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ABSTRACT

This document presents a general explicit solution

to the powered flight dynamics of a rocket vehicle

having constant thrust and constant effective exhaust

velocity, and demonstrates the use of this solution

in guidance techniques.
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1. INTRODU .ION

In the latter part of 1959, the author developed an explicit solution to the

powered flight dynamics of a rocket vehicle having constant thrust and constant

effective exhaust velocity. This solution was used as the basis for the guidance

equations for the Mercury/Atlas flights. Since that time, guidance equations

basnd on this solution have been developed for use on Project Gemini and

Ranger/Mariner, as well as for other programs of a more classified (security)

nature.

This explicit solution and its application to guidance equations was documented

in Reference (1). Since that time, many people have examined this document

as well as other techniques for guiding a continuously burning vehicle to pre-

scribed values of altitude and velocity at burnout. As a result of these investi-

gations it appears clear that for the class of vehicles under consideration:

(1) any guidance technique which accurately controls burnout altitude

and velocity vector must be based on an explicit solution of the

powered flight dynamics.

(2) the solution which was originally developed and documented in

Reference (1) is essentially definitive (the details of mechanization

will of course depend to a certain cxtent on particular mission

requirements).

Although the notation in this document differs from that used in Reference t1)

there are no non-trivial changes in the subject matter. Some additional infor-

mation or explanatory material has been provided for various peripheral ay cis

because these omissi.nns have resulted in considerable confusion by many

"%'An Explirit Method of Guiding a Vehicle from an Arbitrary Initial Position and
Velocity t- a Prescribed Orbit," by D. MacPherson, dated 13 February 1961,
Report No. TPR-594(1565-0l)TN-I.
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0
readers of Reference (1). The ordcr of presenL .on in the Basic Vehicle

Kinematics section has been changed for greater clarity (the manner of presen-

tation used here was suggested by Mr. M. Tangora). Various small errors in

Reference (1) were discovered by a number of people; these have hopefully been

corrected. Mr. W. Brocato has been especially helpful in this regard.

This explicit solution to the powered flight dynamics of a rocket vehicle is of

fundamental importance for guidance equations on sophisticated missions;

because the total effect of control commands is to determine the position and

velocity of the vehicle at that point where ability to control terminates (it is

obvious that only certain restricted values of position and velocity can be

obtained). The values of position and velocity that are desired or required at

control termination (thrust termination) may be specified in a variety of ways.

On an ICBM mission, for example, it is possible to make the ve!ocity at thrust

termination a function of position at thrust termination, and thereby eliminate

the need for position control. On the other hand, burnout position and velocity

are independently specified on many space missions. The explicit solution

contained herein can be utilized to attain these desired conditions at thrust

termination regardless of the origin of the specification (the specification may

be considered another part of the guid,.nce equations).

"In the development it is assumed that vehicle thrust attitude changes (or control)

take place in two mutually perpendicular planes which aro ýonventionally desig-

nated as pitch and yaw. It is assumed that the thrust magnitude cannot be con-

trolled (except by termination).

This document has been written in as general a rmanner as possible with emphasis

placed on the principles involved rather than on the sophistications and details

of mechanization which might be desirable when using this solution in a detailed

set of guidance equations. For example, the time difference between generated

control commands and effective time of data and/or effective time of command

enactment should be accounted for; but this has not been discussed because a

bookkeeping technique of thiS type is not conceptually difficult or fundamental to

the system.



2. BASIC GVEHICLE INEMATICS

Newton's law applied to rocket thrust gives:

F - mT *cd (2. 1)
T ~T dt

The vehicle thrust and effective exhaust velocity will be assumed constant in the

following analysis. Although these assumptions usually approximate reality

quite satisfactorily, restrictive assumptions of this type are not conceptually

necessary; it is, however, necessary (for practical purposes) to have the terms

in Equation (2. 1) in sufficiently simple form for the necessary analytical treat-

ment. With the above assumption

FT( ml a~rl t
1 c- - 1 - t mc: t

where t is present time and tI is some future time.

Then

ma ilL + ~1 (: - t)I (2.2a)M = Ail I2 +-21)

SO

a a;Tl (2.3)
T I aTl- (t- t)
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The equivalent relationship

aTaT 1 T (2.4)
- -(t -t)

will be more convenient at times.

The following dimensionless variable is of fundamental importance.

aTlU E= c (tI -0 (2.5)

Note that

dTJ aTl (2.6)

The constant value of U is in a sense a measure of the vehicle's dynamic charac-

teristics. Then "time to go" until t = tI can be found from

T =t -t U (2.7)U 1 T

The evaluation of TU will be discussed after the immediately following develop-

ment of an appropriate expressinn for use in the evaluation of U.

The acceleration when U = 0 is aTI rnd will be redefined as aU. Then from

Equations (2.3), (2.5), and (2.6)

aU = (cc* (2.8)

aU

aT =•U (2.9)

-4-
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The general equation of motion along V will now be developed.

The general vehicle force diagram is shown in Figure Z. 1.

FT % maT

VP

mg

Figure Z. 1

These forces will be divided into two components; one parallel to, and one per-

pendicular to velocity. The latter component is nf no interest in the immediate

discussion since it changes only the direction and not the magnitude of the

velocity. The force balance along V may be written as:

dV FA
3. = aT cos (-) - g sin r+-- costdt m

Defining

a - aT -dV aT 1 -cos (-r)] + g sin r- r"'" cos a (Z. 10)

L= T dt T [15-



Then

dV+aT dt L

and

Sadt dt + aL dt V , - V + aL dt (2.11 .a t= dt d t L L

The value of aL may be considered physically as the acceleration "lost" due to

angle of attack, drag, and gravity.

From Equations (2.8) and (2.9)

fttI aTdt -c*n (I - U) (2.12)

combining Equation (2.11) and (2. 12) (where Vf is desired final velocity):

•-V+ft aodt

Although the above equation is valid it is not useful because the integral is not

known exactly. This is unsatisfactory not only for its own sake but also because

it masks the relationship between VI z;nd V,. However, these difficulties can be

overcome by the following artifice:

Define
V'I = VI "Vf It+ a Ldt



Ther,
V f - + V L

U= I -e

The magnitude of V' is still unknown. However, the derivative at any time is

simply

dV I
dt = "aL
dt L

or numerically

V, V' -Pa V
L n L Ln n-i

if were known initially, the above equation could be used to find proper

succeeding values. This technique will be used as defined by the following

equations:

V f- V+ VL

Cw *: (2. 13)

whe re

V L = VL -aL'r (2. 14)
Ln Ln-IL

a L is from Equation (2. 10)

r is length of computation cycle

V, is a preselected constant"J 0

-7-



"rhe value of VL, may be arbitrarily chosen; however, it is desirable to use a

reasonably r,,alistic value so that VL is near z. -o ',hen V = Vf. It is obvious

from Equation (2. 13) that when V = Vf

VLf

U f= I

and that elapsed time until V = Vf is

U -U1.
T=

The uncertainty in VLf is reflected in Uf in the above mechanization. Although

thc above mechaniz'tion is valid, the following alternative has generally been

used in the past.

'I he time difference 6TU between the points where V = V and V = Vf is

U a •

where .fis the average thrust acceleration between times t] and tf. Using

Equation (2. 9)

] t I + 6T2 U a t + 6 TU

a ttIU In (IU 06TUa I ud au Q?. 16)
I 6T TU 6ft I - U U -U 6TU

I



Thlen the time interval until velocity equals deoired velocity is (see Figure 2.2)

TE = TU + 6TU (2.17)

U : 0

V :V V= V1  V:Vf

I IfTW

-I.

Tu 8Tu

The time interval TU can be mechanized as (from. Equation 2.7)

T
U ?.

Since 0 can be found by differcncing successive values of V, TU can be deter

mined from knowledge of c* and measurements of velocity only. (See AppendixA

for effect of error in knowledge of c*.) It should especially be noted that while

the thrust must be constant, it need no, be known. Since U is linear in time

(from Equation (2.5)), it is an appropri-te quantity on which to apply smoothing,

and smoothing should be applied on U in preference to an equivalent nonlinear

quantity (V for example).

-9-



For any mechanization it is necessary to evalu, V. Since it is clear that

V Lf `VL- aLdt (2. 18)

This integral must be predicted.

It is obvious that the magnitude of VLf will not be known exactly when TE is

large; but as TE becomes smaller the value of the integrand in Equation (2. 18)

not only becomes more predictable but also requires prediction for shorter

periods of time. Techniques which have been used in this prediction are dis-

cuissed in Appendix D.

The characteristics of TU and 6TU which have been cited lead to the conclusion

that the percentage error in TE is always small. Simul4tion has verified this

conclusion by consistently demonstrating that errors in TE are less than (and

usually considerably less than) one per cent in the absence of errors in position

and velocity (see simulation results in Section 4). It should be noted that the

separation of the thrust effects and the "loss" effects (into TU and 6T Uor the

equivalent) is necessary in a practical mechanization in order to achieve

stability. This separation provides a decoupling which causes first order

perturbations in loss estimates to have only second order effectz on time to

go (TE) estimates. If decoupling is not provided, perturbations in loss esti-

mates corrupt the estimate of thrust acceleration which causes large variations

in time to go. A combination of small loss perturbations and heavy smoothing

on time to go can prevent instability, but this is not a desirable mechanization

for obvious reasons.

Note that Equation (2. 9) gives thrust acceleration in terms of the same smoothed

quantities that determine T U, and that this thrust acceleration can be extrapolated

1

.10-



backwards or forwards in time with no more error (percentagewise) than exists

in the current estimate. In particular, the acceleration at engine cutoff is

a U

af = ------- TU (2. 19)
f -U6Tu

If thrust and structural mass of the vehicle are known, Equation (2. 19) can be
used to predict the mass of propellant remaining at engine cutoff.

Figure ?. 3 isi a collection of equations from this section whith are needed itir
computation of time-to-go and steering commands. It is not suggested that this
is the exact set of equations which would be mechanized. Note that since U is
used in the solution as well as U, the ! - ;ianl'.-..on of Eq. (2. 13) should be a
truncation of the exponential series instead of a curve fit.

It will be convenient to note for future reference that the total integral of thrust

acceleration between times t and tf is

AVE; fttf aTdt Vf V + VL - Lf (2.20)

-11-



Vf - V + VL U=IQI
I : Smoothing on

AV 0 * f jU n- TU n- U and •

a U = •c*

aUa T I -

au
af = 1 - 06TU

a U + A fa af

n n-I

TU 'cutoff

-U f VL f - L fJ aL It
6TU -V 

v now

-V f6TU~ a

T TE T U +6T Uan

Figure 2. 3
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3. EFFECTS OF MLA•T E ATTITUDE

Equations relating missile attitude profile and vehicle position and velocity will

be developed in this section. These relationships can then be used for control

purposes. Pitch plane dynamics will be discussed first ar they are the most

general. Yaw dynamics will then be a special case of this general solution.

Great mathematical simplicity would result if the development could be made in

an inertial cartesian coordinate system. The approach taken in the following

derivation will be to solve the problem in such an inertial frame and to add

terms to the solution to account for the differences between this model and

reality. In order to validly use this approach it is necessary to eliminate the

anomalies caused by the following items in the physical environment:

(1) The "true" inertial coordinate system is at the geocentroid and not

rotating, while the desired vehicle position is most conveniently

specified as a radius from the geocentroid.

(2) The existence of a gravitational field.

ltem (1) can be compensated for by use of the following coordinate frame (see

Figure 2. 1):

Let V = inertial velocity of the vehicle

r = distance from the geocentroid to the vehicle

Then

V
sin r = P (3.1)

V

-13-



Since these variables are derived relative to r, Ley "rotate" with an angularV cosP
rate vRt - r ; but they are truly inertial quantities since they are

measured in an inertial coordinate system. (The rotation is "stopped" while

the computation is being made.)

Likewise a pitching rate

,- V cos r (3.2)p r

is necessary to keep thrust attitude (p ) constant (relative to r). This pitching

rate will be transmitted in addition to any pitching rate defined for other

purposes.

The gravitational and coriolis accelerations in these coordinates produce a com-
bined acceleration

[V cos 11] 4gEp = gr " r(3)

where g r is the component of gravitational attraction along r and may be defined

in any desired degree of complexity (the component perpendicular to r is of no

consequence here, and is negligible in any case). The effect of gEp can be

compensated for by defining a missile attitude

gIzp 
(3.4)

gp aT

and adding this attitude to the attitude desired for position and velocity control.

This specifically assumes that

sin P =P (3.5)

-14-



a relationship that will be assumed for si. ,7 city throughout the development.

While this approximation is valid for most practical trajectories, less approxi-

mate relationships are easily derived (see Appendix H). A pitching rate

gp = LIM (3.6)gp dt

must be transmitted to maintain the correct value of gp* The differentiation of

Equation (3.4) is given in Appendix C.

The equations governing position and velocity in an inertial plane will now be

developed. These vehicle attitudes must satisfy the following relationships,

using Equation (3.5):

Vpf = V po+ a T mpdt (3.7)

0

rf= r + Vpodt +at pdtdt (3.8)

A necessary condition to the solution of Equations (3. i) and (3. 8) i.s that

1rp = A° + Alfl(t - t)

where A and A are arbitrary constants and f is an arbitrary function of

(tf - t), and, of course

,mp = A d [f 1 (tf - t)]

-15-



The functional form of fl(tf - t) is restricted on.' - a that it must satisfy

Equations (3.7) and (3. 8); and, in theory, need be neither analytic nor continuous.

There are, however, several rather obvious physical reasons for restricting the

physical form of fI(tf - t). The attitude must be continuous and attitude rates

should be small on practical trajectories. These requirements are satisfied by

setting

fl(tf - t) r tf - t

or

P = A +A - t)•mp Ao I (tf

This makes w constant, with the resulting mathematical advantages.
rnp

Several developments have been advanced by different writcrs with various

physical assumptions on the problem of maximizing performance; the results of

all argue that either Pmp or sin Pmp or tan P mp should be linear in time. The

fact that these "proofs" are not strictly applicable to the real case is often over-

looked or not emphasized, but they do indicate that a constant attitude rate solu-

tion should be relatively efficient (particularly when gp is small relative to aT).....

This constant attitude rate solution is generally used anO w.rill be dcveloped here.

Other types of solutions can be easily developed along the same lines. A develop-

ment empluying two constant attitudes has bc-en used on Ranger/Mariner.

It is possible to choose a constant attitlde 3p which would satisfy Equation (3.7)

[without, in general, satisfying. Equat~on (3.8)]. For this attitude Equation (3.' 1

reduces to

Vp Vtf j t-pAV(39

pf po + pJt t Vpo + e
0

-16-



or

P AV (3. 10)

Then missile attitude can be expressed as

3p = p + Pprf - Wpr(tf - t) (3. 11)

Equation (3. 10) satisfies Equation (3.7) by requiring

ftf aT[ 3prf -topr(tf- t)]dt = 0 (3. 12)

0

The notation wr is adopted to signify that it is needed only to provide positionpr
(radius) control. The implications and advantages of this formulation of Prmp

will be discusbed following the development. The various P3 quantities are shown

schematically in Figure 3. 1.

I I
Itf TIME

Figure 3. 1
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Expressions for prf and u pr will be found by su ,tituting Equation (3.11) into

Equation (3.8) and combining with Equation (3. 12). This yields (see AppendixB)

- T E[Q.(V -V )+V]
rf. -r • _,,___, P (3.13)

pr (06- -)(TE) C*

Pprf Q 06TELpr (3. 14)

wvhere

06 (3. 15)
e fE

The numerator in Equation (3. 13) is the altitude "error" that would exist if wpr
6

were held at zero: the denominator is the appropriate scaling factor between

• and this altitude error.
pr

The desired present missile attitude is the sum of the various attitude compo-

nents which have been gentraLed above, so

P 0 1. P pg + p 4 Pprf " wprTE =P +•1'•p 6 ) prTE (3. 16)

The actual missile attitude P p which is determined by any suitable method will

not in general be equal to P3° (although in "steady state" the difference should be

quite small) so that there will be an additional transient pitch turning rate

"apt W0 -p )G (3. 17)

-18-



where G is a gain function. Then the total pitch turning rate is

W =W ¢•+W1.1+W + W (3.18)
p pg p pr pt

After an initial trahsient, w will be very small; and wi and w* are always
Pg p

small because of the physics of the problem. The magnitude of W pr is in effect

a measure of the feasibility of satisfying the specified burnout conditions, since

if an excessive amount of steering is required it may not be practical or even

possible to satisfy these burnout conditions (this is why Equation (3. 5) is usually

satisfactory). Note that limiting the magnitude of W will modify the burnoutpr
altitude requirement without affecting the ability to satisfy the velocity require-

ment in any way whatsoever. This feature is especially convenient near cutoff,

since there is practically no capability to change altitude and the inclusion of a

limit on w allows the equations to function in a rational manner withoutpr

necessitating any other changes.

It should be noted for completeness that the superpositiun which has been assumed

is not strictly valid for non-zero values of V . This effect is extremely small

for practical thrust levels (burning times), vanishes as TE goes to zero, and

will not be discussed for these reasons.

Figure 3. 2 is a collection of equations from this section which are needed for

pitch steering. As in Figure 2. 3, these equations are not necessarily ideal for

mechanization.

Yaw steering may be mechanized in a number of ways. It would be possible, for

example, to define a desired orbit plane with displacement y and a yaw velocity

V perpendicular to this plane. Substitution of appropriate notation iny
Equations (3. 7) through (3. 18) is all that is required to make these equations

applicable to yaw steering for this case. Equations (3.2), (3.4) and (3.6) are

replaced by

f3 W 0 (3.19)
Yg Yyg Y

a condition that exists for any form of yaw steering.
-19-



Determination .: -y cos r

of Pp F
(Thrust Attitude) gEP g1- r(Vcos r)V f v l

S6 Av a afT E

r - r°- T(E Q Vpf v- V)+Vp
pr(6-

(

9 .Ep
g aT

ILimit and/or smoothi w pir w 2w* !Ep

g. p c*

(1-0 "p + =9 (A) + to* +tw + G -P
= (1-6)wprT + 3 p 'p pr p g

G = Gain Function

Figure 3. 2
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It may be unnecessary and thus undesi: ',e (from a performance standpoint) to

control the orbit plane with the precision available in the above equations. A

somewhat simpler technique would be to choose a point in the desired orbit plane

(a "pseudo-target") and require thai the intersection of the actual orbit plane

and the desired orbit plane contain this point. This can be insured by defining a

yaw velocity (V y perpendicular to the plane containing the missile (r), the

target (rT), and the geocentroid; and then requiring that V be zero at cutoff.
y '

This may be mechanized by defining

r T xr. V

V = - (3. 20)y rTr sin 4

where 41 is the angle between >rT and r. Requiring only that Vyf = 0 is in effect

setting the ternt corresponding to u, pr equal to zero, and thus replacing

Equation (3. 16), (3. 17) and (3. 18) by

=y (=fy - Py)G (3.21)

At cutoff the vehicle will be displaced from the desired burnout plane by

approximately

Ay = fcutoff V dt (3.22)
Jliftoff y

The integrand in Equation (3.Z2) vanishes at liftoff and cutoff, and, in t0

absence of malfunction, never becomes very large. Since the vehicle is in the

desired plane at the pseudo-target, this pseudo-target can for many missions be

selected such that the magnitude of Ay is of little or no importance. If the mag-

nif,.de of Ay is sufficiently small in the presence of normal dispersions (as it

usually is) the simplicity and fuel economy resulting from this pseuto-target

technique justify its use for these missions.

-21-



4. SIMULATIOI ,ESULTS

Guidance equations utilizing the preceding explicit solution have been simu-

lated 1y several people for use in achieving a variety of burnout conditions (both

with and without noise) for a variety of missions. Jn the absence of errors in

positions and velocity information, approximate errors of injection into an orbit

(if c':- is known) are given by the following tabulation:

Parameter 3o- dispersion

Velocity Magnitude . I foot per second

Velocity Orientation .5(10"4) radian .003 degree

Altitude 150 feet

Injection at a relatively large r does, for rather obvious reasons, increase the

altitude dispersions, although this dispersion Otill remains small. These dis-

persions are due to data lag, response lag, smoothing lag (filters are used even

in the absence of noise), variability of thrust and c* from assumed constant

value due to the use of influence coefficients in the simulation of engine thrust

and mass flow, etc. In an actual mission noise and various other hardware type

effects (such as cutoff impulse uncertainty) will cause considerably larger injec-

tion errors. Some of these errors can be reduced by the use of a vernier.

Lack of knowledge of the exact value of c* will introduce a bias in time-to-go

only if smoothing i3 introduced (see Appendix I). The size of this bias will

depend not only on the "error" in c0. but also on the "time constant" of the

smoothing filter; however, reasonable values of these quantities produce a ve"

small effect on velocity magnitude and negligible effect on altitude and velocC1ty

orientation. Errors due to noise will not be discussed except to note that the

extreme precision (linearity) of the "time-to-go" solution minimizes the

severity of problems arising from this area (absolute linearity would give

optimum results).

-Z3-



APPENDTX A

EFFECTS OF ER,. 3RS IN c*

The sensitivities of TU and aT to inexact knowledge of value of c* (which is still

a constant) will be developed.

For convenience we define

V V + VL

QI =f c, Y L(A. 1)

so that fronrx Equation (2. 13)

Also from Equations (2. 8) and (2. 9)

T c* (A. 2)

Therefore:

Du 0) 0 0 0i 1 QIi Q0I
7 , (1 - e ) -e c = e ( I U):

Since c* and t are independent

00 a] 0
i (du-\ _ C -/8 dr 1 -u) - -* + u

and with (A. Z)

a dU U (A.3)
= -2-- (I + (Y



6

Differentiating Equation (A.2)

(a (1 - U) T + C _ 1-_"_ +jc, OU 1Q +0T = 0 (A. 4)

'This is a somewhat surprising, but very gratifying, result.

Differentiating Equation (2.7)

T -U (z.7)
TU = 0

OUTNU -\-.+ U a -(U 1u c, c(+0 (ol+ U)

8TU c 0 1 + U 0-1 ln(l -U)
"c Tu T= I + -U- (A. 5)

From Equation (2.9)

aU

=T

The :ratio of mass at present to mass when U 0 is then

--0°= (A. 6)
in2u

-26-



Then

m

OTu* 
Inmu

U IU (A. 7)Tc, iU G• \m•). I

Equation (A. 7) ii tabulated below:

m OTU, C*

1 0

1.5 0. 189

2 0. 307

3 0.451

4 0.538

5 0.598

.10 0.744

It is apparent that aTu/Cc* is satisfactorily small at all times, and that the

percentage error vanishes as TU goes to zero.
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APPENDI,, B

INTEGRAL EVALUATION

The notation will be changed in the mathematical development of this appendix

to provide greater simplicity and clarity. Final results will be transformed

into the original notation. The changes are as follows:

I. The subscript o is used to denote values "now" and unsubscripted

values are used to denote values between "now" and final.

2. The time axis is defined so that t = 0.
0

From Equation (2.4) the final acceleration is

oa = 1 = 1 (B. 1)
af = a 1 (tf-t) f T tf

1 (tf -t ) a - a) 1
0 0

so that

Sl (1.2)
aftf aotf

The following relationships will be useful

aTdt = -c*ln - ) (B. 3)f0 n T C
tf aTdt = AV - c*In - q-•t (B. 4)
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The n I tat af ff f ( 2 ) t o.,La R° I In I -*t
a t I! " 1. 4":d -. c €" fe f")J1 (itInCo + t

1 0 o.,fJO 0

which in combination with Equatioi (B. 2) and (B. 4); and with the definition

AV
� (B. 5)

aftf

1vc on-tk s

o tf a T d t clt ' a ( .f ] = c t 0 (B . 6 )

From E.quation (B. 1)

a
0

I a

C .

so that

tdt at c -* t + T -nt
T da a a-

f-T- , L 0
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which in combination with Equations (B.?' and (B. 5) gives

f aTt dt = c*tf [A cV" - Q (B. 7)

Also

(I a0 0'J0

- t~ - 1 f ~tff taT dt dt] c Ctf 2  - + t J c ~ + 0a 0 T: 2 ao o1 t0

Defining

6 - c-- (B.A8

e

Then

.JajTt dt dt = ctf2 [. + + 06(1 " 05 (B.9)

Integrating Equation (3. 12)

'f~t fot

(Pprf - Oprtf) aTdt + o pr aT t dt 0
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Comibining with Equations (B. 4) and (B. 7)

W[prf " tprtf)AVe +W c*tf :e 05 0

prf pr~f el rr Q C'. 5)wQ(B 0

['prf = wprtf AV e €prtfQ6(B10

Substituting Equation (B. 10) into Equation (3. 11)

1mp =p + r(Q 6 - l)tf + t]

Substituting this expression in Equation (3.8)

Sto f rtf 1 t
r =r + V t + P 0 a dt dt + w •P( l)ftf0 1 oa dtdt + wotaTdt dt

f f o pjf 0 Tpr(6 n T 0

Substituting Equations (B. 6) and (B. 9) and solving for wpr

r f- r Vt 'f C*tfQ 5

pr -(Q l)tf2 c*Q 5 + c*tf - .L+Q 5 +Q 6 - Q 0

or

rf- - t0cVr . r 5,c* , rf- ro - tf[Q IVpf - Vp ) + B. I
pr Ct ('6 I) c*t( ( 1) '
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The numerical values, of t and T are ie nt'cal, and making this substitution
f E

inEquatibns (B. 11) and (B. 10) produces Equati'ons (3.13) and (3. 14) respectively.

Also

Q6 c AT (B. 12)
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APPENDTX C

EVALUATION uF wPPg

The approximation g = gr = K I/r is valid for reasonably small variations in r

and will be assumed valid for purposes of differentiating P , although this

restriction is not necessarily made in the definition of P . With this assumption

Equation (3.3) can be written as

K 2 2 K1 ,'
1 KI- KrV Cos F _KI K r (VV - V') 1  (C. 1)

Ep 'r [ - ] r I

so that from Equation (3.4)

g= - 1 - KrV2+ KKrVJ (C. 2)

r aT

Differentiating Equation (C. 2)

K dV 3dV

dgd K KI -K.V2V " 2K rVd- + K V 3+ 2K rVpd-[di -
dt z 2 p 2 cit 2 p 2 p dtjr T

2,ra V + r -_• T -_Ip dt

g aTr i

gK2 2 dV 3z dv, r]
aT [V2V + 2rV-dj-V V'- 2rVpiJ P ~ ~ Ca-T p 3 -dt
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Fronm Equation (2. 3)

da a2
uT aT
dt c*

Then

d g K 12 2/jVdV dV p+

(it a T VP( p V-dg [.-T2 .. r

Neglecting small terms

d1g [gK.2 rV + IE] [V+9E
dt - + r C*j

or with Equation (3.2)

dw N w- r (C. )

pg (It p c*

It may be easily .hown that

T V (C. 5)

The fact that dw /dt is extremely small is fortunate for obvious reasons.
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A.PPENDL..

EVALUATION OF VLf

In order to mechanize this solution for guidance, it is necessary to mechanize

a solution for VLf. A mechanization which has proven practical will be outlined

below.

As before

VLf V L -ftf aLdt (2. 18)

where

FA

aL g ir + a.T 1 - cos A cos 0 (2. 10)

The integral of a L w. he approximated term by term. Defining

aLg g sinr

a Lk a aT [ 1 - Cos (P3- r)] (D. 1)

FA
aLA.•r- cos

and assuming

r -- rf + r, (t - ) (D. 2)

P = Pf 4 P. (t - tf)
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Then

ftf a Lg dt ftf g uin rdt g ff + r,(t - tf) dt

9 ~(f - )r '(t -t f) I=g~tf-)C+i-- t - rf~ • -g f

or

ftf aLgdt = gTE•( -• --- (D. 3)

Defining

xF 1 r) ( -" r)2 (D. 4)

Then with Equation (D. 2)

1tfff[ +Z3f- Tf)(13'-r')(t-tf) t )2 (t
J~f~dt ft a iXdt=t a + 2( (--rf,)(t•- - t+ (f)-(' - tfcidt

itft 2I ~f-r 'f f• tf a tf t) t

IttfaTXdt = (Pf - rf)ttf aTdt- Z(Pf if)P- r")f tfatf -t)dt+(P'I 'rI)Zf "aT(tf-t)dt
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Using conventions of Appendix B

2 ftaT dt = - - p- ' - I-t)Ztzj ftfaTdt +

+ [z(Pf - r)(P- re) - (P8 - r,)zztfI Ifo tfaTtdt +

+ (P' - dt

From Eqs. (B.1), (B. 4), (B. 7), (B. 8), (D. 2)and (D. 4)

"jtf aTXdt = .AVe + (p - r))(p' - r,)(tf - t)AVe(l - Q6 ) 4

+ (P' -r' )2 at 0 dt+ (D. 5)
I - a-0 t.. .. .

Evaluating the integral using the notation of Appendix B

aot 2dt 2a0 ao t f ao

-*(- ")')i jjo -1 tf) ] 2(-%t-)%ni -In

-- + ln(l a
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With Eq. (3. 4)

f ao dt 2 2 e c*)2

From Eq. (B. 2), (B. 5) and (B. 7)

c* c* c*(l - Q5 ) c*I- + ff -- l +- :~ I - Q6 +- e

a taf f A Ve 6e

(I " Q + 2(l - Q C*

Then

*d 2 z

f a t AV 2[ e(a- dt = c*tL (I - Q ) + 2(1 Q + I--- +Q
a ~) f2 "c 6 6 ..... ýV

"=AVet 2 1-Q2 + 1 6(D. 6)

Defining

.7  -( ' - I")(tf - t) = (Pf - r1) - (p - r) (D. 7)
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Then with Eq. (D.6) and (D.7) Eq. (D.5) .omes

IfXdt AVe X + ( r - 1) 07(I - 06 + .•)2( - 06)2 + 06

t -C- I,
Then

t..

Ja dt X XAV (D. 8)

t

Where

Q 2•,X+ -r) o71(1-0o6)+ (I 0 6) +, AVe

L ~eJ

Experience shows that the following approximation gives very accurate results

-- r) QO- D.9X + (I Q 07 +T (D 9

where 07 is given in Equation (D.7).
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Although aerodynamic forces could be handled in a similar manner, for trajec-

tories normally considered it is very satisfactor, to set

F A = a ,A 0 (D. 10)

Then ]Equation (2. 18) can be written as

VLf = VL - gTE v e (D. 1)

where X is dcefined in Equation (D.9).
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APPENP'X v

EVALUATION OF f

From Equation (2. 16)

5 f In(l - 06TU) 1 &TU (U6Tu12 (6Tu 3  (

au -U6TU z 3 4

From Equation (2.9)

aU I - 06TU- 1 + UUTU + (U6T U) •

so that

au+af [ __5Tu (O6Tu) 2 (O6Tu) 3  ]
2 =a U I + -+ 2+ + 2 + "

Then

aU + af [(05Tu)2 (U)3 +
z - f =aU[ -- ! - + +... (E.Z)

It is obvious from Equation (E. 2) that the approximation

aU + af
af 2 (E. 3)
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is very good. It can be easily shown that (for c* " 10, 000 ft/sec) the error in

inie('ction velocity incurred by using Equation (r , is approximately

•,V V /3

where 6V and VLf are in units of ft/sec. Usually VLf << 800 ft/sec.
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APPEgJDTX F

EFFECTS OF COMPUTATION CYCLE LENGTH
AND AUrOPILOT RESPONSE

The injection errors in velocity magnitude and yaw velocity are very small (less

than I ft/sec. ) for all computing cycle lengths less than 10 sec. Pitch velocity

errors as a function of major computation cycle time have also been determined

from simulation and are shown in Figure F-I. Position errors are correspond-

ingly small. These error numbers do not include any errors except those

arising from the guidance equations themselves. The hardware contribution to

the injection errors will be relatively independent of computation cycle but will

be somewhat larger for the longer computing intervals. It is assumed in all

cases that the determination of position and velocity information will be done

frequently enough to prevent computation error build-up. For the longer compu-

tation cycle times, this may require the up-dating of position and velocity infor-

mation in sub-cycles. It should be noted that the errors shown in Figure F-I

are to a certain extcnt due to lack of sophistication in the mechanization of o*
p

and wp (these quantities are not constants during the computation cycle). Thesepg
errors could be greatly reduced by the use of offsets or a more sophisticated

mechanizatiori.

40

FT/SEC 20

0
0 2 4 6 8 10

r (SEC)

Figure F-1
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The effects of lack of knowledge of autopilot -esDonses have been approximately

simulated on the IBM 7090. The simulation v%..ich was used has a unity autopilot

with a delay of any desired magnitude. The guidance equations assume a delay

of 2 seconds. Simulations were run with actual delays un the dynamics varying

from 0 to 6 sec. which is, of course, far outside any possible lack of knowledge

of response characteristics.

When crrors in pitch velocity occur due to very long computing cycles or

because autopilot response is grossly misjudged, pitch steering commands can

assume large or even limited values near vehicle thrust termination. These

turning commands as well as the other steering commands used during the flight

are not oscillatory and in this sense are not unstable. The existence of this

.3tability has been not only proven by simulation, but may be deduced as follows

from past experience and knowledge of system behavior.

In a radio guidance system, vehicle thrust attitude must be deduced from radar

position and velocity information. The radar noise normally produces estimates

of attitude that are quite inaccurate, but these attitude estimates are then

smoothed -,n a digital filter with a sufficiently long time constant to permit a

reasonably accurate attitude to be obtained. This technique works very well (as

has been demonstrated on Project Mercury) even when considerable noise is

present in the radar data. When an inertial system is used, there may 6,.

curresponding "noise" in a position and velocity mc.Sur,.d by the IM.U. These

errors result from rotational dynam-ics and from the fact that the IMU is not'

Ic-cated at the center of gravity of the vehicle as well cs quantization of measure-

ments. Although these errors are considerably smaller than the corresponding

noise errors in a radio guidance system, the technique for hand]ing therm can be

the same; i. e. , raw attitudes are ,_)tained from position and velocity information

and smoothed appropriately. Since the "noise" errors on an inertial system are

much smaller than those for a radio guidance system, the problems arising from

this area are correspondingly smalicr. Since the only data required by the

guidance equations are position and velocity information, the above technique

will insurt! Lctability. ES
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In some guidance techniques n,,t based on .n xplicit powered flight solution it

is not pos, ible or practical to ;mooth thrust attitude, and this can lead to insta-

bility under certain circumsta ices when these less sophisticated techniques are

used.
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APPENDI, C

THRUST ATTITUDE DETERMINATION

The following technique has proven very successful as a means of thrust attitude

determination. Yaw is a special case of the general pitch relationships.

Pitch attitude is given by

pn pn -Ip
Pp raT" + Pgp

The total turning commands (relative to the local horizontal) which have been

generated from the start of guidance are computed as

Q n :: 0 z - + -(Utp - WD) (G. 1)
2n Zn-l I p p

Then the initial attitude (attitude at the time guidance was started) is

V -V
=pn pn-i + i G

p TaT gp QZn (G.)

The magnitude of P* should be constant (and simulation has shown it to be
p

remarkably so) and can therefore be readily smoothed.

S13p smoothed -G...
p p

Then smoothed missile attitude is

13 =.+Q0 (G.4)
p - -
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APPEN"*TX H

LESS APPROXIMATE RELATIONSHIPS

More general equations which pa t~ally remove the approximation of Equation

(3. 5) will be given without discus.;ion.

Equation (3.4) becomes

sin Pg !p (H. 1)
SaT

Equation (3. 10) becomes

sin, = p (H. 2)p.

Equation (3. 16) becomes

sin P 0 sin g3 + gin P 9p Q6 )wpr TE (H. 3)

Equation (3. 17) becomes

€O T! ' sin [° -sin C.p] (H. 4)

Equation (3. 18) becomes

P r cos p
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Equation (G. 2) becomes

aT' - V png " -n (H . 6)* sin I [VaT + pgp] 02(n-

p-5T



NOTAi".4

The notation has been subdivided into symbols and subscripts. Some of the

symbols appear only in combination with subscripts.

SYMBOLS

a - Thrust acceleration

a f - Average thrust acceleration over the time interval FTU

c*- - Effective exhaust velocity

FA - Aerodynamic force

I,-T - Thrust

g - The total force exerted on the vehicle by gravitational fields

divided by the mass of the vehicle

m - Mass of the vehicle including unexpended propellants

r Distance from the gcocentroid to the vehicle

t -Time

"TE - Time to go until the desired velocity is attained

"T U Time to go unti. U - 0

6T U TE - TU

V - Inertial velocity of the vehicle

U - Fundamental dimensionless variable - defined in Equation (2.5),
computed from Equation (2.13)

- Missile attitude

Pm - Component of thrust attitude necessary for position and velocity

control in an inertial cartesian coordinate frame

I - Flight path angle (positive up from local horizontal)

T - Length of computational cycle
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SYMBOLS (continued)

- Vehicle attitude turning rate

- See I.quation (3.2)

SUBSCRIPTS

f - Final (when velocity equals desired velocity)

g - Associated with gravity

p - Pitch

r - Associated with geocentric radius

t - Transient

y - Yaw

E - Effective

L - Associated with acceleration "loss"

0 - Piecent value

"1 "~ Thruat

V - Related. to U

- Associdted with angle of attack
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