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ABSTRACT

The phenomenon of cavity resonance is explained as an

interaction between the flow of the surrounding liquid and the

compression and expansion of the contained gas. In this paper,

the general solution to the linearized problem of a symmetrical

forebody performing symmetrical, harmonic motion, in an infinite

medium, with a cavity pressure which is varying harmonically, is

presented. The phenomenon of cavity resonance behind a sta-

tionary slender wedge in an infinite medium is studied in de-

tail; the results show that self-excited pulsations at discreet

frequencies are possible. It is shown that the resonance fre-

quencies are independent of the actual size of the slender

wedge; and the occurrance of resonance depends on the property

of the contained gas through the equivalent Mach number M*,1

which is defined as (pU2/p9a g2)2, where p, pg, U, a are the

density of the liquid, density of the gas, uniform speed of

the flowing liquid, and the speed of sound of the gas respec-

tively. The first four resonance frequencies calculated by

the present theory are somewhat higher than those observed ex-

perimentally by Silberman and Song (Reference 1) for a normral

plate in a free jet tunnel, although the trend is quite similar.

The values of M*/M*, where the subscript n denotes the nth stage
n

resonance, compare fairly well. The theoretical and experi-

mental values of M* cannot be compared directly because of the

difference in the forebody shape, they are, nevertheless, of

comparable order of magnitude.
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SYMBOLS

A amplitude of harmonic disturbance, see Equation [4]

a speed of sound of the liquid in the uniform stream

a speed of sound of the gas contained in the cavityg

C C + i C2 , a complex constant

F,(k/2), F 2(k/2) defined by Equations [491 and [50]

G(k/2) defined by Equation [51]

H(2) Hankel function of the second kind and zeroth order
0

I Bessel function of nth order, n = 0, 1, 2 ...

n

k reduced frequency of pulsation = wL/U

L cavity length

M Mach number of the uniform stream = U/am

1

M* equivalEnt Mach number - (pU 2 /p a 2)2

m strength of source distribution

p local static pressure

PC cavity pressure

p. ambient pressure

q velocity of the fluid at any point In the flow field

r radial distance from the source

t time
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U uniform free stream velocity parallel to the x-axis

u x-component of the disturbance velocity

Vc cavity volume

v y-component of the disturbance velocity

x,y space coordinates

x , dummy variable

Yb semi-thickness of the body

Yc semi-thickness of the cavity

wave length = a/cw

mass of gas contained in the cavity

p density of the free stream

pg density of gas contained in the cavity

cavitation number (p 2
= .p -p )/.p U,

0 velocity potential

W frequency of pulsation

The subscript "o" and "C",in general, denote the steady

and unsteady parts of the designated quantities respec-

tively.
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ON THE PULSATION OF FINITE, VENTILATED CAVITIES

I. INTRODUCTION

Recently, Silberman and Song (Reference 1) observed self-

excited pulsations of ventilated cavities behind normal plates,

symmetrical wedges, and hydrofoils in a two-dimensional free jet.

Later, Song (Reference 2) analyzed the problem by neglecting

the effect of the flowing stream and at the same time approxim-

ated the actual geometry by a cylindrical cavity enclosed by

an annulus of quiescent water. The resonance frequency thus ob-
I

tained is proportional to [In (Ro/ro )]
2 where R and r are the

radii of the outer and inner cylinder bounding the annulus re-

spectively. The relationship between the actual geometry in-

vol eoz and the annuluo considered, thourh both are doubly con-

nected reLgions, Is not evident; certain emperical constants have

to be .etermined Crom the experimental data. Furthermore, the

result. indicates that as the outer radius recedes to infinity,

cavitie.s; cease to pulsate. In this paper, we shall show that

when the interaction of' the flowind stream and the expansion

and the compression of the gas contained in the cavity is taken

into account, self-excited pulsaions of finite, ventilated

cavities at discreet frequencies is possible in an infinite

medium.

StartinL from the linearized potential equation for har-

monic disturbances in an unsteady, compressible flow together

with its fundamental solution in terms of Hankel functions, it

*We are ultimate]y interested in the noise generated by such

pulsations; thus, the assumption of compressible fluid is more

appropr-ate here.
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is first shown that when the Mach number is small and the body-

cavity dimension small compared to the wave length of the dis-

turbance the governing equation becomes the Laplace's equation

and the fundamental solution becomes a source of time-dependent

strength. For the problem of symmetrical motions of the fore-

body with time-varying cavity pressures, a distribution of

sources with time-varying strength has the proper symmetry re-

quired. By applying the proper boundary conditions, an integral

equation results. To obtain the solution, further linearization

is applied; that is, the time dependent part of the forebody

motion and of the cavity pressure are assumed to be small com-

pared with their respective mean values. The solution to the

steady part is given by Tulin (Reference 3). The solution for

the unsteady part is a proper combination of a particular solu-

tion and a homogeneous solution which is in the form of a

travelling wave, such that the juncture condition is satisfied.

For the problem of self-excited pulsations of cavities,

we have treated a cavitating flow past a stationary wedge in

detail. By assuming a sinusoidal cavity pressure variation the

source distribution can be obtained from the method stated above.

The time-dependent volume of the cavity is obtained by a double

integration of the source strength. By analyzing the gas con-

tained in the cavity, the 'olume variations due to the assumed

cavity pressure variation can be calculated by gas laws. These

two cavity volumes, one calculated by considering the interaction

of the streaming flow and the cavity, the other calculated by

the gas laws, must be compatible with each other in order to

have self-sustained oscillation of the cavity. From the com-

patibility conditions, the reduced frequencies k 1 0/U, where

1 is the length of the steady cvity and U is uniform stream
0
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speed) at which resonance may occur, and the equivalent Mach

numbers M* (= (pU2/p a 2)2, where p is the density of the uniform

stream, and p and a are the density and the speed of sound

of the gas inside the cavity) corresponding to these frequencies

can be determined. It is found that the resonance frequencies

are independent of the wedge size. The first four resonance

frequencies calculated by the present theory are higher than

those observed experimentally by Silberman and Song (Reference 1)

for a normal plate in a free jet tunnel, although the trends are

quite similar. The value of M*/M *, where the subscript n denotes
n

the nth stage resonance, compare fairly well. The theoretical

and experimental values of M* cannot be compared directly be-

cause of the difference in the forebody shape; they are, never-

theless, of comparable order of magnitude.
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II. METHOD OF ANALYSIS - LINEARIZED THEORY

A first approximation for the two-dimensional unsteady

cavity flow around an obstacle in a uniform infinite stream

can easily be obtained by assuming that the changes in magni-

tude and direction of the velocity U of the undisturbed flow,

due to the presence of the body, are small; more exactly, by

assuming that the squares and the higher power of the perturba-

tion velocity can be neglected when compared with the square

of the uniform stream velocity. The present analysis Is essen-

tially an extension of M. P. Tulin's work on steady two-dimen-

sional ca:ity flows (Reference 3).

1. Equations of' Motion

Consider, in general, the uniform two-dimenslonal

flow of an inviscid, compressible fluid of Velocity U past a

symmetric body of unit chord with blunt base so that a cavity

is sustained downstream of the body. Let the x-axis be In the

direction of the uniform stream and its origin be at the center

of the base of the forebody, see Figure 1. Let y (x,t) and y c(x,t)

denote the body surface and caity boundary respectively. The

pressure in the cavity pc(x,t) is assumed to be a given func-

tion of time. Both the length of the cavity, i(t) and the

volumeper unit width of the cavity, are permitted to vary with

time, the equation of motion is

+ (7v) - Vp
jt p

in which q = + VO, 4 is the perturbation potential, p and p

denote the preasure and density re.pectively In the flow field.
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For irrotational motion of barotropic fluid, [i] can be written

as

Vt + + -p 0 12]

The perturbation potential t satisfies the following equation

?2e  M 2 1 z
V2 2-M O __ _ - 0 [3a]

0 t 2  a. dX t a 2 6t
2

Where M (-- ) is the Mach number, a, is the speed of sound in
a

co

the undisturbed fluid. If harmonic disturbances are assumed,

the funuamental source pulse solution to [3] is given by Bis-

plinghoff, Ashley, and Halfman (Reference 4).

O(x'y't)= iA( ',j)U2 exp I t+ 1 WM(x-) H 2) X

4 V"7-M [W 1-M 2 a 0

a (i-MI) X_2 + (>M2)Y_)2]

in which (e,rj) is the source point, and A Is the amplitude of

the harmonic disturbance. For M << 1, which is of interest
O

here, the above expression becomes

0 (XY~t -- iA(e,11) i Lt H )(2)orl

4 o a!

in which r (x-) 2 + (y_) 2 . It is known that (see for

example Jahnkce and Ende, Reference 5)
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2 in (i) for << [4a]

0

Si (r/ -- i4) r b]
e for - -p o[b

If the body-cavity dimension is much smaller than the wave

a
length -2 , in the near field of the body, the fundamental

Wo

solution assumes the form of a source with time varying strength:

A A,) eit In (r/?\) [5]
2w

which satisfies the governing equation for an incompressible

fluid:

V2 4 . o [6]

(Equation [6] is obtainable from [3a] by the assumption of

M2 = 0 (r2/'?2 ) 0 O (M r/l ) which are negligible compared to i.)

As r increases, ultimately the form of 0 in 15] must be replaced1

by the expression [4b] which vanishes as r 2 This behavior in

the far field is due to the effect of compressibility which be-

comes dominant on a scale larger than the wave lenCth of the

pressure disturbance. Therefore, tile boundary con ition that

the pressure obtained by an incompressible analysis must be zero

at infinity as used by some investigators is not only unnecessary

but in fact erroneous.

The pressure integral in [2] may also be replaced by p/p

and the pressure at any Instant may be obtained by integrating

[2]
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U2 - U + 6 , [7]

If the same restrictions are placed on the gas inside

the cavity, i.e. wl/ag << 1 M (= U/a ) << 1, where a is the

speed of sound of the gas. We have, essentially, an incompres-

sible unsteady flow problem in the near field of the body-cavity

region.

2. Boundary and Closure Conditions

The condition at the boundary of a typical body

states simply that, over its surface, the normal component of

the fluid velocity n is fixed by the body's motion. If the

equation of the surface of a body moving in a time-dependent

fashion is

yb - Yb (x,t) = 0 - < K x < 0 [6]

then the linearized boundary condition to be satisfied along

the x-axis is

: 6 + U at Yb (xt) , -1 < x < 0 , y =0 [9

Where v is the velocity component in y-direction. On the cavity,
the pressure, p c(t), is specified, or equivalently, the cavita-

tion number a is specified. From [71, it follows that

P=-Pc(t) =(t) - t 6 C < x < 2, y = 0 [10]
Su 2 + U
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The condition that the cavity be closed at every instant

can be derived from the usual kinematical requirement that at

a bounding free surface the motion of the surface must coincide

at any time with the motion of those fluid particles that happen

to be at the surface at this time; that is,

- d = 0 11

-1

We further specify that the motion of the forebody be symmetric,

with respect to the x-axis.

3. General Solutions

The linearized mathematical problem may be stated as

follows: To find a harmonic function ¢(x,yst), symmetric with

respect to the x-axis, whose gradient in the limit ,-anishes

everywhere on a circle of sufficiently large radius about the

origin which satisfies the mixed boundary conditions [91 and

[10] and the closure condition [11]. A distribution of unsteady

sources of strength l t) along the x-axls for - 1 < x < L pro-

duces a harmonic function with the proper symmetry. Therefore,

we have

4b (x,y,t) - m (e,t) in A(X- )2 + y2  d _1?]

-i

with velocity components

u (xy;t 1 m(,t) (x-) d L13

-a
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v (x, i 1 m( ,t) y d [14]
v6y-y - f (x-) 2 +y 2

Here and subsequently, I = 1(t), It can be shown that at the

x-axis

2r -u(Ot)-1 m( ,t) d [15]

Yb(x,t) -1~xKo

V (x,O,t) = .m(x,t) U + 1 [16]

Yc (x, t) 0<x<,g

The mixed boundary condition on the x-axis will be satisfied if

m(x,t) = 2U (- + y Yb(xt) - 1 < x < 0 L71

and

+ m( ,t) ln(x-e) de , rUa(t) C < x < 2 18]

-1

Decomposing the source distribution Into steady and unsteady

parts, and using the subscripts "o" and "i" to denote the steady

and the unsteady part respectively

m(x,t) (x,t) = mb,o(x) + m (x, t) mbb ,o b~~i b - _o[9

m(x,t) = m (X't) sim (X) + m (x,t) C <<i 0 < K 2 201
C C'O Cro
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and

(t) = ao + a(t) << 1 0 < x < 2 [21]

(181 becomes

o o

-0 0

and

02

t ) + m (,t)ln x- d + mc, (e,t)Yn x- d,

0

o x< [21

in which 1 is the length of the steady cavity and from [17],

anmtI 2U~ C~b b [24]

oI ax,

mb,o = 2U x ' )2t

Yb, z(x,t)

and it is assumed << 1.
Yb,o

The general solution for [221 is given by Tulin (Reference 3)

-x 1 /T ___ __ dd- fo xj d [261
0-r2 \/-x XJj 2J dx

0-
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For the solution of [23], we first rewrite the equation as

I

(- + U I mc(,t) In x- d = 'rU(M

0
0

6 i m ( ,t) In Ix- d [23a]
- _x+ U , i b,i

-l

It is noticed that any arbitrary travelling wave solution can

be added to the particular solution vithout disturbing the

function given on the right hand side of the equation, i.e.

this equation admits homogeneous solutions of the following

form

I

mh 1 / ____-__ f' (x-Ut) d [261m (xt)(x-)

which is the solution of the following integral ecua tion

I
m (e,t) In d4 f (x-Ut).

A particular solution of [23a] is

MP  (x,t) = Gt) [2b]
C ' I _ Fx ( - )

0
6 1 0 m ( t ) In x - ! d d tU 1UGI (t)- TX + -U b, ' '

where g(t) -I [29]

1 In x-E de

C
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which may be verified by substitution of [28] and [291 into

[23a] and noting that

2
1 1 d = 0

By contour integration, it can be shown that

nix- Id_
_O 

[V 
i-o =ri 

301

we note then the particular solution becomes singular at 2 4.

The solution given here then is valid only for 2 / 4. This

point will be discussed further in a later section.

The unsteady source strength is obtained by a ccmbina-

tion of the homogeneous and the particular solutions, then re-

quiring that the juncture condition holds. This, however, does

not lead to a uniiue solution in general since there is an

arbitrary function involved. For simple harmonic oscllatlons

of the body and/or of the cavity pressure, we may assume

'iw(t-x/u)
F'(x-Ut) = Re C ei)3l]

where C is a complex constant

C = C + i C , [32]1 2

and Re denotes the real part. Then the juncture condition is

sufficient to determine the constants C. and C2. The general

solution of [23] is
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m 1 r 2 g(t) + R Re ' e ia ( - i U ) d
c, V2 x--x) L (x-)

0

The cavity shape may now be found:

X x

Yc(x,t) = Yb(O)t) + m()d + I m ( ,t- x ) d !  [34]

The closure condition [11] becomes, for I < 20

Yc(2t) = Yb(O 't) + 2U co(s)d + c ( ,t- u diK, o [ 35]

0

for I > L
0

Y b, -t -LU m ( ,t- )j d 136i]b,1 2

0

since t o

yb (0) !n d 3
Yb,o (°  2U c'o -

The volume of the cavity per unit span is

-(t) = dx m (W) + _r - [38]
c " U 0 co c.L

I
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III. CAVITY RESONANCE

To analyze the cavity resondnce problem, we focus our

attention to the problem of a stationary wedge with a trailing

cavity maintained by ventilation. It is assumed that the

cavity pressure is oscillating about a mean pressure; the reso-

nance condition corresponds to this case when such oscillations

are possible with the mass of gas within the cavity being con-

stant.

Equation [38], together with Equations [26] and 1331,

gives the response of the cavity volume to the time-varying

cavity pressure. At the resonance condition, this volume varia-

tion must be compatible with those produced by the gas inside

the cavity.

Let p. be the constant mass and p C(t) be the time-dependent

density of the gas in the cavity. The volume cf the ca~lty is

c (t) p
g

The variation of the volume, V (t), ciue to a small variationC,'-

of pressure is

V c,(t) Pg ( 1 dP[9
P dp

Assuming that the pressure variations are not too rapid, the

change of the density with respect to the pressure may be con-

dp
sidered Isentropic, then ' 1 Equation [39] becomes,

dPc a 2

when the ariation in cavity pressure i._ written in terms of

the cavitation number



HYDRONAUTICS, Incorporated

-15-

V 1 t P 2 a , ( t )  = 1 M * 2 y ( t ) [ 4 0 ]

Vc, 0 Pg g

in which the equivalent Mach number M* is defined as

M* =41]
9 a g 2

Equating the volume V (t) calculated by [40] to that obtained
0,1

by [3b], the condition at which resonance occurs can be deter-

mined.

Let the wedge profile be described by

Yb(x) - Yb(O) (l+x),

and the pressure in the cavity by

G(t) 0 (1 + r sin wt)

where c0 and u) are the amplitude and frequency of the fluctua-0

tions of the ca ity pressure respecti:ely. Then

g(t) U C CoS (I)t [44]

To apply the juncture condition the integral in 33] at x - G

can be evaluated by using the angular transformation sin 2

and the Jacob's expansion

i k/2 cos 0 J .... n
e = J (k{/2) + P \  ] J (ki?) cos n 0

0 n
n-]

We obtain for the unsteady source strengsth
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-- o U__ r +

Sx0 -x) os wt +
c,a k n 4

2 x'(2-x') Re e t - x U ) dx'5

2(J o+J1
2 ) x - x R ii

0

where C = C + i C
1 2

(J sin + J sin k) + i (J sink- J Co k46]

k - , the reduced frequency,U

and the arfuments of the Bessel Functions J and J ore k/2.

To apply the closure condition to find the relationship

between the unsteady ca ity ienLth i(t)= 0+ L1 (t) and the un-

steady cavity pressure, we first use 37] in 35] to obtain

o 2

Con.i:', ent ,'.th the assumptions made already, we assume21(t)I

<< 1. The first intetral can be eva-uated by replacin[
0

all x's in the m expression L26] by 2 except the sinularc,O 0

1
part (1o-X) -2 The result is

contr. v i (t)-
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The second integral is clearly of order c. Equation [47] gives

the result that

j(t ) 0 (G2)

and it may be neglected in our present theory.

In view of the above result. to obtain the additional

cavity volume due to the unsteady pressure, we may replace 2 by

1 in the expression [451 for m includinu that in the reduced

frequency k and in the upper limit of the integral for the cavity

volume:

-0 x

Vc, (t)= dx mi (Mt - d

0o 0

This integration can be carried out once the ang.-ular transformi-9
tion - sin 2 

- and the Jacobi's expansions are uLed. The re-
2

Lult is

UirA 2

V c,(t)- o 1 F(k/2) sin wt - F2 (k/2) cos Wt, 4b]
in 4

in which

k kkF1 k/) Jcos -- 1 + G (ki2) r J sin k o -]19F1k2 o 2 c 2 +  2 o 9

F(k/2) J sin - - G( [J cos - J sin -150]

20 2 2 0 2 1 2

G(k/2) 1 1 [JoJ + 4 ) nj 2  L j51]
1 2j1 2 oi1 n~-l

and all the arguments of the Bessel functions arc Ic/2. The

additional volume given by [40] becomes
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V
c_ 1 M*2 E a sin t [521

- 2 0V
C,O

For small values of a , Tulin's result (Reference 37) gives

7 2
-- a 1531
Vc,o - 8 0o

Combining [531 with [4b], and comparing with 152], we require

that

k
F2 () 0 1541

M12 _ 16 kM2-F 1 (-) o 55]

alo k2 (7)

The .3ubscript n denotes the nth 'ooL of F2 (k/2) 'or which

F, (kn/2) n (@) > o

This means that of Ao > 4, reon:-nce may occur when F1 (ki2) > C.

Whereas: for L < ', the resonince condition becomrs F,(k/2) < C.

For cavity lengths in the nel hborhood of four chord len ,ths of

the wedge, M* becomes arbitririty large. Since the value of

F, (- ) is highly damped as k becomes ±ure, only hiLih modes
k
2

of resonance may occur in the vicinity of' LA 4. This result
o

is shown in Figure 3, which will be disciipssed presently.

From [50] and [51], it is seen that
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F2 (k/2) k2

as k--O
16 F1 (k/2) - 3

12 

3

which means that for the case i > 4, k 0 is an admissible0

root. But this corresponds to co = 0 and V , G, which re-

duces to the steady case. It is seen from [54] that the reso-

nance frequencies are independent of the wedge size. The func-

tion - F (k/2) together with 6- F (-) are plotted in Figure
kc 2 I< 1 \2

2. It is seen that for i > 4 the first non-zero root as well0

as the third, the fifth, and so on of F2 are inaumissible be-

cause the corresponding value of F is negative. The inadmissie

roots for the case of L > ', become the admiasible roots for0

the case of i < 4. The first four admissibic roots of F (K2)0 2

for both A "- and 1 < I and the correspondlIn, ;aiues of
0 0

ib F ( ) are civen in Table I.
kc2  1 __

Silberman and Song ,'Reference 1) have presented experi-

mental d:ata of pulsating ca.itles tehind a 1/3" ncrmal plane

in a free jet tunnel. Tey have observed c:av'ity puls, itlon which

are characterized by the number of saves appearlni on the ca -1 y.

They have designated the pulsation with n saves a. the nth stcae

pulsation. It i.i conjectured here that tne prc.;ent nh k. would

give a similar cavity shape. Since the inefl it integral for

the cavity shape is extremely d]ifficult to evauate, it has not
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been attempted here. From these data, the reduced frequency and

the equivalent Mach number corresponding to each of the stages

may be calculated. In calculating the density of the contained

air at the cavity pressure, we have assumed that the isothermal

equation of state holds. These values are also given in Table I.

The reduced resonance frequencies are given as a range because

the experimentally observed cavity length varied. The values

of Mn/M have also been calculated and presented in the Table I.

Since in the theory the cavity length is measured with

respect to the chord of the wedge, the experimental results ob-

tained from a 1/'b" normal plate, in a strict sense, cannot be

compared with the theoretical results. However, it is of in-

terest to see the orders of magnitude of the values obtained.

With this in mind, we make the followiing comparison. The

theoretically predicted resonance frequencies are, in general,

higher than those observed experimentally. The values of

Mn/M* seem to be in fairly good agreement. The theoretical

results are for an infinite medium. The effect of the free

surfaces boundinL, the jet in the case of the experiment would

probably alter the theoretical results to some extent. From

the results obtained, however, it is seen that the presence of

the free jet surface is not a necessary condition for the occur-

rance of self-excited cavity pulsation.

In terms of numerical examples, a 190 -wedge with a

trailing: cavity at a mean cavitation number of 0.07, the equiva-

lent Mach number of the first stage pulsation is 1.25 as compared

to the experimental value of 2.26 for a normal plate in a free

jet with a cavitation number of 0.0735. It is interesting to

note that these are of the same order of mag:nltude in spite of
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the different forebody confiicurations and the free surface con-

ditions present in the experimental case. In the presence of

free surfaces, it is known that the cavity length is shorter

than that in an infinite medium (Reference 6). it is con-

jectured here that the effect of the free surface is to increase

the value of the equivalent Mach number because of the decrease
0

in cavity lenth. This 15 -wedge with c = 0.07, may experience0
the first stage self-induced pulsation at a forward speed of

50 ft/sec.

In Figure 3, we have shown the locus of the points for

which resonance of the first three stages are possible for a

15°-wedge travelling at 5 feet below the free surface. (In

this example, we assume the presence of the free surface does

not alter the results obtained above.) Two families of loci

appear, one for 1 < 4, one for 1 > 4. Cavity resonance is only
0 0

possible when the ialues of - and U correspond to a point onP.

one of these curves. It is interesting to note that the family

of loci for 9 > exhibit a minimum speed below which no re-0

sonance corresponding to that state or lower may occur. We may

trace the history of the unsteady motion of a cavity behino a

15°-wedge as follows. Suppose pc/pO = 0.75. As speed increases

from zero, first stage oscillation may be encountered at 30 ft/

sec. As the speed is increased further the flow becomes stable

until at 50 ft/sec, second stage oscillation appears. Then as

the speed is increased still further, higher and higher modes

of oscillation appear. At 60 ft/sec, which corresponds to the

critical lenith t = 4, no oscillations may appear. Between
0

U = 60 and 66 ft/see, the mode of oscillation starts high and
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decreases to n = 1. Beyond 65 ft/sec., oscillations of the cavity

are again not likely. It is in the range of speeds from 50 to

66 ft/sec that self-excited oscillations would seem most likely

to appear. The results presented in this Figure show that

cavity resonance can only occur for a finite range of speeds.
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IV. SUMMARY AND CONCLUSIONS

The theory presented in this report gives a simple method

for determining approximately the characteristics of two-

dimensional unsteady cavity flows about slender symmetrical

bodies in a uniform infinite stream. The present paper is in-

tended to throw some light on the physical mechanism of the

pulsation of the cavities. The account is mainly theoreticai,

but a brief reference is made to some recent experiments on

the instability of ventilated caities. The compressibility of

the gas inside the cavity is pointed out to be an essential

factor in this aspect of cavitation. The case of ;entilated

cavity flow about a thin wedge has been discussed in detail.

The important results obtained in this study may be sum-

marized as follows:

1. Pulsation of finite, ientilated ca;ity is pcssible

in an infinite medium under ordinary conditionL cn the speed

and cavitation number. Within the framework of the analysis

made, the existence of a free surface is not a prerequisite

for self-excited pulsation.

2. The occurrance of resonance depends on the equivalent

Mach number M* which involves not only the property cf the flo.:-

ing liquid but also that of the contained gas in the cavity:
1

M* (p/p 2 U/a E The reduced resonance frequencies,

k wl o/U , are infinitely many and they are discreet.

3. The resonance frequencies calculateJ Per a ca ity

created behind a two-dimensional ueoldve is ninepen,lent of the

wedge size. The equivalent Mach nunoer, however, depends on the

length of the ca /ity.
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4. Calculations made for stationary wedges show that

there exists a critical cavity length of 1 = 4. The resonance0

frequencies and the equivalent Mach numbers for cases in which

1 > 4 are quite different from those for £ < 4. Furthermore,0 0

the theory shows that cavity resonance can only occur within a

finite speed range.

5. It is conjectured that the nth resonance frequency

would give a cavity shape with n waves similar to those observed

by Silberman and Song (Reference 1).

6. The calculated resonance frequencies and equivalent

Mach numbers are qualitatively comparable to those observed

experimentally by Silberman and Song (1) in a free jet tunnel.
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TABLE I. THEORETICAL AND EXPERIMENTAL RESULTS

(Experiments of Silberman and Song)

n 1 2 3 4

> 4 8.4 14.8 21.5 27.4
ktheory0

£< 4 5.5 11.8 18 24.2
0

kexp(" normal plate) 4.5-6.1 9.9-13.0 14.2-19 17.1-22.9

£ > 4 0.192 0.097 0.055 0.0441-6 O

k A < 4 -1.11 -0.32 -o.16 -0.095

M* 1o > 4 1 0.505 0.29 0.23

n0
n (theory)

M1 A < 4 1 0.536 0.38 0.30
0

Mexp( normal plate) 2.26 1.25 0. 13 0.631

M* 0.55 0.36 0.28nn (exp)
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