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SUMMARY

A one-dimensional model for the Boltzmann equation of kinetic
theory of gases is proposed, in order to study the validity of the usual
approximation method and the behavior of the solutions near the free mole-
cule limit. The interaction term is very similar to the Fokker Planck
term, The conservation of mass, momentum and energy results from the
particular form assumed for the interaction term and the only equilibrium
solutions are shown to be of Maxwell-type, Hydrodynamic equations similar
to the Navier-Stokes- Fourier equations dre .derived in the usual way under
the assumption of small gradients, Shock waves are shown to exist in
supersonic flows.

The distribution function is obtained in the case of a
spatially uniform condition. and the existence of an infinite number of
relaxation modes and corresponding relaxation times is shown.

The linearized versions of the model equation are established
with particular emphasis on the simplest problems of heat conduction and
wave propagation and the usefulness of Fourier transformation with respect
to the velocity component is indicated.

Finally, the behavior of the solutions near the free mol-~
ecule limit is briefly investigated for steady state conditions. Exist-
ence of a singular behavior for slow molecules, analogous to boundary
layer phenomenon, is indicated and the equation is shown to reduce to a
singular parabolic equation studied by Gevrey, in the region of interest,

The leading terms in the deviation from free molecule data
ate found to be of the order of the cubé root of an interaction parameter,
playing a role analogous to the Knudsen number,



1. Usefulness and Limitations of a Mathematical Model

The mathematical difficulties arising in the treatment of
the Boltzmann equation for the velocity distribution function f in a mon-
atomic gas at moderate or low densities are known to be formidable, a fact
which has precluded, so far, the obtaining of any exact particular solution

of interest for conditions far removed from equilibrium,

The Boltzmann equation may be written in the standard form

(ref. 1)

‘_B,Jf+ngax f/ﬂ/ﬂ;;'* _ff17.j2-E) bdbde dTATAES 1.1

t

In this equation, the distribution function f is a (unknown)
function of the variables t (time), Xy» XZ’ X, (space coordinates),gﬂgz)-gg
(molecular velocity components)., In the integral of the second member,
the so-called collision integral, there appear the variables b and £ which
define the geometry of a particular collision (b being the distance of
closest approach in the absence of interaction and £ an angle defining
the position, in space, of the plane of relative motion 6f the molecules
with respect to the center of mass of the system). The dashes indicate
the velocity components of the partner molecule in the encounter. The
stars indicate the values of velocity components after the encounter, so

X X X z/x X Z/X 1
that 5, , 4, /63 69, 5, and z are functions of the initial velo-
city components and of b and £ . Stars and dashes attached to the symbol

f indicate which velocity components should be taken as arguments, The

integral is extended to all possible encounters and all possible partners.

The velocity distribution function f is, of course, defined
in the usual manner as indicating the number density of molecules in con-

figuration space (i.e. the space with coordinates X» X x3,€1 >82 E,.,,),
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so that the number dn of molecules in an infinitesimal volume dxl, dxz,
dx3 of space, centered at the point (xl, Xo» x3) which have molecular
velocity components in the ranges (&, §,+d8)), (&, g, +4E,) and

( ég, 'é,,*rdgg) is given by

d/rl = ‘/(“l > zz /73 121 »zz,is\ A'l( 6{1;415 dil AELA“Eﬁ

It is seen that all the possible mathematical complications
are represented in eq., 1; this equation being simultaneously non linear,
partial differential, integral and functional, It is nbt surprising,
therefore, that most of the available information concerning its solutions
refer almost exclusively to two extreme limiting cases: the near equilibrium
case and the free molecule regime (which is somewhat trivial in that the
second member of 1, which contains all the mathematical difficulties, 1is

neglected).

In the near equilibrium case, f differs but little from the

well known Maxwellian velocity distributiom, given by (ref. 1)

_ n(EW)*
3/2 2

fo =n(271:%?_) e 1.2

Here, n represents the number density of molecules (in the ordinary sens
i.e. in physical space), m the mass of a molecule, T the absolute tempe-

ature, W the macroscopic, or bulk, velocity and k the Boltzmann constant.

Different linearization or expansion techniques are appli-
cable in cases where f is closely approximated by this Maxwellian distri-
btion, the best known being, probably, the Chapman Enskog expansion (ref. 2).
This technique assumes small gradients for the macroscopical quantities
(bulk velocity, density, pressure or temperature) and lead to the classical
Navier-Stokes-Fourier equations as a first approximation, describing the

so-called continuum flow regime.



At the other end of the range, the free molecule regime,
the collision term becomes negligible, and equation (1l.l) reduces to a near
trivial first order differential equation, The interaction between mol-
ecules and solid boundaries then represents the central problem but no

major mathematical difficulties are encountered.

All other regimes, between the two extremes quoted, require
a full treatment of the Boltzmann equation, Usually, a distinction is made
between several such regimes: slip flow, transitional regime and near free

molecule flow (ref. 3).

One must also be aware of the fact that equation (1.1) only
accurately describes monatomic gases, and should only be considered as a
physically simplified model for the complicated behavior of the technically
important diatomic gases. In many attempts at solving eq. (1.1), one goes
even farther than this and assumes a particular interaction potential for

the molecules in order to simplify the collision term.

These particular potentials are sometimes very far from
realistic. The most spectacular simplification, as already indicated by
Maxwell, occurs when a repulsion proportional to the inverse of the fifth
power of intermolecular distance is chosen (ref. 2). This Maxwell molecular

model is not realistic either.

However, it appears that no physical model will lead to a
collision term simple enough to allow an exact solution to be obtained in

the general case or in non equilibrium cases of practical interest,

Many important mathematical questions appear in connection
with equation 1, such as its behavior in the yicinity of the free molecule

regime, the validity of expansion procedures and of several important
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approximative methods., Such methods are usually introduced without attempt-
ing rigorous mathematical justifications (see for instance, Mott Smith's
treatment of the shock wave in ref, 4 and Lee's discontinuous distribution

function technique in ref. 5).

It seems, therefore, that a mathematical model without
immediate physical significance, but which would present most of the main
features of eq. 1.1, would be valuable if exact solutions could be obtained

for significant cases.

First of all;, one should know what are the most significant
features of equation 1.1, from the mathematical standpoint. This is not

easy because so little is known about the properties of the solutions.

The mathematical model studied in this report presents the

following basic properties in common with eq. 1.1:

a) It has the same structure, involving space and time

derivatives in the first member and a "collision term' in the second member.

b) There are collisional invariants as in equation 1 (the
number of molecules, the momentum and the kinetic energy), so that a set

of hydrodynamical equations may be derived in the usual way.

c) The only equilibrium solutions are also of Maxwellian

type, as given by eq. 1.2,

d) Though no property analogous to Boltzmann's H theorem
(ref. 1) could be obtained for the model equation, it appears from its
analogy to the Fokker Planck equation (ref. 6) that the collision provides

a dissipative mechanism,



e) The boundary conditions that have to be imposed in order
to define a solution are the ones that would be physically encountered for

an actual gas kinetic system.

f) It can be shown (see paragraph 4) that the model equation
exhibits an infinite number of relaxation times, just as the Boltzmann
equation (a condition that is not satisfied, for instance, by the simple

Krook model of ref. 7).

These appear to be the widest possible similarity to the
Boltzmann equation one can hope to obtain using a reasonably simple mathe-

matical model (as distinct from a physical model).

One of the difficulties one pight fear because of the
absence of direct physical meaning, is that solutions for f corresponding
to reasonable boundary or initial conditions would turn out to be meaning-
less because f would take negative values in some regions of the field;
or exhibit singularities. The same difficulty, of course, could arise in
applying approximate methods which are not mathematically justified to

equation 1.1,

However, the analogy with a Fokker Planck equation again
enables one to hope that negative f values will not occur in solutions
corresponding to physically acceptable boundary and initial conditions
(i.e.conditions defining entirely the solution and such that the initial

and boundary values of f are everywhere positive).

It is possible, of course, that the positive definiteness

* It is clear that such difficulty could never occur in a small disturbance
treatment where f = fo + O f and fo is always positive and lﬁfléij;
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of £ could be proved for the model and for all valid boundary and initial

conditions but such a propf has not been attempted.

Attempts will be made to obtain exact solutions for boundary
and initial conditions of physical interest such as steady heat conduction,
wave propagation, steady shock waves, etc. The behaviour close to the free
molecule regime and the validity of the usual approximation methods will

then be studied.

2. The One Dimensional Model

An important simplification of eq. 1,1 would arise if a
fully one dimensional situvation could be considered., This would lead to
the physical model of a system of molecules restricted to move on a straight
line, say, the x1 axis. The number of independent variables would then be
reduced from seven to three in the general case and from six to two in

stationary situations.

However, such a model is useless if a physical collision
process, with the usual conservation of momentum and energy, is assumed,
Simple exchange of velocity would then occur for each collision ( E?? =€ﬂ
and ? = 51 ) so that the collision term would be identically zero (a

one dimensional gas is therefore always in the free molecule regime!l).

The relaxation of one conservation condition could, perhaps,
save the one dimensionsl model. However, with the energy condition dropped,
one cannot expect a Maxwell type equilibrium distribution to exist, while
on the other hand, to keep the conservation of energy and drop the conserva-

tion of momentum does not seem to lead to clear physical interpretations.



It thus appears that no simple one dimensional physical model

can be imagined,

The mathematical model proposed here is suggested by the
study of the Boltzmann collision term for weak collisions. This term, which
turns out to be quite comparable to the Fokker Planck interaction term used
in the treatment of ionized gases (ref. 6), is mentioned in ref. 1 without

details ‘or reference to other papers.
This term is therefore calculated in appendix I,

Initially, it was hoped to use the weak interaction term
and some further simplifications (involving quite eccentric interaction
laws, as shown in appendix I) in order to obtain a simple physical model.

The resulting equation is still very complicated, as shown below

— N NE.—0 )+ T 125
f) 2 An 47l ~ 2 [l T 2E o fe.
%fﬂzgw’ﬁ L Ao} b % I
where :X,is a parameter depending on the law of interactionﬂmﬁggmthe stress
2,
tensor and 15@§=2:2i is the Laplace operator in the velocity space. <

ITL
denotes the random velocity of the molecules:

This equation 1is again a non linear integro-differential
equation for £, but the integral aspect is simplified by the fact that
only a finite number of 'moments' appear which involve integrals over f,

namely the ten moments

n-= Hf :}l: d§4 dg:.Agb
nui=fff {5, 48,48, dE,
n -C:Z; =IH )C Ct q d§1 AE):«Aé.’»



We have then tried to obtain a one dimensional mathematical

model of similar structure namely

9_.f A;gz B”é + Cf (2.2)

where A, B, C must be functions of E; and simple moments such as n, u and

Z;'“rft =~_Z”Jf.czd§

The only significant difference with (2.1) appears to be
the acceptance of a first derivative with respect to the velocity. It is
not clear whether this has a particular physical or mathematical signifi-

cance,

We now require conditions (b) and (c) of paragraph 1 to be
satisfied, i.e. that eq. 2.2 would satisfy the conservation of number of
particles, momentum and energy and that the equilibrium solutions (i.e.
solutions of the equation obtained by equating the collision term to zero)
would lead to a Maxwellian distribution (1.2). As shown in appendix II,
A, B and C are entirely defined by these conditions up to a common factor.
Logically, this factor could be a function of n and CZ (not of u, of

course, because of the principle of Galilean relativity).

Physically, one must expect that a collision term , involv-
ing pairs of molecules, should be proportional to the square of the density.
The factor is thus written as )vrb » Where Q, may b€ a function of ¢t
For simplicity we will take a constant value for this parameter. The

resulting equation then becomes

32_[ ﬁ ,ln{'cf%+(g—u)%+f} (2.3)



with
f)\ = Const.
o0

fn__-]f;{g , M jf@d@ and nzz,—.f § ¢*dE (2.4)
Yo —~ ~v

This is the mathematical model we intend to study. The
interaction term is very similar to the Fokker Planck term, except that
the coefficients of the derivatives involve integrals of the distribution
function which greatly complicate the mathematical nature of the equation

by making it non linear and integral.

3. Basig;properties of the model equation 2.3

Equation 2;3 has been obtained under the conditions that
the number of molecules, momentum and energy are collisional invariants.
This means that the '"collision term" has no global effect on total density,
momentum and energy. Integration over the velocity ‘E , of equation 2.3,
when multiplied successively by M, MZ , and m%’ yield the usual

macroscoplc equations of continuity, momentum and energy.

P  den 2n . 9n
—_— —_— r d¢it Lt
€t 9z °° C 2 " 9z =o) @

z
dpw  2pw 3p _, (or U nut InE )

ot x % 7€ ox T 2z 7° (3.2)

=

It 2% 7t 2%

QPSR | DR 30pid) (W), WL HErod) ),
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Where the density ’) » the pressure p and the heat flux d

are defined as usual in kinetic theories:

400
p;mn=mjf fd& (3.4)
20
p=mne. mf { dE (3.5)
—o
. — +2°
C]%"”‘Mj”’\_ff%s”(g (3.6)

Equations (3.1), (3.2), (3.3) are entirely analogous to the
system of equations describing the one dimensional motion of a hypothetical
gas with a ratio of specific heats 3’ equal to three* and without viscosity.
It is clear that viscosity cannot occur in purely one dimensional molecular

motions.

Temperature may be defined, of course, through the funda-

mental relation of statistical mechanics:

'% 'ktp = average kinetic energy of random motion for a molecule
= & / i‘mC"f&(% , so that the usual equation of state for a perfect

gas applies:

79: ’O'ET. (3.7)

The only deviation from ideal fluid flow results, in the
absence of viscosity, from the presencé of the heat flux term in the

energy equation.

* This is, of course, the value to be expected, from statistical mechanics,
for a gas with molecules having only one single degree of freedom (i.e,
translation along the x-axis).
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The macroscopic equations (3.1), (3.2) apd (3.3) are studied
in more details in appendix III, where the corresponding Navier-Stokes-
Fourier equations are derived in the usual way, as a first approximation

 for small gradients. Also, the existence of a shock wave is shown, and
its fine structure analyzed according to these Navier-Stokes-Fourier type

equations.

In appendix II, the condition that the equilibrium solutions
be of Maxwellian type was used to obtain a necessary condition for the
coefficients. We must now analyze whether this condition is sufficient

to ensure that these are the only equilibrium solutions.

The equilibrium solutions must satisfy

c* ?—- +( w) + {cbai+( -uf} =0
and the general solution of this ordinmary linear differential equation for

f is immediately obtained as

_g-w? cz-u)‘ J _ g

f‘ ¢ € pe 'f‘cze“:L = AZ’

Cl and 02 being arbitrary constants.

The second term is of course a particular solution of the

non homogeneous equation

g+ %f‘cz

which is readily seen to be unacceptable. Indeed, f£f must tend to zero

af
ag

asymptotically like clii/ﬁg for large IZ;I and the momentum and total

for large values of [Eland so0 must Therefore, £ would behave

energy would diverge.
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We may thus conclude that all meaningful equilibrium solu-

tions of eq. (2.3), ylelding finite density, momentum and energy must be
of Maxwellian type.

4. Mathematical Nature of the Model Equation

The model equation (2.3) unfortunately exhibits some basic
mathematical complications in common with the full Boltzmann equation as
well as with some other models extensively used (such as the Krook equation

of ref, 7), namely in being non linear and integral.

However, one can imagine a procedure for solution which
formally bypasses these difficulties, because they both arise from the
appearance of the parameters n, u, ct in the coefficients of the equa-

tion.

If one observes, then, that equations (3.1) and (3.2),
resulting from (2.3), provide two equations for these parameters, one can

visualize the following formal procedure for a solution.

Assume a given set of initial and boundary conditions, suf-
ficient to define the solution f. The character of this set is of course
defined by the mathematical nature of equation (2.3), considered as a
partial differential equation for f, whatever the nature of the functions

m, W, v , 0 being essentially positive, The linear partial dif-
ferential equation in f can then be solved for arbitrary functionS'n,L&,E:

and the resulting function f will be a functional of 71,1&,6:

§- B422;5 n,u )

Writing 1 -
ne L Ft,2,850,u,6%) dE
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we get a functionsl equation which is expected to completely definefnfu,zr

when coupled with the two differential equations (3.1) and (3.2).

One could, of course, also devise an iterative scheme,
whereby n, for instance, is chosen arbitrarily, or better, realistically,
W, ¢t calculated from (3.1) and (3.2) and the resulting set 1, wn, cr
substituted in (2.3) and the resulting linear partial differential equation
solved for f taking into account the boundary conditions. NL)IL,ét' are
then recalculated from this function and the process repeated indefinitely,
In order to justify these procedures, one must of course analyze the nature
of the functional relationship between f and fn,ﬁk,af in the first case,

or the convergence in the second case., This has not yet been attempted.

However, if one assumes at least one of the precedures to
be valid, the study of the boundary énd initial conditions pertinent to
the problem may be made for equation (2.3) comsidered as a linear partial
differential equation for £, assuming m,6 W, C* to be known functions of
x, t (with the restriction that m and ¢~ should always be positive). If
these functions were constants, equation (2.3) would reduce to the standard
Fokker-Planck equation, and it is therefore likely that the initial and
boundary conditions suggested by the physical origin of the equation will
apply. These are, of course, the same as would be considered natural for

equation (2.3).

The question of boundary conditions is analyzed in more

detail , for the steady state case in the next paragraph.

5. Mathematical Nature of the Model Equation for Steady State

For steady states (f independent of t), equation (2.3)

reduces to
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'gg ﬁn{cb ggLME - 5= o —rg‘} (5.1)

Furthermore, (3.1) and (3.2) simplify to

9,221%9;0 or nu - A (5.2)

a&%ﬂizo v T B (5.3)

Hence mA represents the mass flow and mB the total x-impulse (momentum flow

plus pressure),

Finally, equation (2.3) becomes, in the steady state
ggf = 1{ (B- Az)—fﬁ( g-A)L +n)‘} (5.4)

with the auxiliary condition
+0
n- [ fdg (5.5)
-00

The constants A and B must be determined after solution by

solving the equations(for some particular abscissa xo):
4% =
- [ fo,EABHE B ({5 AB)AE

This is a set of two equations for the two unknowns A and B.
If, in view of the formal procedures described in paragraph 4, one may,
for a moment, consider n as a given function of x, the equation (5.4) is

seen to be a partial differential equation of parabolic type. However, it
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differs from the simplest and classical equation of this type, the heat
equation, by the very important fact that the sign of the coefficient of

gi changes in the field (for we have of course always to consider the
fu?l range (—OO, +oo)of values of g )*. Gevrey (ref, 8) who appears to
be the first (and, to our knowledge, the only one) to have dealt with such
parabolic equations involving a coefficient with variable sign, calls them
singular parabolic equations. He also shows, in his fundamental paper,
how the usual boundary problem pertinent to the classical heat equation must

be modified in the caée of singular parabolic equation,

Before quoting his results,.let us first stress that the
space variable x in equation (5.4) plays the role of the time variable in
the heat equation (because it appears in a first derivative only), while
the molecular velocity Z; plays the role of the space variable in the heat

equation (because it appears in a second derivative).

The simplest boundary value problem for the heat equation
(which corresponds to the simple infinite "wall" problem) consists in
giving the values of the unknown function at some initial time and also
at two boundaries (both sides of the "wall’) at all subsequent times. In
the case of eq. (5.4) this would correspond to giving £(0O,% )) and £(2,& )
for two values of T, . Here, however, the normal boundaries for & being
£+ 00 , the boundary conditions become a condition about the asymptotic

behaviour of f for large absolute values of E, , as already mentionned.

An important remark will immediately show the difficulties
connected with the singular parabolic equation: the heat equation cannot,

in general, be solved backwards in time.

* In order to keep the usual meaning of the parameters, ‘AN Cc* should of
course always be chosen positive.
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Indeed, if values for the unknown functions are prescribed
at some final time, as well as values at two space boundarles at earlier
times, then the solution will be found to break down immediately, unless
very speclal final values are chosen. This can be shown easily by using
a Fourier series expansion of the solution in terms of the space variable.
The coefficients of. the expansion are found to be exponentials in the time
variable, increasing for decreasing time and with an exponent increasing
‘very rapidly with the order of the harmonics (the solution will therefore
exist in a finite region of decreasing times, only if the number of initial
harmonic components is finite or 1f the amplitude of the harmonics decreases
sufficiently rapidly when their order is increased). This phenomenon is,
of course, connected with the extreme ''smoothing" that heat conduction

produces on temperature distributioms.

This remark shows then,that a classical boundary value
problem, with one initial and two boundary conditions, cannot be solved,
in general, for a singular parabolic equation, because the phenomenon just
mentioned would certainly occur in the region where the coefficient of the
time derivative* becomes negative, which is of course equivalent to a

change of sign for the time variable or a permutation of past and future.

Gevrey shows in ref. 8 that the standard boundary value
problem for singular parabolic equations must,as expected,be modified as

follows:-

In the reglon of positive coefficient, initial values (for

some time tl’ say) must be given, as well as a boundary condition for a

* When referring to this coefficient, we always assume of course that the
coefficient of the second derivative is equal to one or, at least, posi-
tive.
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value of the space variablefor t > t In the region of negative coef-

ficient, final values (for some t2 :>ltl, say) must be given, as well as
a boundary condition for a value of the space variable for t < t2.
The main problem arising in the solution is then seen to be
a matching problem along the "singular” line, where the coefficient vanishes.
Indeed, assuming arbitrary values for the unknown function on the singular
line, one can obtain the solution in the region of positive coefficient just
as in the classical heat conduction problem (because the initial values are
given, as well as two boundary values) and the solution in the region of
negative.coefficient can be obtained similarly. However, we have to satisfy
a matching condition along the singular line, because the normal derivative
‘for both solutions just described must be equal at all points of this line.
This condition can be written as an integral equation involving the unknown
values on the singular line which are then obtained by solving the integral

equation.

In the particular case of the model equation (5.4), thesing-
ular: line corresponds to & = 0 and is ©of course the x-axis in a x, E;
diagram, The normal boundary conditions are, as already stressed, replaced
by conditions defining the asymptotic behaviour of the distribution function.
This, again, may be considered as a condition for §A= +00 and another
condition at éy;- o0 , The boundary conditions for the Gevrey problem

must then further include the values of £ at a certain abscissa x for the

1’
positive values of the velocity E, , 4as well as the values of f at another

abscissa x2> x1 for the negative values of i .

This is of course completely in agreement with what would be
suggested by purely physical considerations, Consider a finite'linear

volume" of one dimensional gas, on the segment xlx2 say, and the boundary
conditions at the two solid "walls™ at x = X, and x = x2. Interaction
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between the molecules and the solid walls may be very complicated, but will
always lead to an expression of the velocity distribution of the outgoing
molecules in terms of the distribution of the incoming molecules*., There
is, however, no mechanism described in the kinetic equation or in the
boundary conditions which enables the walls to confrol the velocity of

the incoming molecule, for this wculd involve action at&ﬂistance. Accord-
ingly, the conditions introduced by wall effects only affect outgoing
molecules, so that for the wall on the left, at x = X, e will obtain
information about the distribution function of the molecules with & > 0O

and at the wall on the right, at x = x2>> x., information about the

’
distribution function of the molecules with 1€<CC>. This is similar to
a Gevrey problem. Of course, the situation is much more complicated here,
in that we must, in general, consider relationships between the values of
f for positive and negative g at the walls, and only in the case where
complete accommodation is assumed (i,e, outgoing molecules have no memory

of their condition at arrival) do we get the simple Gevrey type boundary

conditions,

We may, however, conclude that the model is very satisfac-
tory from the point of view of the nature of the pertinent boundary value
problems for the steady state, which are in complete agreement with the
physicél nature, This again could be expected from the analogy with the

Fokker~-Planck equation,

6. Unsteady Spatially Uniform Solutions for Equation (2.3).

It is interesting and comparatively easy to examine the

solutions of (2.3) depending only on t and Z; but not on x, i.e., the

* For instance, through an integral relationship involving a stochastic
kernel, as described in ref. 1.
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solutions uniform in space. This will enable us to show that the model
equation exhibits aninfinite number of relaxation times and modes. The
problem, in itself, has, of course, little physical significance, for the
corresponding initial conditions (i.,e., a non Maxwellian initial distribu~
tion of f, uniform in space) cannot easily be created and does not occur

in practical cases.

The analogous problem has been treated, for the Boltzmann
equation, and for the Maxwellian molecule model by Maxwell (ref. 9) and

also involves an infinite number of relaxation modes.

In the spatially uniform case, the macroscopic equations

(3.1), (3.2) and (3.3) reduce to

5é?==0 5 é%é3=<9 and %%é§:=43

so that n, u and C* are constant and equal to their initial values, and

equation (2.3) thus becomes linear,

We first introduce the non dimensional variables

- L
ZT=2Ant z - Bk €6.1)
ﬂ cr
(reduced time and random molecular velocity) and obtain the following sim-

plified version of (2.3):

2f _

7= s (6.2)

while the auxiliary conditions, defining u and ¢t as integrals over f, may

be written
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f (1-T*) #dZ =0 (6.3)

[ zaz -0

(6.4)

(Tha equation defining n is irrelevant because the solution f will always
involve an arbitrary constant factor which can be adjusted to obtain the

correct density).

There are, of course, boundary conditions for 7§==inao
in that f must tend to zero for large yg\ and that the momentum and

energy integrals must converge.

The resulting mathematical problem turns out to be entirely
analogous to the problem of computing the wave functions for the quantum

mechanical linear oscillator (ref. 10).

The problem is treated in a different way in appendix IV,
using a Fourier transformstion with respect to the velocity variable E;g
because this technique proves to be useful for the study of the linearized

model equation (see also paragraph 7, eq. 7.15).
The general solution of the problem is given by

. _i i )
]( = € z { Ao + q Hl(Z)e-t+ a&Hz(C)é‘ lc.',... +Q, Hn(z;)e ne }

where Hn is the Hermite polynomial of order n (ref. 11)

Hi@)<T  H(g)= §*~1 etc.
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The auxiliary conditions must now be taken into account,
Multiplying the solution obtained by 7: and ( Zz“-i ) respectively and in-
tegrating between gs-ao and §==+00 yield, because of the ortho-

gonality properties of the Hermite polynomials (ref. 11):
+92 e
S CFAT = [ HERIf4E N a e F
i 150 sz
S @47 - [ HQ)FAT 20w 4 e

- 00

The auxiliary conditions therefore imply
&, ‘dz =0

The other coefficients, ao) A, etc. are well defined

43)....
by the initial condition

f-flog)  for E-0

-5
because of the fact that the functions € /‘/n(Z:) form a complete

orthogonal set,

Hence, it is clearly seen that the function £ tends to a

Maxwellian distribution, 2

for t —»e0 , and this tendency is characterized by an infinite set of
relaxation modes, each of which has its own relaxation time. The relaxation
times are, in decreasing order

4 T
tz‘ﬁ;\)t%’bjn) etc,

1
t"sﬂn’

and correspbnd to faster and faster relaxation. The relaxation times are,
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as expected, inversely proportional to the number density.
It is also seen, from the form of the solution obtained in

appendix IV, that f remazins positive definite if it was initially positive

definite.

7. Remarks on the Lipearized Tregtment of Equation (2.3)

It is useful to attempt the solution of linearized version
of complicated equations before attacking the fully non linesr cases. In
the case of the modal equation (2.3), as in the case of the Beltzmann
equation the simplest example of a spatially non uciform linear problem
occurs when considering a small, steady disturbance of an equilibrium,
Maxwell distribution, of the type

_Em)®
J[o === e z-u:;

e

o Cr

fo may be a spatially pon uniform function if M, , U, snd (5 are considered
to be functions of x (local Maxwellisn digtributimn. See, for instance,

appendix III).

3

We assume, herve, thai N, Uo and &% are constsnis so that
we study disturbaaces from an absolute equilibrivm (uoiform initisl condi-

tions).

In this czse we write, as is usumal
/ / :
f‘f.,+f , Mm=m,tn U, CaCFCT

4

where £', n' and (¥ are disturbances, which must be considered uniformly

small compared to the corresponding equilibrium values £ , n and G*
c’ o

while the non uvniform bulk velocity component u' is limited by the condition
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W<z

a condition which may be expressed by saying that the Mach number based on

the velocity disturbance must be very small,

The linearized version of equation (2.3) is obtained by

neglecting the terms of order higher than one in the disturbances:
+’é2i ﬂn‘,ic;f +(z- uo)f’+ff+l’,@lc)][§ +[ng - (”“).M,gm'f} (7.1
Equations (3.1) and (3.2) become
M w)
5t 5z o (7.2)

o’ gl Hnd)T _
7t 27 (7.3)

If we consider the steady state case, the time derivative

drops and the equation (3.1) and (3.2) give

(w'= A (7 .4)

—_/ /
'+ (né®) =B (7..5)

It is clear, however, that by a suitable choice of the
reference values M, 6 W,, E;: , one can make A' and B' vanish, which
yields

(m»)': Mol + MUy = O

~ P
) + &) = ) Uo 4 Howot'+(ME)' = O
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so that, with this choice of reference values

/ (/(-o /
L - — 7.6
M = no n ( )

@F)/=’mu°u,= ug n’ 7.7)

It is useful to introduce the non dimensional variables

T-Ant

Z: g = Q_Mi_
D V-Z—L 2 ’Y] W (7.8)

as well as the parameter N', related to n' by

oo
N'=€——_’=_* - [ {'dg (7.9)
[ —o0

The reduced equation then becomes

"X

94 QJZ/‘ ! tor! ( 2\ 72 L et
5?+Z§77—- )%7‘4772#-#!\1(((/@4)5 Molt i, 1)Z+1-/¢«o‘}—r; (7.10)
where )Aﬂ is a non dimensional parameter, given by
/Ao = Ko (7.11)

which is, of course, closely related to the Mach number (M: Z—tf—z %)

In problems, such as heat transfer, where no bulk velocities
exist, we must, of course, take /Mozo so that the equation is slightly
simplified to

23[ };7‘ J[ ZJ[ 'l‘][‘f'N://"Zl ev— (7.12)

2

N"\
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The Fourier integral transformation with respect to the
(reduced) velocity component & , as used in appendix IV, also provides
a simplification in the actual case. Let © be the Fourier transform of
f', which exists in view of the fact that f must tend to zero for large
values of ]’Ql in the case of physically valid solutions. We have

4”

W’)»f)w)- ff(n,r,é)e‘ Jl/n, tz)- [<,oe S (7.13)

We then transform the equation, taking into account the fundamental pro-~

perties of the Fourier transformation (ref., 12)

ngo ("/ (az)e-wzﬁ(g / ‘Q_c'.)'\f:'/(;f) -wd( (7.14)

and obtain
—wt

9”c 9?3) +0 22 1@ = @, Ho)fli-p) W ipu(ip ) € 5, qas

Using the obvious formula

N”-_f 14T = ®m ¢ (1,7, 0) (7.16)

and the fact that the function e_ Z {s invariant under the Fourier

transformation (ref. 12).

In the case of a steady state, it is seen that the singular

parabolic equation is reduced to a hyperbolic equation.

The simplest physically significant problems that arise in
connection with these equations are the steady state heat conduction pro-

blem and the wave problem.
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In the steady state heat conduction, one assumes WU, = O
(and therefore /Ao = O ), so that the following direct and trans-
formed equations have to be used

2

/ i 17
T etk N(-2) &, N iz aap

-

'9(0 N T _ T~
1'Z;q+&)JQ rw @ = @0 WE * (7.18)

i€

If the heat conduction is treated for a finite amount of gas

between two walls, at N="1 and N =M. >7]1 5 the correspond-
ing boundary conditions would be of the type

$1n,,8) < 9,(3) for T >0
(7.19)

f/(”lu z)- gL(Z) for 4 <o

Usually, one would assume that the moleculegsreflected from
the wall are completely accomodated, thermally, with the wall. If the
reference values m,&f are chosen to correspond to, say, the conditions at
* the wall at 7] ='rh , we would then have the simplest set of possible boun-

dary conditions

/
jf’/»r,”g):o for T > o
o 72 (7 .20)
NMMo 2z
f//']z,) nt 3,_ e 2 for T <O
The value for gL[Z:) is arrived at by writing the Maxwellian
distribution 7[2. corresponding to the parameters 'nz'—'%of()lz,'”o)) C':"—C:’_f{(;‘_-g'*)

and computing the first order term of £, -~ fo’ taking into account the (in-

2
tegrated) macroscopic equation
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’Yl;/Ez?=m®a;

The treatment of the equations for linearized heat conduc-
tion still appears to be very involved.

Results obtained in this direction
will be published shortly.

In the wave problem, one investigates unsteady sinusoidal
solutions of the form

a/ cY T+
#_ 9(z) € A1 (7.21)
where ? (Z;) is an amplitude function, This is expected to lead to an

eigenvalue problem, yielding, for each value of the frequency 2 , Lo an

infinite set of propagation modes. We have, of course

el o

(7.22)

where a is the speed of sound for a particular mode and ¢ the corresponding
‘attenuation.

The equation for 9(;9 becomes (assuming the medium at rest,
and hence /,44, =0)

#mo _5"
+Tge+(1-v=pZ)q + [ [ g4T] (1-7°) E_—.
7 7+ —

and the transformed equation simplified to a first order equation

@) (7.23)

(w0+ BV, 4 (0iin) ¥ = Yio) wte ®

(7.24)

where k#/ is the Fourier transform of g.

The reduction in order of the equation from second to first
brought about by the transformation is of course very useful, for the
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solution of the latter equation can be obtained at sight. It 1s therefore
interesting to note that this reduction corresponds, here, to the rejection
of [physically) meaningless solution types. We already noted, in paragraph
3, that there are two types of equilibrium solutions, one of them being
rejected because it leads to infinite total momentum and energy. It is
easily seen that this is just the t?pe of function for which the Fourier
transformation of the equation is notallowed, because terms such as Z;f.

lead to diverging transforms,

The Fourier transformation thus automatically eliminates
the unacceptable solutions and a corresponding simplification of the trans-

formed equation had to be expected,
The simplifications are not so obvious in the general case.

The compléete treatment of the wave problem will be presented in a companion

report.

8. Preliminary Remarks on the Near Free Molecule Repime

One of the most interesting and difficult problems arising
in the application of kinetic theory to aerodynamic problems is the study
of the near free molecule regime, or in other words, thke way in which so-

lutions of the Boltzmann equation behave for very large Knud€en number,

The use of the model to clarify the situation is therefore

indicated.

Actually, we cannot strictly define a Knudsen number for the
model, because the collision term cannot be interpreted as representing two

body collisions and the notion of mean free path therefore disappears.
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However, it is clear that the free molecule regime
corresponds (for given boundary conditions) to a vanishing A. We must
therefore study the behaviour of solutions corresponding to given

boundary conditions for x tending to zero.

The following remarks concern the model equation for
steady state i.e.

. )n{ﬁggﬁ(g-@j—% 4]

8.1)

which reduces, for A =0 to

8.2
2f _ ®-2

2T
It is clear that the type of the equation entirely changes for A =0,

so that one has a singular perturbation problem for small A .

Let us consider the simplest case of heat conduction
between two walls at x = xl)%x2t> xl) (u = 0). The physical boundary
conditions are known to be of the type (Cf 7.19)

f(%,8)=9,(8)  for T>0

f,%)- 4.(5)  for Teo €
and the corresponding free molecule solution, (for A = 0), is of
course

f(x €)= (9,(8)  fr E>o
WE)  for <o eo
In general, we therefore expect singularities (discontinuities of or

its derivatives) at C? = 0. The approximation for the free molecule
solution must therefore break down in the vicinity of §?= O in this
simplest case. A small region will exist there, say fromé =-& to

Q% = 4+ £, where the interaction term still has to be taken into
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account. The situation here is quite similar to the one leading
to the occurence of boundary layers in fluid flows with small
viscosity, where viscosity terms still have to be taken into account
in regions of small extension “tlose to the walls (as well as in the

wakes),

One can readily evaluate the importance of the region
where the interaction term is important, using an order of magnitude
argument similar to the one used to compute boundary layer thickness

in terms of Reynolds number in viscous flow theory.

Let L be a length scale for the problem at hand. We would
2f '

take L = x2 "X in the heat conduction problem. We then assume 3%

to be of order %} (this in fact, leads to more rigorous definitions

for [ : L = max l Ty | s for instance). Let £ be the width of the
region around the llneg = 0 in which the interaction term is important.
The definition of & alqo has to be made more precise, by stating that

of 2% 5
z;g‘ is to be of order zf and 95” of order i in the said region.

The first member of equ.(8.l) is seen to be of order £-I: and the

second member involves terms of the order of Qna—zg; and qylf in
the region between é?= + & . If € is small compared to the velocity
scale J%% for the problem, the first term of the second member is
seen to be dominant and an order of magnitude comparison then

follows :

c‘:i N;\nﬁi
L EL

£ o (nEL)”

1
so that € 1is small of order g‘ when A tends to zero. Furthermore,

and, hence



31.

equ. (8.1) reduces, in first approximation, to

st
a%z q””a%a' (8.5)
in the singular region. This equation is analogue to the
boundary layer equation in viscous flow theory. It is seen to be
equivalent to the typical singular parabolic equation treated by
Gevrey in ref.8, becapsa ncv reduces to a constant. It is, of course,

useful to introduce suitable non dimensional variables

. X

S —

E  (amEL)" L
and (8.5) then reduces to the Gevrey canonical form

— 25 _ 2%
D (8.6)

=.%._5 X

The boundary conditions (8,3) in the singular region,

become for A tending to zero

o =) =94(0) for = >0
f(14 =) = 9,¢0 for = <0 (8.7)

(taking { = x2 "X s the origin of the x axis being displaced to
the point x = xl).

This is valid for ?, (o) 5&%[0}. If g;éo) = ngo)

but 7//(0) #* gL/[o) we must write, in the singular region

f =g +f"

f* obviously satisfies the same equation (8.6) but the pertinent

boundary conditions are now
ffq:a):(gt%lgoaf_ for \= >0

(8.8)
J%-@ EE): (g%?,g E = an* =<0
=0
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The contribution to f- from the interaction term
is therefore of order f‘ in the singular region of thicknessé?,
and of order q"ﬁzL elsewhere (i e for Qﬁ] >> ¢£). If we then
compute the influznce of the interaction term on the deviation from

free molecule values, for physically significant macroscopic quantities,
[ 3

such as 71,22,q etc,, the contribution of the "boundary layer™ will
be of the order Aﬁl3 and the contribution of the other regions of
order A. The first contribution is thus seen to be the main term

in deviation from free molecule values. This deviation is then

proportional to 31/3 for A -3 0.

The details of the calculations, based on the
sclution of equ. (8.6) with the boundary layer conditions (8.7) or

(8.8) will be presented in a forthcoming report.

t
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APPENDIX I - The Boltzmann Equation for Weak Interactions

We write, using the notation defined in paragraph 1, the
momentum and energy relations for a collision, between molecules
of equal mass
> - = 2

¥ 1 % i

?i %;Y; = 2;4—3; .
2x) ZI%2 Zo S (I.1)
EHLEFLTNLE

Introducing the relative velocities 8 and §* with respect to the

center of mass of the molecule pair before and after collision

o> = Tx —Q;;zéé

NL.ﬂ

we get, from the momentum equation : 5
g*_é . (g/x_%/) - é*_g

and from the energy equation
— -

If we put
>

553

(variation of relative velocity caused by the collision), we may

(I.4)

use the following series expansion, which will be useful to analyse

weak interactions, corresponding to small values of | l(l)

500 O, £ 0 F o AT AR e

and a similar expression for j:( g’ *),replacing g by gland aby -QS

(1) The Einstein summation convention is used throughout this appendix :
If an index appears once 1in a term, one should take the sum of the terms

corresponding to the values 1,2,3 of the index, unless stated otherwise :

L f 2
(P{ﬁai therefore means 5//:55 ¢C§£L
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After some algebra, the following expansion is obtained

P = & (- 1) + SG LA 4fF)+ 2481 45
-3 £ Gt ittt ) + QOB (8 Fte+h Fe 5 F e
-k fcfj-lke - {{ fixe )+ 1.5)

Fig.l indicates the geometry of a collision, as observed from the
center of masslof the system formed by the two colliding molecules
(this center of mass of course moves with uniform velocity during the
whole collision process, because of the principle of equality of

action and reaction). 9 is the scattering angle and we have, clearly

g5=§’:'8’= 5(&:594)4-2 ) /Z/=/5/%9 (1.6)

where Z; is a vector perpendicular to 8 If we assume weak

interactions, Gwill be very small and we use the expansions
— - —
Y -
b--3(8-g+.)+T T~ (0] (6-£+) (1.7)

Now, the collision term obviously involves an integration
with respect to £, the angle defining the position of the plane—ﬂ—
of the relative motion (relative to a reference plane). We have,
by symmetry :

o,
/ zde =0
o
which leads to the important conclusion that no term of first order

in 9 is going to appear in the collision integral.

In order to compute further terms of this integral, we
ﬁ

need to integrate products of components of Z with respect to &.
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It is clear that many such products will yield vanishing integrals

A mathematical trick greatly simplifies these laborious
computations Let aZ be an arbitrary vector, G( the angle between
the vectors(L and 5 and t3 the angle between'g and the projection
of & on a plane perpendicular to 5 (see fig 1)

We may choose the arbitrary origin for the angle & to coincide

with this projection so that &£ = @ and

AT |8 Swcx [Pl cos & = [T punel [ & | 9B o5 E = | ANE | 5900 cosé

The method suggested for the simplification of the
integrals consists in using the following identity, for a product
_’
of n components of Z; (some of which may be identical)

Z@éJZKm 2~ e&gz

24, 94J 9a,<

From this, one immediately concludes that

* T2z
[(CL‘ZJZK...>JL£$(2&‘9“ 7. / e d&)

Z.:O

The integral can be transformed into a tractable form as follows L
it [ (AR sinbesse | m%’l’ﬂw’eu Z (&4 @)} 9M9
/e de =/€ Z =4I, - 1/4—(
(o] (; r

using the identity

(@A8)* = @t 8%~ (ad)*

(L

The integral can actually be expressed in terms of Bessel

functions but this does not seem useful for the present purpose.
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Computation of the integrals over & of Z g‘) and Z) C z(

then becomes immediate :

35  ryed 27... T . .
J TGde= ) jg_itg-%m a‘—@J‘)on}i__os (88, -5, )suito
27 99 <9172 et -4
[gngZ[Ai =ZEEI(; {Wltadz_(ad)]gm 6}6{=o

= T (460848500 + (R8G0G5 -8 ]sse

(r.8)

(&:J- denotes the Kronecker symbol: 5% = 0 for C#J , L for L=J ).

After integration with respect to 89 we therefore get the following

expansion in powers of 9 H

[l 0de-x 64 A5+ GGy )65 1555145
© I (1.9)

b
The remaining terms are of order 6 = or higher

The first approximation for weak interaction therefore

would lead to a collision integral of the form

{/]/{ O AT IO ) R, YRR BT ) L

(I.10)

(the next term being of order &)

The dynamics of a collision must now be analyzed in more
detail in order to obtain the relationship connecting the scattering
angle ewith the collision parameter [)and the relative initial
velocity | g - g/ ] = 26 . In the spirit of the weak interaction
assumption, one should again try to obtain an expansion in powers of a

parameter indicating the order of magnitude of the force of interaction



The first term in such an expansion is very simple for it can be

computed assuming that the trajectories are undisturbed. The final

lateral momentum in the relative motion,mzz, induced by the central
—

interaction force F is simply obtained as the total impulse produced

by this force in the direction perpendicular to the undisturbed

trajectory; i.e. ) 00
Zl h b = . de
mg)= [ gl = 7 A

Now,
1Z)= |8l snp ~ 1Z-%].6/2
So that, in the first approxxmatlon

~ 2T | 2
6~ ¥iky = ot / 122

This leads to a singular factor TZ-ETS in the integral (I.10) which is,

however, immediately seen to converge (because of the first factor which
- =, — = 2
involves terms of order |%—%| and [E-% )

—

1If F is a power law interaction

|Fl- K r~° ( $>0)
/‘rﬁ K62 (oerh

3
so that 9 is proportional to b - and 9 6 proportional to é

then

-2S

Therefore, the integfal‘feéde would converge for S>Z and diverge for

[+]
S<2 , the second case certainly showing a predominance of weak inter-
actions. The divergence of the integral has to be remedied by considering

a finite cut off distance, as is done in the theory of ionized gases.

We may, of course, consider a force law which would
nowhere lead to strong interactions, for instance by considering

that E is bounded for - 0.
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The collision integral (I1.10) is still very complicated, however,
because of the coupling factor

2-%] [To*bdb
which is proportional go |'§ v-i}l-a .Maxwell has shown that this
coupling factor disappears, in the full Boltzmann collision term,
when the interaction force is proportional to T”'S (Maxwell's
molecular model).
It would, of course, be meaningless to consider weak interactions
for such a power law in view of the obvious predominance of the

strong interactions in the collision term.

However, one could imagine a rather artificial interaction
model which would induce in the collision term (I.10), the same
simplification as the Maxwell interaction induces in the Boltzmann
collision integral. In order to do this, one must assume the
interaction force to depend on the relative velocity of the
colliding molecules; 1i.e. FE must be proportional to the cube of
this relative velocity. If we then put

o0
T JIE-2letbdb=2
:x being now a constant, integration with respect to g ' becomes
feasible in I.10. The derivatives of:f" may be eliminated by partial
integration and the terms at the limit will vanish because of

the required asymptotic behaviour ofJF

The following integrals are then seen fo appear as

coefficients of f:and its various derivatives in I1.10 :
M+ d5iagidgs =n
Jif #'5. dzdeidel = nu;
' ! Ty W Py
j”)ﬁ gﬁ%‘; dE a(g’z,ig’g =N UuU;j + n‘f =NUMUj +1 GG
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TV being the number density, W the bulk (or macroscopic)

velocity, ’Cg the stress tensor and ¢ the random molecular velocity.

The collision integral .for this model reduces to
An (LG TIAf Lol )+ TS, + 6 § 1)

where

_ 2 2
Ag—gg;??c

is the Laplace operator in velocity space.

The collision integral therefore appears as a linear
second order differential form in jf, the coefficients of which are,
in fact, integrals over f . This collision term is accordingly
still non linear and integro differential with respect to j:.
However, the non linearity and integral dependance here appear
through a limited number of parameters, namely the 10 moments /1, MUy
and f},which might produce considerable simplification in the

treatment of this model.
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APPENDIX II - Derivation of the Interaction Term Satisfying the

Condition of Paragraph 1.

The interaction term is of the form
H
o +B 2 +Cf

where A, B, C should be functions of }gand simple moments of the

distribution, such as n, nwu aqmd,FD

The conservation of total mass,momentum and energy in
presence of an interaction of this type requires the following

1

integral conditions to be satisfied

ﬂAagL 893‘+C§]¢L§ -0

JIAZL +BE + (517 4% =0

_)(‘[Agé,fﬁgg‘&-(:j] £ AT =0 tE

The derivatives of f'may be eliminated by partial integration
(assuming all integrals to exist), and the followimg conditions

for A, B, C are then obtained :
J L. (M~ EB)+ 5C] {45 =0
f[-otgz (°A) - %(EZB) +z*C] {45 =0 II.2

It is immediately clear that A; B, C must depend on some
moments of(f,for if A, B, C were completely independant of-f 9
and I1.2 was to be satisfied for all ffsone would be led to a

trivial solution A =B =(C =0

The assumption that A, B, C are to depend only on N,MuUand p is
equivalent to satisfying condition II.2 for all f satisfying the



auxiliary conditions
n= [ 1dz
nu = [ §E4E
p =m [fz-wdE

n,nu ,p being considered as given, fixed quantities.

It is clear that these three conditions reduce to two,

because the equatbns I1.2 are homogeneous and one of the conditions

41,

II.3

I1.3 may always be satisfied by adjusting an arbitrary factor inj:.

We must then reduce II.3 to a set of two homogeneous conditions,

for instance

Jtz-w)fdg =0
J-w-&1fdT =0

( Eﬁjbeing the mean square of the random velocityélu). II.2 must

now be a consequence of I1II.4 for all f: satisfying only II.4 . We

-+ C
d5h 58 + (g — p(z-w +glEw-T]

d:{;\ i_L +C8* = yz-w + yLg-w-&l

where O(/) ﬁ),/é’/) Y and X’are independant of & .

thus have

I

~W) + O('L(g-u)z—ﬁ:{

It is useful to introduce the reduced random velocity

T 3%_ ¢
GG
and to combine equatioms I1.5 linearly among themselves to get the

reduced system

I11.4

II.5
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z #
%—?L—i—% +C* = &*C 4+ o (T-1)= L
dian) _ dE) o C C*
ATt 4%

LAT) _A®TY | et = YT o+ M- =N
4z dz

I

tT + B =M

II.6

with
BE(F8,ChaC, alor®, o Lo'E, B t-au)fF § 4 paulE Y2 Japurdut

*_. y'-2putaut
Combining the equations II1.6 linearly among themselves (with

respective coefficients QZ)-ZCand 1, we get

Multiplying the first equation by ;; and substracting the second yields

R* = z%—% +LZT M

II.8
and finally
A8 _ LA
C'= L+ AT Azt II.9

We must now return to the third condition set in paragraph

1, namely, that the Maxwellian dlstrlbutlon .
. ~ (Bt -/
]L = Censt. € 7T = Coust €

be a solution corresponding to equilibrium, or, in other words, that

substitution of this function in the interaction term will yield zero.
In terms of the unknown coefficients A, B¥, C*, this reduces to the

condition

A(gl_q) —_ *’ + C* II.10
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Now, according to (II.6) (II.7) (II.8) and (II.9), A, B¥, and C® are
seen to be polynomials, the degrees of which are respectively
4, 3 and 2 at most (L,M,N being quadratic inG ). According to
(1I1.10), however, A can only be of degree ? at most, so that we
must have (see II.7)
L=o or o*=o'*=0 , p'*=<o0
But the last result shows B® to be a linear function of G
(see 11.8) and we conclude then, from II.10 that A must be a constant
A = .2|? (N—2ZM)= const.

Introducing the explicit expressions for N and M then yields

1T (2 gt Tyt A
and hence

*::O , X/*=_2A=2_p*
We have then,finally

A = const,
B*:AQ
c¥ =4

These values obviously satisfy the system of equations(II.6) and
(II.10). Reverting to the original variables and coefficients we

get, for the interaction term

A

= { ct g—iz JNE‘“)% +f§ (I1.11)

A is-a function of CF and fL which is taken to be ()\FLZ:
in paragraph 2.
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APPENDIX 1II - Hydrodynamic Equations Corresponding to the Model

The following macroscopic equations are immediately
obtained when the mo;lel equation (2.3) is multiplied successively
by m, fm'é and m—;‘_’: and integrated over the velocity component'f_,

from - 00 to + 00 taking into account the conservation properties

for the interaction term :

Continuity : g——cp —+ QBPUL =0 III.1
Momentum p(;r + l/L9 ) w= ’29% 111.2
Energy p > %_-L' i‘%)"f‘%%?:"g'g_ I1I.3
with the heat flux 400

_-./ L+ me® $4E III.4

If we consider a situation for which the deviation from
equilibrium is negligible, the heat flux disappears (forj—' is then
a Maxwellian distribution) and we obtain the equations of one
dimensional motion for ideal gas with ¥ = 3, as expected from

statistical mechanics.

As already stressed, the only effect of a deviation from
equilibrium is the appearance of a heat flux, because no viscosity
can appear in a hypothetical gas with purely one dimensional molecular

motion,

In order to derive from (2.3) a complete system describing
the hydrodynamics of the one dimensional gas, similar to the classical
Navier - Stokes - Fourier equations, a technique similar to the various
expansion procedures applied to the Boltzmann equation will be used

(CEf Ref.2)
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Obviously we require a formula for ﬁ in terms of the

gradients of the other physical parameters (n, u, p)

- L 4
To obtain an equation for q, we transform equ. (2.3) using

the variable ¢ rather than EJ This yields

2}’_‘+(c+“>@_3_ﬁ _Cf[_zsiﬂ- (c+u\-9—"¥] = A }’L(c—t;;li_a.c% +JC>

Jt X (III.5)

Multiplication of both members by % mc3 and integration with respect
to C produces the required equation of transfer for d . Partial
integrations must be carried out on the interaction term in order to
eliminate the derivative ffwith respect to C. The result is :

2 Lt T Iu ) -
9—5 *axf mcdeH-q nmc(9“+u9“) —3%n4

We now look for a first approximation to this relationship under the
assumption that the space and time derivatives of jlare small and
that } is well approximated by a local equilibrium distribution j;
It is then immediately seen that 4 is a first order term in the

derivatives, (so that the derivatives of 7. and q‘% may be neglected)

and that
2 2 [
2 ([ tmeifde ~ = LmeL de
21{,‘ f 9x.f°° 'S
neglecting higher order terms.
But -—(:
_7cr
fo = ‘!—L‘=~.: e c

so that
400

40{___»1_ e h) —nftE) _s3at
St de ( f C)x;fzfc‘éi‘ﬁ L 3n(cY
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»
The first approximation to the equation of transfer for q

is, accordingly, given by

2 (3 mc”l) 3 T;J__Q_E.-)=—57\ﬂ.
o R @ +2}’me(‘o9x 9

so that

d_ _lmedd _ _ Rwm—AT
7= 2 A 9x Tgp T&"}tﬁ

(The temperature T being defined by Equ. 3.7)

Formula (II1.6) is equivalent to the Newton-Fourier law

(I11.6)

of heat conduction, the heat transfer coefficient 4£,being given for

the one dimensional model gas, by
MR T
2N

It is seen to be proportional to the temperature and independent

of pressure, just as in the case of the Maxwell molecular model

with inverse fifth power interactionm.

Equation (2.3) is thus seen to provide a dissipative

mechanism for %,j>0, at least if the disturbance. from equilibrium

is small.

Let us now consider some simple steady state problems

for the model equation

In the-steady state, equations III.1l, 2 and 3 reduce to

2% X
2 [ut, | Qow _ _ 24
pus(§+ib) + 3=~
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These may be immediately integrated as follows (see also equ.(5.2) (5.3)
P(/L: W(JZMA
pulqtp:“;ff =mB

(I11.7)
MW 32)+q K
L 2p
(,Zﬂ}%)% being constants)
The simple heat conduction problem, with W =0 , is
immediately solved as follows, in the first approximation
p= L = const
. 2
g =— Rm 1‘2;[==::¢6;= const .
2A 2%
and hence
[ 2 2\ z—x
T =y T4 (T TE) 222
& (111.8)
where ’1‘l and T2 are the temperatures at the "walls", located at the
abscissae X, and X,

The ideal fluid approximation (corresponding to 51 = 0)

leads to the classical shock condition, but for the case X’= 3
Py = U, = O
(A T =
O Y +p1=P,_ML‘ﬁ'Pz’%

W, 3P _ Uy 3P , (I1I1.9)
iR Sl B J& /NG

If we introduce the Mach number M, and the speed of sound a :

w-  U/a = w//3p/p

the following relations are easily derived from the shock conditions :
> Mfo‘._Mf_ ME —1 =0 }

2
-l a? (11I.10)
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The detailed structure for a weak shock may be obtained
approximately by using the first approximation described by the
&
expression (III1.6) for £7 and substituting this in equation (ITI.7).

We have

RT=p/p = (L-Wu)u/i = /’%/%’)u—uﬁ

. mAA) ARTY_ K~ (5/2) L + Wou*
§=—(m/3) <=

An ordinary differential equation for 1({ is readily obtained by
eliminating RT
many 4 N uE —(512) L+ T
9 dx =
X < %
" 2(u-2)ou-2)u

rea must vanish at upstrveam and downstream infinity, so that we must

have

i

W vl — (312) 2 U +JC = NG (U -Us)(u-ug)
(this identity can of course be derived directly from the shock
conditions III.9)
From this identity we also get
(372)(L/%) = U, + Uy

and the equation for the shock structure then reduces to

» (U =U) (U=~ U,) ‘
. _ III.11)
(m//,m)d% 4 wfu - amw i) Jn- inuein (

It is important to note that we have, in view of III.10 and

assuming Uy to represent the upstream supersonic conditions :

and therefore
2/3)U+Ug) > U > Up 5 (175 (U+ug) < Uy < Uy

so that the denominator of II1.ll is always positive for U, DU > U,
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This is typical for X’: 3. For lesser values ofx , 4as
always encountered in physical situations, this condition does not
hold, in general, and one can expect a sufficiently strong wave still
to exhibit purely kinematic discontinuity in its fine structure in
the absence of viscosity, as shown in ref. 13. In the present case,
however, the velocity profile is continuous and‘given, implicitly

by simple integration of III.ll, i.e. (using II1I.10)

W0 3t L -w) — M b ueag)] = (A2 const. (111, 12
z T3 M.u{n(’ )= T ’>f (¥in) (111 12)

The first member being a monotonic decreasing function of W , the plot
of W as a function of x can easily be derived and we have U =W,
for x =+ and U,=1L£for x = -00 , which indicates the irreversibility

of the shock-process.
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APPENDIX IV - Application of the Fourier Transformation to the Solution

of the Spatially Homogeneous Case

We use the transformed equation (7.15). In the spatially
homogeneous case, the derivative with respect to,%’disappears. Further-~
more we can always take Up= 0 and hence,/M@ = 0, because Uy is a
constant in the present case and may therefore be reduced to zero by
means of a Galilean transformation which does not change the spatially
homogeneous character of the problem. The term QQ(T}O)afE;aﬁfwhich

arises because of the linearization does not occur here because the

spatially homogeneous case is essentially linear.

The equation to be treated then reduces to :

g%+w§% +w” ¢ =0 (Iv.1)

We first solve the problem using the eigenvalue method, which
reduces here to the computation of the relaxation times "¢y, and the

corresponding relaxation modes. We thus have to look for solutions of

(IV.1) of the type ot
Yr(w) e
(IV.1) then reduces to an ordinary equation for Hpﬁ;

W % + (co2'+o)”tk =Q ' (Iv.2)

This represents an eigenvalue problem in the parameter T, \}/.representing

the corresponding eigenfunction, as will now be shown.

The general solution of the first order equation IV.2, without second

member is immediately found to be

v=A e 5T

o (1v.3)

A being a constant.
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The eigenvalue nature of the problem results from the
condition that'“f will be the Fourier transform of a function

kg

2
which is expected to behave like &~ for large IZ;}. Therefore

vao) exists for all finite complex values of @), because

[ e g az

exists even if ¢J has an imaginary part .szOJ)is thus seen to be an
integral analytic function and this is a strong condition on the
solution IV.3. In fact, this solution, in general exhibits a singularity

at W= 0 except for zero or negative integral values of the parameter O

This remark solves our eigenvalue problem, for we must have

=Ty =—Y for V=0, 1, 2,

The corresponding eigenfunctions are

2
%: const ca”e'w/z (V=012,.) (1v.4)

Note that the auxiliary conditions
0

+o0
S #£TdT =0 S f@?-ndZ =0

translate, after Fourier transformation, into the simple conditions

c%g=o for w=0 %4— V=0 for w=0

These conditions are obviously satisfied for YV 2 3, so that the

values 0,1 and 2 must be rejected in 1V.4,

As shown in ref 12, the inverse Fourier transforms of these

eigenfunctions are the Hermite functions indicated in paragraph 6.

We now give an alternative treatment, using Laplace

—-—

transformations with respect to T and based on a mathematical technique
of interest for more complicated cases-The final formula so obtained

directly shows the positive definiteness of the distribution function.




52.

If. we apply the Laplace transformation with respect to T’:

(p, w}-—-—/z"”r (T, o) dT
A w

to the function 4) sequation LV.1 becomes

/Osb —_ 90(0,0.))-}—60% *Cuz¢ =0

(Iv.5)

Again, the general solution of this ordinary differential
equation in &J is immediately obtained as

Y

2 W
-3 /2 - - ~ E pely
O=e w/ {Aw P w P/ @lo,w)e wpd(d}(xv.e)
(@)

The lower integration limit, which is arbitrary, has been
taken as zero for convenience (as will appear) and this, of course,

corresponds to a particular choice for the constant A,

Just as in the eigenvalue problem treated above,qb must be an
integral analytic function of the complex variable (W ,for all values
of Fx This condition will define the constant A,

91(0/ (,Q) being an integral analytic function of G, we may write,

C‘
Qo w)e Z w” 1.7
The expression being valid for allCD'

iv.7, then becomes

WAy -
¢ = @ g P +Z C)’ P‘f')) ; (1V.8)

For arbitrary P, the only singularity appears in the A term,and

(L

therefore

(1) The simplicity of this condition of course results from the special

choice of lower limit of integration in formula iV.6.
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Going back to the original function(P , we get, using IV.7

I L))
Q=-plowe)e & (1v.9)

The inverse Fourier transformation then yields the following

integral representation for )‘ (Z (®)]

][(Z T)-—j u‘uZ (1-e zt)w/ZQD /we_r)dw

_ 2_7,/_E /*_ooedwC-—(l—é‘J?wz/Z {‘/é‘i‘*’e gf/off) 4Zj0{w

the latter expression resulting from the definition of SO ©O,) as
Fourier transform of J[(O 4)

The above formula may be written as

f‘(Z'TF/‘K/Z,Zt) f(O,z)dZ (1v.10)

—00

with the kernel

Kz Z,

which is the Green function for the problem.

/6 w(z-Ze ")-gn-¢€ )da)

Introducing the variable
LL = wy1-et

the kernel can be written

- ;e-zl +% . 3= Ge ]z/ A(f—jé‘e%‘:)z
2= e‘*c Ja-( == 17/2 -
K7z )—e g g L &

X 1-€7 VeL(—- €% @v.1D)

K(Zf Z) is clearly a positive definitekernel and 1V.10 thus shows
(]

that f will always be positive if it was initially positive for
all wvalues of ;
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