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Preface 

In this thesis the methods of tensor analysis have 

been used to obtain expressions for the basic equations 

of fluid mechanics in terms of several orthogonal curvi- 

linear coordinate systems. V/hile these methods can be 

used with any valid coordinate transformations, the 

reader should be cautioned that the specific results 

obtained here are applicable only to the particular 

transformations which are listed in Appendix A, There 

are other methods of defining the various coordinate sys- 

tems, but, to make use of these differing definitions, 

the reader would have to start with the basic equations 

listed in this report and derive his own final results. 

It should also be emphasized that this report does 

not attempt to explain the mechanics of tensor analysis. 

If the reader is unfamiliar with this branch of mathematics 

and wishes to gain the background to enable him to fill in 

the steps which have been omitted in the development of the 

relationships used in this report, the book by Sokolnlkoff 

(Ref 4) Is an excellent text. 

11 
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List of Symbols 

P density 

W tensor component of the velocity 

Vt    physical component of the velocity 

Qij    metric tensor,    S^i ^ 0 • 6 ^ J 

determinant of the metric tensor 

time 

^    Internal energy per unit mass 

n     enthalpy per unit mass 

^    stress tensor,    (= 'p^ +   h"1*) 

p     pressure 

viscous stress tensor 

physical component of the viscous stress tensor 

tensor component of the body force 

• t    physical component of the body force 

Q, tensor component of the heat flux vector 

4£'    physical component of the heat flux vector 

7     tensor component of the acceleration vector 

JV     physical component of the acceleration vector 

tf coefficient of bulk viscosity 

^T     coefficient of shear viscosity 

Where tensor quantities are defined, the symbols are the 

same for covarlant or contravarlant tensors. 
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Abstract 

The applied science of fluid mechanics makes use of 

three basic equations to analyze and predict the state of 

a fluid In motion. These equations are the equations of 

motion, energy, and continuity. In most flow problems, 

these equations cannot be solved, or are very difficult 

to solve, unless they are expressed in terms of a coordi- 

nate system which conforms to the surface of the duct or 

body which shapes the flow. 

This report utilizes the methods of tensor analysis 

to transform the basic equations from their Cartesian forms 

to expressions in ten orthogonal curvilinear coordinate 

systems. The derivation process is outlined, and the final 

results are tabulated for each of the coordinate systems. 

Although this report assumes a Newtonian fluid model, the 

viscous stress components are listed separately so that, 

given the proper expressions for the viscous stress com- 

ponents, the results may also be applied to a non-Newton- 

ian fluid. 

vlil 
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THE EQUATIONS OF FLUID MECHANICS 

EXPRESSED IN CURVILINEAR COORDINATES 

I. Introduction 

Fluid mechanics Is defined as the applied Science 

which deals with the principles of both gaseous and liquid 

flow. Practically, we are concerned with fluid flow over 

solid bodies or through various types of ducts or channels. 

In order to predict and describe such flow, we make use of 

three basic equations: the continuity equation, the energy 

equation, and the equation of motion. These equations are 

dependent upon the use of some three-dimensional coordinate 

system to describe the properties and the movement of a 

fluid. 

For simple flow patterns, such as flow over a flat 

plate, rectangular Cartesian coordinates are adequate for 

complete description of the flow characteristics. However, 

for flow around more complex body shapes, we find that the 

equations cannot be solved, or are extremely difficult to 

solve, unless they are expressed in terms of a coordinate 

system which is compatible with the geometry of the body. 

In particular we must have a coordinate system which has 

a coordinate surface closely approximating the shape of 
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the body. This is especially Important in enabling one 

to express the boundary conditions in a simple form. Some 

examples of flow situations which require more sophisti- 

cated coordinate systems are: flow over submarine hulls, 

whose shapes are elongated spheroids; flow through ellip- 

tical pipes; and flow through converging-diverging nozzles, 

in which the nozzle walls approximate hyperbololds of one 

sheet. 

The problem is one of expressing the familiar Cartes- 

ian forms of the basic equations in terms of the various 

curvilinear coordinate systems. To do this, the methods 

of tensor analysis will be used. The general approach has 

been outlined for the continuity and motion equations by 

McConnell (Ref 1: 271-313), among others, and results have 

been obtained for cylindrical and spherical coordinates. 

The methods used in this report differ only slightly from 

those used by McConnell. 

The fluid model is assumed to be viscous, heat conduc- 

ting, and isotroplc. Chemical, electromagnetic, radiation, 

and diffusion effects are ignored. The fluid is also 

assumed to be Newtonian. However, the expressions for the 

viscous stress tensor are listed separately so that, given 

the proper expressions for the viscous stress tensor, the 

results may also be applied to non-Newtonian fluids. 
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II. The  Basic aquations 

The basic equations are presented here in fairly con- 

ventional form, and they are then adapted to a form more 

suitable for final tabulation. If the reader is interested 

in the derivation of the equations, he is referred to 

Appendix B. 

Continuity Equation 

The continuity equation can be expressed in tensor 

notation as 

af + (ftf1),.   '- o     , (i) 

where t/'is the i'th component of the velocity vector, and 

P is the density. The second term represents the diverg- 

ence of a vector, and it can be expressed more conveniently 

by using 

(pi/0., = 7f ax'l/^ fv<j  )    (2) 

where V- represents the physical component of the velocity 

vector. Substituting equation (2) into equation (l), we 

obtain the continuity equation in its final 'form: 

^ '/f ^'l/pS P') =  0     • (3) 
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Energy Equation 

In tensor notation, one form of the energy equation Is 

(vc^).^ f^Fl-%> i i (4) 

where h Is enthalpy, fo',, Is the Ij'th component of the 

viscous stress tensor, p Is pressure, and 0    is the i'th 

component of the heat flux vector. By substituting physi- 

cal components and making use of the general form of equa- 

tion (2), we obtain the energy equation in Its final form: 

-1-2./ /S' u £i:\        1/ P   -i 5 / /T - \ 
(5) 

whore IT , F^ ,  and 9,; are the physical components of the 

viscous stress tensor, the body force, and the heat flux 

vector, respectively. The Ij'th component of the viscous 

stress tensor can be written, after Sokolnlkoff (Ref 4: 

321-324), as 
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^■tg y.H,+ g  tr^J     ,       (6) 

where n   Is the coefficient of bulk viscosity (usually 

taken to be zero), and ^T is the coefficient of shear vis- 

cosity. After carrying out the indicated operations and 

substituting the physical components for the velocity 

vectors, we obtain 

^ aP(9 3  ^3   9  i^J    • (7) 

V/e can obtain the physical components of 7TlJby multiplying 

equation (7) by ffiu^faup  . Although the multiplication will 

not be shown here, the physical components, rather than the 

tensor components, will be tabulated In the next section. 

Equation of Motion 

The tensor form of the equation of motion Is 
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f(Wi)--3iKV       , (8) 

where ii is  the i'th component of the acceleration vector, 

and fij represents the viscous and pressure forces as 

follows: 

The physical component of the acceleration vector is 

Tj r / ga><" Tfo= J($ÜHü     Id)        > (10) 

and the physical component of the body force is 

(11) 

where Tt- and F,- represent the physical component of the 

acceleration vector and the body force, respectively. By 

substituting equations (10) and (11) into equation (9), 

we obtain 

f (^ " M = 7pS ^oj,^ (12) 

which is the final form of the equation of motion. 
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The i'ih component of the acceleration vector Is 

r I  I ^■'       i 1 
(13) 

The final form of the acceleration vector is obtained by 

expanding equation (13) and substituting the physical com- 

ponents of the velocity vectors: 

r  ^    j  f  aVi 

^lax^^^Vj-^x^^Viljj    . (i4) 

The term on the right side of equation (12) can be ex- 

panded, using equation (9), as follows: 

1   ik v     i  / ^ ik  v 

where 

(16) 

Expanding equation (l6) to eliminate the Christoffel sym- 

7 
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bols, we obtain, after simplifying 

i    9 
SM ^\* - i^lAq%tT^) 

i   3 
I M [<\i*) tr*     .     (i7) 

Substituting equation (17) into equation (15), we obtain 

I $&' b" J , da) 

Substitution of the physical components of the viscous 

stress tensor yields 

all v   - -i- [ n    Xi? /JUilii-, ^4K\ 

1  - 9jiK xiiui 
(19) 
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III. The Completed Transformations 

For convonioncc, the equations that are to be expres- 

sed In the various coordinate systems have been restated 

on a fold-out sheet in Appendix C. 

Cartesian Coordinates 

x = x xN 4   x'-- I (20) 

'Ju-  \~ -  3 33 i (21) 

Continuity Equation. 

M -^(f^VaVp^^l^fV.) - o       (22) 

Energy Equation. The left side of equation (5) 

becomes 

v.MMxt/M^v;)]!   .    (23, 
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The remalnin? terms of interest arc 

/M^/few^) =Ä(^^-.^-. 
^tr*') + ^(v.fr'^V^" f V^^) + 

?A^X* tv^ + v^")   l (24) 

3>K£ - ^ (v;p>tV5/? f vJt) > (25) 

and 

3 /^ f §c.^ 5#f) = f'P'm^&p. (26) 

The components of the viscous stress tensor are 

trXb- tr9X / 3yb    9v; \ 

tr"=^=  -(t^' X? 
) 

(27) 

(28) 

^= f^^ ?r- (29) 

10 
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(30) 

■»■ 

^J + ^^   . (3D 

and 

^     " ^7- 3^) L9x   4 äV ^■ 

^ 1     n ^^ 
(32) 

Equation of Notion. The components of the viscous 

stress tensor are tabulated above. The remaining terms of 

interest are 

i^  ., 3K 
(33) 

11 
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M 

a£
b(^) +^(^xl) , (36) 

4(^)^^(f^)  ,     (37) 

and 

_äiK 

Cylindrical Coordinates 

Continuity Equation. 

(38) 

(39) 

%   =  ^33  = 1 (40) 

^x = ^  ^ (41) 

12 
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M * F ibfK) <? &(fü)*|i(f i/,)' ö (is) 

Snergy Equation. The left side of equation (5) 

becomes 

tilthniK%*vMx)] * v.f>[^i(r+ 

^hhA^w.ws)]]. (43) 

Also, 

I*(V>^V61T
S
%V^") , (M) 

(45) 

and 

13 
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i. i.  (ML-  Z \       1 i f   ~  \ 

7 J6(^e) + a*(£^ . (46) 

The comoonents of the stress tensor are 

-re. £**_ ^£(4o*Tffl(v;)] , 7r 

i^ . L ^h + 9?J   , rrKt= tr1^- ^r 

^=(rlr)[;I.H)4^ 

?i J   + 2.T jp. 

(^7) 

(48) 

(49) 

(50) 

(51) 

and 

14 
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^M'(Hr)[UH) + |^ 

li]   ^-ü« 
(52) 

Ration  of Motion. In addition to the components of 

the stress tensor tabulated above, the terms of interest 

are 

€W- -ill*U^) + i%(£««), 

(57) 

and 

15 
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ifc V  =  -%+T§-rU")*iUV) 
c)     / ^ 

li(1?H). (58) 

Spherical Coordinates 

x' ■ :   V 

9» 

XV^  0 

3» =   K"''^!^ "9 

r r'5>nx 
Q 

Continuity Equati on. 

X5-(() {59) 

(60) 

(61) 

(62) 

(63) 

atf "" ^^^(^^J ^ r^relö(5/ne^l/e) + 

1        2-   I     M\ 
(64) 

16 
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Energy Equation. The left side of equation (5) 

becomes 

F Si* ö  äf Lll ♦ I (K"*- *i>'+ V»")]i .       (65) 

Also, 

\^S)J ^ rs^rfU^v.fr^^^J ,(66) 

^V.f;    :    flVyF^YXtV.fFf]    . (67) 

and 

|r sine aeU'«e £e) + ps^Tä^f U^ )   .     (68) 

17 
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The components of the viscous stress tensor are 

7r  -- tr0 = r »-ahlp-;+ r 9-aJ 3 

£.*<*    A.A**.      ^F. -^/^^        -i    3^" 

(69) 

af J,    (TO) 

.•♦-^.- T[S^ä(^) ^•♦= i>»». 

1- ilti ö  a-ai  . 5-f  J, (71) 

^-   (?-|r)lf fhd'-Vj   ^-77^lö(/6Tm«) + 

^y. 
lTr^      , (72) 

fr06- (^lT-)[>^(^K)v"^rfllö(\i^ö) + 

i      av. 
V- Si -6fj + Z^LT^.O], (73) 

and 

£<P<Pr 

^ Jin 6   ^(p J   +     IV L H 3/rt Ö  I «^   4- 

^ + V6  (LCA Ö )J     f (74) 

18 
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aquation of Motion. The terms of Interest, In addi- 

tion to the components of the viscous stress tensor already 

listed, are 

rS/ne   «99 yT > (75) 

7e- at  + ?ar(^W^7 ae + 

rsmö  aq)   " "p.    Co^   © i (76) 

üL. iy<p 
ir sme dp      , (77) 

,JK 

Tkf^)-7^.^)    , (73) 

19 



ü/h'/Mi'AJk-^ 

(r)r^) 

i   3 
rsmele(^0H+ firTeTfift**) " 

V^Cöre  * Z^6" , (79) 

and 

^K. 

^      <?P •* sL 

1 5  /^tofl\ i      5 
r ae^ ■; ■"   KSinö a^ ( 

F^ ■f- 
2 COT ö ^(pe 

(BO) 

Parabolic Coordinates 

x'-- A X   = ^ X =  (p (31) 

CJn (B?) 

^ 1.1. (S3) 

$33   ^   ^H m' 
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9 ^   /6 (85) 

Continuity Equation. 

SnerSly Equation. The left side of equation (5) 

becomes 

(86) 

'.f^JJ  .       (S7) 

Also, 

21 
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ÜHC   Mfi   OJ-i( 

v^"" *vt£Hj+^4ki^V?*H£wI . (88) 

fV<^    =    fll//^^^  +^Fj     , (89) 

and 

J. a  IJEL x]      z  d_ l,  ^ ] 

XT^ ^[/^(A+A ^1 * fXMdfifri)   . (90) 

The components of the viscous stress tensor are 

llMd^i^)}      , (91) 

fÄM    54) J   j (92) 

22 
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V^w?      V'PM rr* 

(93) 

A"^äA(^(A^ ^-^ 7^ a9J +vU^f^^^ 

tr^ 

CA+x) ̂  vi - ^fc)^ ^] , (95) 

and 

MTXtM^ VA +/7^7o l//^] (96) 

23 



üAi/M.C/bJ-^ 

-; tatl".i _J H^tl' ii. i'tM- >; o(i!!'on<ii'a of ch • viacous 

stress tensor are listed above. The remaining terms of 

interest are 

V„ JTH acp - ^(Afyu^'V^feT)  >     (97) 

V "- at   ^ ^ ä+^ aAC/J^^J + 2ji/^ 2M + 

>   (TO Jf   ' VA (AtA4),/v - y<p iMÜ+M^    , (93) 

V/,<9MW^)J   f  7W  5<P       , (99) 

/p ^ = "^/ATS ä> •*" ßoS! äÄ (AiVAA) ■•■ 

/nfe) fr" >■ ^'^ f ^ ,      doc) 

2t 
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I       3 i d 

1 «P»   .   ?yZ,.1    ^^A 
(101) 

and 

J1K 

/M1 5 

(102) 

Prolate Spheroidal Coordinates 

x =A x\ M X   =   f (103) 

*   .   a- 

9' r  CL 
x A -/K 

(104) 

»•   ,  v 

^-'^ (105) 

25 



ü A ji/Mc;/6 ;.•-', 

^33  Z   Oi'W'lUl-M^ (106) 

(107) 

Continuity Equation. 

QTCA^O^ <59     p^J ^ ö (108) 

Energy Equation. The left side of equation (5) 

becomes 

 y»       5 r     i / .] 7 
a/avJKT^) a^ Lh + I (\//+ ^% ^Jj (109) 

Also, 

26 
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7f jWij^f W'j'äüh*) IäUV«*--«"^^"* 

and 

TLIJJS: 

(112) 

The components of the viscous stress tensor are 

fr^^MA 
= V[-X"  5A TT^ ^i + 

(113) 

27 



j \ :. 'A.:   '■)   - I 

(114) 

AMf _    N^CPAI rrMf= rr T 

1 ^y • 

(115) 

ZACi-^^ 
ä.(A1-A1-)3/9^T V^ - OCAS?)^ 1^ J ,       (11 6) 

+ 

(117; 

28 
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and 

^ (.f-Mi'^h + a WFfäd W . (n8) 

Equation of Motion. In addition to the components of 

the viscous stress tensor listed above, the terms of Inter- 

est are 

./ ^ A     I 
V) a. fU^CAvT) 3  (ii9) 

29 



Cr- . >!.•:  ;   '-h 

(120) 

dv( 1L— 1 
> "- at  + a/r^T1 ^ I/AM VV) ^- 

ay, 
OVTA^-WL^ ^4 a<p      j (121) 

X ^ i [AM" £P 1 a   r A    -I 
^ '% r "«-«A^aA -^o^vpiräA l(Al-i)?rA J + 

Aräf^-^^f^ ^a'-^a^ (--22) 

30 
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M/l->kv       ^A> 

a-Zo^KTCT) ap(tr>,,J>)+ ofe?)'^ tr 

M* 

^    A 
(123) 

and 

,it< 

£p 
^7T hi.K ^   Mc/MV?^ Jcp   ■f 

5ET    a 

ZA «A 
fl.vo'-Da-^ Vtr^-f a/ov«^^  fr 

avavM^-^) ^ H   , (124) 

31 



b.   v l'u'JÖc-K 

3i)hcTolcial Coordinates  (Oblate Spheroids) 

5. 
? (125) 

(126) 

(127) 

•»• \ I    «- 9« r   Ö- A> (128) 

(129) 

Continuity  Equation, 

3 
at' 

/PTT     £/ 

nrz*   d 

(130) 

Energy Equation. The left side of equation (5) 

becomes 

32 
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dfe ^[ui(^Mi%v)]] • (131) 

Also, 

(132) 

(133) 

anu 

33 
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(134) 

The components of the stress tensor are 

tTA^- h 
A <PA T- 

1. 

-1. 9^ 

(135) 

(136) 

(137) 

34 
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r  /Äv: 

r 2 3//ET., \     XA  ,    i-Mv .. 

0.   (Al-^),/L ^J > (138) 

FA £ //IZ5rl; \     ^A iZH,  ., 

2M A"- 
a n^a s^ vJ. (139) 

and 

35 
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£*' - iv- l^ioj^iiixf]^? VÄ) + 

d^o) 

Equation of Motion. The Important terms In the motion 

equation are 

n 3 ^ ^ 

M > 

a  A
I
-A

V
^UAV<

I
 l^) + 

KH  iEg..   -Jl 
^ CA^-v^    ^A^'-^ 

(141) 

(142) 

36 
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a^ vf^r^^UKp/+ Q.A>M 3^   3 (143) 

i rn^ 9 i  s 
eLs/Ä^^^j^^r^^) 

X>H 

(144) 

QMUW TT v + atA1--^1)^  fr       ^ (145; 

and 

37 
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/TT^    9 l    d 
aMaSn*)^f^1^ tr^j f OXM 5^ (l?9f) 

.^T^.A iklföffr"+&&$$'>*. 

Parabolic Cylinder Coordinates 

X -- A j . 

e- 

X  ■■ M. ^   =   2 

Continuity Equation. 

dt 4 r+xi<9A(/A+>r |) v^)-<• 

(146) 

(147) 

(148) 

(149) 

(150) 

(15]) 

(152) 

38 
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Energy Equation. The left side of equation (5) 

becomes 

(153) 

Also, 

^"hkk^+yJ'Wj"] 3 (154) 

j)K/? = ^(1/,/-%^^ ^ v^fj 5 (155) 

and 

A £ . /ill ^ \    2J11 (, . ^  \ 
4- 

(156) 

39 
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The comoonents of the stress tensor are 

tr>M-trM> 

Xi ^"-ti fA    - [ 

^-^-rf./^l^.tJ, 
rifii. trw=(?-|T)lÄäÄf/Ä77rVA) + 

(157) 

(158) 

(159) 

^(w>|*W^&J- A+M ^M v.Mf^ 

AM,      . z./xr     w "I 
(160) 

trMM-  (yi-lrAh^äliü^rV, 

UM U^^^l^hlM^ 
2JK.     \/        xA        ,/ 
(At^ä/,-yA "" Stv^)^ VM    5 (161) 

and 
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^"= (v-lr)l]&i(rttvA)* 
UM   d 
^U(^W* l£] 

(162) 

Equation of Motion. The important terms in th( 

motion equation arc 

i = zi +1 yJ/.M 2* + zyM xt-dhiföxvÄ)4 

A 

I 

f 

^       o V   Ül £// ,»/ \ 

i^Jfä 2M   +h2i  - 

(163) 

(164; 

n ./   /IST iVx      u  9/, 
55, 
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(AfM)^frMM-h (ÄT7ö^h"AM ,        (166) 

ifjratM^ VM +- (A+>M^1TMA 5       (167) 

and 

/fcV^-l^.^f^^lT«) 

Xf I^te^^tl-Jrr").    (168) 

Elliptic Cylinder Coordinates 

x'-- A       xz-- H      x3-- e (169) 

^i^ x^-t  ~ (170) 
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^ 

a.^(^'■.M•) 

<] 

Xt 

It 

T 

1 

M' 

«3 = CA^iKl-^) 

(171) 

(172) 

(173) 

Continuity Equation. 

O-CA"
1
^ ^(^TF^^)^-Ji(fl/2) =   0 (174) 

Energy Equation. The left side of equation (5) 

becomes 

Vj")] ^ %h[uAW^vs+vsi\,      {175) 

Also, 
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jVißi - j>lvJ^VMi *-Y,ß,],       (176) 

and 

4 ^(7p? ^) = ^5il(^v p + 
-kal 2. 

The components of the stress tensor are 

(173) 

(179) 

(iSo) 

(131) 

44 



GAE/ME/62-4 

(192) 

5-5E 3 /. ...v   3v,i     r2 3 //75pvy \ 

a (A
1
-/,»)^ V; + atTFif-M^ yHi 9 (i83) 

and 

^^ £ fa—n i/) ^^1    n   W* 
a(A1-^ a/HvA ■^v Üit J2 J +■ ^T^t . (134) 

Equation of Motion. In addition.to the components of 

the stress tensor listed above, the Important terms In the 

equation of motion are 
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f.= 

(135) 

/.^.^(^ , (166) 

VAI OST ^*    v/ ^v* 
(137) 

öSS^^^Ä^-^^,    (133) 

öTS^V. f-^5^1;.^ (159) 

i[6 
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and 

(190) 

Slllpsoidal Coordinates 

X'a A Xlr >H x3-- ^ (191) 

(192) 

(193) 

(194) 

9= M (a,x-A)(bt-A)(Cl-A)r^->HKbl-^)(>M.<;x)(a.i-y}ai-y)(ci-v)( 195) 

Continuity Equation, 
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^/^-yXb^-vXc^v) P 
(^y-A)(y-/4)\p|/ü) = v~X)(y-M\    5vl/^-A)(y-/4) qyj) = o    (196) 

Energy Equation. The left side of equation (5) 

becomes 

firth A{\\vH\y:)] + 

I (197) 

AlSQj 
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l/.^fV^^J, >l 

f l/^ = ffvAFAf V^PI ^ ^fj, 

(198) 

(199) 

and 

(w-A)(y-^)      9MU^-^-A5 ÄX) + 

lU^-nLtf-tXQ-y} H. 
U-^U-M) ä)>U(>>'»U-M) (UMU-M) £»]   . (200) 

The components of the stress tensor are 

V^- h-M - ^r hi (0L^*)(b*-Wcl-x)   9  /_! 
^-A 

l((il-*Xbl--MHH^:) £ /I , a 
(201) 
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^«y   ^v. f    W-MW.^(M^>^ II     y \ 
Ir   = TT    ^   rU/       M-^ a^lTÄTM ivy 

(202) 

(203) 

AA 
tr-    - (^- ir-) 

"e/Cat-A)at-Ayc:t-A)   9 i v 

Z ^a.1-y)(b>->0(<:t->»   9_ 
{H^)i)>-M)   ^ )] U-W-H)        dy>[Uy-*)U-M)  ^jj   + 

V. + 

y/(CL,--^)(bl-A)Ccl-A)(M-AUy-Ab V A 

JL       / i(ll-M)(^-^)(c%-M) 
yK.-Ä    i     iÄ-M)(i>-M) V^ 
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2/^-M)(^>u)(>u-g^ j    /  , \ 
u-^Hy-^)   ^MinM-ÄüPvM) yM J + 

and 

2       /((L^AKb^-AMc^AT      . 

A->K V      (A-VXM-V) Vy J       i (205) 
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Z/^-^g^M^vu-c^    9. 
(y-M)(M-^       d*[i (M-AW-M) (UM-W-M)    KA) 

/A-y 

OA)^ (V-ZM)^ "y + 

/(a'-yXb^yj^-vj^-^^-yj ^J .   (206) 

Equation of Motion. The important terms, in addition 

to the components of the stress tensor listed above, are 

5? 
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(207) 

r     3^      lit RgSSEME?-^ //—• \/\ 
tM

= at   ■♦• A-MJ     FA        aAl/Ai-A VJ 

I y»  [{äEIWJE?EEF> £ I rr— \/ \ 

^1  H^KäSSSS^   v/ /CT^JS^ 
(208) 

/H -/ ^(/T^Vy)   ^ 

c^y 

y-A (209) 
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-3- K. kay-Mr-Mc^)   d? 
rap   fli.K ^   '^J   (M-X)(y-A)      ax     "+ 

2. 

— ^i -__ z»>({?-Mlr   ) + 

(a^(b^AU (gMMc^A)^ (b^AVc^)   .AAA 

AM-AVy-AKa.1-AXbl'Ayc,-A^ rr 

(210) 

54 



GAS/ME/c2-4 

vi* 

/^    hi.l ^M 

o^b^Wa^^uKd^^^ ->• (b^(<:v.>u) /j\MM 

T4 -A)(^-MXflLl->M)(bv-^ (>H-C^ 

(211) 

and 
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*») »p 
a> ^" 

yU 

JL 

~J yrj aAl/^rtryA) 

/CA-y)^-^ av (/^MÖa^JcMO fr ^j - 

(6.t-y)(b1-y)^ (^-^xC'-y) -^ a1-»^1-» ^ 
/(ax-y)Cbl-y)(c,'-y)(A-y)(M-y) tr yy 

/7FA(V-AV/V   M*   t-   /7rT(V'>M)l/v/r    .     (212) 

Confocal  Parabolic Coordinates 

X1--  A X1- A       X* =  )> (213) 

(214) 

(215) 
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^33 =   ^ra.-V)(b-vi (216) 

rA-M)v(M-y)VA->0 
g ? ^^rÄ-^b-AVM-Ä.)(6-^){d-y^6-y) (217) 

Continuity Equation. 

u-sHM-y) d)>{iU~y)(M')» fVyj* 0        (218) 

Energy Equation. The left side of equation (5) 

becomes 

i (v;+ Ct i/;)Jl. (219) 

Also, 
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\/M^ f Vvfr^)]^ l-M^I-Ä*tmvivj^ 

j)Vif^ f[v,F, ^^F^^ VyFy] , 

(220) 

(221) 

and 

The components of the stress tensor are 

^■rr^-rUm^hiT&y.) 

(222) 

(223) 
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IT   --fr   ' TTilV x-M   dÄTT? y) 

(224) 

MV   VI^M rrMy=VyM- T 

(225) 

CA-yvx-y) ^y UCA-y)(>M-yy Vv )J + 

T n 3A 1/(A-MXA-^ VA +       (A-^i^^A-v)^    VA 

^a-Ayb-AVA-xXA-y)  VA - yM y (ZTÄK^) VM - 

A-V J Vy]    3 (226) 
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h-MM = (^ i   JlMMM 9 fh ; \/\ 

2^M-d.)(b^V   9   I. .  w  \   i 

i!M-y)(A-y) aymA-y)CM-y) /„/ +• 

^(^M-a-6) v.- 'M 

M-^ vry-AKV-^   ^ (227) 

and 
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ZJJM'XHl'Ml £   / r-  w   \ 
fM-vTU-M)     aM (/a^ )f>u-y) //4) + 

^L 1 //5Z2ZEF \/ U -^ /SZSET w 

(228) 

Equation of Motion. The terms of Interest In the 

equation of motion are 

■+■ 

2^ 
A-y 

f(A-yKfe-y) £ / . . w \ 
i" M-»    aylvÄ-y VA) + 

-A / (A-. 
AVö-A^ 
M)(A-)» (229) 
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zvy MlgSS i. irr? \i \ + 

_y!L
v /ESESr    v/ fSSEg , ^. 

rt ü^TM'V) + >M v?^Atery)   ,       (230) 

iy •- at-  + y-A y A-^   SAVM-^ V> 

IKM    /(M-<0(b->MV i- /.—r  W )  . 

p^v  \W->W-MS     > (231) 
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9\ 0 /(a-A)^-^' £P 

/CwöcTT) 

i    /(u-a.Mb-M) £.  /. T^AM) 

Q. + b - ZA Va-dL)(A-b)      ^ 

2-  ,    KcL-yXb-y) £. AV^ 7r (232) 
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'(A-MKM-y) a^ iüM-<i)(t>-M) fr^) ^ 

(A 

a_f t> - 2.M. 
if-»". 

and 

f (233) 
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M 

ii»-X)i)>-M) 5y(/(d-y)(b-y3' ^   ; + 

M-g^ ^.AA   JEMS t?"- 
(A 

(A-y)?"-(M-^^    n"       4- 

ÖL+- fc ^ 2 y 

V^-y)fb-vKy-AVv-^ri   /^ 
yy 

_!_      l(a-AMb-A) £ vx 

?r ^ 
(234) 

Conical Coordinates 

r- A x1-^     x3= ^ (235: 

8- - ^ (236) 
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qix-     (M^b4)^*-^1) (237) 

q^ -   (bx-^x)fc»-y») (238) 

q~   (Mx-bMCcl->uM(bl-y»)(cl-y») (239) 

Continuity Equation. 

i/IE22E35 iL /,—^   ,/\ 
A     ^-y- ^V l/^M^ f Vy ) = 0 (24o) 

Energy Equation. The left side of equation (5) 

becomes 
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(2^1) 

Also, 

4^(fe K^ij)' il-J^(v^^^A + 

^Vif. = f [ V, F, f V;P^ + K,FJ , (343) 

and 
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^(/M
T
^
T
|!M) 

+ 

i /ä^y^Cc^yO ^ 
A  /M^-y1- Z)>(jMx-y1'' i^) , (244) 

The components of the stress tensor are 

/ if  A«1-^»-      a^ J j 

A If /Ax-y*   9y J   j 

(245) 

(246) 

A 

tr ̂ .1Y^- Y[iu^-6
l)^.^)|M(^7lV,) + 

7 ^-yO^-yO ^y (CT^ VM)] 3 (24?) 
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^oz-wIM^K 
UM*'WC*-M*) 3 

MA« 
tr^-(>e 

S 
A 

A   VA 

2M 

r/4 

bx 4 C1 - Z 

(249) 

and 
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lYy,,-(^|T)[j'JA(^Vj 

{TM£V5U^ä& a 

® 

111       b1 4 c^- ~ z ^ ^1. (250) 

Equation of Motion. The terms of interest in the 

equation of motion arc 

^ =   at   ■*■ VA äÄ + X /  x^-y-      a^ 4- 

A y  /u-i'-y- a^     A    7    ^ (251) 
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f„- » ■ Hi/,..,   K 
A 5\ s\^vJ 

^ 

(252) 

,J!( 

^      ^li,, 

i^- ^^ £ 

(253) 

(254) 
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(255) 
I y 

V/Cb^-V^CC'-y^  /v /Cb--v^^-y^   .        ^——^ 

A(/Ml-VOJ/C        ^ (256) 
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IV. Conclusions 

A report of this nature has no conclusions In the 

usual sense of the word. The methods used In arriving 

at the final results were not new. It was known at the 

outset that they would produce valid results if they wore 

applied correctly. This project was undertaken because 

the equations of fluid mechanics are not readily avail- 

able except in terms of three or four of the more commonVy 

used coordinate systems. The tabulated equations in Sec- 

tion III arc, therefore, real1:/ the "conclusions" of this 

thesis. 
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Appendix A 

Description of Coordinate Systems 
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The coordinate transformations presented here werr' 

taken, with minor changes, from the work of Chester H. Pare 

(Rcf 3: 96-107). 

(1) Cartesian cooräinates 

x»x -OÖÄXtOO 

y   o    y -00    i      y     Ä     00 

z =  z -oo <     z   -   oo 

g., s S»v« GM« - 

and the surfaces x. y, or z s constant are planes. 

(2) Cylindrical po"!ar coord Ljiates 

x - r cos © 

y -   r sin 0 

z = z 

with the variable ranees 

-oo <  z  s   oo 

0 i r £ oo 

0 * 6 * o fr. 

The surfaces are: 

z =• con^' sv planes 

r = cc.nz''. ^ cyHndors 

Ö  =  const ^^ ^1 rncü  ' hrour'"  V:::-.   z-v.:■:'.■. 

Wc have: 
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Flg. 1 

Confocal Parabolas 

with a Common Axis 
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(3) Spherical polar coordinates 

x = r ein ecos <p 

y - r sind sln^ 

z * r cos & 

0 s r ^ oo , r r const ~ spheres 

0 5 V s 2V, cf = const ~ azlmuthal planes 

0 ? 9 - 7r,  ö = const /v circular cones 

9"--1 > 9vv= ^i 3ii» ^J'^vö 

(4) Parabolic coordinates 

Two sets of coordinate surfaces are generated by 

rotating the parabolas of Pig. 1 about the x axis which 

Is then renamed the z axis. The third set of coordinate 

surfaces are azlrauthal planes through the newly relabeled 

z axis. 

The transformations are: 

x - /AJA  cos (/> 

y = /XM  sin (p 

z  - ^ 

0  < A£ooj    A = const/v paraboloids: 

x1'+ y + 2Az = Av 

0 ■£ y4 < oo j    /> = const /^ paraboloids: 

xN y - 2^2 = z^1- 

Oi<p"£Z)T;   (}?= const ^^azimuthal planes 

3"- 4A   ,   3"' ^^   , 5" r ^^ 
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Y 

rig. 

Confocai illipsos and Hyperbolas 

(5) Prolate spheroidal coordinates 

This coordinate system is constructed by rotating the 

curves of Fig. 2 about the x axis which is then renamed 

the z axis. The coordinate surfaces which are generated 

are prolate spheroids and hyperboloids of two sheets. The 

third set of coordinate surfaces are azimuthal planes 

through the newly renamed z axis. 

If we let A H cosh oc , /^= cos ß ,  we have 
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x - a/ Av- 1W 1 - MV
   cos (J> 

y = a/Av- 1 /l ->A
V
   sin 9 

z r EXM 

iiA^öo, A» const/^ prolate spheroids: 

*^v +  Z.v -   /^ 
vM   +   Av -   CL 

-1-A{* 1 j    /^ i const/^ hyperlolds of two sheets: 

O < (p< 2.tr,    (J) -s const ^ azlmuthal planes 

(6) Spheroidal coordinates (oblate spheroids) 

This coordinate system Is constructed by rotating the 

curves of Pig. 2 about the y axis which Is then renamed 

the z axis. The generated coordinate surfaces are oblate 

spheroids and hyperbololds of one sheet. The third set 

of coordinate surfaces are azlmuthal planes through the 

new z axis. 

x zaA^ cos <p or r = a cosh^cosß 

y = a A *A sin cp    z - a sinhet'sin^ 

z = a /CÄMUTV) 
A = const /-o- oblate spheroids: 
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M, ~     consi /v/ hyperbololds of one sheet: 

(P ■=  const/v» azimuthal planes 

wiih the variable ranges 

' 00 <   o<* & 15 A -£" a> , 

We have 

>v ^r^\  333= a'A^1 

(7)  Parabolic cylinder coordinates 

The traces of the coordinate surfaces of this coordi- 

nate system on the xy plane are shown In Fig, 1. 

y r /AM 

z - z 

0^ A? oo .     A - const /u parabolic  cylinders,   u7,+ i^X - A 

Os^-Cö      M-  const^ parabolic  cylinders,   tj*- 'J-/MX»/^('1 

-Oo<2Seöi      ? "   conöl^u planes 

A + M XiM 

(8) Elliptic cylinder coordinates 
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The traces of the coordinate surfaces of this coordi- 

nate system on the xy plane are shown in Fig.  2. 

or     x s  a slnlWsin fl 

y   3  a cosh Ycos fl 

x c a /A%-J /l-xT' 

y =• a A H 

z r z z = z 

A ~  const ^v elliptic cylinders, ^»Tj ■*" A1, * ^ 

At » const,-Vi hyperbolic cylinders, ^ - j^Tt m d.' 

7 a const/u planes 

with the variable ranges 

- 00 £ ey* + 00 . 

Ö £/9« tr , 

1 ^ A ^ «D. 

-00* %< 00  , 

We have 

(9)    Ellipsoidal coordinates 

*  ■'       feLv-bv)(a^-Cv)       (Jin/ 

2   ^     (a.l-OCb,l-c^ 

-to<xf c><>{< l)Vv<a. 
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The surfaces are: 

A - const n ellipsoid: 

M - const:/v hypcrboloia of one sheet: 

xv    bv «* 

ä^T, + t7"^ + I^M --l >  c*- * M< ^^ 

y = const /^ hypcrboloid of two sheets: 

Xv     ^ ■?LX 

Also, 

i   ^-AMV-A^ 

5„ ' -9  Ul-XVbl-AUcl-A) 

5 l\ 

and 

(lO)    Confoca1  parabolic  coordinates 
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The transformations are: 

^ * b^Z  

* a - b 

The surfaces   ^,   ^,  and ^constant are the paraboloids 

A    "*■   A(A-öL)   +   A(A-b)   ::: i 

— bx ?l 

with 

00    ^   >)<   <L< M<   h< X <    OO 

Also 
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and 

1     U-^^-u) 

(11) Conlcnl coordinates 

The surfaces ^, >M , and V constant arc the spheres 

x + y + z = A  and the two cones 

^v ^/tv-^ ^/F^C1 = 0 and 

yl ^ y^-b1 v yl- c1- = 0 i 

where   0-sy<b*^«:C  j  O^A^Ä?. 

The coneSj JL\S constant, Intersect the planes, z « constant, 

In ellipses. The cones, y= constant, intersect these z 

planes in hyperbolas, but Intersect the planes, x « cons- 

tant, In ellipses.  Hence, we can visualize the cones as 

being elliptical cones centered about the z and x axes. 

The transformations are 
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H  -      i>Vb*.c*)       j    and 

? = 
Cx(cl-SM      . 

Also, 

and 

9" '   I        > 

^33=  C6l-yvKci-y^ . 
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C 

Appendix 3 

Derivation of Basic Equations 

of Fluid Mechanics 
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The derivations shown here can be found, In slightly 

varying form, in the works of Sokolnikoff (Ref 4: 290-324) 

and McConnell (Ref 1: 270-282), among others. These 

specific forms were, however, firsu shown to the author 

by Lt. Ray M. Bowen of the Mechanical Sngineering Depart- 

ment of the Institute of Technology. 

Equation of"Continuity 

The equation of continuity can be expressed in inte- 

gral form as follows: 

fthd)   f  ^'W^t" = 0   . (B.l) 
d 
Si 

Application of Leibnitz's Rule yields 

(B.2) 

By the Divergence Theorem 

Ll(^ JK(,)(fi^l■))id^ |   s 0. (B.3) 

Then, since volume is arbitrary, 

d 
al   +  (f^4*).,- = o, (B.4) 

but 
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ijV% =  Jfzk'iljft1) . (B.5) 

(Ref 1:     155).    The continuity equation then becomes 

a/ + q aitifi' fv1) r 0 . (B.6) 

The physical componcn"s of the contravarlant quantity f 

arc represented by ^tim]^<     If we denote the physical com- 

poncnts by ehe symbol v^ ,   then cr •/| . ,.- We can then write 

the continuity equation in its final form: 

at  + ^ ax11/37^   fVO = 0. 

Energy liquation 

The energy equation can be written in integral form 

as follows: 

Application of Leibnitz's Rule yields 
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iL)^"'^ o(J t («, ü-,' f F 'af> - 44V afs, (B.9) 

and, by the Divergence Theorem, 

Then, since the volume Is arbitrary, 

(^V'M.it jKf1- f.c .        (B.11) 

By expanding and subtracting out the continuity equation 

we obtain 

^ [ ft (wt i uju V V'(ut x ir^O.-J- 

UcY^Xt ^^r'-f.c . (B.12) 

But 
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U ~  h - J (B.13) 

Substitution of (B.13) into (B.12) yields 

where v/e have also made use of the relationship 

After simplifying and rearranging, the energy equation 

becomes 

5? + (^IT^)^ + ^if'" f.L     . (B.16) ) 

or,   in terms of physical components 
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flhih*i YiVi) + J$$§k'(h+iKK)]* It ■*■ 

/? & (fe ^ )riJ) ^ f K' r, - ^ Cfc^B., 7) 

aquation of Motion 

The oquation of motion can be written in integral 

form as follows: 

3iLn'idy--Lr\ds->Smff'citl (B.)8) 

where 

>'j = • p^ + Tr1' . 
(B.15) 

By Leibnitz 's Rule 

/y(t) ät (ft/4) df +i^f t/^\ (O'^- 

(B..19; 

and^ by the Divergence Theorem, 
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LJIiif^) *(f ^J)Jdf ■J[((ä{Vij VF'k(B.2o) 

Then, since the volume is arbitrary, 

^(fir'M/^V),^ Vü;. ♦ j'f4', (B.21) 

Now, after expanding and subtracting out the continuity 

equation, we have 

l(¥^<y)-r%+fF\ (B.22) 

or 

r-i>r'= Ki,, ft -f i 5 (B.23) 

wher 

i  -   31/^ 
f.H f  1/ 

Scrt 

- at -^ ^ ^ cr  = rt (B.24) 

Equation (B.23) can bo expressed in covarlant form a; 

^n^K-- f(^-Fa (B.25: 
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Appendix C 

The Three Basic  Equations 
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Continuity aquation 

t/+4M7!£? fVi]-o (3) 

Energy Equation 

(5) 

Equation of Motion 

s 
/^T7o ^j.K ' f Cfc -f/) (12) 
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