parabolic type. However, it
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differs from the simplest and classical equation of this type, the heat

equation, by the very important fact that the sign of the coefficient of

21 changes in the field (for we have of course always to consider the

full range (-oo, +-oo)of values of G ). Gevrey (ref. 8) who appears to

be the first (and, to our knowledge, the only one) to have dealt with such

parabolic equations involving a coefficient with variable sign, calls them

singular parabolic equations. He also shows, in his fundamental paper,

how the usual boundary problem pertinent to the classical heat equation must

be modified in the case of singular parabolic equation.

Before quoting his results,.let us first stress that the

space variable x in equation (5.4) plays the role of the time variable in

the heat equation (because it appears in a first derivative only), while

the molecular velocity F plays the role of the space variable in the heat

equation (because it appears in a second derivative).

The simplest boundary value problem for the heat equation

(which corresponds to the simple infinite "wall" problem) consists in

giving the values of the unknown function at some initial time and also

at two boundaries (both sides of the "wall") at all subsequent times. In

the case of eq. (5.4) this would correspond to giving f(O,E ) and f( Z, )

for two values of . Here, however, the normal boundaries for F being

00 , the boundary conditions become a condition about the asymptotic

behaviour of f for large absolute values of E. , as already mentionned.

An important remark will immediately show the difficulties

Connected with the singular parabolic equation: the heat equation cannot,

in general, be solved backwards in time.

In order to keep the usual meaning of the parameters, ?l M F should of

course always be chosen positive.
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Indeed, if values for the unknown functions are prescribed

at some final time, as well as values at two space boundaries at earlier

times, then the solution will be found to break down immediately, unless

very special final values are chosen. This can be shown easily by using

a Fourier series expansion of the solution in terms of the space variable.

The coefficients of. the expansion are found to be exponentials in the time

variable, increasing for decreasing time and with an exponent increasing

very rapidly with the order of the harmonics (the solution will therefore

exist in a finite region of decreasing times, only if the number of initial

harmonic components is finite or if the amplitude of the harmonics decreases

sufficiently rapidly when their order is increased). This phenomenon is,

of course, connected with the extreme "smoothing" that heat conduction

produces on temperature distributions.

This remark shows then. that a classical boundary value

problem, with one initial and two boundary conditions, cannot be solved,

in general, for a singular parabolic equation, because the phenomenon just

mentioned would certainly occur in the region where the coefficient of the

time derivative* becomes negative, which is of course equivalent to a

change of sign for the time variable or a permutation of past and future.

Gevrey shows in ref. 8 that the standard boundary value

problem for singular parabolic equations mustas expected~be modified as

follows:-

In the region of positive coefficient, initial values (for

some time ti, say) must be given, as well as a boundary condition for a

When referring to this coefficient, we always assume of course that the

coefficient of the second derivative is equal to one or, at least, posi-
tive.
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value of the space variablefir t > t1. In the region of negative coef-

ficient, final values (for some t2 > t,, say) must be given, as well as

a boundary condition for a value of the space variable for t < t2 .

The main problem arising in the solution is then seen to be

a matching problem along the "singular" line, where the coefficient vanishes.

Indeed, assuming arbitrary values for the unknown function on the singular

line, one can obtain the solution in the region of positive coefficient just

as in the classical heat conduction problem (because the initial values are

given, as well as two boundary values) and the solution in the region of

negative coefficient can be obtained similarly. However, we have to satisfy

a matching condition along the singular line, because the normal derivative

'for both solutions just described must be equal at all points of this line.

This condition can be written as an integral equation involving the unknown

values on the singular line which are then obtained by solving the integral

equation.

In the particular case of the model equation (5.4), the sing-

ular: line corresponds to "= 0 and is of course the x-axis in a x

diagram. The normal boundary conditions are, as already stressed, replaced

by conditions defining the asymptotic behaviour of the distribution function.

This, again, may be considered as a condition for = +-00 and another

condition at 0 . The boundary conditions for the Gevrey problem

must then further include the values of f at a certain abscissa xl, for the

positive values of the velocity , as well as the values of f at another

abscissa x2 xI for the negative values of .

This is of course completely in agreement with what would be

suggested by purely physical considerations. Consider a finite'linear

volume" of one dimensional gas, on the segment xlx 2 say, and the boundary

conditions at the two solid "walls" at x = x and x x2 . Interaction
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between the molecules and the solid walls may be very complicated, but will

always lead to an expression of the velocity distribution of the outgoing

molecules in terms of the distribution of the incoming molecules*. There

is, however, no mechanism described in the kinetic equation or in the

boundary conditions which enables the walls to control the velocity of
a

the incoming molecule, for this would involve action atVdistance. Accord-

ingly, the conditions introduced by wall effects only affect outgoing

molecules, so that for the wall on the left, at x = x, we will obtain

information about the distribution function of the molecules with > 0

and at the wall on the right, at x = x2> Xl, information about the

distribution function of the molecules with <O . This is similar to

a Gevrey problem. Of course, the situation is much more complicated here,

in that we must, in general, consider relationships between the values of

f for positive and negative at the walls, and only in the case where

complete accommodation is assumed (i.e. outgoing molecules have no memory

of their condition at arrival) do we get the simple Gevrey type boundary

conditions.

We may, however, conclude that the model is very satisfac-

tory from the point of view of the nature of the pertinent boundary value

problems for the steady state, which are in complete agreement with the

physical nature. This again could be expected from the analogy with the

Fokker-Planck equation.

6. Unsteady Spatially Uniform Solutions for Equation (2.3).

It is interesting and comparatively easy to examine the

solutions of (2.3) depending only on t and but not on x, i.e., the

For instance, through an integral relationship involving a stochastic

kernel, as described in ref. 1.
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solutions uniform in space. This will enable us to show that the model

equation exhibits aninfinite number of relaxation times and modes. The

problem, in itself, has, of course, little physical significance, for the

corresponding initial conditions (i.e., a non Maxwellian initial distribu-

tion of f, uniform in space) cannot easily be created and does not occur

in practical cases.

The analogous problem has been treated, for the Boltzmann

equation, and for the Maxwellian molecule model by Maxwell (ref. 9) and

also involves an infinite number of relaxation modes.

In the spatially uniform case, the macroscopic equations

(3.1), (3.2) and (3.3) reduce to

o-u =0 and L :-O

so that n, u and CL are constant and equal to their initial values, and

equation (2.3) thus becomes linear,

We first introduce the non dimensional variables

z--= (6.1)

(reduced time and random molecular velocity) and obtain the following sim-

plified version of (2.3):

(6.2)

while the auxiliary conditions, defining u and CFLas integrals over f, may

be written
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+oo

-0

-:" (6.4)

(The equation defining n is irrelevant because the solution f will always

involve an arbitrary constant factor which can be adjusted to obtain the

correct density).

There are, of course. boundary conditions for F =too

in that f must tend to zero for large I and that the momentum and

energy integrals must converge.

The resulting mathematical problem turns out to be entirely

analogous to the problem of computing the wave functions for the quantum

mechanical linear oscillator (ref. 10).

The problem is treated in a different way in appendix IV,

using a Fourier transformation with respect to the velocity v.riable F
because this technique proves to be useful for the study of the linearized

model equation (see also paragraph 7, eq. 7.15).

The general solution of the problem is given by

J. e~ a t a+ , ),( )e-  '( F -% j H()e n.- J

where H is the Hermite polynomial of order n (ref. 11)
n
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The auxiliary conditions must now be taken into account.

Multiplying the solution obtained by and ( '-1_ ) respectively and in-

tegrating between '-oo and = +CO yield, because of the ortho-

gonality properties of the Hermite polynomials (ref. 11):

Jtoo Lz= (f f 472 are -

The auxiliary conditions therefore imply

The other coefficients, 6Zo) 43).... a., etc. are well defined

by the initial condition

because of the fact that the functions e form a complete

orthogonal set.

Hence, it is clearly seen that the function f tends to a

Maxwellian distribution.

f. " oe Z

for t -i o , and this tendency is characterized by an infinite set of

relaxation modes, each of which has its own relaxation time. The relaxation

times are, in decreasing order

31 M- On etc.

and correspond to faster and faster relaxation. The, relaxation times are,
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as expected, inversely proportional to the number density.

It is also seen, from the form of the solution obtained in

appendix IV, that f reTnuns positive definit.e if it was initially positive

definite.

7. Remarks on the Linearized Trea.tmert of qaton(.

It is useful. to attemipt the solution of. 11inaie version

of complicated equations before att-acking the fully- non linear cases. In

the case of the model equation (2 .3), as in -the case of the Boltzmann

equation the simplest: exa mple of a spatially non. uniform linear problem

occurs when considering a. small, steady disturbanmcew of ant equilibrium,

Maxwell distribution9 of tnhe type

f 0rmay be a spatially non. anLfoim. function if qt0 ,'4 an;.jd T~ are considered

to be functions of x (l RqIMxwellian. dIstributinn. See., for instance,

appendix IIII).

We assume, bhere that fl,, 14 and C' are constants so that

we study dist11urbaaces from an. absolute equilibrium. (uniform initial Condi-

tions).

In this ~e wrwlite, as is uasual

f *L'14n

where f ', n' and &.are disturbancaes, which mrust be considered uniformly

small compared to the corresponding equiAlibrium values f c, n and a- t

while the non uniform bulk velocity component ul is limited by the condition.
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a condition which may be expressed by saying that the Mach number based on

the velocity disturbance must be very small.

The linearized version of equation (2.3) is obtained by

neglecting the terms of order higher than one in the disturbances:

( + U-)~ 4f+J (/ft( CC)'+[ -(fI4LfolJ (7.1)

Equations (3.1) and (3.2) become

+'± (7.2)

(7.3)

If we consider the steady state case, the time derivative

drops and the equation (3.1) and (3.2) give

pk)'= A, (7.4)

- ,XF- (7T.5)

It is clear, however, that by a suitable choice of the

reference values 'no, 1kvo) , one can make A' and B' vanish, which

yields

o = 4YLV =OL
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so that, with this choice of reference values

[X/=_ R tit (7.6)

(rL~)'=rLO U.74'z ~
(7.7)

It is useful to introduce the non dimensional variables

n,0  k- 2 ~(7.8)

as well as the parameter N', related to n' by

DO

The reduced equation then becomes

' - -  (7.10)

where is a non dimensional parameter, given by

o (7.11)

which is, of course, closely related to the Mach number (:'''-,4'v VS/

In problems, such as heat transfer, where no bulk velocities

exist, we must, of course, take 0=0 so that the equation is slightly

simplified to

9 z
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The Fourier integral transformation with respect to the

(reduced) velocity component Z , as used in appendix IV, also provides

a simplification in the actual case. Let P be the Fourier transform of

f', which exists in view of the fact that f must tend to zero for large

values of l I in the case of physically valid solutions. We have

We then transform the equation, taking into account the fundamental pro-

perties of the Fourier transformation (ref. 12)

'P f f(7.14)

and obtain

2.

2 -, (7.15)

Using the obvious formula

2.

and the fact that the function - is invariant under the Fourier

transformation (ref. 12).

In the case of a steady state, it is seen that the singular

parabolic equation is reduced to ahyperbolic equation.

The simplest physically significant problems that arise in

connection with these equations are-the steady state heat conduction pro-

blem and the wave problem.
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In the steady state heat conduction, one assumes Ck. z 0

(and therefore 1o = 0 ), so that the following direct and trans-

formed equations have to be used

Vz
I. efV (7.17)

- -00

2toL (7.18)

If the heat conduction is treated for a finite amount of gas

between two walls, at '1 = 71 and ) ='t >T , the correspond-.

ing boundary conditions would be of the type

no for >0
(7.19)

f'~,~~ CZ-) f or <~ o

Usually, one would assume that the moleculesreflected from

the wall are completely accomodated, thermally, with the wall. If the

reference values '4, V are chosen to correspond to, say, the conditions at

the wall at I =11 , we would then have the simplest set of possible boun-

dary conditions

f%,, y o for

(7.20)

f',y~~ 2for

The value for g iV) is arrived at by writing the Maxwellian

distribution f2 corresponding to the parameters 1,= f-o)) t(C'-4'-

and computing the first order term of f2 - f , taking into account the (in-

tegrated) macroscopic equation
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The treatment of the equations for linearized heat conduc-

tion still appears to be very involved. Results obtained in this direction

will be published shortly.

In the wave problem, one investigates unsteady sinusoidal

solutions of the form

(7.21Y

where ( ) is an amplitude function. This is expected to lead to an

eigenvalue problem, yielding, for each value of the frequency W , o an

infinite set of propagation modes. We have, of course

, - - C( (7.22)

where a is the speed of sound for a particular mode and 0 the corresponding

attenuation.

The equation for becomes (assuming the medium at rest,

and hence = )

4- + (I -t (7.23)

and the -transformed equation simplified to a first order equation

where .{ is the Fourier transform of g.

The reduction in order of the equation from second to first

brought about by the transformation is of course very useful, for the
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solution of the latter equation can be obtained at sight. It is therefore

interesting to note that this reduction corresponds, here, to the rejection

of (physically) meaningless solution types. We already noted, in paragraph

3, that there are two types of equilibrium solutions, one of them being

rejected because it leads to infinite total momentum and energy. It is

easily seen that this is just the type of function for which the Fourier

transformation of the equation is notallowed, because terms such as 7;1

lead to diverging transforms,

The Fourier transformation thus automatically eliminates

the unacceptable solutions and a corresponding simplification of the trans-

formed equation had to be expected.

The simplifications are not so obvious in the general, case.

The complete treatment of the wave problem will be presented in a companion

report.

8. Preliminary Remarks on the Near Free Molecule Regime

One of the most interesting and difficult problems arising

in the application of kinetic theory to aerodynamic problems is the study

of the near free molecule regime, or in other words, the way in which so-

lutions of the Boltzmann equation behave for very large Knudsen number.

The use of the model to clarify the situation is therefore

indicated.

Actually, we cannot strictly define a Knudsen number for the

model, because the collision term cannot be interpreted as representing two

body collisions and the notion of mean free path therefore disappears.
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However, it is clear that the free molecule regime

corresponds (for given boundary conditions) to a vanishing A. We must

therefore study the behaviour of solutions corresponding to given

boundary conditions for X tending to zero.

The following remarks concern the model equation for

steady state i.e.

which reduces, for A 0 to (8.2)
__ =0

It is clear that the type of the equation entirely changes for = 0,

so that one has a singular perturbation problem for small A .

Let us consider the simplest case of heat conduction

between two walls at x = xl(x2 > x,) (u = 0). The physical boundary
conditions are known to be of the type (Cf 7.19)

for ; >O

2fr 0 (8.3)

and the corresponding free molecule solution, (for - 0), is of

course

12(fr-g~ 
(8.4)

In general, we therefore expect singularities (discontinuities of f or

its derivatives) at = 0. The approximation for the free molecule

solution must therefore break down in the vicinity of 0 in this

simplest case. A small region will exist there, say from = - - to

S= + E, where the interaction term still has to be taken into
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account. The situation here is quite similar to the one leading

to the occurence of boundary layers in fluid flows with small

viscosity, where viscosity terms still have to be taken into account

in regions of small extension 'close to the walls (as well as in the

wakes).

One can readily evaluate the importance of the region

where the interaction term is important, using an order of magnitude

argument similar to the one used to compute boundary layer thickness

in terms of Reynolds number in viscous flow theory.

Let L be a length scale for the problem at hand. We would

take L = x2 - x in the heat conduction problem. We then assume

to be of order-- (this in fact, leads to more rigorous definitions
L 1

for L max IWH for instance). Let F- be the width of the

region around the line = 0 in which the interaction term is important.

The definition of A also has to be made more precise, by stating that

is to be of order T- and of order - in the said region.

The first member of equo (8.1) is seen to be of order .- and the

second member involves terms of the order of % -! and in

the region between i . if £ is small compared to the velocity

scale for the problem, the first term of the second member is

seen to be dominant and an order of magnitude comparison then

follows

and , hence f

& '(§Anc L)
so that E is small of order when A tends to zero. Furthermore,

3
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equ. (8.1) reduces, in first approximation, to

' Z a2; (8.5)

in the singular region. This equation is analogue to the

boundary layer equation in viscous flow theory. It is seen to be

equivalent to the typical singular parabolic equation treated by

Gevrey in ref.8, because -at-- reduces to a constant. It is, of course,

useful to introduce suitable non dimensional variables

and (8.5) then reduces to the Gevrey canonical form

. , ..- . (8.6)

The boundary conditions (8 ..3) in the singular region,

become for tending to zero

f ( , )= gco) -" < 0(8.7)

(taking =x 2 -x.I the origin of the x axis being displaced to

the point x = xl).

This is valid for (o) # 0). If -0) e (O)

but o) j (o) we must write, in the singular region

f* obviously satisfies the same equation (8.6) but the pertinent

boundary conditions are now

(8.8)
P/ - a7 1 A- / - o
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The contribution to from the interaction term

is therefore of order f in the singular region of thicknesse>

and of order nzr elsewhere (i e for (I > £). If we then

compute the influence of the interaction term on the deviation from

free molecule values, for physically significant macroscopic quantities,

such as rL etc., the contribution of the "boundary layer" will

be of the order At/3 and the contribution of the other regions of

order A. The first contribution is thus seen to be the main term

in deviation from free molecule values. This deviation is then

proportional to A1/3 for A' - 0.

The details of the calculations, based on the

solution of equ. (8.6) with the boundary layer conditions (8.7) or

(8.8) will be presented in a forthcoming report.

*i
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APPENDIX I - The Boltzmann Equation for Weak Interactions

We write, using the notation defined in paragraph 1, the

momentum and energy relations for a collision, between molecules

of equal mass

+ 4  -
~~-s2~I* 2~(11

Introducing the relative velocities andy with respect to the

center of mass of the molecule pair before and after collision

(1.2)

we get, from the momentum equation

and from the energy equation

I (1.3)

If we put

(1.4)

(variation of relative velocity caused by the collision), we may

use the following series expansion, which will be useful to analyse

weak interactions, corresponding to small values of IM

2-f + 4- 2
and a similar expression for j-( e/"),replacing by €and by-c

(1) The Einstein summation convention is used throughout this appendix

If an index appears once in a term, one should take the sum of the terms

corresponding to the values 1,2,3 of the index, unless stated otherwise

O. 21 therefore means
i meas 21
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After some algebra, the following expansion is obtained

for the main factor in the Boltzmann collision term

-1 ifjC + 1k -fffj il -

Lff. J { ) +..j -3 - (1.5)

Fig. 1 indicates the geometry of a collision, as observed from the

center of massbf the system formed by the two colliding molecules

(thi6 center of mass of course moves with uniform velocity during the

whole collision process, because of the principle of equality of

action and reaction). 0 is the scattering angle and we have, clearly

~=g-8'= 8cse-i- )-,! / (1.6)

where is a vector perpendi,.cular to . If we assume weak

interactions, Owill be very small and we use the expansions

+ - .. .) .+ (1.7)

Now, the collision term obviously involves an integration

with respect to E, the angle defining the position of the planeTU

of the relative motion (relative to a reference plane). We have,

by symmetry

0

which leads to the important conclusion that no term of first drder

in 0 is going to appear in the collision integral.

In order to compute further terms of this integral, we

need to integrate products of components of with respect to .
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It is clear that many such products will yield vanishing integrals

A mathematical trick greatly simplifies these laborious

computations. Let O be an arbitrary vector, 0< the angle between

the vectorsa., and 5 and the angle between and the projection

of t on a plane perpendicular to & (see fig i)

We may choose the arbitrary origin for the angle to coincide

with this projection so that &= and

The method suggested for the simplification of the

integrals consists in using the following identity, for a product

of n components of (some of which may be identical)

From this, one immediately concludes that

/0

The integral can be transformed into a tractable fozm as follows (i)

/o (
oA o 

0 0 
M0 0

using the identity

The integral can actually be expressed in terms of Bessel

functions but this does not seem useful for the present purpose.
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Computation of the integrals over E of and

then becomes immediate

j_ & I- L LL~ ~ ~ ~ ~(1.8)

( ij denotes the Kronecker symbol = 0 for LJ, 1 for U =3 ).

After integration with respect to we therefore get the following

expansion in powers of 0

M

+-- °(1.9)

The remaining terms are of order 4 or higher

The first approximation for weak interaction therefore

would lead to a collision integral of the form

(I. 10)

(the next term being of order 4)

The dynamics of a collision must now be analyzed in more

detail in order to obtain the relationship connecting the scattering

angle 9with the collision parameter t and the relative initial

velocity I - I . In the spirit: of the weak interaction

assumption, one should again try to obtain an expansion in powers of a

parameter indicating the order of magnitude of the force of interaction
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The first term in such an expansion is very simple for it can be

computed assuming that the trajectories are undisturbed. The final

lateral momentum in the relative motion,01', induced by the central

interaction force F is simply obtained as the total impulse produced

by this force in the direction perpendicular to the undisturbed

trajectory; i.e. ,t

Now,

So that, in the first approximation
2 -1 L

This leads to a singular factor t_ 1il in the integral (I.10) which is,

however, immediately seen to converge (because of the first factor which

involves terms of order It-i and r - 'z)

If F is a power law interaction

F1. K (" s>o)
then f - 0 ( b

so that 0 is proportional to b and 026 proportional to
Therefore, the integral f0cW6 would converge for .S>? and diverge for

0

S,<Z , the second case certainly showing a predominance of weak inter-

actions. The divergence of the integral has to be remedied by considering

a finite cut off distance, as is done in the theory of ionized gases.

We may, of course, consider a force law which would

nowhere lead to strong interactions, for instance by considering

that P is bounded for 7-4 0.
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The collision integral (I.10) is still very complicated, however,

because of the coupling factor

0

which is proportional to 1 - 3' - .Maxwell has shown that this

coupling factor disappears, in. the full Boltzmann collision term,

when the interaction force is proportional to T-5 (Maxwell's

molecular model).

It would, of course, be meaningless to consi4er weak interactions

for such a power law in view of the obvious predominance of the

strong interactions in the collision term.

However, one could imagine a rather artificial interaction

model which would induce in the collision term (I.10), the same

simplification as the Maxwell interaction induces in the Boltzmann

collision integral. In order to do this, one must assume the

interaction force to depend on the relative velocity of the

colliding molecules; i.e. h must be proportional to the cube of

this relative velocity. If we then put

" being now a constant, integration with respect to becomes

feasible in I.10. The derivatives of f, may be eliminated by partial

integration and the terms at the limit will vanish because of

the required asymptotic behaviour off

The following integrals are then seen to appear as

coefficients of f and its various derivatives in I.10

=rL

fff t du.y
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Tb being the number density, VZthe bulk (or macroscopic)

velocity, Zg the stress tensor and C the random molecular velocity.

The collision integralfor this model reduces to

Xii 2. + lg E;I-Yt-Li++6f ~ (.

where

is the Laplace operator in velocity space.

The collision integral therefore appears as a linear

second order differential form in f , the coefficients of which are,

in fact, integrals over f . This collision term is accordingly

still non linear and integro differential with respect to f.

However, the non linearity and integral dependance here appear

through a limited number of parameters, namely the 10 moments I)AIkLd

and Z,,which might produce considerable simplification in the

treatment of this model.



40.

APPENDIX II - Derivation of the Interaction Term Satisfying the

Condition of Paragraph i.

The interaction term is of the form

where A, B, C should. be functions of and simple moments of the

distribution. such as rL, nu', '-rC&

The conservation of total mass,momentum and energy in

presence of an interaction of this type requires the following

integral conditions to be satisfied

A + Bo +C

The derivatives of . may be eliminated by partial integration

(assuming all integrals to exist), and the followiag conditions

for A, B, C are then obtained

f f ) W3 -C C) 11.2

It is inmediately clear that A, B, C must depend on some

moments of f,for if AD B, C were completely independant of -
and 11.2 was to be satisfied for all f Done would be led to a

trivial solution A = B = C = 0

The assumption. that A, B, C are to depend only on M,rfltand P is
equivalent'to satisfying condition 11.2 for all f satisfying the
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auxiliary conditions

UfA = "f 1.3

l%1jit , being considered as given, fixed quantities.

It is clear that these three conditions reduce to two,

because the equatbnsI1.2 are homogeneous and one of the conditions

11.3 may always be satisfied by adjusting an arbitrary factor inj.

We must then reduce 11.3 to a set of two homogeneous conditions,

for instance

11.4

( E-being the mean square of the random velocity4-U). 11.2 must

now be a consequence of 11.4 for all f satisfying only 11.4 . We

thus have

a2A +__ ( L +o' t

_ -F- ~ ~ -c) - ~11.5

where 0(/ q /3 0, Y nd 'are independant of

It is useful to introduce the reduced random velocity

C2

and to combine equatior 11.5 linearly among themselves to get the

reduced system
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ck-A JB* *- - *(C-) L

d-j) - ( 4 4 - N

with

1* -Z~~L~Y - '- ?-' +'G

Combining the equations 11.6 linearly among themselves (with

respective coefficients 2 -1. and i, we get

2 A = -2_-w M N 117

Multiplying the first equation by and substracting the second yields

B~ 11.8

and finally

We must now return to the third condition set in paragraph

i, namely, that the Maxwellian distribution_(g--U')t _ 12-/
j ~ =C =~.E C6= c t1-5

be a solution corresponding to equilibrium, or, in other words, that

substitution of this function in the interaction term will yield zero.

In terms of the unknown coefficients A, B*, C*, this reduces to the

condition

A 1--* -c o 1.10
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Now, according to (11.6) (11.7) (11.8) and (11.9), A, B*, and C* are

seen to be polynomials, the degrees of which are respectively

4, 3 and 2 at most (L-M,'N being quadratic in4 ). According to

(II.10), however, A can only be of degree 2 at most, so that we

must have (see 11.7)

V-o or a/*= 0 /*--o
But the last result shows B* to be a linear function of

(see 11.8) and we conclude then, from II.10 that A must be a constant

(N Con, st.

Introducing the explicit expressions for N and M then yields

and hence

X =- 02A --z

We have thenfinally

A const.

C* = A

These values obviously satisfy the system of equations(ll.6) and

(II.10). Reverting to the original variables and coefficients we

get, for the interaction term

A 2L( (11)

A is'a function of C and rLwhich is taken to be

in paragraph 2.
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APPENDIX III - Hydrodynamic Equations Corresponding to the Model

The following macroscopic equations are immediately

obtained when the model equation (2.3) is multiplied successively

by M1t, lnV and 'fll- and integrated. over the velocity component-,

from - 00 to +00 taking into account the conservation properties

for the interaction term

Continuity +III.

Momentum + L( 4- - 111.2

Energy 2-+"'L 1 1.3

with the heat flux +

9. nvfL 111.4

If we consider a situation for which the deviation from

equilibrium is negligible, the heat flux disappears (forf is then

a Maxwellian distribution) and we obtain the equations of one

dimensional motion for ideal gas with 3 , 3 as expected from

statistical mechanics.

As already stressed, the only effect of a deviation from

equilibrium is the appearance of a heat flux, because no viscosity

can appear in a hypothetical gas with purely one dimensional molecular

motion.

In order to derive from (2.3) a complete system describing

the hydrodynamics of the one dimensional gas, similar to the classical

Navier - Stokes - Fourier equation, a technique similar to the various

expansion procedures applied to the Boltzmann equation will be used

(Cf Ref.2)
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Obviously we require a formula for 4 in terms of the

gradients of the other physical parameters (n, u, p)

To obtain an equation for we transform equ. (2.3) using

the variable C rather than F. This yields

5-7-+(c --+1-F- 7 dCE X (111.5)

1 3

Multiplication of both members by . mc and integration with respect

to C produces the required equation of transfer for . Partial

integrations must be carried out on the interaction term in order to

eliminate the derivative with respect to C. The result is

We now look for a first approximation to this relationship under the

assumption that the space and time derivatives of f are small and

that I is well approximated by a local equilibrium distribution

It is then immediately seen that 4 is a first order term in the

derivatives, (so that the derivatives of and L may be neglected)

and that

'f n c4fd6c Xf O"A

neglecting higher order terms.

But

so that
- I/ _- 7"- , l _ _ 35 (C)

fe'4 rc- ( e cl-
_ / 'v~4
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The first approximation to the equation of transfer for

is, accordingly, given by

2--( n~rtL rnC (= - 3

so that

-I n-CFI -

2- T d ;C, (111.6)

(The temperature T being defined by Equ. 3.7)

Formula (111.6) is equivalent to thp Newton-Fourier law

of heat conduction, the heat transfer coefficient k being given for

the one dimensional model gas, by

2 3,

It is seen to be proportional to the temperature and independent

of pressure, just as in the case of the Maxwell molecular model

with inverse fifth power interaction.

Equation (2.3) is thus seen to provide a dissipative

mechanism for I >0, at least if the disturbance, from equilibrium

is small.

Let us now consider some simple steady state problems

for the model equatinn

In the steady state, equations III.1, 2 and 3 reduce to

24. In- =_
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These may be immediately integrated as follows (see also equ. (5.2) (5.3)

Gt1" . X = YYL A117

( 1  ,i being constants)

The simple heat conduction problem, with U = 0 , is

immediately solved as follows, in the first approximation

/ =z Co- t&'&

and hence

T + T, z, + T7) (111.8)

where TI and T2 are the temperatures at the "walls", located at the

abscissae xI and x2

The ideal fluid approximation (corresponding to = 0)

leads to the classical shock condition, but for the case 3

p, , -+ ==p . 9tC"
~qR Pz

1 + P . zD L

If we introduce the Mach number M, and the speed of sound a

M /CL U / pp

the following relat'ions are easily derived from the shock conditions

4 I (III. 10)
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The detailed structure for a weak shock. may be obtained

approximately by using the first approximation. described by the
0

expression (111.6) for 9 and substituting this in equation (111.7).

We have

RT- n/4 p3

A X

An ordinary differential equation for It is readily obtained by

eliminating RT

(m,/4qA X d( JL7 (3-761L± (

7 must vanish at upstream and downstream infinity, so that we must

have
)f6 W_ ('3i2) Zt + Jt,-2( - ,<u

(this identity can of course be derived directly from the shock

conditions 111.9)

From this identity we also get

and the equation for the shock structure then reduces to

Nt/ x 14X- (23(+ 2 J- (h/3)(R'tR2{)j

It is important to note that we have, in view of II1i0 and

assuming U, to represent the upstream supersonic conditions

U, >. Tk > Ul,, I

and therefore

so that the denominator of II111. is always positive for U, >1A- t4tZ
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This is typical for 3. For lesser values of 6, as

always encountered in physical situations, this condition does not

hold, in general, and one can expect a sufficiently strong wave still

to exhibit purely kinematic discontinuity in its fine structure in

the absence of viscosity, as shown in ref. 13. In the present case,

however, the velocity profile is continuous and given, implicitly

by simple integration of III.11, i.e. (using III.10)

U~ I 81 z 3 -I-) - ,+1 (1(-U)1 P1t)z+const. (111.12)- F + T M"T - 1 2 m1

The first member being a monotonic decreasing function of U.. the plot

of l as a function of x can easily be derived and we have U =U 1

for x =+0oand U =U for x = -oo , which indicates the irreversibility

of the shock-process.
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APPENDIX IV - Application of the Fourier Transformation to the Solution

of the Spatially Homogeneous Case

We use the transformed equation (7.15). In the spatially

homogeneous case, the derivative with respect tof disappears. Further-

more we can always take 'o = 0 and hence, /11-0 = 0, because T{o is a

constant in the present case and may therefore be reduced to zero by

means of a Galilean transformation which does not change the spatially

homogeneous character of the problem. The term ( o)" & ,which

arises because of the linearization does not occur here because the

spatially homogeneous case is essentially linear.

The equation to be treated then reduces to

2-- .c p J
-- = (IV.l)

We first solve the problem using the eigenvalue method, which

reduces here to the computation of the relaxation times and the

corresponding relaxation modes. We thus have to look for solutions of

(IV.l) of the type T

(IV..l) then reduces to an ordinary equation for i ;

lc +C (IV.2)

This represents an eigenvalue problem in the parameter Cr, / representing

the corresponding eigenfunction, as will now be shown.

The general solution of the first order equation IV.2, without second

member is immediately found to be

Y-A e(IV.3)

A being a constant.
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The eigenvalue nature of the problem results from the

condition thatY will be the Fourier transform of a function

which is expected to behave like e- k for large I;I. Therefore

Y(C) exists for all finite complex values of) , because

exists even if CJ has an imaginary part .Y(C)is thus seen to be an

integral analytic function and this is a strong condition on the

solution IV.3. In fact, this solution, in general exhibits a singularity

at O= 0 except for zero or negative integral values of the parameter O-

This remark solves our eigenvalue problem, for we must have

(T = i'7 = .- ) for V = 0, 1, 2,

The corresponding eigenfunctions are

Const (_J (- . v.4)

Note that the auxiliary conditions
0 = f(W-) =

translate, after Fourier transformation, into the simple conditions

-o=o C o r+ £o' =o

These conditions are obviously satisfied for ))? 3, so that the

values 0,1 and 2 must be rejected in IV.4,

As shown in ref 12, the inverse Fourier transforms of these

eigenfunctions are the Hermite functions indicated in paragraph 6.

We now give an alternative treatment, using Laplace

transformations with respect to C and based on a mathematical technique

of interest for more complicated cases-The final formula so obtained

directly shows the positive definiteness of the distribution function.
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If. we apply the Laplace transformation with respect to 't:
CQ

to the function V ,equation V.1 becomes

Cj2 4-CIcO9 (IV. 5)

Again, the general solution of this ordinary differential

equation in ) is immediately obtained as

e A j-4 -~PY /) I Zj(IV.6)
-zW co-p -j

The lower integration limit, which is arbitrary, has been

taken as zero for convenience (as will appear) and this, of course,

corresponds to a particular choice for the constant A.

Just as in the eigenvalue problem treated above, must be an

integral analytic function of the complex variable 6),for all values

of p. This condition will define the constant A.

IWO&J) being an integral analytic function of CJ, we may write,

D Ca) e 12 Z 0/2
y a. (IV,7)

The expression being valid for all6(.

iV.7, then becomes

e A 1 4 TO! CO(IV.8)

For arbitrary , the only singularity appears in the A term,and

therefore (1)

A =0

(i) The simplicity of this condition of course results from the special

choice of lower limit of integration in formula iV.6.
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Going back to the original functionce , we get, using IV.7

2-2t i

cp O (0q Cue (IV.9)

The inverse Fourier transformation then yields the following

integral representation for J (4 W)

Z' - (p c (Ie 2 / S(o,' co e) cu

---- CSf eu
-00

the latter expression resulting from the definition of 9 (0,&.) as

Fourier transform of (0, ).

The above formula may be written as
4e

J(T)JK6~ Z -C) f(al)c (IV. 10)
-- 00

with the kernel

which is the Green function for the problem.

Introducing the variable

-C - = ,.j ,o _ e -2 r
the kernel can be written

2-e _ 2-- e-$

I-& P(IV.ll)
-00

is clearly a positive definitekernel and IV.IO thus shows

that will always be positive if it was initially positive for

all values of
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