NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SUPPLEMENT TO

BIBLIOGRAPHY ON

METHODS OF SAMPLING AIRBORNE PARTICLES

ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this document from ASTIA.

This publication has been cleared for release to the general public. Non-DOD agencies may purchase this publication from the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C.

Published by

TECHNICAL LIBRARY
FORT INDIANAPOLIS, FREDERICK, MARYLAND
25 November 1956

$1.10

12. Dawes, J. G.; Maguire, B. A.; and Type, D. L.
Some principles of air-borne dust sampling. Safety in Mines
Research Establishment. Research Rept. #102, 1954 (Portobello St.,
Sheffield).

13. Dennis, Richard; Johnson, Glenn A.; First, M. W.;; and Silverman, Leslie
Performance of Commercial Dust Collectors. Issued Nov. 2, 1953
45p. Contract AT (30-1)-841, NYO-1588).

14. Edit
Device detects deleterious dusts; Geiger counter X-ray spectrometer.

15. Dohrmann, H. C.; Gallear, C. A.; and Schlinder, J. W.
Factors in the design and operation of industrial dust collectors
as related to air pollution. Air Repair 4: 31-34, May 1954.

16. *Ekman and Johnstone
Collection of aerosols in a Venturi scrubber.
Ind. & Eng. Chem. 43: 1358, 1951.

17. Elliott, R.,; and Fritz-John, R. A.
Trials of a portable fog generator for mosquito control in West

18. Feiner, Benjamin
Industrial Air Analysis.

19. First, M. W.
Notes on preparation of dust samples for microscopic sizing.

20. Fitzgerald, J. J.; and Detweiler, C. G.
Collection efficiency of air cleaning and air sampling filter media
in the particle size range of .001 to 0.1 micron. Knolls Atomic
$7.00 (phOTS); $3.30 (mfOTS).

21. Fraser, D. A.
Collection of submicron particles by electrostatic precipitation.

44. Wilcox, J. D.; and van Antwerp, W. R.,
A sampling technique for small air-borne particulates. Particle-
size distribution by combined use of light and electron microscopes.
874, 1955.

45. Wong, J. B.; and Johnstone, H. F.
Collection of aerosols by filter mats. Tech. Rep. II. Contract
AT(30-33)-28 (000-1012) Oct. 31, 1953. P. H. Eng. Abstr. 34 (7):4,

46. Wright, B. M.

47. Wright, B. M.

48. Wyss, V.
Apparatus for fractional sampling of expired and alveolar air.
#1521 (1956).

49. Yano, Takeo; Osawa, Kitoshi; and Akita, Masuhiro.

50. Aerosols
Chemical and Radiological Laboratories, ACC Repert. of Symposium V
conducted June 22 & 23, 1953 at ACC, Maryland. 150 p. (NP-5065)*
Nucl. Sci. Abstr. #2118 (1954)

51. Chamberlain, A. C.
Aspects of travel and deposition of aerosol and vapour clouds. AERE-

52. Dept. of Commerce, Office of Technical Services

53. Strehlow, Richard A.
Illinois Engineering Experiment Station, E.0.1003. U. S. Monthly
Cat. #11136. Pam. 016. 539 029h.