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ABSTRACT

The phenomenon of cavity resonance 1s explained as an
Interaction between the flow of the surrounding liquid and the
compression and expansion of the contailned gas. In this paper,
the general solution to the linearized problem of a symmetrical
forebody performing symmetrical, harmonic motion, in an infinite
medium, with a cavity pressure which is varying harmonically, is
presented. The phenomenon of cavity resonance behind a sta-
tionary slender wedge in an infinite medium is studied in de-
tail; the results show that self-excited pulsations at discreet
frequencies are possible. It is shown that the resonance fre-
guencies are Independent of the actual size of the slender
wedge; and the occurrance of resonance depends on the property
of the contalned gas through th? equivalent Mach number M*,

which is defined as (pUz/pgag2)2’ where p, P’ U, a, are the

density of the liquid, denslity of the gas, uniform speed of

the flowlng liquld, and the speed of sound of the gas respec-
tively. The first four resonance frequencles calculated by

the present theory are somewhat higher than those observed ex-
perimentally by Silberman and Song (Reference 1) for a normal
plate in a free jet tunnel, although the trend is quite simillar.
The values of M;/M*, where the subscript n denotes the nth stage

resonance, compare fairly well. The thecretical and experi-
mental values of M® cannot be compared directly because of the
difference in the forebody shape, they are, nevertheless, of

comparable order of magnitude.
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SYMBOLS

amplitude of harmonic disturbance, see Equation [4]

speed of sound of the liquid in the uniform stream
speed of sound of the gas contained in the cavity

= C, +1 02 , a complex constant

F (k/2), Fz(k/2) defined by Eyuations [49] and [50]

G(k/2) defined by Equation [51]

Hankel function of the second kind and zeroth order
Bessel furction of nth order, n = 0, 1, 2 ...

reduced frequency of »ulsation = wf/U
cavity length

Mach numper of the uniform stream = Usa_

LV

equivalent Mach number - (pUZ,pgamz)

strength of source distribution
local static pressure

cavity pressure
ambient pressure

velocity of the fluld at any point in the flow field
radial distance from the source

time
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X s 66
Yy

Yo
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uniform free stream veloclity parallel to the x-axis
x-component of the disturbance veloclty

cavity volume

y-component of the disturbance velocity

space coordinates
dummy variable
semi-thickness of the body
seml-thickness of the cavity
wave length = a_/w
mass of gas contalned 1n the cavity
density of the free stream
density of gas contained in the cavity

cavitation number = (pw—pc)/%pU2

veloclity potential
frequency of pulsation
The subscript "o" and "1",in general, denote the steady

and unscteady parts of the designated quantities respec-

vtively.
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ON THE PULSATION OF FINITE, VENTILATED CAVITIES

I. INTRODUCTION

Recently, Silberman and Song (Reference 1) observed self-
exclted pulsations of ventilated cavities behind normal plates,
symmetrical wedges, and hydrofolls in a two-dimensional free jet.
Later, Song (Reference 2) analyzed the problem by neglecting
the effect of the flowing stream and at the same time approxim-
ated the actual geometry by a cylindrical cavity enclosed by

an annulus of quiescent water. The resonance frequency thus ob-
1
tained is proporitional to [4n (Ro/ro)]2 where R and r_ are the

radii of the outer and inner cylinder bounding the annulus re-
spectively. The relationship between the actual gzeometry in-
vol ea and the annulus considered, though both are doubly con-
nected regions, iz not evident; certaln emperical constants have
to be Jdetermined from the experimental data. Furthermore, the
result indicates that as the outer radius recedes to infinity,
cavities ceasce to pulsate. In this paper, we shall show that
when the interaction of the flowing stream and the expansion
and the compression of the gas contained in the cavity 1s taken
into account, self-excited pulsations of finite, ventilated
cavities at discreet frequencies is possible in an infinite
medium.

Starting from the linearized potential equatlion for har-
monic disturbances in an unsteady, compressible flow* together

with its fundamental sclution in terms of Hankel functions, it

*We are ultimately interested in the nolse generated by such
pulsations; thus, the assumption of compressible fluid is mcre
appropr-ate here,
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is first shown that when the Mach number is small and the body-
cavity dimension small compared to the wave length of the dis-
turbance the governing equation becomes the Laplace's equation
and the fundamental solution becomes a source of time-dependent
strength., For the problem of symmetrical motions of the fore-
body with time-varying cavity pressures, a distribution of
sources with time-varying strength has the proper symmetry re-
quired. By applying the proper boundary conditions, an integral
equation results. To obtain the solution, further linearization
1s applied; that is, the time dependent part of the forebody
motion and of the cavity pressure are assumed to be small com-
pared with their respective mean values. The solution to the
steady part 1s given by Tulin (Reference 3). The solution for
the unsteady part 1s a proper combination of a particular solu-
tlon and a homogeneous solution which 1s 1In the form of s
travelling wave, such that the Juncture condltion is satisfiled.
For the problem of self-excited pulsations of cavities,
we have treated a cavitating flow past a stationary wedge in
detall. By assuming a sinusoldal cavity pressure variation the
source distribution can be obtained from the method stated above.
The time-dependent volume of the cavity is obtalned by a double
integration of the source strength. By analyzing the gas con-
tained 1n the cavity, the volume varlatlons due to the assumed
cavity pressure variation can be calculated by gas laws. These
two cavity volumes, one calculated by considering the interaction
of the streaming flow and the cavity, the other calculated by
the gas laws, must be compatlble with each other in order to
have self-sustained oscillatlion of the cavity. From the com-

patibility conditions, the reduced frequencies k (4D£O/U, where

Eo is the length of the steady covity and U is uniform stream
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speed) at which resonance may occur, and the equivalent Mach

1
numbers M* (= (pUz/pgagz)z, where p 1s the density of the uniform

stream, and pg and ag are the density and the speed of sound

of the gas inside the cavity) corresponding to these frequencies
can be determined. It is found that the resonance frequencies
are independent of the wedge size. The first four resonance
frequencies calculated by the present theory are higher than
those observed experimentally by Silberman and Song (Reference 1)
for a normal plate in a free jet tunnel, although the trends are

quite similar. The value of M*/M*, where the subscript n denotes
n

the nth stage resonance, compare fairly well. The theoretical
and experimental values of M* cannot be compared directly be-
cause of the difference in the forebody shape; they are, never-

theless, of comparable order of magnitude.
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II. METHOD OF ANALYSIS - LINEARIZED THEORY

A first approximation for the two-dimensional unsteady
cavity flow around an obstacle in a uniform infinite stream
can easlly be obtained by assuming that the changes in magni-
tude and direction of the velocity Uoo of the undisturbed flow,

due to the presence of the body, are small; more exactly, by
assuming that the squares and the higher power of the perturba-
tion velocity can be neglected when compared with the square
of the uniform stream veloclty. The present analysis ls essen-
tially an extension of M, P, Tulin's work on steady two-dimen-

sional cavity flows (Reference 3).

1. Equations of Motion

Consider, in general, the uniform two-dimensional
flow of an inviscid, compressible flulid of Velocity U past a
symmetric body of unit chord with blunt base so that a cavity
i1s sustained downstream of the body. Let the x-axls be in the
direction of the uniform stream and its origln be at the center

of the base of the forebody, see Fipure 1. Let yb(x,t) and yc(x,t)

denote the body surface and ca - ity boundary respectively. The

pressure in the cavity pc(x,t) is assumed to be a given func-

tion of time. Both the length of the cavity, £(t) and the
volumeper unit width of the cavity, are permitted to vary with

time, the equation of motion is
3q - 1
:% + (J;V) o= - ;‘V P (1]

in which'a :'ﬁ + Vé, ¢ is the perturbation potential, p and p

denote the pressure and density reuvpectively in the flow field.
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For irrotational motion of barotropic fluid, [1] can be written

as

3¢ . g® dp
v __\- + —-——+ —— = O [2]
St 2 P o

The perturbation potential ¢ satisfies the following equation

2 M 2 N2
e -m2Ll_op 2 3X$t EEE I [3e]
dt2 o a 2 3t®
[o0]
Where M (= éi ) 1s the Mach number, a 1is the speed of sound in

the undisturbed fiuid. 1If harmonic disturbances are assumed,
the funuamental source pulse solution to [3] is given by Bis-

plingholf, Ashley, and Halfman (Reference 4).

M 2
] 2 o -
o(x,y,t)= AWV e ______Qig_gl ng) 5
L Vl—sz l_Mm2

(x-£)% + (1-M_®)(y-n)®

w

2
a(l-M )

in which (¢,7n) 1s the source point, and A iIs the amplitude of

the harmonic disturbance. For M00 << 1, which is of interest

here, the above expression becomes

6 (x,7,t) - SRR 10 Héa) (35)

in which r :-\/kx-g)z + (y-n)®. It is known that (see for

example Jahnke and Ende, Referernce 5)
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= i ) for = << 1 [4a]
SRR
\\E_ﬁ S/ xm/4) for L oo » [4b)

If the body-cavity dimension is much smaller than the wave

a
liength A = TE" in the near field of the body, the fundamental

solution assumes the form of a source with time varying strength:

o = A(E,n) lwt in (r/A) (5]

which satisfies the governing equation for an incompressible
fluid:

vZ o -0

r“ﬂ
(o)
ey

(Equation [6] is obtainable from [3a] by the assumption of
M2 = 0 (r3/2%) =0 (M_r/n) which are negligible compared to 1.)

As r increases, ultimately the form of ¢ in [5] must be replaced
by the expression [4b] which vanishes as r'%. This behavior in
the far fleld is due to the effect of compressibility which be-
comes dominant on a scale larger than the wave length of the
pressure disturbance. Therefore, the boundary con.ition that
the pressure obtained by an incompressible analysis must be zero
at infinity as used by some investigators is not only unnecessary
tut in fact erroneous.

The pressure integral in [2] may alsc be replaced by p,p

and the pressure at any instant may be obtained by integrating

[2]
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)

o
§£+

5?) o (7]

alro
=] Loy

If the same restrictions are placed on the gas inslde

the cavity, i.e. wz/ag <& Mg(= U/ég) << 1, where ag is the

speed of sound of the gas. We have, essentially, an incompres-

sible unsteady flow problem in the near field of the body-cavity

region.

2. Boundary and Closure Conditions

The condition at the boundary of a typical body

states simply that, over its surface, the normal component of
the fluid velocity %% 1s fixed by the body's motlion. If the

equation of the surface of a body moving in a time-dependent
fashion is

Yo < Yy (x,t) = 0O -1<x<O0 [o]

then the linearized boundary condition to be satisfied along

the x-axis is

v
U_ =

-ao—x+%aa—t)yb(x,t) s = 1<x<0,y=0 (9]

Where v is the velocity component in y-direction. On the cavity,
the pressure, pc(t), is specified, or equivalently, the cavita-
tion number o 1s specified. From [7]), 1t follows that

M . O'(t) y

alro

) 1 9
1 . (S_)E+ﬁa_t)¢ C<x<K &, y=20 [10]
zp U
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The condition that the cavity be closed at every instant
can be derived from the usual kinematical requirement that at
a bounding free surface the motion of the surface must coilncide
at any time with the motlion of those fluid particles that happen
to be at the surface at this time; that is,
)

) £-
[ =0 (g,t-—ﬁu )dg_o [11]
-1
We further specify that the motion of the forebody be symmetric,

with respect to the x-axis.

3. General Solutions

The linearized mathematical problem may be statea as
follows: To find a harmonic function ¢(x,yst), symmetric with
respect to the x-axls, whose gradient in the 1imit vanishes
everywhere on a circle of sufficiently large radius about the
origin which satisfies the mixed boundary conditions [9] and
[10] and the ciosure condition [11]. A distribution of unsteacy
sources of strencth My. t) along the x-axis for - 1 < X £ £ pro-
duces a harmonic function with the proper symmetry. Therefore,

we hae

o (x,y,t) - 5 m (€,t) £n \,«(X-E)z +y® ag 12]

2m

-1

with velocity components

R I e F Y
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)
vnye) = 2ok [ Bt g [14]
T ()P

Here and subsequently, £ = £(t)}, It can be shown that at the

X-ax>ls

ar
=1

u (x,0,t) = = %ﬁ’g—tldg [15]

yb(x,t) - 1<x<0
vV (x,0,t) = %m'(x,t) - U a%—) [16]

yc(x,t) O<x< 8

al-

)
§;+

The mixed boundary condition on the x-axis will be satisfied if

m(x,t) = 2U g% + % g%) yb(x,t) . =1<x<K0 [17]
and
£
1 -
aa—x + Ea%‘}/ m(€,t) £n(x-€) d€ = 7Uo(t) C < x < & .18]
-1

Decomposing the source distribution into steady and unsteady
parts, and using the subscripts "o" and "1" to denote the steady

and the unsteady part respectively

m
b,1 _ .
= = m —_ < -
m(x,t) mb(x,t) mb,o(x) + b’l(x,t), n Kl -1<x<0 [19]
m
m(x,t) =m _(x,¢6) =m_ (x) +m _ (x,t) —— <1 0< x< £ [20]
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and
o

a(t) = o, + o, () <« 1 0< x< & [21]

o
(18] becomes

0 ﬂo
m (&) m, (&) _
‘ITUGO = T dé + *——};:é——- dé, 0 < x < ﬁo s [e2]

and

3
mUo, (t) = 3%

% at) \j[mb,l(ﬁ:t)ﬂn x-§ d§ + mc)l(g,t)zn x—gldg s

-1 0

0< x< & [2 ]

in which zo is the length of the steady cavity and from [17],

oy
b, 0
= 2 24
mb,o 2u oxX ? [24]
l: 1 5 i~
Mo, T 2 1Sx T U5t Yo, .25]
AN L(X’t)l
and it 1s assumed —= | << 1.
yb o] |
2

The general solution for [22] is given by Tulin (Reference 3)
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For the solution of [23], we first rewrite the equation as

o) 1 9\ *
5% * EEJ m,, (&%) fn
{ H k]

0

'x-gl d¢ = mUo_ (t)

0]

) 1 9

"B'Z*Eﬁ) ,[ my,. (6:t) n
4]

x—g' dg

It 1s noticed that any arbitrary travelling wave solution can
be added to the particular solution without disturbing the
funetion given on the right hand side of the equation, i.e.
this equation admits homogeneous solutions of the following

form

mt (%,t) - - f ——W—Q £' (x-Ut) de
’ x(z -x)

which 1s the solution of the following integral ecu2tion

L
4

J m}; (,t) £n
C

x-gi dé £ (x-Ut).

s 1

A particular solution of [23a} is

U [Tonl(t)—(a%+%.§?) /[mb’l(g,t)ﬂn !x—ﬁgdgﬁdt

where g(t) = ~ L

[23a]

J/
J/ﬂ In x-¢ d€
L Ve(s-¢)
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which may be verified by substitution of [28] and [29] into
[23a] and noting that

1

1
[ Ve(z-g) *°¢

d¢ = 0.

By contour integration, it can be shown that

_ﬂ'i&_”ng [30)
Ve(s-€)
we note then the particular solution becomes singular at £ = &4,
The solution given here then is valid only for £ # 4. This
point will be discussed further in a later section.
The unsteady source strength ls obtained by a ccmbina-
tion of the homogeneous and the particular solutions, then re-
quiring that the juncture condition holds. This, however, doec
not lead to a unigue solution 1in general since there is an
arbitrary function involved. For simple harmonic oscillations
of the body and/or of the cavity pressure, we may assume
~ v/
F'(x-Ut) - Re ¢ el®(t-%/U) . 31]
where C is a complex constant
t-=c 1cC [32]
e l+ 2’ 3.4

and Re denotes the real part. Then the juncture condition is
sufficient to determine the constantis Cl and Cz, The general
solution of [23] is
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-

- - Ve(s-¢) o~  io(t-£/U)
My, = x(z = { 2g(t) + [ =) Re C e dé

The cavity shape may now be found:

X X

r i 0
Vo (x:t) = ¥y, (0,8) + ;—U“ my,o(E)aE + [ m (€t x-£) d:‘;’é
0 JO .

The closure condition [11] becomes, for £ < ﬂo

2 ) -
y,(£:t) = v, (0,) + 53[- o (8)de +—j’r m, (6t £8) ag's o
for £ > ZO
)
1 i -
ONCOERS NN 2L) ae
0
since J
(o]
0 --L [ w (e)a
Yb,0 T 2u ‘/ “¢,0 g
0

The volume of the cavity per unit span is

[gd

v (t) - f‘ / JE) e o Ry e

0

|

[33]

[35]

136]

AL
~l
—

[38]
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ITI, CAVITY RESONANCE

To analyze the cavity resonance problem, we focus our
attention to the problem of a stationary wedge with a trailing
cavity maintained by ventilation. It 1s assumed that the
cavity pressure 1is oscillating about a mean pressure; the reso-
nance condition corresponds to this case when such oscillations
are possible with the mass of gas wlthin the cavity being con-
stant.

Equation [38], together with Equations [26] and [33],
gives the response of the cavity volume to the time-varying
cavity pressure. At the resonance condition, this volume varia-
tion must be compatible wlith those produced by the gas inside
the cavity.

Let p be the constant mass and pg(t) be the time-dependent

density of the gas in the cavity. The volume o' the ca’ ity is

v B
NG

The variatlon or the volume, Vc l(t), due to a small variation

3

of pressurc is

Vo (t) ( ) L e [39]
A —L p 39
c,1 pg pg dpC c

Assuming that the pressure variationz are not too rapid, the

change of the density with respect to the pressure may be con-

dp
sidered isentropic, then 55& L . Equation [39Q] becomes,
c

a 2

&
when the rarlation in cavity pressure i.. written in terms of

the cavitation number
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M** o (t) [40]

Q
(¥
—~~
+
-

]
N =

in which the equivalent Mach number M* 1s defined as

. {72
M*= Py . [41]

2

& 8
Equating the volume Ve l(t) calculated by [40] to that obtained

by [38], the condition at which resonance occurs can be deter-

mined.

Let the wedge profile be described by
vp(x) - vy (0) (1+x), L2 ]
and the pressure 1n the cavity by
a(t) - o (1 + ¢ s5in wt) (3]
where coo and w are the amplitude and frequency of the fluctua-
tions of the ca 1iy pressurc respectively. Then
g(t) - — =« o, cos Wt . [ud)

To apply the juncture condiiion the interral in "33} at x = ¢
2

can be evaluzted by using the angular transformation € - sin

| ®

and the Jacob's expansion

n

Il ‘— B
ei k/2 cos 6 _ Jo(k/g) + 2\ 3 Jn(k/g) cos n 6

We obtain for the unsteady source strength
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c O
m = - OUz L 1 l’-cos wt +
or TR T Vx|
'e Al
1 - 1 ~ - ! 1
2 ‘/f Vx!' (-x') Re 3 eiw(t x'/U) 4
2 2 .
ﬁTT(JO +J, ) X - x! |
0
where E =C +1C
1 2
. K Lim K ok k
- (JO sin 3 + J; sin 2) + 1 (JO sin 5 - J, cos 2)
wl N Lo
Ik =7 the reduced [requency,

and the arguments of the Besscel Functions Jo and Jl are k/2.

To apply the closure condition to find the relationship

between the unsteady casity iength E(t)=£0+ £, (t) and the un-

steady cavity precsure, we first use 37] in 35] to obtain

’zo-{zl(t)

ConuiuTent with the assumptions made already, we assume

2, (0)

1

7 << 1. The first inte;ral can be eva.uatea by replaciny
o]

all x's in the mL expression ,26] by ZO except the sin_ular

2

e

part (Eo-x)_ The result is

const. \[hl(t)

X'}[aS]

L46]
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The second integral is clearly of order €. Equation [47] gives
the result that

I‘zl(t)l"’ 0 (€2) »

and 1t may be neglected in our present theory.
In view of the above result, to obtaln the additional
cavity volume due to the unsteady pressure, we may replace £ by

Zo in the expression [45] for m, | including that in the reduced

3

frequency k and in the upper 1limit of the integral for the cavity

volume:
A X

o
— 1 -
Vc,l(t) ;—.f dxj mc’l (&, t - _}%) ae .

0 0

This 1Integration can be carried out conce the angular transformc-

9
tion £ -- sin® = and the Jacobi's expansions are used. The re-

2
sult 1is
_ (ooUrZZ 1 K
(t)- F (k/2) sin ot - F_(k/2) cos wt: ey
c,1 2 ) 1 2 |
k In T+ |
LS -
in which
F (k/2) = J_ cos K_oqs G (ks/2) 1J_ sin K, cos LS ] “49]
1 o 2 "To 2 n 2 -
k k K .
Fz(k/Q) =J, sin 5 -G (2) [J cos = - J sin 5 ] '50]
G(k/2)———-1——-— [d.J +i ndJd?] (51]
B o1 Kk n L2

2 2
JO +J,

and all the arguments of the Bessel functions arc k/2. The

additional volume given by [40] becomes
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1
=3 M* € o sin ot [52]

For small values of Go’ Tulin's result (Reference 37) glves

T4 2
C\

Ve,o =78 % (53]

Combining [53] with [48], and comparing with [52], we require
that

n
F2 (2—) = 0 [54]
k
ﬁm*z .+ 16 (=) 9,7 b {
Lo k2
\ otn F

The subscript n denotes the nth roou ot F, (k/2) for which
EO -1
F, (kn/E [ﬂn (T)} » 0.

This means that of ﬂo > 4, resonince may occur when F, (k,2) > C.
Whereas for Zo < 4, the resonince conuition becomes Fl(k/z) < C.

For cavity lengths in the nel hborhood of four chord len ths or
the wedge, M* becomes arbitrarily large. Since the value of

L F, (%) is highly damped as k becomes lur_e, only high modes
k2

of rescnance may occur in the viecinity of ﬂo = 4, This result

is shown in Figure 3, which wiil be discussed precsently.

From [50] and [51], it is seen that
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- L2
F_ (k/2) =k
as k-0
5 (x2) -3
k2

which means that for the case zo > U4, ¥ = O is an admissible

root. But this corresponds to w = 0 and VC = U, which re-

s 1

duces to the steady case. It is seen from [%4] that the reso-
nance frequencies are independent of the wedge size. The func-

tion % F, (k/2) together with 16 P (%) are plotted in Figure
K®

2. It 1s seen that for EO > 4 the first non-zero root as well

as the third, the fifth, and so on of F2 are inaumissible be-

cause the corresponding value of Fl is negative. The lnaumissib.e

roots for the case of 20 > Y bccome the adminssible roots [lor

the case of EO < 4, The first four admissible roots of Fg(k,é)
for both BO -+ and EO < + and the correspondin. saiues of
16 .
— F (%) are riven in Tabic I.
k2 e
Silberman and Song ‘Reference 1) have prescnted experi-
mental data of pulsating cavities behind a 1,9" nermal plate
in a free jet tunnel. They have observed cavity vuls.tlon which

are characterized by the number of waves appearin, on the ca. jty.

They have designated the pulsation with n waves a. the nth stace
pulsation. It 1, congectured nere that tne preuent nih k woula
give a similar cavity shape. 8Since the indefinite integral for

the cavity shape is cxtremely difficult to evaiuate, it has not
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been attempted here. From these data, the reduced frequency and
the equivalent Mach number corresponding to each of the stages
may be calculated. 1In calculatling the density of the contained
alr at the cavlity pressure, we have assumed that the isothermal
equation of state holds. These values are also glven in Table I.
The reduced resonance frequencies are given as a range because
the experimentally observed cavity length varied. The values

of M;/M: have also been calculated and presented in the Table I.

Since in the theory the cavity length is measured with
respect to the chord of the wedge, the experimental results ob-
tained from a 1/8" normal plate, in a strict sense, cannot be
compared with the theoretical results. However, 1t 1s of in-
terest to see the orders of magnitude of the values obtainea.
With this in mind, we make the following comparison. The
theoretically predicted resonance frequencies are, 1in general,
higher than those observed experimentally. The values of

M;/M: seem to be in fairly pgood agreement. The theoretical

results are for an infinite medium. The effect of the free
surfaces bounding the jet in the case of the experiment would
probably alter the theoretical results to some extent. From

the results obtained, however, it 1s seen that the presence of
the free jet surface 1s not a nccessary condition for the occur-
rance of self-excited cavity pulsation.

In terms of numerical examples, a 15C-wedge with a
trailing cavity at a mean cavitation numbcr of 0.07, the equiva-
lent Mach number of the first stage pulsation is 1.25 as compared
to the experimental value of 2.26 for a normal plate in a free
Jjet with a cavitation number of 0.0735. 1t 1is interesting to

note that these are of the same order of mapnitude in spite of
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the different forebody confipurations and the free surface con-
ditions present 1n the experimental case. 1In the presence of
free surfaces, it is known that the cavity length is shorter
than that in an infinite medium (Reference 6). 1t is con-
jectured here that the effect of the free surface is to increase
the value of the equlivalent Mach number because of the decrease
in cavity length. This 150—wedge with co = 0.07, may experilence
the first stage self-inducea pulsation at a forward speed of
50 ft/sec.

In Figure 3, we have shown the locus of the points for
which resonance of the first three stages are possible for a
150-wedge travelling at 5 feet below the free surface. (In
this example, we assume the presence of the free surface does
not alter the results obtained above.) Two families of loci
appear, one for zo < 4, one for ZO > 4, Cuvity resonance is only

p
possible when the values of EE and U correspond to & point on

o]
one of these curves. It 1s interesting to note that the family

of loci for Eo > 4 exhibit a minimum speed below which no re-

sonance corresponding to that state or lower may occur. We may
trace the history of the unsteady motion of a cavity behina a

150—wedge as follows. Suppose pc/poo = 0.75. As speed 1increases

from zero, first stapge oscillation may be encountered at 30 ft,
sec. As the speed 1is increased further the flow becomes stable
until at 50 ft/sec, second stage oscillation appcars. Then as
the speed is increased still further, higher and higher modes
of oscillation appear. At 60 ft/sec, which corresponds to the

critical lenyth ZO = 4, no oscillations may appear. Between

U = 60 and 66 ft/sec, the mode of oscillation starts high and
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decreases to n = 1. Beyond 65 ft/sec, osclllatlons of the cavity
are again not likely. It 1s in the range of speeds from 50 to

66 ft/sec that self-excited osclllations would seem most likely
to appear. The results presented in this Plgure show that

cavity resonance can only occur for a finite range of speeds.
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IV. SUMMARY AND CONCLUSIONS

The ftheory presented in thiu report gives a simple method
for determining approximately the characteristics of two-
dimenslonal unsteady cavity flcws about slender symmetrical
bodies In a uniform infinite stream. The present paper is in-
tended to throw some light on the physical mechanism of the
pulsation of the cavities. The account is mainly theoreticadi,
but a brief reference 1s made to some recent experiments on
the instability of ventilated ca . .itles. The compressibility of
the gas inside the cavity is pointed out to be an essential
factor in this aspect of cavitatlion. The case of ventilated
cavity flow about a thin wedge has been discussed in detail.

The important results obtained in this study may be sum-
marized as Tollows:

1. Pulsation of finite, .entllated ca ity 1s pcssible
in an infinite medium under ordinary conditlonz c¢n the speed
and cavitatlion number. Within the framework of the analysis
made, the existence of a free surface 1s not a prerequisite

for self-exclted pulsation.

2. The occcurrance of resonance depends on the equlvalent
Mach number M* which involves not only the property cf the flo.-

ing liquid but aiso that of the contained gas 1In the cavity:

1
M* = (p/p.)° U/ag . The reduced resonance frequencles,
e :

k = wEO/U , are Infinitely many and they are aiscreet.

3. The resonance frequencies calculated for a ca ity
created behind a two-dimensional ueage is incependent of the
wedge size. The equivalent Mach nunoer, houever, depends on the

length of the ca/ity.
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L, Calculations made for stationary wedges show that

there exlsts a critical cavity length of ZO = 4. The resonance

frequencies and the eguivalent Mach numbers for cases in which

20 > 4 are quite different from those for ﬂo < 4. PFurthermore,

the theory shows that cavity resonance can only occur within a

finlte speed range.

5. It is conjectured that the nth resonance frecuency
would give a cavity shape with n waves similar to those observed

by Silberman and Song (Reference 1).

6. The calculated resonance frequencies and equivalent
Mach numbers are qualitatlively comparable to those observed

experimentally by Silberman and Song (1) in a free jet tunnel.
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TABLE I, THEORETICAL AND EXPERIMENTAL RESULTS
(Experiments of Silberman and Song)

n 1 2 3 b
zo > 4 8.4 14,8 21.5 27.4
ktheory
zo < U 5.5 11.8 18 24,2
kexp(% " normal plate) 4.5-6.1 9.9-13.0 14.2-19 17.1-22.9
L >4 0.192 0.097 0.055 0.044
16 K °
TFL(E)
k zo < 4 -1.11 -0.32 -0.16 -0.095
¥ £, >4 1 0.505 0.29 0.23
ﬁ% (theory)
1 £, <4 1 0.536 0.36 0.30
M*exp(%y normal plate) 2.26 1.25 0.51% 9.631
1 0.55 0.36 0.28

%

(exp)




e et pE? I

HYDRONAUTICS, Incorporated

-1i-

DISTRIBUTION LIST

Contract Nonr-3319(00)

Commanding Officer and Director
David Taylor Model Basin
Washington 7, D. C.

ATTN: Code 513 75

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.
ATTN: Code 335

345

403

421

436

440

Ly

525

644

689D

320

HODHFHHRMERERDD

Chief, Bureau of Naval Weapons (SP)
Department of the Navy
Washington 25, D. C. 1

Chief, Bureau of Naval Weapons
Department of the Navy

Wasnington 25, D. C.

ATTN: Mr. H. A. Eggers (RUTO-32) 1

Office of Naval Research
Department of the Navy
Wasnington 25, D. C.
ATTN: Code 411

438 1

[

Commanding Officer and Director

U.S. Naval Engineering Experiment
Station

Annapolils, Maryland 1

Supervisor of Shipbuilding
U. S. Navy

General Dynamlcs Corporation
Electric Boat Division

Groton, Connecticut 1
Commander

Portsmouth Naval Shipyard
Portsmouth, New Hampshilre 1
Commander

Norfolk Naval Shipyard
Portsmouth, Virginia
ATTN: UERD

[

Director

Ordnance Research Laboratory
Pennsylvania State Universicy
University Park, Pennsylvania 1l

Astla Document Service Center
Arlington Hall Station
Arlington 12, Virginia 10

Director

Naval EFesearch Laboratory
Washington 25, D. C.

ATTN: Code 2021 2

Commander
Naval Crdnance Lavoratory

White 0Oak, Silver Spring, Maryland
ATTN: Library 2

Natlonal Aeronautics and Space
Administration

1512 H Street, N. W.

Washington 25, D. C. 2




HYDRONAUTICS, Incorporated

-11

DISTRIBUTION LIST

Commanding Officer

Office of Naval Research Branch
Office

495 Summer Street

Boston 10, Massachusetts

Commanding Of'ficer

Office of Naval Research Branch
Office

207 West 24th Street

New York 11, New York

Commanding Officer

Office of Naval Research Branch
Office

86 East Randolpn St., 10th Floor

Chicago 1, Illinois

Commanding Officer

Office of Naval Research Branch
Office

1000 Geary Street

1

San Francisco 9, California 1

Commanding Officer

Offlce of Naval Researci Branch
Office

1030 East Green Street

Pasadena 1, California

General Dynaimics Corporation
Electric Boat Division
Groton, Connecticut

Dr. Josnua E. Greenspon

c/o HYDRONAUTICS, Incorporated
Pindell School Road

Howard County

Laurel, Maryland

Cambridge Acoustical Associates
129 Mount Auburn Street
Cambridge 38, Massachusetts

1

Bolt Beranek and Newman, Incorporated
50 Moulton Street
Cambridge 38, Massachusetts 1

Department of Aeronautics and
Astronautics

Massachusetts Instltute of Technolgy

Cambridge 39, Massachusetts

ATTN: Dr. E. Covert 1

Department of Aerconautical
Engineering

University of Notre Dame

Notre Dame, Indlana

ATTN: Prof. F. N. M. Brown 1

Society of Naval Architects and
Marine Engineers

74 Trinity Place

New York 6, New York

ATTN: Librarian 1

Editor

Applied Mechanics Reviews
Southwest Research Institute
8500 Cylebra Road

San Antonio v, Texas 1

Commanding Officer and Director
U.S. Navy Electronics Laboratory
San Diego 52, California 1

Commanding Officer and Director

U.S. Navy Underwater Sound Lahoratory
Fort Trumbull

New London, Connecticut 1

Department of Engineering
California Institute of Technology
Pasadena 4, California

ATTN: Professor M. 3. Plesset 1

Lyman Laboratory

Harvard University

Cambridge 39, Massachusetts

ATTN: Professor F. V. Hunt 1




