
UNCLASSIFIED

AD 290 615
ßefmduced

luf ike

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

,,,

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY,

*0

i' ("^

o

MEMORANDUM
RM-3324-PR
NOVEMBER 1962

FC

V-
■-.:■.

CNI

THE FIFTH
RAND COMPUTER SYMPOSIUM

F. J. Gruenberger, Editor

j . _■

/ ;-
f ■•i -y-^.-. !■■

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

mm.
SANTA MONICA • CAUrORNIA-

MEMORANDUM

RM-3324-PR
NOVEMBER 1962

THE FIFTH
RAND COMPUTER SYMPOSIUM

F. J. Gruenberger, Editor

This research is sponsored by the [niled States Air Force under Project HAND —Con-
tract No. AF 19i 6.'')M i-7(HI monitored hy the Directorate of Development Planning,
Deputy Chief of Staff. Hesearch and lechnology, tl(] I SAF. Views or conclusions con-
tained in this Memorandum should not he interpreted as represenliiif; the official opinion
or policy of the I nited States Air Force. Permission to quote from or reproduce portions
of this Memorandum must be obtained from The RAND Corporation.

MUD /«e r^il I I iJ (Zoi/fo'M&o*

-Ill-

PREFACE

This Memorandum Is an expurgated transcript of the

Fifth Annual RAND Computer Symposium, held at The RAND

Corporation, April 1962. The Idea for these symposia

grew out of the observation that much of the value of

computing Industry conferences comes from the Informal

conversations which take place In hotel rooms and con-

ference corridors. The feeling that an organized "bull

session" might be a worthwhile endeavor, led to the

Invitation of some twenty Individuals to come to RAND for

a full day of discussion on common problems In the com-

puter field.

These sessions have been held annually since 1958 on

the day Just prior to the Western Joint Computer Con-

ference. The Symposium Is, In effect, a meeting of

Individuals prominent In the Industry. The views expressed

In this transcript are those of the Individuals Involved

and not those of their employers nor of The RAND Corporation.

The discussion during the fifth symposium centered

around the topic, "Pros and Cons of Common Languages,"

with special consideration being given to use by the mili-

tary of Command and Control languages. Because this topic

Is of special Interest to the U.S. Air Force, and the com-

puting field In general, the transcript of the 1962 Symposium

Is being released as a RAND Memorandum.

An article based on this transcript appears In the

October and November 1962 Issues of Datamation magazine.

SUMMARY

The Fifth Anual RAND Computer Symposium, held In Santa

Monica on April 30, 1962, was concerned with the single

topic, "Pros and Cons of Common Languages."

RAND was represented by Paul Armer, George Armerding,

Fred Gruenberger, Jack Little, and consultant Robert L. Patrick,

who chaired the session. Other attendees were:

Phillip Bagley, MITRE Corporation

Howard Bromberg, RCA

Tom Cheatham, Computing Associates

Richard Clippinger, Minneapolis Honeywell

Joe Cunningham, U.S. Air Force

Bill Dobrusky, System Development Corporation

Bernie Galler, University of Michigan

Barry Gordon, IBM

Jerry Koory, System Development Corporation

Brad MacKenzie, Burroughs Corporation

Dan McCracken, McCracken Associates

Ascher Opler, Computer Usage Company

Charles Phillips, Business Equipment Mfrs. Assn.

Dick Talmadge, IBM

The seven-hour discussion dealt with the advantages

and disadvantages of using higher level languages for

Instructing computers; the feasibility of making one of these

languages a standard or common language; and the applicability

of these languages (e.g., FORTRAN, COBOL, ALGOL, JOVIAL,

-vl-

(NELIAC) to Command and Control problems.

The original transcript was edited and corrected by

each of the attendees. This Memorandum contains the

final version of the transcript.

THE FIFTH RAND COMPUTER SYMPOSIUM

CHAIRMAN PATRICK: Our objective today is enlightenment.

The subject of common languages is clouded by claims in

advertising that are unsupported. Some examples are hung

on the walls here today.

I have here two bags. This large paper bag is for

opinions. This small chamois bag is for facts. From time

to time during the session, a speaker may not make his meaning

clear. Should this occur, I will exercise the chair's pre-

rogative and shall classify his speech by displaying the

appropriate bag. If I should happen to misclassify someone's

speech, the speaker should attempt to fill us in to convince

us that his remarks are not opinions but are Indeed facts

-2-

(because that's probably the way I will misclasslfy). Please

supply the supplementary information before you yield the

floor.

Let's look at this chart that we have over here. (See

Figure 1.) This chart will indicate why we should all be

concerned. It is rumored that the Department of Defense

(DUD) intends to standardize on a language for Command and

Control. On the right the chart shows an area characterized

by the name, Business, usually characterized by a high ratio

of input and output to computing. On the left we also have

Scientific jobs which are characterized by just the inverse.

We have all heard of the famous Los Alamos job in which you

read one card in the morning, compute all day, and print one

line in the afternoon. Of course, this job doesn't exist;

in fact neither of these areas exist in pure form, but sections

and subsections of jobs do fall into these categories. There

is an overlap of the two as indicated by this Venn diagram

intersect. This overlap is seen in areas like data reduction

and heavy actuarial work. In these areas you may think of it

as scientific, but it has many characteristics of a business

job. Command and Control has characteristics which are common

to these two and also many characteristics of its own. Real-

time applications have characteristics common to Command and

Control and also characteristics unique to real-time problems.

Consequently, if anything were to happen such as a standard-

ized language for Command and Control, It would affect the

entire field.

-3-

o
o
Q

+

+
Q
O
cr
Q.

en
LÜ

LÜ

V)
<

O o

LÜ
Q

8

•H

CD
CL

+

<
a:

cn
o
CJ

-4-

The lower portion of the chart shows a simple equation.

The equation is an expression for total cost. (A similar

expression could be written for time.) As the equation shows,

total cost is made up of dollar amounts spent for training,

programming, coding, compilation, assembly, testing, production,

maintenance, and documentation. All of these factors are

involved in every single job that is done on a computer. (In

some cases the coefficient of a given term may be zero. For

example, if you have the facility for compile-and-go, then

the assembly phase does not appear.) But for most problems,

all the terms exist with non-trivial coefficients.

Sales literature and some of the "technical" literature

that we read implies that we can reduce some one of these

terms without at the same time increasing some of the other

terms. The gullible citizens believe these statements. I

believe that we will be doing ourselves and our country

serious damage if we fail to see through these claims.

During the discussion today, I invite you to use this chart

to explain what you mean.

Fred Gruenberger has another chart which he would like

to show you. Fred, why don't you take them around the carrousel?

GRUENBERGER: I hope you'll forgive us for starting out

somewhat formally this morning. We have had quite a few

meetings, both formal and Informal, In the last few weeks,

discussing this problem. We have noticed that during such

discussions, people tend to go around and around a merry-go-

-5-

round in talking about coamon languages, so we made up this

chart. It's really just a sort of checklist of the topics

that keep coming up over and over (see Figure 2).

Let me just go around these items very quickly. The

first thing that we have found that causes confusion in a

discussion of common languages is the tendency for people

to interchange, sometimes in the middle of a sentence, the

ideas of "what can a higher level language do for us?" (For

example, what goodies do we get by using ALGOL?) and "what

advantages do we gain by using a common language?" Common

languages are those which cut across installations, problems,

and machines.

The other topics are pretty obvious. How are you going

to train people? What kinds of people are going to use a

common language? (We're talking here about the level of

the users. Are they going to be top-notch programmers, or

are they going to be clerks?) Can the system be changed by

the masters and can it be changed out at each installation

where it is used? Do we lose efficiency due to commonness?

This is a claim that has been made, although it might be

refuted. In other words, if we implement a given language

on a given machine, have we taken advantage of some of the

characteristics of that machine that might be good?

Does the language exhibit design control? That is, was

it designed by a competent man who retained control over its

ingredients or was it designed by a committee? Does the

system freeze progress? Is it going to be maintained? Here

-5-

/ v
/

ü to

3
bO

■H

again, we have the global and local problem. Can and will

it be maintained globally and can it and will it be maintained

locally? How will you debug in this language? Will the

language and its system allow local managers to trade off

their resources; namely, people and machine time?

We have noticed that as people discuss this subject, they

bounce from one item to another on this list. We don't show

all the forty-five connecting lines, but they should be here.

PATRICK: Now would anyone like to open up the informal

discussion with a fact?

OPLER: I would rather open with a question. Do you

distinguish between a common language and a standard language?

PATRICK: I think we would like to if you would care to

describe them for us.

OPLER: I'm not sure I can, but perhaps I could give

examples. I suppose there is really a Venn diagram inter-

section between the two. A common language is one that would

be acceptable to two or more disparate machines. A standard

language is one maintained and enforced as a standard language

which requires some sort of committee agreement.

Some manufacturers had developed languages which could

be processed on several of their machines. These would be

common languages, but they would not be standard languages.

LITTLE: Are we saying that a common language may not

be the standard, but a standard language, by definition,

must be common?

-8-

GALLER: Could I ask whether there is the feeling here

that FORTRAN is a common language? You can say, of course,

that there is no one FORTRAN but this isn't very important.

Could we use FORTRAN as an example of a common language?

McCRACKEN: It's the closest thing there is.

GRUENBERGER: Yes, close, but it doesn't make it. I

know of no example of a language that is common in the full

sense of the word, but FORTRAN does come close.

McCRACKEN: I think there is a principle involved here

which is going to operate on us all day. It goes like this.

This is what we've got; it will do our work for us. Someone

comes along and proposes something better; perhaps a standard.

And everyone then says, "Gee, it isn't perfect and, therefore,

it's no good." The question is whether the things that are

proposed are better than what we have now, not how they

match up against some ideal.

BROMBERG: Going back to Opler's attempted definition,

you could conclude (just as we concluded before) that there

is no such thing, really, as a common language; that there

is no such thing, Dan, as a standard language.

If we consider that, in order to handle a standard

language, it is necessary to have an authoritarian group to

establish and maintain it, then you aren't going to have a

standard language. If it is necessary that all ten of the

things listed on that chart be applied to the language by

one central group, then this can exist only in a finite world

such as the world of a given manufacturer or a single instal-

lation. In that case someone in this finite world can take

a common language and define it to be their standard. But

as far as a national standard language goes, there is no

such thing.

But I feel it is unnecessary to labor this distinction

between common and standard. For our purposes here, it seems

to me we can discuss only common languages, by which we mean

those which can function on more than one machine type.

GRUENBERGER: I didn't say it had to be perfect, Dan.

I simply said that we don't have one.

PATRICK: Maybe it would be appropriate to discuss

whether we want one. I think there are some of us who do,

but then there are also some of us who don't. Dick, would

you like to discuss this point?

TALMADGE: Whether we want a common language or a

standard language?

PATRICK: Let's consider them synonymous for a while.

TALMADGE: It's my opinion that we don't want a common

language in the sense that most people use that term; that

is, a language that everybody would use. To draw an analogy,

mathematics, which people tend to think of as using a standard

language, in reality uses a standard set of notations that

are widely understood. Furthermore, a mathematician may use

his own notation within very elastic limits, as long as the

meaning is clear. One of the most acute problems in computing

-10-

is that we have not yet developed procedures which allow such

a standard notation. Until we know more about linguistic

structure, it is unlikely that we will. In any event, a

common language (whatever that may be) does not seem to be

the answer.

PATRICK: So you say we're not quite ready yet. Perhaps

we have something more to learn.

TALMADGE: I think we have a lot to learn about how to

use a Lmguage to express a given class of problems; and how

to determine what problems are amenable to a given language.

BROMBERG: It strikes me that the same comment can be

made with reference to every single human endeavor; we have

a lot to learn. Name anything'-science» living, or what have

you--we have a lot to learn. But this in itself should not

preclude our being able to use that which we have or that

which we could have. There still exists a long list of jobs

that have to be done with perhaps less than perfect tools.

If something better comes along, why not use it?

TALMADGE: I didn't intend to imply that one should not

use whatever tools are available, I merely meant that I

think the present tools are inadequate for the job of forming

a permanent language; rather, they should be used to develop

more powerful tools.

BROMBERG: I assumed that the question was, "Is this the

time for a common language?" and I would say this is certainly

the time.

■11-

GORDON: I would like to point out, Howard, that there

is a significant difference between utilizing and standardizing.

I would also like to quote from a letter written by Dick Hill...

PATRICK: Is that Richard H. Hill of Informatics?

GORDON: Richard H. Hill, then of Western Data Processing

Center. This was a letter written in June of 1960 which I

clipped out of a SHARE secretary's distribution. He has

something to say about a language system (well known by its

initials), and I quote,

One of the worst curses of mankind is premature standard-
ization. Reasonable standards evolve; they are not
imposed. The penalties of premature standardization
have proved to be far more costly than the rewards.

I think everyone is in favor of standardization in much

the same way everyone is in favor of motherhood; but also,

like motherhood, if it occurs prematurely, it can cause a

great deal of inconvenience.

CALLER: I'd like to call attention to an example of

successful standardization that came along at a certain time

and was successful for a certain reason. I'd like to hear a

discussion some time of why it was successful and why some

others weren't. I'm referring, of course, to SAP. At the

time SAP was made a standard of SHARE, it served a very useful

purpose. I think it contributed greatly to the progress we

have made from that time on, At that time, there was a need

for something and SAP filled that need. I can't explain

what's so different about things now except possibly that

we know more now. We are perhaps a lot more individualistic

•12-

today, and we can evaluate things better.

It's to everyone's advantage to be able to communicate.

The more standardization we have, the more we can communicate

easily. But there is a cost to standardization. Each person

must ask himself, for example, "Should I use FORTRAN-IV?

What is the cost of deviating from using this language?

Likewise, what does it cost other people if I deviate or if

they do or do not deviate?" I don't think there's a clear

case for either side.

ARMERDING: The problems involved in standardizing on

SAP were several orders of magnitude smaller than the problems

that we have in standardizing on these magic languages today.

Basically the problem then was to get a group of guys together

to standardize on what three-letter mnemonics we would assign

to each of the machine op-codes plus a few pseudo-ops to

get the assembly system running. All of that amounts to a

trivial problem compared to standardization in one of the

non-machine languages today. The difference is so great that

I don't think we can really compare them.

GORDON: Point of information. If we're going to talk

about standard languages and we call SAP a standard language.

we had better clarify what we mean. I don't think SAP was a

standard; it was one of a great many languages for that class

of machines.

BROMBERG: I wonder if we couldn't outlaw the use of

the word standard at least for the time being.

■13-

GORDON: Either that or define it.

BROMBERG: Let me give you a little of the background

of what is going on in ASA, BEMA, and the X-3.4 Subcommittee

on Common Programming Langugaes. There has been established

a survey director whose function it is to survey all the

common programming languages. Remember, these are languages

which have been developed to be used on more than one machine

type. A preliminary survey which reflects languages of broad

utility has been done, and it has been sent to various overseas

contributors. An interesting part of this survey is that

assembly languages like SAP, Autocoder, and X-l have by

definition been precluded. They are not incorporated in the

survey because of obsolescence or the level of the language.

The only kind of common language admitted to the survey is

that which is effectively non-machine oriented; that is, it

does not look like any known machine order code. The entries

are essentially problem languages as close to natural language

as we can get.

McCRACKEN: How many common languages have you listed?

BROMBERG: There must have been about 90. I can't be

too sure.

PATRICK: Howard, I can't think of the first one, if-you

set up the requirement that it must be machine independent.

BROMBERG: Of course, it all depends on what you mean

by machine independent. Must it be totally machine independent?

PATRICK: Well, if you are going to cut across machine

lines it seems like it ought to be.

■14.

MCCRJ\CKEN: It doesn't have to be perfect in order to

be better than what we now have. That's going to be ray

standard speech today.

GRUENBERGER: Why don't you give that speech the code

name "Monkeywrench" then?

GORDON: But the new language we adopt should be signi-

ficantly better than what we now have.

GALLER: I'd like to point out that SAP is probably a

small isolated example of what we're talking about. But at

the time it was the language. At that time the decision to

standardize on it was a major decision. As a communication

language it had some of the elements of what we are talking

about now.

GORDON: Not at all.

GRUENBERGER: For one thing, it dealt with only one

machine type. You could just as well say that 650 machine

language is a common language among 650 users. They can't

avoid it.

ARMER: Maybe that's why we're having so much trouble

now. We don't have enough tandardization at the trivial

end. For example, on character sets.

PATRICK: I seem to ire'ir three different cheers for that

sentiment.

OPLER: I'd like to say one more thing about the SAP

question before we lay it to rest. We must remember that at

the time of development of SAP there were three situations

•15-

which do not apply today. Firstly, everyone was bleeding

from 701 experience where there was no standardization effort.

Secondly, SAP was pretty well done before the 704's started

to arrive and before there had been a heavy investment in

704 programming. And, thirdly, there were two potential

rivals already in evidence--NYAP and SAP.

In the context of those three items, I'm inclined to

agree that the decision to standardize on SAP was a good one.

I also agree that it is not too pertinent to the situation we

have today.

LITTLE: One wonders why this was such a big step forward

and why we took such a big step backward with the advent of

the 7090. We seem to have diverged again.

Languages may evolve or standards may evolve. I think

that languages can get to be standard or common in a lot less

exotic ways. If a big enough user uses a single language

without regard to the rest of the world, then you are sort

of saddled with that language. DOD may be going down this

road and whether you like it or don't like it you may have

the situation with you very shortly. I would like to hear

an outline of some methods that can be used to help insure

that the language we get is a good one. I am sure that we

are going to get one. But I don't think we're going to get

one that somehow magically everyone will like.

There are certain things that you want: built into it.

For example, you want it to have the ability to change--to

-16-

make itself better, or for people to make it better. There

are two items on our chart that seetn to deal with this question.

One has to do with the language itself and another one has

to do with the problems that we are going to use the language

on. You want the language itself easy to change but if the

language does not also allow you readily to change the problem

that the language is used on, then it's going to fail.

So I'd like to see some discussion here of practical

ways which will insure that the language or languages that

do evolve will have in them desirable characteristics.

PHILLIPS: I'd like to go back and add something to what

Howard said about the ASA-X3 program. One part of that

program concerns the development of a standard language.

I'm quite sure (although this may be just an opinion) that

the 18 members of BEMA or the general interest and user groups

that are supporting this program would not feel that they are

bound to adopt and use, to the exclusion of everything else,

a language that might be developed as a result of the program.

By the same token, I don't think that Defense, in supporting

the COBOL program, had any intention of making it a required

program for use throughout Defense unless there was good

reason for it; that is, unless it would serve a useful purpose

and there were definite advantages or needs for communication

that it could satisfy.

PATRICK: Well, that sounds very high and lofty but it

seems to rae that if you insist on COBOL before you will

•17-

consider a machine from a given manufacturer that this kind

of implies that you won't get COMTRAN.

GORDON: Or FACT.

PATRICK: Well, if we're looking to the future it just

doesn't seem that with the money press that is coming on

the manufacturers that they can afford to do two of these

languages. So if the DOD says, "I want COBOL," or "I want

JAZZY," or some other darn language, it kind of looks like

we're all going to be using it whether we like it or not.

I would dearly like someone to convince me that I'm wrong.

LITTLE: Isn't it true that if you just get enough

people implementing COBOL, either you accept it at that point

of time as common or as a standard, or what you develop there-

after as common or standard must be compatible with COBOL?

Mathematics may be a standard language to write things

in but you don't have a lot of people sitting around rewriting

mathematics. They may disagree in the notations but they

don't have to go back and rewrite totally. But when you have

a program or a whole set of programs running on a machine

and a new language comes along it implies a tremendous amount

of work on the part of people to conform.

TALMADGE: I'd like to amplify my previous remarks about

mathematical notations. In trying to standardize without

enough knowledge, we may entirely miss the goal. For example,

three or four people here have used the word "language" to

categorize systems I would classify on completely different

■1 0

levels: SAP and COBOL for instance are not even comparable.

Perhaps we should first define the meaning of the rauch abused

word "language."

MacKENZIE: Good, bad, or indifferent, I think we ought

to be able to rigorously define the language in question.

PATRICK: A la the syntactical chart?

MacKENZIE: Not at all, for the charts are merely visual

aids. We should be able to find ways of producing rigorous

descriptions of languages--ones that people can read and ones

that represent the authority rather than ones which require

inferences to the authority based on observation of a machine

representation in action.

McCRACKEN: I would tend to agree with that.

Suppose you have two languages that do about the same

thing. One of them has a lot of effort behind it; that is,

a lot of people working on it. The other is what you might

call an offshoot of the same thing but just a bit better--

but not widely used, and not being heavily worked on by large

numbers of people. It's my opinion that the computing world

would be better off to settle on the one that is more widely

accepted and work within the framework of that one language

to improve it, than to push for acceptance of offshoots which

may, in some way, be better.

PATRICK: This is contrary to the basic assumption of

all this standards jazz. In the speeches that Bright and Co.

made on the East Coast last fall, they started out by assuming

•19-

that you couldn't do anything if it was just one manufacturer's

work. A situation which could be described as "I'll assume

FORTRAN out of the way and then I'll look for a common

language."

LITTLE: Dan, did you say work on or work with? You

said work on the language. I assume you mean a lot of people

are using the language.

McCRACKEN: Well, I actually meant a lot of people fooling

with compilers.

CLIPPINGER: You mentioned throwing out FORTRAN; perhaps

I missed something before I came In. Has someone brought up

the fact that X-3.^ has selected three languages to consider

for standardization, of which one is FORTRAN?

PATRICK: No, I hadn't heard that.

GRUENBERGER: And what are the other two?

CLIPPINGER: COBOL and ALGOL. I assumed that everyone

knew that. X-3.4 has requested from IBM a statement as to

their position on this matter and IBM has responded favorably,

and IBM has done some work in providing as a starting point

an initial draft of a form of FORTRAN which could be used as

a kick-off. X-3.4 is about to set up a group to go to work

on FORTRAN along with the other two. You can put that in

the fact bag.

PHILLIPS: Dick Clippinger was on the same panel you

mentioned that discussed this subject back at the Eastern

-20-

Joint Computer Conference. If I'm not mistaken you have

quoted Herb Bright wrong. I don't believe he said that

because FORTRAN was a one-company language it should be

outlawed. In fact, I think he generally supported FORTRAN

as a candidate for a standard language.

CLIPPINGER: That's right. At that time he was very

much distressed that X-3.4 was considering ALGOL and COBOL

as standard languages and not FORTRAN.

PATRICK: Well, I didn't hear his speech but I have a

copy here in front of me. I hope I'm not quoting him out

of context but he says, "Unlike ALGOL and COBOL, it (FORTRAN)

was not developed by a broadbase comparative study group but

by a single manufacturer." He doesn't seem to mention the

manufacturer's name. And after that he doesn't seem to

mention FORTRAN at all. He talks a great deal about ALGOL

and COBOL which looks like some sort of an indictment.

CLIPPINGER: Might you not have read in the indictment

in your own mind?

PATRICK: I guess it looks that way.

PHILLIPS: I'm sure you must have, because in the talks

we had before the conference his ideas were the reverse of

what you imply. He was saying that just because it was

developed by one company is no reason to throw it out.

ARMER: But it was a fact that at that time FORTRAN

was not being considered by the committee.

-21-

GALLER: ALGOL and FORTRAN are quite similar in that

they both cover what we have loosely called the scientific

area. You really don't need both of them. So if there's a

move to make them both standard, it would be interesting to

see why. And here it seems to me that FORTRAN is being looked

upon as a standard, not because it's so wonderful but because

it is already so common. ALGOL, on the other hand, doesn't

have much claim to commonness yet but it does have something

to offer. I don't think there is a real tremendous need for

two languages to be standard but it is interesting that both

of them are being looked at.

McCRACKEN: But then why look at three of them? I'm not

referring to COBOL but, for example, why do we also need MAD?

GALLER: MAD is a language that is not used very much

yet. It seems to me that we cannot decide that any one of

the languages we have now is it.

GRUENBERGER: You'd better use a different word, Bernie.

You meant a lower case "it" didn't you?

GALLER: Sure, but look back to when FORTRANSIT was

distributed. The covering letter for it said something like,

"Everyone recognizes that FORTRAN is the language that we're

going to use from here on out so you'd better get on the

bandwagon." Simply and historically we know that that was

not true. I don't even want it to be true. There's a

^difference between standardization at a point in time where

you could get great benefits from it, and abandoning the search

■22-

for something better. '.7e should always be prepared to go on

to something better. We may choose to develop a language

that is different, and the fact that various people are using

MAD would seem to indicate that there is something there.

There are people who are choosing not to take it on because

of the cost of deviating from FORTRAN and ALGOL and so on.

We are very happy that people are looking at it, but some

people who have looked at it have rejected it, and that's

fine. There is always a cost involved in deviating. We

have examined that cost. We are examining it right now. We

are asking ourselves whether it is worth while to rewrite

MAD for some other machine or should we try to make a new

version of it. We ask ourselves what is the cost involved

to us. We would have to make some attempt to cover ourselves

and to be able to translate from the old to the new. If this

cost is less than the cost of deviating then we'll go ahead.

We have got to be free to make changes if only to allow

ourselves to keep progressing. People tell me, "You don't

have tremendous production problems." This is fairly true.

We do a lot of work but the life span of the jobs we do is

pretty short. That means we can write off the life of these

jobs to a large extent. There is a need for people to keep

looking at these languages and to keep experimenting. And I

think it is a mistake to throttle these efforts by decree or

by economic pressures or what have you.

* : Who said we should do that?

Unknown voice.

.O' 3-

GALLER: All right, let's say by talks at conferences

which say we should depend on the manufacturers and we

should stop doing things because it's time to standardize.

(I think that's what Opler once said.) We've got to look

at where we're going and each person has tc look at each of

these languages.

McCRACKEN: The question was whether in the process of

looking at the new languages we have to create a new name at

the same time. Can't we work within the framework of what is

widely accepted? Can't we try to improve what we already have

or do we have to go off to the side and create something new

that is not compatible?

GALLER: Semetimes to make progress we have to go off

to the side and start fresh.

PATRICK: Bernie is making use of the unique position

he is in, where he can experiment without severely changing

the course of the field unless he just happens to find some-

thing very good. Perhaps IBM cannot do this and the Department

of Defense cannot do this. If either IBM or the DOD (and they

are the two powers) do this, their experiments will have a

profound effect on the field.

ARMER: God help us if our universities can't experiment.

McCRACKEN: That isn't what I said. They've got to

experiment.

ARMER: What would you have them do differently? Some-

how I feel that you're picking on Bernie.

-24-

McCRACKEN: No. Bernle is a friend. But if they do find

something good by experimenting in the universities what do

they do about it? Do they go out and say, "Let's everybody

buy ray language now? It just happens to be called MAD and

it's not: ALGOL." Or should they get back into the ALGOL

effort, having found a good thing? Of course they should

experiment.

ARMER: But it seems to me that their experiment has to

involve a fairly large number of users. They can't just

develop it and then not use it.

GALLER: We've got 2,000 people on campus just writing

programs. We use it.

ARMER: Yes, but it seems to me Dan was arguing that

MAD is not really going to change the world and now you

should put it on the shelf and do something in ALGOL. Is

that what you were saying Dan?

McCRACKEN: No, I was asking a question. The question

is, should they now go out as salesmen for MAD? Alternatively,

should they go to the ALGOL people and sell them on the

improved features that they have developed in MAD?

PATRICK: Selling something to the Secret Society is a

difficult job.

McCRACKEN: There is now a well established committee

of IFIPS for the maintenance of ALGOL.

CLIPPINGER: I'd like to make a statement as the American

representative on the programming languages committee of

-25-

IFIPS, who set up the ALGOL conmittee. The Progranming

Languages Committee met in Munich and set up an ALGOL

cotranittee. This comniittee includes the thirteen original

authors who wanted to continue to participate. Some chose

not to continue, for one reason or another. To this list

was added representatives from many or most of the groups that

had actively implemented ALGOL, so the group is much larger

now. There are about thirty members and they have had their

first meeting as an ALGOL group.

The purpose of this is to provide a much broader base

to the ALGOL effort. It provides an authoritative body to

answer questions and provide interpretations. It can extend

the language and do whatever else is required to put ALGOL

on a sound basis. It isn't meant to be a secret society.

Anyone with a legitimate interest can probably find a way

to get on this group. The original thirteen were polled at

Rome to get their agreement on this approach. ACM on the one

side and GAMM on the other side (they were the original

sponsors of ALGOL) had wanted to get it into a broader group

and moved it in this direction.

OPLER: I'd like to clarify some remarks that I think

possibly Galler has misinterpreted. At the ACM meeting last

year I spoke on what is happening to the effort on programming

languages. At that time I estimated that we had a 3500-man-

year backlog in automatic programming. This represents

something like the entire membership of ACM working for six

■26-

months. The rate at which this backlog is increasing might

force us to change the narae of the society to The Society of

Corapiler Writers and Language Standardizers. At that time

I stated (and perhaps, I was misinterpreted) that I thought

that production of full-fledged processors by the universities

would eventually taper off. By analogy, while the Electrical

Engineering department does research on electronic components,

they still leave it to the manufacturer to produce working

components. I implied that the processors that we would use

for routine work would be developed and maintained primarily

by the manufacturers rather than by the universities. Heaven

knows, we need the universities to develop the new ideas in

the form of small breadboard models of new concepts, new

languages, and new approaches. The manufacturers, however,

should be allowed to pour the money into developing the big

workhorse processors.

GRUENBERGER: One of the things that impresses me about

the attempt to have a language become common is the very short

half-life of such a venture. FORTRAN is a fine example.

From time to time FORTRAN gets to be a little bit frozen.

A new tape comes out from IBM; we all get a copy of the tape

and we all have the same language for about 5 minutes. Then

everybody goes off in different directions again. Our exper-

ience here at RAND is probably quite typical. We diverged

from FORTRAN-17 (or whatever is currently kicking around)

about a year ago. Isn't that right, George?

-27-

ARMERDING: Two years ago.

GRUENBERGER: O.K., two years ago. And we're miles

removed from what everyone else uses. It's no longer common

in any sense except that a certain amount of training can be

transferred from person to person. But our FORTRAN codes

can't run anywhere else.

GORDON: Excuse me Fred, but I'd like to ask you to

refrain from using the word "everybody" to mean 7090 users.

There is more to FORTRAN than 7090 use. However, if anything,

that makes the situation worse than you just said.

GRUENBERGER: Of course, the same thing applies to

FORTRAN among the 1604 users and everybody else. These

people get a package and they're ccmmon with everyone else

for a few milliseconds and then they think of a goody to put

in or a patch to make and they're not common any more.

CLIPPINGER: I'd like to say a little bit about the

process of standardization. We in X-3.4 who are trying to

do something about it are not all convinced that we are going

to succeed. Standardizing a programming language is an

extremely complex business. Fred's point about half-life

I think is quite pertinent. I don't think we are going to

learn how to do it fast enough to achieve any results on any

of the languages we've selected. This is, of course, just

a personal opinion. And yet, we're hard at work trying to

move in that direction. I feel a need for a von Neumann to

get to the heart of the problem. We need a definition of the

-28-

syntax of a progrannning language. The right kind of brilliant

man could lay a firm foundation there which might enable us

to mechanize on a computer the determination of whether you

have a properly specified language. He could provide us with

tools to enable us to determine whether we're ready to con-

sider extensions; to give us further information to enable us

to resolve ambiguities. Without some sort of firm foundation

I think we're just going to spin our wheels and the languages

are going to move faster than we can move to catch up to them.

I'm sorry to have to be so gloomy about it. But I

can't see standardization as a simple enough process at the

moment with our present know-how to be able to keep up with it.

PATRICK: I think that is profound, Dick.

PHILLIPS: I'd like to comment on something that Dick

Clippinger just said and take exception to it. He made

essentially the same statement that we heard just now when

he was a practicing member of the COBOL effort. He didn't

think then that COBOL would ever get off the ground.

CLIPPINGER: Well it is off the ground but it's

different for every implementation and we have no experience

as yet in its use. I would guess that when the 1410 users

discover what it is they have, they will be so sick that there

will be a severe reaction. We'll get the same reactions from

other small computer users (it has nothing to do with the

1410). The fact is that the language is so complex that it

is extremely difficult to put it on any computer with a small

memory.

-29-

GORDON: Some users of big machines are going to be

sick too.

CLIPPINGER: There's at least some hope here. With a

larger machine you have more degrees of freedom. You can

improve what you first get (although it won't be good enough)

and eventually converge toward something which is so good

that the users will want to use it. But we have a lot of

learning to do before we know where we stand or can evaluate

what COBOL is really worth.

PHILLIPS: I'm not suggesting that COBOL has arrived,

in any sense. I am suggesting, Dick, that you are surprised

at our rate of progress compared to what you thought it

would be two years ago.

CLIPPINGER: That's probably true. I think everyone here

recognized the weight of that DOD mallet.

PATRICK: I'm not sure that's true and that may be why

we're here today. I understand that the DOD says:

"For an electronic digital computer to be installed

on or after December 31, 1962, computers will be

selected from those for which a COBOL compiler is

available, compatible with the equipment delivery,

unless it has been determined that the intended

use of a particular computer would not benefit from

the availability of a COBOL compiler."

I don't think you'll find a military officer in his right

mind who would buck that. I don't think these boys have

-30-

guts enough to stand up to you and say, "Charlie, my compile

time is gigantic and my throughput is way down. I can't stand

it." I don't think they'll speak to you the way I will.

PHILLIPS: Remember I don't work for the government any

more.

CUNNINGHAM: I don't agree on Bob's comment. I'd like

to Invite you to come and sit in my office some day and

listen to the way our data processing people sound off about

things they don't like. And this is certainly one of them.

How, In talking about common languages, did we get away from

that chart? We have really been talking about little

segments of the chart at times when we talk about all four

areas. The only portion in which the Department of Defense

has a principal or semi-exclusive Interest is the top one

(Command and Control). We have a tendency to a variety of

languages because there are different groups programming in

Command and Control, leading to reluctance of one to use a

concept developed by any of the others. But the problems

in Command and Control and operational uses seem to me to

be different from the general purpose problems. C and C

languages are concerned with hardware systems built for a

certain technological state. The costs and ramifications

to the Defense Department In changing that system Include

the cost of changing the program also. When you talk about

the Defense Department In relation to the scientific or

business applications you have a different set of circum-

di-

stances .

PATRICK: But the big push was toward the COBOL effort.

I am concerned as an American in the Command and Control

area and that's why Tom Cheatham, Jerry Koory, and Bill

Dobrusky are here because they are the experts in that area.

GORDON: Did I understand Cunningham to say that the Defense

Department is only interested in the Command and Control area?

CUNNINGHAM: No, no, what I said was that's the area

in which we have a primary interest. This as opposed to

the COBOL or Business systems (see your chart) in which DOD

is Just one of many, many users.

GORDON: An interest which you share with pretty near

everyone else.

PATRICK: The secondary areas will take care of them-

selves because the directive is published and there isn't

a man alive who is man enough to say "I made a mistake" and

rescind it. I think this is the legacy we received from

Charlie Phillips.

McCRACKEN: Are you saying that COBOL is a big mistake?

There are also people who have gone the first round and are

happy with it, so far.

PATRICK: I am saying that the requiring of COBOL in

Its present state of development could be a hell of a big

mistake.

CUNNINGHAM: Well let me come back to that point. You

read us an excerpt from a Defense directive. That directive

-32.

did not say that It required COBOL. It said that equipment

to be furnished had to provide a compiler for COBOL.

PATRICK: True.

CUNNINGHAM: But that doesn't say that the Installation

Is forced to use It. That doesn't direct anyone In the

Defense Department to use It.

PATRICK: Do you think If they were bringing out the

H-800 again they would do PACT In the light of that develop-

ment?

CUNNINGHAM: I don't know.

ARMER: In the light of that development look what's

happened to COMTRAN (Commercial Translator). COMTRAN and FACT

are both dead.

PATRICK: Yes, in the light of that one statement. Now

is that good?

CUNNINGHAM: Prom our standpoint in the Department of

Defense yes, it is good. Not that either or both are dead

but that we only have one language. It would be hard to

estimate the cost to us of not having the ability to select

updated equipment due to conversion costs. Common or standard

languages fit the pattern developing throughout the Depart-

ment of Defense in which the department will be dictating

standard practices for use throughout the department. The

tendency in D.P. now is toward commonality of procedures and

variation of equipment. This orientation in the DOD will

lead to writing procedures in something like COBOL rather

than directing the use of a particular kind of equipment.

PATRICK: Don't you think that you're shoeing the

-33-

wrong end of the horse? It looks as though your problem

occurs...

CUNNINGHAM: Our problem has occurred already.

PATRICK: The problem gets refreshed every day every

time you order a computer. Thirty-six months from now you

probably won't have anything Installed that you have Installed

now. In other words you'll get a fresh start In 36 months.

CUNNINGHAM: Gee, I wish you'd talk to the Government

Accounting Office (GAO). But^ have you considered the con-

version problem In an Installation where there are between

500-600 routines (all dynamic) with over a million Instruc-

tions and the problems and cost of changing these programs

and equipment?

PATRICK: These are sort of facts to the computing

field. How many UNIVAC-I's do you still have running and

don't you wish you could get rid of them? UNIVAC-I's and

704's are about the only two machines that are still around

that have been here more than ^0 months.

CUNNINGHAM: There are still a lot of 705's, 650's,

etc. that have been around a long time too.

PATRICK: Yes, but they're probably now mod S's which

are Incompatible with the mod 2's and the mod 1's.

CUNNINGHAM: I don't know. You're talking about the

whole Defense Department and I am not familiar with the

situation. I can answer in general about some of the things

you're talking about.

PATRICK: Well, I think your main motivation for a com-

mon language stems from the fact that you want to order one

■34.

computer from every manufacturer and set them side by side.

This is bound to give you trouble. This is like trying to

drive a stagecoach pulled by a zebra, a kangaroq and a mule,

all in harness together and we're going to go to San Francisco.

It doesn't seem to me that the solution of your basic problem

is through a common language.

LITTLE: I think there's a point here though. You're

expecting your common language to cut across machine types

and classes. I know from experience in the Air Force that

the different depots, for example, have different kinds of

machines which are expected to implement the same inventory

control system. What happens then is that you are not only

forced to take the same problem and implerae.it it for different

depots, but you are then forced to make the language compatible

across the machines too. This is a big job, the way things

sit now.

GORDON: There are only three problems the way I see it.

We're trying to standardize the wrong thing. We're doing it

the wrong way. And we're doing it at the wrong time.

Let's take the way we're doing it. Traditionally,

standards become recognized as such by virtue of the fact

that they become standard through usage. After long use

people look around and say, "Gee, this is a good thing; let's

give it the label 'standard.'" What we're trying to do now

is sit back and pull out of the blue sky something brand new,

that we will call a standard, which will wipe out everything

■35-

that went before. This is why I say we're doing it the

wrong way.

Secondly, we're trying to standardize the wrong thing,

which is what Paul Armer said before. There are two different

levels at which you can standardize. Bernie mentioned SAP

before, which was a local standard, a standard among a small

group of one-machine users. This was a standard; it just

wasn't a world-wide standard. You had standardization within

an installation, within a group of machine users, within a

single manufacturer, etc. You had geographic levels of

standardization.

Another kind of standardization lies in things like

character sets, tape formats, and module standardization.

Working your way up from there you can have standard functions,

standard routines, and so on.

Perhaps what we should be doing is looking more to

standards on the level of one-user, one-machine-type standard-

ization. As Gruenberger pointed out before, even among the 7090

users (restricting themselves to FORTRAN) there isn't a single

standard. And Paul Armer pointed out that even things as basic as

character sets are not standard. Maybe we should concentrate

more on this area and allow a certain amount of evolution to

take place before we suddenly start at the far end--the way

we talk to machines on a global scale for all problems. This

latter might be the ultimate point at which to standardize.

That's why I say we're doing it at the wrong time. I think

■36.

we might be as much as a decade early for tackling that problem.

There is a lot of work to be done in the meantime.

BROMBERG: We are looking at character code standardiza-

tion. You can't put on a set of blinders and close your eyes

to all the progress that is current because it doesn't happen

to start at the point that you have defined as the beginning.

GORDON: Unhampered by knowledge, we're going ahead and

laying down some firm, rigid things that are likely to be a

bit of a problem after a while.

BROMBERG: The way that we're approaching--the matter of

commonness of a language--is perhaps untimely. I would main-

tain that there are two reasons for having a common language.

The first is that it provides an effective means for the

specification of problem solution. You can't really say

anything against this. Everyone is looking for a good usable

vehicle for expressing problem solution.

The second is this ability (that DOD is waving) of being

able to take a given problem specification in this common

language and run it on another machine.

Now standardization activity can still be done without

considering the second objective; namely, the ability to take

a program written for machine type A and run it on machine

type B. That is primarily DOD's problem. It's a single

problem that they have. This, in itself, should not preclude

the activity that is going on among all the manufacturers.

Our responsibility as manufacturers, (and it is a definite

•37-

responsibility to the users), is to provide this effective

vehicle without regard to the ability to put a program written

for one machine on another. That latter ability may come.

It will probably come as a direct result of the standardization

efforts that Clippinger was talking about.

GORDON: You talk about the ability to communicate

effectively with the machine. You need a good problem-stating

language. For all we know, FACT may be the best problem-

stating language yet devised. But we are not going to have

a chance to find out because it is not going to get sufficient

usage. It will get some usage (as did Commercial Translator)

but the blunt fact of the matter is that we are never going

to have any really effective usage because of the fact that

the standard preceded the evolution.

BROMBERG: Barry, in the creation of any one of these

languages (the creation of the actual specifications themselves)

there is never any of the wisdom of experience and use.

GORDON: That is correct. Consequently, some of them

don't quite work out. I agree. You have to have a chance

to find out whether they will work.

BROMBERG: That's what we are doing. Consequently, by

finding out what their so-called standard does, you have

every opportunity in the world to come up to the language

maintenance committee and say "Look, this damn thing doesn't

work. We have a function in Commercial Translator that is

much better. Why not consider it?" What has ever come up

■38-

in the COBOL maintenance committee, for example? What sort

of things have been suggested that were far superior in

Commercial Translator? I know that there are some things.

I know that there are such things in FACT also. Honeywell

representatives screamed bloody murder to put a report writer

in COBOL. Not because we had to have a report writer in

COBOL, but FACT had it and COBOL didn't, and we had to keep

up with the Joneses.

GORDON: A standard shouldn't try to keep up with the

Joneses. It should represent a core, a nucleus.

You don't standardize everything to begin with. You

standardize the core which can be agreed upon and then your

standard grows.

OPLER: I think I have something for your "fact" bag.

Sometime in the late summer of 1961, the SHARE COBOL committee

solicited improvements in COBOL that people might want.

Someone offered the following suggestion: Let's modify the

COBOL statement that says "Add A and B and C to D" to "Add

A and B and C to D and E;" that is, to permit the result of

an addition to be put in more than one place. I think everyone

agreed that this was a sensible suggestion. When the SHARE

COBOL committee agreed on it and the SHARE Executive Committee

approved it, the suggestion was forwarded to the appropriate

COBOL committee. To the best of my knowledge, this suggestion

(which was made in August of 1961) will not see the light of

day in a COBOL compiler until late 1963 or 1964 if approved

■39-

by everybody down the line. Thus, a simple, logical suggestion

takes about three years to appear in the processors that

people use.

GORDON: Ascher, the feature you mentioned has already

been in Commercial Translator for several years.

OPLER: Yes, I know that.

BROMBERG: To clarify, the proposal was submitted by

SHARE in November of 1961. The COBOL Arithmetic subcommittee

reworked it to remove many ambiguities in the ROUNDED and

ON SIZE ERROR options. It was then passed by the full

committee in March, 1962 and will appear in the forthcoming

revision.

GALLER: There are opposing views being expressed here

about the role of a standard. It seems to me that the stand

taken by the ACM COBOL Maintenance Committee was: Let's not

change it, let's give it a chance as it stands and see how

it works. (I am paraphrasing their views, perhaps.) Now,

with ALGOL, the language got implemented rather fast and hence

things got frozen a little sooner. In COBOL the more translators

that get developed, the harder it is going to be to make any

kind of change. I'm not saying that making a change is either

good or bad but just that it gets harder to make.

PATRICK: Bromberg said a moment ago that there are two

reasons for standardizing. One is to have a language to

communicate with and the other is that the DOD wanted to put

the same problem on two machines. It seems that the first

-40-

could be handled by a standard language for communication

purposes and the second could be handled by not putting two

dissimilar machines back to back.

GORDON; The first requirement can be handled by any one

of a number of languages or any one of a group of languages.

If the impetus is to get a good programming language there

is no requirement at all that it be the same one that is

being used down the block.

BROMBERG: I disagree.

PATRICK: Why is that?

* : Which side are you on?

BROMBERG: Don't overlook all those costs that Gruenberger

has on that chart. Suppose you grant that any one of these

unknown languages is adequate for the job. You have training

costs to begin with. If you're using two different languages

you have to do twice as much training as though you use one

language.

PATRICK: Only when I interchange people.

McCRACKEN: May I get in here? I heard several times

the statement made that only the DOD has the problem; that

they are the only ones that have different machines that have

to talk to each other. This is not true and I'd like to offer

a small fact. I know of a certain user who had a machine,

let's call it Machine A, (Model 3, as a matter of fact).

One machine, one user. They needed a bigger machine, so

they surveyed the market among the various machines available.

-41-

One of the available raachints was Machine B, made by the same

manufacturer. Machine B would accept the programs of Machine

A. Their evaluation of the machines involved indicated that

they did not want Machine B. It was not the best machine,

for the price, for their job. They ordered Machine B anyway

because they figured they couldn't afford the reprogranraiing

cost, which, by their estimate, was about half a million

dollars. So they went ahead and got the machine that they

didn't want just because of this non-common language business.

It isn't just DOD.

PATRICK: I don't see where that has any bearing at all.

McCRACKEN: If they had been in COBOL in the first place

they wouldn't have had this problem,

PATRICK: If they had been in COBOL in the first place--

prasent state-of-the-art, now--they might have been spending

twice as much to get their programs in.

* : And if they had been in COBOL in the first

place they might very well have been getting the language they

didn't want just because it was standard.

GORDON: And also they might have needed the added

capacity of Machine B sooner.

GRUENBERGER: I think all that Dan was pointing out was

the rebuttal of the statement that only DOD has the problem.

We have seen examples lately of other people having the

problem; Westinghouse, for example. They have recently

stated that they are going to use COBOL company-wide.

-42-

CUNNINGHAM: In the first olace the COBOL effort is

made up of a lot of different people besides Defense, so a

lot of other people must at least think they have the same

problem. I'm not speaking only of manufacturers. There are

a variety of users in the COBOL effort who must recognize

a need and be interested in getting on top of it.

Secondly, I don't think that you'll find, even in the

Defense Department, two different machines in the same

Installation back to back doing the same Job. You won't

find the 501 and the 705 working back to back. What you

will find is the 501 in one place and a 705 in another place.

PATRICK: What is at David Taylor9

CUNNINGHAM: I don't know.

* : David Taylor has one of everything.

PATRICK: It seems to me David Taylor has a LARC, a

UNIVAC, ...

CUNNINGHAM: I presume that the variety of work dictates

a variety of equipment. I'm saying they're not doing the

same Jobs back to back.

ARMER: How about logical back to back, where you have

one machine at one site doing, say, inventory control and a

different machine at a different site doing the same inventory

control problem?

LITTLE: You can still be hurt by having different

-43-

machines in the same installation because you do not have

the freedom to pick up the load of one from the other.

CUNNINGHAM: Agreed we've Just gone through the same

analysis in the Air Force that Dan was talking about; the

one that says that we didn't want to pick up a new machine

because of the programming investment involved. A machine

that we might really want we would never get to because we

couldn't afford the reprogramming costs (both dollar and time)

The question we face is, "How much longer can we afford to

pay what might be four times the cost of the Job to wait to

get to the optimum position?" So we decided that the optimum

for the moment is this swap we went through when we changed

705's for 7080's.

LITTLE: There's a very good point here. Is a language

really going to solve this problem? Do we really design

languages for use by what we might call professional pro-

grammers or are we designing them for use by some subhuman

species in order to get around training and having good

programmers? Is a language ever going to be an effective

substitute for really good people?

* : Is there a difference between those two

groups?

McCRACKEN: It won't be perfect but it will be better

than what we have now.

M-

LITTLE: This isn't clear to me. On small jobs you can

stand inefficiency of all kinds. It's not at all clear to

me that on large jobs like Command and Control that you can

gloss over inefficiencies. I'm not sure that my own corpora-

tion--RAND--or the universities ever face this kind of a

problem. Therefore, I'm not sure that the research that is

going on in places like RAND and the universities is actually

facing up to the problem. In these really big jobs hand

coding will push the limit of the machinery that we have

available today.

CLIPPINGER: I'd like to talk to McCracken's point. One of

the reasons that users would like to get a good programming

language is the freedom to change from one machine to the

other. Dan pointed out that the switch is pretty tough when

you are in assembly language. Now there's a fact here that

I think most of us would agree to which seems pretty obvious

but it ought to be stated. That if problems were formulated

in an English type language (COBOL, or FACT, or Commercial

Translator), that the statement of the problem contains all

the information necessary for the computer and therefore

contains most of its own documentation.

McCRACKEN: A very good point.

CLIPPINGER: Now if you want to switch that same problem

from COBOL to FACT, or FACT to Commercial Translator, or even

-45-

from COBOL A to COBOL B you have about the same order of

magnitude of work which Is ten times less than changing from

705 Autocoder to some other assembly language. So there seems

to be an intrinsic value in the English-type language. This

advantage could even be gained in a language that is not English

narrative as long as it's some symbolic language that is suit-

able for stating problems. The point is that compilation

produces documentation. We're all aware that the big problem

in moving a computer solution from one machine to another when

you are dealing in assembly language (we're talking about very

large problems) Is that the people Involved in producing that

checked-out code are no longer around; they may have changed

jobs or maybe gone to different jobs; and that essentially

you don't know what those checked-out instructions really do.

The programs have probably been patched and repatched and

when you come to rewrite you can find no one who really

understands what those instructions do. It's very difficult

to get that kind of information when the problem is stated in

assembly language and it's frequently easier to scrap the

whole thing and start all over.

GALLER: You may have the same problem with English-type

languages too.

PATRICK: Yes, it's not clear that you've changed it

any. If you have poor management and you haven't kept your

-46-

source decks up to date you have the same problem.

CLTPPINGER: That's debatable. It depends on how you

do it. The problem can exist.

PATRICK: With long compile times the problem statement

will exist in two forms.

CLIPPINGER: With FACT, for example, you compile and

you don't patch because it's too difficult to patch. You

simply recompile when you redo the problem. Therefore the

final version which is running is supported by a document.

And you know exactly what that program does. It's my guess

that COMTRAN handles this the same way. In the case of COBOL

there may be variations from installation to installation

but I'm pretty sure that in most cases COBOL is treated the

same way.

PATRICK: Howard, is it true that in 501 COBOL you patch

because the compile time is long?

BROMBERG: I guess one can do whatever he pleases in

501 COBOL, as far as the object code is concerned.

There's an interesting thing about language design

itself. In the COBOL area, for example, there is nothing in

the language itself that talks about, or makes provision for,

documentation. The language designers apparently believe

that the language itself is sufficient for documentation.

There is nothing built into the language apparently to

accommodate this notion of debugging, or fast recompilation

time. It's just not there. It is a shortcoming.

-47-

Little raised the question, "For whom Is this language

designed?" It is my opinion that a language like COBOL is

designed for two kinds of people. First, it is designed for

the irapleraenters—the guys who are actually going to interpret

the language specifications for a particular computing device.

Second, it is designed for the salesman, so that he has

something to go out and talk about. It is not really designed

for the user, per se. The secret for the effective utilization

of all these languages is the recognition by the user that

he cannot exist in the common programming language cosmology

as a clod.

GORDON: I'd like to tell one small anecdote with

reference to the guy COBOL is designed for. At a COBOL

session we had not too long ago we were discussing the word-

iness of the language. COBOL uses words like ADD, SUBTRACT,

MULTIPLY, DIVIDE, and COMPUTE. With the COMPUTE verb, they

allow PLUS and MINUS for the ampersand and hyphen (which were

considered too mathematical at the time). Thus, you were

allowed to write "A MINUS B" (all spelled out) and someone

suggested that the committee should also allow the term

"TAKE AWAY."

McCRACKEN: I have a fact. I am strongly impressed by

the remarks that Bromberg made that COBOL can't be used by

clods. I ran a little program to prove it. It was a little

COBOL exercise designed to prove just that. I ran it on

the 1105 at the Air Force Logistics Command. There were two

-in-

versions, both of which had exactly the same procedure

division. They produced exactly the same results. The only

difference between them was in the data division, and the

change was minor.

We compiled the first one and the running time was about

8 seconds. The second one, which was also a legitimate COBOL

program (a slightly modified data division, the same procedure

division, and the same results) took 80 seconds to run. I think

this goes to show that you can't be a clod. You do have to

know something about machines. It also goes to show, I think,

that the efficiency of the object program is not just a

function of the language, or of the compiler.

I think it also shows that you don't have to know very

much about the machine. I had never worked with an 1105

before. All I used in designing this horrible example was

knowledge of how alphabetic information is stored in a binary

machine.

BROMBERG: I would bet that a competent 1105 programmer

could make some savings again on your first example.

McCRACKEN: That's quite possible.

GORDON: I'd like to thank McCracken for his fact, and point

out that the point that he made was not the one he claimed

to make. It seems to me that he has demonstrated that COBOL

can be used by clods, but with disastrous results. But this

brings up another interesting point. Isn't it the responsibility

of the manufacturers and the language designers to come up with

■ 49-

a language which will encourage effective use of eqiiipment

rather than simply to enhance the sales and allow anyone to

put a program on the machine?

LITTLE: Doesn't the language then gloss over differences

in the machine? Doesn't it sort of hide the machine? In some

sense the statement you just made is speaking against languages.

GALLER: Al Perils once ran an experiment (I can't

remember the details of it exactly); what it amounted to was

cutting a program down from 20 minutes to 1 minute on some

machine simply by moving things in and out of DO loops and

computing a couple of things in advance instead of within the

DO loops. It has nothing to do with the machine and nothing

to do with the language. It is simply an appreciation of

the structure of a problem and the use of good organization.

You can get people to do this no matter what tools you give

them and you can get people who will do it wrong no matter

what tools you give them. It's a problem in education.

GORDON: There are situations, Bernie, that do have

nothing to do with the language> or with the machine. I

say that there are also situations in which the more "sophis-

ticated" languages get, the more the language can enhance this

sort of thing. I have seen 7090's which pay a very large

penalty in trying to simulate 7080's. Some clod has simply

taken a program written in a common language for one machine

and run it on another and he's gotten results. I have seen

7090's operating at like 701 speed in order to do this. It's

-50-

probably true that there are programming considerations inde-

pendent of language, but it is also true that some of the

newer languages, by masking the machine more thoroughly,

have tended to encourage greater inefficiency.

MacKENZIE: I agree with Galler that the problem is one

of educating the users, and I suggest that it should be so

constrained. Consider that good programmers using a so-

called machine-independent language will tend to construct

machine-dependent algorithms, even though they don't think

of them that way. This point might be overlooked in the

argument that McCracken advanced--that there is this latitude, if

I might call it that, in the language which the programmer

might exercise to the advantage or the disadvantage of his

installation. If there were not this latitude, we would

probably find, what were in fact, highly machine-dependent

languages being passed off as machine-independent languages.

I think it is important that there be this latitude. The

real important question should be, "How powerful is the

language?"--and one should presume intelligent use, arrived

at possibly as the result of proper training.

LITTLE: I agree that it's important to recognize that

this exists. I'm not sure but what these languages aren't

designed to be used by lower level people (in two senses).

First, there is the guy who is at a lower level intrinsically

(who would never become a top notch progranmer) and, on the

other hand, there is the fellow who might become a good

programmer but you want to get him doing useful work sooner.

If you don't recognize that this latitude exists you may be

letting yourself open for tremendous problems in your running

time and your problem organization and this type of thing.

MacKENZIE; I'm not trying to be argumentative, but

don't you think the same problem exists at the machine language

level? I can think of all kinds of examples where there was

a factor of 10 difference in an object program's running time.

For example, undoubtedly Dan could have achieved that differ-

ence in the procedure division alone.

GORDON: The complexities of the language you use may

add to this and if you add to it sufficiently your weekly

payroll may become a critical real-time problem.

PATRICK: I thought Bromberg had covered this pretty well

in his Datamation article. In that document he upset once

and for all the idea that these dumb languages are going to

cut down your training problem. He maintained that you had

to know the language and its implementation and the computer

in order to use it well.

McCRACKEN: Now wait a minute. You don't have to know

as much about the computer as if you were going to do it in,

say. Autocoder.

PATRICK: O.K. I don't have to know as much about it

but I can't do it as though I were a complete idiot.

GORDON: Who are "you" when you're talking?

PATRICK: I'm the guy who is writing instructions.

•52-

BROMBERG: liiere are many guys who are writing. Let's

consider an installation of 15 men. Before the advent of

these English-like languages the 15 men each had the require-

ment to have detailed knowledge of the equipment. What we're

saying now is that, being removed from the details of the

machine, this requirement is less stringent. Effective

installation practices can now allow one individual—out of

these 15--to be the machine expert. That one expert can act

as the consulting programmer.

PATRICK: But wasn't that always true? We never did

have uniformity in our shop. There was always a priest who

really knew all the equipment and the other guys kind of

plodded along.

LITTLE: If you have one good guy and 14 others who

just follow along, who takes the place of the good guy when

he moves up?

PATRICK: The trouble is with these languages the good

guy has to be about three times better. He's got to be

really top notch.

GORDON: He's got to know the machine...

PATRICK: And the compiler, and the language.

BROMBERG: But especially he's got to know the machine.

The secret in the area of COBOL, for example, in the genera-

tion of efficient object programs is in a proper utilization

of the data division. This means that you must know how your

computing device handles and manipulates data. It becomes

-53-

the function of this one knowledgeable man we talk about to

be the data describer for the installation. You recognize,

of course, that in business data processing you are going to

manipulate only a small finite number of files. His job then

should be to set up initially, with the computer in mind,

data divisions for each one of the files, keeping in mind

the idiosyncracies of the compiler. He then becomes the

file clerk. We call him a librarian. Then every other pro-

grammer writing a program which uses these files consults

this librarian and is guaranteed, to a definite extent, that

he has the most effective efficient description for his file.

PATRICK: This is what SDC does with their COMPOCL.

BROMBERG: This really has nothing to do with the

language specification. This is just good efficient instal-

lation practice. Ue can't interject this into a language

design. As Gordon suggested before, a language should enhance

some of the computer's features. That's nonsense. Why

should it? The function of a language builder is only to

assure himself and his corporation that none of the features

that his equipment has will be precluded by a language

specification. There are really two languages. One is the

language that exists in the infinite world of specification.

And the other is the interpretation of this language which

is the finite world of the processor. Clearly, (for example,

in the COBOL specifications) it says that you can have a

literal of any size but you can't deal with a literal of any

-54.

size in a specific processor. We will allow infinite length

literals if someone will tell us how to write them.

OPLER: I was talking to an installation manager who

uses COBOL. Me decided to adopt COBOL because he figured

that his problems divided into two classes: those that would

fit into COBOL and those that were rather unconventional.

For the latter, his best programmers would write in assembly

language. They went ahead on this basis, and found to their

consternation that the following situation had developed:

the programmers who were trained in COBOL (but who did not

know much about the machine), were writing programs in COBOL.

After compilation, the object programs would not run. They

would then call the other group of programmers to patch the

COBOL object program. Eventually, they found that they were

using both teams full time on COBOL. Maybe this will be the

final division of people in such installations. Groups A and

B will sit on top of each other to help each other.

CUNNINGHAM: I have an analogy to what you Just said,

Ascherj but I am reminded of our fire in the Pentagon, I

had a call from a user who sounds very much like the man

you Just described. He offered me 20 hours a day on a

large scale computer. I thanked him profusely and hung up

and said to myself^ "Using the computer only k hours per day-

it's obvious he doesn't work for the government." I think

there's the same degree of management efficiency Involved in

each case.

-55-

PATRICK: There was a lot of spare machine time that we

didn't know about. It came out when you had that fire.

BROMBERG: On the other hand, there are many cases where

people are using COBOL and using it very well and they have

never compiled a COBOL program.

GORDON: That's probably the best way.

OPLER: That sounds like the story I heard of the manu-

facturer who "ordered" a big computer to take over all the

plant functions and, two days before it was scheduled for

delivery, he cancelled it. The truth was that he had never

planned to install it in the first place.

LITTLE: Somebody said a while ago that such arguments

shouldn't be interjected into a debate on common languages.

I don't really think it's nonsensical. I don't think enough

of this sort of thing is interjected when people actually sit

down and do the design of these languages. I think either

a selling job has gone way too far or people don't realize

the degree of latitude that is in there. If the latitude

exists then they should be educated to it.

BROMBERG: I'm just griping about the use of the word

standard. I don't really know what it means in this context.

CALLER: I'd like to ask a question. Suppose that the

DOD goes ahead with this idea of standardizing our language.

Can we predict what will happen to ALGOL, if anything? Of

course I include in that question JOVIAL, FORTRAN, NELIAC,

MAD, and all the rest of them. We see COBOL and we ask, "What

56- •j

happened to Commercial Translator?" They more or less arrived

at the same time and maybe that makes a difference. F0RTHAN

is pretty well established. ALGOL is pretty well established

as far as It's gone. V/hat will be the effect on these languages?

Should there be an effect?

CLIPPINGER: Are you asking whether standardization has

an effect on these languages?

CALLER: Well, will DOD's choice of a language be, in

effect, standardization?

McCRACKEN: Would someone please fill me in. Will DOD's

pending decision involve a language like FORTRAN?

CUNNINGHAM: r./hat decision are we talking about?

PATRICK: A Command and Control language.

CUNNINGHAM: I don't know.

CALLER: One of the things I read in preparation for

this meeting mentioned a language like JOVIAL that might

evolve.

LITTLE: I think the question is (to further the discus-

sion here), "V/hat would be the effect if the DOD adopted

JOVIAL tomorrow for the Command Control language?"

KOORY: I'd be very surprised.

I have read the document that was distributed (S'DC

Manual TM-688) in many forms. There were at least three

drafts before the final version. I've liked it better in

each version, perhaps because I'm getting used to the idea.

If you want to talk about standards I'd like to go back to

-57-

the point that Gordon made much earlier in quoting from Dick

Hill. I think it's very important that standards evolve;

that they are not set. I think that you might want to

establish a study activity of some sort to look at the

problems for a particular area, and to decide how best to

describe these problems. You can perhaps define a language

in which we can describe the problems of Command and Control.

I would not suggest that we take anything that exists today

(within my knowledge) and say that that ought to be a standard.

I think that would be a mistake.

ARMERDING: As the standards evolve have we any guarantee

that we're not going to come up with the English system again,

rather than the metric? Unless we have top notch people

working on it we're likely to come up with the English system

all over whether we like it or not; and then it will be too

late to change.

PATRICK: That may be true but we're going to have to

broaden the language design boys a little bit. They can't

just think of producing a language that is easy to describe

without keeping in mind the fact that they are building a

tool. All the things that we have listed on this round chart

will be affected, and will affect the design. If you pick a

language that is impossible to train up to (that is, one that

the lower level people could never be trained to handle) then

that language is not going to go.

McCRACKEN: What do you have in mind?

.c 8-

PATR1CK: Let's think of the Civil Service types who

have to be trained up to use all the data description devices

in JOVIAL (partial word field manipulations). You may be

able to do something to mitigate this problem by writing some

good training literature (which is somewhat lacking today).

But it's really asking too much.

GRUENBERGER: Look at the world we just opened up for

you, Dan. There's another book to be written.

LITTLE: I'd like to get back to the subject of evolution

of standards. I go along with most of what was said but I

think that we're overlooking one fact--that there are Command

and Control jobs that b-^e to be done. If, in the process of

implementing these jobs that have to be done, the Defense

Department (or any other large user) decides to standardize

on a language like JOVIAL, then, like it or not, we're going

to be sitting around talking about JOVIAL the way we have

always talked about FORTRAN.

PATRICK: And in that situation ,• subset of JOVIAL would

do the FORTRAN job -/ery nicely.

McCRACKEN: Would it?

PATRICK: I think so.

GORDON: You'd better put that one in the opinion bag.

PATRICK: All right, it goes in the opinion bag. You

have to assume some sort of Utopian society. You might have

to assume that there is no investment in FORTRAN, which we

know is wrong. There might be a hundred million dollars

■59-

invested in FORTRAN boJih in people training and in translators.

This may be too Utopian to be possible but if all other things

are equal I think a subset of JOVIAL or a subset of NELIAC

could do the job. Both of these languages are more powerful

than FORTRAN and I think both of them could do the simple,

straightforward, scientific evaluation jobs well.

Of course, this isn't the world we live in where we can

throw away a hundred million dollar investment.

GRUENBERGER: George, are you going to sit there and

accept that remark?

ARMERDING: No one yet has said anything about compile

times.

PATRICK: We're talking only about the language at the

moment.

ARMERDING: And I think that's one of the main troubles

with people who design languages. They seem to forget about

things like the compile times and execution times.

* : Not intentionally.

ARMERDING: And when they finally see the result running

on their machines they throw up their hands in horror. As

Dick Clippinger said, when the 1410 users see what COBOL is

going to do for them and to them they're going to be horrified.

You can't really predict this. You can't say what the effect

of COBOL is going to be on a machine that hasn't even been

announced yet.

LITTLE: I think I'd feel a lot better if I believed that

-6o-

some of the users would have enough sense to scream. Some

of them are going to put a high level language on a machine

and not know any better.

ARMERDING: Yes, that's also true.

PATRICK: Barry, do you hear any screams?

TALMADGE: You'll hear some screams from users of FORTRAN

on the 7070, but there are an awful lot of 7070 users of

FORTRAN who don't scream; and this worries me more. Quite

a bit more.

* : It's quite possible that they're getting

something worthwhile out of it.

GRUENBERGER: There are 705 users who are mighty unhappy

over FORTRAN.

DOBRUSICY: We're talking about compile time on these

large compilers. Agreed that they're much longer in their

compile times than other processors-'I'm referring to COBOL,

FACT, JOVIAL, and so forth. At SDC studies are being conducted

among JOVIAL users (not only within SDC but at other places

as well). None of them have complained about the compile

time, perhaps because they have too many other things to

coraplain about. That, was a fact. This is an opinion. One

of the reasons they don't complain about compile time is

that they realize that there is nothing else available at

their hands, right now, that can do the job as well. Their

experience with FACT, NELIAC, FORTRAN, and what have you,

indicates that JOVIAL is better than roost.

-61-

* : We were talking about both compile times

and run times. They do complain about running times, is

that correct?

DOBRUSKY: Yes, but what is program efficiency? We

talked about the old trade-off between space and time. What

is a good program? Is it the amount of space it uses or the

amount of time it takes? With a POL we address ourselves to

that problem and to a much more important one; namely, the

elapsed time involved from the formulation of the problem to

the finished result. If it's a real-time problem then I say

there's not a compiler in existence today that will produce

you efficient code for this application. As Dan pointed out,

using the power of a language by the unindoctrinated can pro-

duce pretty horrible code. It's just like many people are

able in common English prose to describe very crisply in

one sentence what it might take someone else a whole book to

describe.

PATRICK: Be careful what you say about books, with

McCracken around.

GORDON: I take exception to your statement, George,

that language designers do not consider compile times. Some

of them do; that's a fact.

ARMERDING: They can't if the machine hasn't even been

designed yet.

GORDON: Soraetiraes you're lucky if you're working on a

language for an old machine.

-62-

GRUENBERGER: You mean like one of these days we're going

to get FORTRAN for the 7090, huh?

GORDON: Can we delete Fred's remark?

Basically language designers will take into account (as

best they can) things like compile times. But there are

many other things they have to take into account. For example,

when you design a language, some poor slob is going to be

stuck with the problem of teaching it to people. There are

problems of implementation schedules to be met. You aren't

going to design something that you can't implement for the

next thirty^years; not deliberately, anyway.

So there are many things that have to be taken into

account and I think that compile times is one of them.

Probably Dick Talmadge could tell us something about compile

times. I know that Commercial Translator was designed with

compile time..in mind. It turns out that for two of the three

machines for which Coramerical Translator is running, compila-

tion was complicated by other considerations;, i.e., other

than the language itself. For one totally new effort with

Commerical Translator (namely, on the 7090), I think the

compile times are quite respectable, to put it mildly. This

is something that is taken into account but unfortunately it

can't be the only thing. There must be compromises.

ARMERDING: I agree. For example, compile time is not

nearly as important as efficiency of the object code. You

are probably willing to buy a certain amount of long

-63-

compilation if you'll get out an efficient code at the other

end.

ARMER: Sometimes you have one goal in that equation

of Patrick's, sometimes you have another.

ARMERDING: Each user is going to have to put in his

own coefficients but some of them are locked in whether he

likes them or not. I can't change the FORTRAN compiler on

our machine so that in some instances it will compile faster

at the cost of the object code and sometimes the other way

around. I just can't do it. Those things are locked into

the compiler,

ARMER: In the first version of FORTRAN they devoted so

much attention to object code efficiency that the compile

times were way high. That was on the 704. Now they seem to

be going the other way, on the 7090.

TALMADGE: I don't think it's true that you need accept

long compile times in order to get good object code efficiency.

Very often, both in the scientific and commercial field, the

life of a job is only one or two runs. In this situation,

it is most important to be able to connect small parts of

a program rapidly; that is, compile efficiency is much more

important than run efficiency. This point was kept in mind

in designing Commercial Translator.

As to the comment that a language can force a long compile

time, I believe it to be true to some extent, but not to the

extent many people believe. Too often the processor designer

■64.

loses sight of the fact that his system is going to be run on

a particular machine, in a particular environment. It is

more important to design an efficient, simple, total operating

system than to turn out a super efficient object code rather

than just an average object code. Most of the lost time

comes from changing tapes and from the operators helplessly

wondering what went wrong with that particular program.

You mjy lose 20 seconds during an object program if the code

is inefficient, but you could lose 5 minutes or 10 minutes

during the entire job if you don't have a good operating system.

PATRICK: If I make a compiler efficient in the way you

just mentioned I make it machine-dependent again.

TALMADGE: You're talking about a processor now.

PATRICK: If I take an easy language and restrict all

my symbols to six characters or less so that they'll fit your

machine then I can't run Clippinger's programs which were

designed for his 48-bit machine. And it makes your compiler

a great deal faster: that is machine-dependence.

BROMBERG: On the other hand, there are some of us who

believe that one of the functions of a compiler is to do

error-checking. We can certainly design a fast compiler (call

it a User Beware Compiler) that lets you effectively write

anything that you'd like. And you can thereby increase

compile times by a factor of 10 and still keep it within

the area of machine independence.

TALMADGE: If you're talking about computer independence

-65-

then you're talking about the language description. But you

can't talk about computer independence when you talk about

the processor which translates from that particular language

to produce an object code on the machine. Then one cannot

be independent, any more than one can be machine-independent

when writing a data description for a commercial problem.

Dan's example is a good one: When one writes the data

description to take advantage of the binary machine then the

object program is much more efficient.

I can speak personally for Commercial Translator. In

writing it we used as many machine-dependent techniques as

we could, in order to get the most out of the 7090 for the

CT language. It is up to each Implementer to do the same

for his particular machine, since some techniques are good

on one machine and produce a good compiler, while others

might produce a very slow compiler.

PATRICK: The point I was getting at was that if you

are implementing a processor you must be doing it for a

specific machine. There is a threshold point at which it

makes a great deal of difference whether you put restrictions

on the language or not. It's the same language; the syntax

is the same, the verbs are the same, it has precisely the

same meaning, but if I can put some restrictions on the use

of that language by the source programmer it will make a lot

of difference in the performance of the compiler.

TALMADGE: I agree with you on that, Bob.. There are

-66-

certain things which are critical as far as compilation times

are concerned and which buy practically nothing in language

facility. The point has been made many times that one

shouldn't try to be too general in a given language because

the cost of generality is frequently high in terms of compile

time.

The point I'd luce to make, however, is that I don't

think this is true until one gets to a fairly advanced stage

in the language development.

PATRICK: nait they're not machine-independent anymore.

T.AL!:.\DG;': In what sense?

PATRICK: 'Jell, take the example I used before. If

someone has used 30-character names from the COBOL made for

Clippinger's machine, I can't compile them even though they

are supposedly written in the same COBOL,

TALMADGE: Well, we have 30-character names in Commercial

Translator. I don't think it will have made any particular

difference in processor efficiency if we had had 6-character

names or even 2-character names. Again, this is a matter

of technique. Granted some things, such as infinite length

literals (mentioned a while ago), would be very difficult to

implement. But that's because they can't be described well

or are not reasonable to do.

DOBRUSKY: It seems to me that this discussion right

here borders on the difference between standard and common.

The fact that they're standard means that both of you can

/
4

/

■67-

handle thera in one way and another. If you write them

generally machine-independent, (acceptable within the con-

straints of the grammar and syntax of the language' you re

going to pay for it on any machine. This is typical of

every compiler and every language. However, I am sure ."hat

there is a standard subset of CGßOL that both of you could

use; the same is true of Commercial Translator.

It gets down to a matter of stock items again. An

example I've often used is that of wire sizes. :Jire sizes

are predicated on certain attributes. These are comraar

accepter and stocked; you can buy them anywhere^Jf^ff i want

some irl7 1/2 wire, everyone knows what I ragman; it's somewhere

between i?17 and #18. If I want to usßflt because of my

particular application, it's goii>:g to cost me. It seems to

me that continuing this idea of machine-dependence and

machine-independence, th^re must be to some degree commonness

by usage, whether iiyb.e in power or as a subset of the accepted

language. y

OPLEvT ' I think there are several people in this room

.y

-KS..'

who]>ave had the experience of designing two or more processors

;ior the same language. I believe I can outline an argument

which tends to disprove machine-independence.

Consider the definition of the language. In attempting

to write the processor, the design group comes to a question

like this, "What happens if there is an overpunch in the

fourth character of the message?" etc., etc. They have to

come to some decision. Now, I maintain that for a reasonably

\ \
-69-

granting the fact that we're talking about the same language?

BRCMBERG: There's an easier answer and that's the fact

that there is no authoritative maintenance body; that is, one

that is both knowledgeable and peremptory.

CHEATHAM: Ascher refers to the way that ALGOL and

JOVIAL are described, which is really quite formal. I don't

think that's a really significant part of the problem. The

decoding of the intent of the message is not the difficult

part of getting an efficient code out.

OPLER: Would you like to explain what it means in COBOL

when you meet the message "ADD ALL 43434343" and you name

some particular variable which has a complicated data descrip-

tion? Would you explain how your COBOL processor is going to

treat this case? That's an example of what I mean.

PATRICK: The COBOL language is not completely specified

to the level you referred to.

OPLER: It's just like the map of Antarctica where there

is a place that indicates terra incognito. How are you going

to make a decision under those conditions?

PATRICK: Tom, do you have complete control for these

same decisions for the three cases you mentioned?

CHEATHAM: No, not complete control. There are two

things Involved here. First there is the question of inter-

preting what are the formal specifications of a language.

Formal specifications which are, for example, usually pub-

lished really aren't specifications of the language at all.

They are specifications of the class of languages of which

-70-

you are choosing one, by making these n decisions that Ascher

speaks of. Then there is the problem of getting efficient

compile times and efficient object code. These are quite

separate problems. I was addressing myself to the second

of them.

PATRICK: I'm sorry. We thought you were addressing

the first.

MacKENZIE: A few minutes ago Galler brought up a

subject which I think is a very interesting one. He raised

the question, '"//hat price do you pay for standardization?"

I think this is interesting because it gets you back into

areas like the trade-off mentioned on that chart.

It's my opinion that one very obvious price you pay is

that of inhibiting the future, in some respect. Whether this

is good or bad, you don't know. This is one of the principal

problems involved in dealing with established languages on

established machines. No matter how hard the language

designers have tried they haven't been able to imagine the

way the world might be at some future point in time. You

do pay an apparent price, I'm sure. Yet, there are some

very obvious, good things to be gained by standardization,

particularly at the documentation level.

GALLER: I'd like to recount three anecdotes. One

concerns the meeting in Paris in 1960 at which ALGOL was

born. The people involved pretty much decided that not

every function should be recursive; that they should be

declared by exception. Peter Naur wrote up the report and

-71 •

forgot to put this in. I think you all know that now every

recursive function is pretty much a sacred cow that no one

is going to touch. Everything that is done now has to work

with the fact that every function is recursive. That's one

anecdote.

I was at a SHARE FORTRAN Committee Meeting where they

were arguing over changes that they'd like to see made in

the new FORTRAN. There was a tremendous reluctance on the

part of IBM to accept some of the changes that were being

suggested by the committee. They were questions of compat-

ibility with earlier versions of FORTRAN and FORTRAN for

other machines and so iforth. Bill Heising was there to pro-

tect compatibility. Various such matters were referred to

Heising and his attitude was, "We'll have to look at it to

protect compatibility." The claim was that compatibility

had to he protected because there was so much investment.

There was much discussion and many hard looks at the ability

to convert programs from the old FORTRAN to the new. It was

agreed that one could write converters to change from the old

to the new and that this was all that had to be protected.

That was really the only cost involved in order to go in new

directions. We finally convinced the SHARE Committee itself

to go ahead with the work, and the converter from the old

FORTRAN to the new is pretty well checked out by now. As a

result of this work IBM has made changes in the language of

FORTRAN-IV which make it quite incompatible with previous

FORTRAN'S.

-72-

Anecdote #3. When we put MAD together, we had quite a

few objectives but one of them concerned itself with the

objection that we anticipated; namely, what are we going to

do with FORTRAN, ALGOL, and so forth? Why should we switch

to MAD? It's going to cost us a lot. Other people asked,

"Is FORTRAN going to be a subset of MAD?" We took the position

that, as far as possible, FORTRAN and ALGOL would both be

isomorphlc to a subset of MAD. In figuring out how to specify

each statement in MAD we asked ourselves how could we translate

ALGOL into this statement? We didn't have to compromise too

much to provide for this translation. As a result we had a

language which contained the ability in theory to translate

from ALGOL to MAD. We also have on our master tape the

ability to translate from FORTRAN to MAD and we use it. My

point is, we worried about this $100,000,000 investment also.

You don't necessarily have to protect your investment to the

extent that programs will run without change on the next

machine. It may have to run with change, but if it's a one-

time change it doesn't necessarily have to cost too much.

Preferably the change can be made on the computer. To be

able to do this means that you have to anticipate the need,

when you're designing the language, to be able to make this

translation.

So I don't really feel too bad about seeing another

language come out (even if it gets to be fairly standard)

provided that I can see a way from getting from the old

-73-

to the new. When we rewrite MAD, if it's different enough,

we'll call it something else, but W2 will provide as one of

our main objectives a translator to allow people who are using

the old version to work with the new. We don't anticipate

that it will cost us very much to do this.

MacKENZIE: Talmadge made a statement a little while ago that

I thought I understood at the time; namely, that you pay a

price for generality. This is really due to nwo things.

One constraint exists at the hardware level and another

exists at the programming technology level.

The point I'd like to make is this: that undue standard-

ization tends to inhibit development of either machine organi-

zation or, for that matter, technological improvement of

programming techniques. I think, therefore we should consider

very carefully what attitude we should have toward this thing.

The anecdote that Bernie told about recursive procedures is

a very good example. It's very easy to understand why people

do not want generality and do not want to allow recursion in

all procedures. They object primarily because of constraints

that exist at the hardware organization level. Is that really

the way to look at the question? Why not look at the question

of ''Why should we not have recursion?" and thus identify

perhaps why it is not practical to have it now. My personal

point of view is that we do ourselves a sad disservice if we

don't take this latter point of view. I use recursion simply

as an example.

-74.

GALLER: I'd like to point out that the B-5000 gets

around the recursive problem very nicely, and I think it's

wonderful. The reason I mentioned recursion as a thing that

we probably don't want is that it costs so much.

MacKENZIE: You do pay a very great price for it in a

conventional machine organization, but that wasn't ray point

in bringing it up. My point was, "How ought you to look at

these things?" Should you be against them because you can't

do them with the present technology or should you attack the

present technology because you can't do them (and they are

really worthwhile)? I didn't mean to imply that you ought to

treat all procedures recursively, but you ought to be able

to treat any procedure in a completely general way and if

you can do this, you will find that most of the recursive

problem has disappeared. The fact that you can't in most

languages is indicative of the state of our technology.

GALLER: Unfortunately, there is a time lag, though.

It's one thing to say that we have to change the technology

to meet it and another thing to realize that we have to run

these problems now.

CLIPPINGER: MacKenzie made a point which, incidentally,

turned out to be a minor case against standardization. He

wanted to have the freedom to attack the crucial points. I

agree with what he said but I arrive at somewhat opposite

conclusions. But I am motivated by the same desires.

Some of you may not be aware that the FACT compiler has

230,000 instructions in the processor. I asked myself, why

■75-

cloes it have so many instructions? Need it be so comple::?

That's easy to answer. "No, it need not be," Much of what

is there is there because of lack of standardization. For

example, 30,000 of those instructions are concerned with the

card editing generator. Why is it 30,000 instructions?

Partially because we allow very elaborate editing of the

input information, because we regard it as extremely important

to be able to purge the data that is coming into a data

processing system. But partly there are 30,000 instructions

because of the many different ways people use a card to store

information in practically any way that people could have

found it expedient to store information on a card. A little

more discipline regarding the way you put information on

cards (some agreement, some standardization on what you will

allow) would have made it possible to make that particular

portion of FACT considerably simpler. I'm sure there are

hundreds of places where a little discipline (choosing one

way instead of allowing all possible ways) would have made

it possible to accomplish approximately the same results

with a compiler that is much less complex. So I think there

is a good case for standardization although I don't see

clearly what it is. But I feel intuitively that it is there.

MacKENZIE: Quite obviously, I didn't want to make a

case against standardization. I was simply attacking the

basis on which a case for standardization must be made.

For example, in a lot of programming systems today it's

hard to say that you haven't paid a price in many respects,

-76-

for not allowing generality. To take a simple example, how

many processors today restrict indexing to just three levels?

How much in present day processors is there simply because

the designers were checking for adherence to their restrictive

notions? Some of the programming systems that we have done

have been rather compact at the processor level, due in part

to the relatively high degree of generality present in our

languages. That may be a surprising thing to say but I really

feel that it is true. Sometimes, in the interests of arriving

immediately at standardization, we all descend to arguing about

how our present machines can handle the proposed language or

how well aware we are of how we might proceed to implement

such things. I hadn't intended to make a case against

standardization, but only against restrictive choices in

standardization. Frankly, I'm not smart enough to know how

to avoid caaking such choices.

PATRICK: Dick mentioned earlier that you pay a price

for generality. We have indicated that there are some people

who have two different machines, either physically back to

back, or logically back to back across the country who have

made such choices in order to handle the situation. All the

people who don't have the problem also have to pay the price

for generality if the manufacturers are going to provide a

translator that contains that generality.

GORDON: I think that Cllpplnger's comment reinforced things

that Armer and I said earlier about standardizing the wrong

-77-

things. What you said, Dick, about the FACT compiler and the

amount in it devoted to editing, applies also to COBOL and

Commercial Translator and similar languages. All of them

have to provide for horrendous formats. Perhaps we would

all be better off if we were to focus attention more on the

microcosm--on things like formats. This would be preferable

to having to provide for anything that anyone is likely to

dream up in any installation that might use your compiler.

OPLER: How can ycu convince the customer, though?

GORDON: I think you can convince him of the value of

standardization in modules more readily than you can convince

him of standardization in the whole thing. We don't really

have standardization in things like COBOL either. Look at

the insistence on things like USE, ENTER, and other loopholes,

which every customer insists on.

OPLER: It amounts to standard circumvention.

GORDON: You might be able to convince customers of

standardization on things like tape format, character sets...

BROMBERG: Tape labelling?

GORDON: Labelling conventions, certainly!

DOBRUSKY: You can if you can show him significant

payoffs.

GORDON: You can if you can get to them in time.

PATRICK: Galler indicated that they had achieved some

measure of upward compatibility in language. He indicated

that this should be done at some reasonable cost if you're

going to change languages. But if you're talking about files

-78-

and file conversion, this is the sort of place where character

sets will hit you between the eyes. If I have files created

on an RCA machine using one character set and sort order,

I can convert it to a Honeywell computer (I picked these two

at random because I'm pretty sure they're incompatible in

every respect)--sure I can convert from a 6-bit code of one

manufacturer t.o a 6-bit code of any other manufacturer but

it isn't only once. If I'm going to maintain a file in

Sacremento, in Oklahoma City, and in Maine, I'll have to be

converting both ways all the time. I think this is a very

serious problem and one that tends to get glossed over. We

find people tending to say, "Let's COBOL everything." You

can't just COBOL everything unless you get some of these

foundations under it.

BROMBERG: Or standardize on one machine--like ours.

* : You mean standardize in the small area.

GRUENBERGER: That's one of the suggestions we made a

while ago that we standardize machines by problem area rather

than picking them by roulette.

McCRACKEN: I'd like to ask the assembled impleraenters

a question. I talked to the man in charge of software con-

struction for a certain machine. He has 50 people working

for him (give or take one or two). I asked him what kind

of people these are. He said that he had 6 group leaders

who had been in the programming business for three or four

years. For the other 44 the average experience is under one

year. At the time I was talking to him this group had just

-79-

finished, say, COBOL for some machine. I wonder how much

of our trouble these days is simply due to the fact that we

haven't grown up yet.

GALLER: Dan asked the question but the answer is

implicit in it.

CLIPPINCER: The answer was supposed to be a number like

27, or 38.

CALLER: I simply wanted to point out that I know our

example well using HAD. The language isn't that different

from FORTRAN. '.Je studied what was wrong with FORTRAN in

terms of compilation times and so forth. We learned a great

deal and we came up with a translator that takes 16,000

instructions instead of 60,000. It compiles on our machine

ten times as fast. We have only three people doing it--

maybe that's part of the answer.

McCRACKEN: It's a big advantage.

CALLER: The three people who did it were experienced--

they knew what they were doing.

GRUENBERGER: You have design control.

CALLER: I don't think the result has to be as bad as

some of these speakers here have made out. I'm aware that

we can't apply really experienced people to everything. But

where it's important I think we must concentrate such people.

You are certain to lose when you have 44 people who don't

know what they are doing.

McCRACKEN: Look, I asked this guy, "Would you be better

off with three people?" And he said, "Of course I would, but

-8o-

I can't get thera." He said, "There is nothing I can do but

let them grow up."

LITTLE: Or do it with the six group leaders. How about

that?

ARMER: I'd be interested in asking Cheatham how many man

years you estimate the task you mentioned will take and what

kind of people are going to be doing it.

CHEATHAM: Which task is that?

ARMER: The one where you are writing several compilers

for several different machines.

CHEATHAM: Well, for one thing, I never put more than

two or three people on one compiler.

GRUENBERGER: What kind of people?

CHEATHAM: The average man, for example, has 6-Ö years

experience.

LITTLE: You're talking about Implementing compilers.

I'd like to ask Jerry their experience In Implementing systems.

KOORY: What do you mean by systems?

PATRICK: Come on, you can't avoid the question like that.

KOORY: No, but it was worth a try. Do you mean a pro-

gramming system?

LITTLE: I'm talking about doing a job for a customer

as opposed to doing a compiler.

* : What we used to call an application, way

back Mien?

LITTLE: Let me put it this way. How many programmers

do you have, what is their level of experience, and what are

-81.

you trying to do with them?

KOORY: I'm still somewhat stymied. Are you asking how

many people we apply in building a compiler?

LITTLE: I'm trying to get.away from compilers and talk

about an application.

KOORY: You're asking, for example, how many people do

we apply to building a Damage Assessment Model for the DOD?

LITTLE: Yes.

KOORY: Well, of course, this is a function primarily

of what we consider to be the requirements of the system.

We have just finished a Damage Assessment Model which will

operate on the 1604. It was written in JOVIAL. For the

actual writing and check-out we used on the order of 25

programmers, as I recall.

LITTLE: Do you have any idea of the level of these 25

programmers?

GORDON: Before or after?

PATRICK: And which way does it go?

KOORY: I would say on the average between one and two

years. We are fortunate enough to have four or five of them

who each had four or five years of experience. We have had

a fair enough number of brand new folks, you might say brought

in off the street (that is, just out of college). We had to

train this latter group.

* : I hope not out of Bernle's college.

KOORY: The table shows the results obtained when we used

an early version of the JOVIAL Compiler for the 1604 in

-32-

producing two program systems for a customer. There are a

total of 27 programs in the two systems. It should be

remembered that the figure does not include program environ-

ment (internal data storage) in the statistics shown, only

operating instructions.

rogram JOVIAL (J) Generated (G) Ratio (R) Deviation ±
Ho, Statements Instructions* G/J Mean Ratio

1 116 842 7.25 .02
2 205 1340 6.54 .69
3 442 2792 6.32 .91
4 221 1536 7.18 .05
5 242 2400 9.92 2.69
0 105 641 6.10 1.13
7 133 1231 9.27 2.04
3 189 1645 8.71 1.48
9 174 1050 6.04 1.19

10 874 4448 5.09 2.14
11 590 3002 5.09 2.14
12 200 1771 8.85 1.62
13 348 1907 5.48 1.75
14 256 1212 4.74 2.49
15 556 3175 5.70 1.53
16 74 751 10.01 2.78
17 146 1173 8.04 .81
18 142 1033 7.67 .44
19 338 2396 7.09 .14
20 406 2181 5.37 1.86
21 265 2531 9.74 2.51
22 954 5363 5.52 1.71
23 173 1491 8.62 1.39
24 673 3557 5.28 1.95
25 112 1048 9.44 2.21
26 200 1952 9.76 2.53
27 2000 12,688 6.34 .89

10,134 65,261 195.16 41.09

195.16
~Tr~ r 7.23 (mean ratio of Generated Instructions

to JOVIAL Statements).

41.09 --,„/ A ■ *A s ~YI 1.52 (mean deviation).

'fPrograra size (G) differs in some cases from the full program
size since internal tables are excluded as JOVIAL generated
instructions.

Table 1

-83-

BROMBERG: I don't know if I'm speaking to McCracken's question

or not, but is not this vast number of inexperienced program-

mers hurting us? I have concluded that it is inevitable

that we are always going to have such numbers of inexperienced

programmers. VJhen we deal with language implementation for

new computers I think the first thing we should do is turn

out a compiler and then perhaps a year later turn out a good

assembler. I reached this conclusion just because of this

problem that Dan brought up. Those customers who are new to

the machine are quite similar to those iraplementers who are

new to the business and to that particular machine. Only

through use and experience is the customer going to get down

to the measure of the efficient use of the machine. At that

time they should be given an assembler which allows them to

make this efficient use.

McCRACKEN: Leave us just pray that the customers just

don't get so furious at the compiler they receive by that

process that they give up on COBOL.

PATRICK: Yes, I seem to remember the time when a

person would polish like crazy if he was doing utility work,

because you would say to yourself, "Gee, if I can save three

instructions here, that will be three instructions off every-

one's use when they go to use this particular sine routine."

What happened to that philosophy? Seems like we're kind of

galloping into second shift rental with the philosophy you

were just mentioning. We're saying, "It only takes an extra

-84-

10,000 instructions so we get into second shift rental in

the third month and who cares?"

BROMBERG: It seems to me that the important thing today

with new machines initially is to get the application on the

air. Get it done and then star worrying about the techniques

for improving it.

PATRICK: It's not clear that you get it done with raw

people.

OPLER: I think we ought to have the opinion bag held

up permanently now.

I can't see this approach at all.

When you write an application and you make a slight

error (e.g., your loop is one instruction too long) you have

hurt that application only. When you make the same sort of

error in writing a compiler everyone who uses that compiler

gets hurt. I feel very strongly about this. When you're

writing a compiler, you must have your best people on it

exerting their best efforts to squeeze everything out of it

they can.

GORDON: This sort of thing should make very happy those

people who argue that you can put up with a little inefficiency.

We hear a lot from them. What Bromberg said is a good answer to

these guys who say, "We want it yesterday and we're willing

to put up with a little inefficiency to get it." Howard's

approach would give it to them.

" : It might give them a little more than they

would want if they follow Howard's suggestion.

-85-

MacKENZIE: There's no real basis for comparing the

efforts or experience levels. I don't think there is any

real argument on this because you have to achieve design

control one way or the other. You had best do this with a

small experienced group. We have found that it is one thing

to do a good prograraraing system with a small group; it's

another thing to properly promote it, if you will, to be able

to support it at the installation level. It's at these stages,

I think, that you have to start applying considerably more

labor to these tasks than the compiler writers themselves ever

recognized required.

In talking to people about the overall jobs it's impor-

tant to recognize what the basic responsibility of the group

that you call compiler writers is. The outsider tends to

regard it simply as the job of coding the processor to go with

the programming system. Quite frequently the job requires

a great deal more.

PATRICK: Howard, do you want to protect yourself?

BROMBERG: I just don't understand why there seems to

be so much agreement on the "fact" that design control

depends on the smallest possible number of people.

McCPvACKEN: You/re making a virtue out of your vices

now.

BROMBERG: Clearly, if you have 50 people on a design

effort not all 50 are involved in design. Only 4 people will

be involved in the design or even, only 2. The other people

-86-

are going to take the analysis, that is the actual design,

and interpret it. The four, who are then the design merchants,

are going to be standing over their shoulders. They will

make sure that the pro; er design control is exercised. I

don t think design control has anything to do with the number

of people you have in the iraplernenting body.

GRUENBERGER: That s wishful thinking,

STRICK: Isn't that exactly what Opler was talking

about when he was speaking of the 200 little, tiny, but very

important, decisions? You're not making those decisions with

the 4 guys, you're making them with the 46.

BROMBERG: Ko sir, you're doing it with the 4 guys. The

only difference between a big sweat-house operation like ours

and the operation at Tom's shop is that his guys are doing

everything. Our guys have a little bit more leisure.

GALLER: You don't really know when they are making

those decisions. They may not have enough sense to come

and ask you about these decisions. If you're there at the

time and they happen to think of it, it's O.K.

BROMBERG: Tills is the problem of implementation follow-

up.

MacKENZIE: You seem to have implied that you can dis-

tinguish a point in time when the design is finished and the

implementation effort is ready to be started. I wish we could

sometimes.

GRUENBERGER: All you've got to do is look at one of

these languages and you can just about measure the number of

-87-

humps on the camel that made it.

BROMBERR: That's fine. I agree when yoirre talking about

language design. But when you're talking about a processor

design it's a different thing.

CLIPLINGER: Let's pursue that point. Let's take FACT.

There's a language that is obviously very complex. If you're

going to look at it and start measuring the number of humps

in the camel I think you're going to tell me that there were

a]ot of people involved in it. The actual number of people

isn't more than three or four,

: But how many humps did they have?

GRUENBERGER: How many people implemented it? How many

people actually wrote instructions to create FACT? These

people had to make decisions. Each one grew a little hump.

CLIPPINGER: There is certainly some truth in that.

I think you tend to exaggerate it though.

CALLER: Let me give another example. Over the last

summer we rewrote our entire system to go from the 704 to the

709. VJe put a group of eight people on it. Eight good

people, not the type of the 44 we were mentioning, but eight

good people. We had lots of discussions about the specifica-

tions and so forth. You can always discuss down to a certain

level. Each of these people went away and did a job. The

resulting system is real nice; it's efficient and it's running

beautifully. I'm still finding out things that these guys

did; each in his own part. I know, overall, what the system

-88-

is doing and it's doing what it's supposed to do. They came

to me with lots of questions during the implementation.

They'd ask me if it was O.K. to do a certain thing and I'd

evaluate their questions in terms of the overall problem.

But there were lots of things they did where they didn't ask

me and I have no idea what they did. Some of them I agree

with; some of them I don't. They are just now coming to

light. Neither I nor a group of any size could have possibly

overseen what these eight men were doing. Since I was the

supervisor on that particular project it was a ratio of 1 to

8. How many would we have had to have supervising these people

to really keep control? And how many would we have had to

have on top of them?

GORDON: That's what the other 44 could do.

I'd like to spell out as an axiom that no programming

language is fully defined until there exists at least one

compiler for it.

CLIPPINGER: I would go further than that. It's not

defined until it's defunct.

GORDON: I'm not ready to go that far.

MacKENZIE: One possible way around this problem that

was mentioned on design and implementation is to find suffi-

cient means to convey the design to the impleraenters. In

many cases if you can do this you can eliminate the impleraenters

to a great extent. This comes back then to some virtue, if

you will, of an approach to standardization. For example,

-89-

writing a processor in its own language certainly tends to

minimize the number of decisions that the actual implementers

might otherwise be about to make.

PATRICK: I don't understand how that comes about.

MacKENZIE: I made the remark before--we were talking

about the problem of design at one end and applying that

design to large bodies of implementers at the other end-

that people deviate from the designer's intent because it

wasn't quite clear what the designer's intentions were, quite

frequently. There are a lot of other reasons why people

deviate too. Perhaps they didn't agree with the designer.

A conveyance of the design specifications is an extremely

important thing. Describing a processor in its own language

is one way of minimizing, I think, the prerogatives that

the implementers would otherwise exercise if for no other

reason than it tends to reduce the scope of the implementation

effort.

PATRICK: I still don't see how this helps.

MacKENZIE: What I was saying clearly implies that the

designers are doing most of the implementation in expressing

their design.

GORDON: Maybe there is no clear-cut sharp line between

the design and the implementation. We saw one example of

this in July of 1960 when we published a manual for Commercial

Translator language. As late as a year after this thing was

published we were discovering what we meant by some of the

■go-

things in the book as we were getting around to thera. The

book described these things in general terras, and gave an

idea of the kind of thing we would have. But what would

happen specifically under the conditions of compiling we

hadn't gotten around to yet. As these things came up for

implementation they became pinned down. I don't think that

you can say that we will design up to a certain point and

then throw a switch and be implementing.

CLIPPINGER: V/hat is the subject of this conference?

PATRICK: The pros and cons of common languages. And

what we're after is enlightenment.

CLIPPINGER: I'm not sure we've been talking about that

subject.

PATRICK: Perhaps we've digressed a little bit to more

than a level of detail. So it might be appropriate to review

what we've covered this morning.

We started out talking about visceral feelings. These

were things that appealed to us, like why common languages

were good and why they were bad. These are God and Mother

categories on a high plane. Along the way we uncovered just

a few facts. We have made some statements that such languages

are not completely machine-independent. As of the present

state-of-the-art, we don't seem to know exactly how to do

this. In the implementation stage you made them, perhaps, a

little more machine-dependent in order to get some efficiency.

We pointed out that you pay for generality. We noted that it

-91-

was great to have a language that you can translate across

all machines and have it efficient on every machine. I think

it is our concensus that we don't quite know how to do this

just yet.

The last topic we were on, I think, was whether it was

better to have a high quality small staff or a young mob.

With all deference to Bromberg, I think he was talking about

a pyramid of a staff, with a genius at the top and levels

of priests and sub-priests down to the machine clerks at the

bottom. It's rather difficult to administer such a staff

because the design process extends all the way down to the

key-punch stage.

LUNCH BREAK

-92-

ARMER: Let rae ask a question. There have been rumors

about the Navy going the JOVIAL route. If this is true we

may find, two years from now, we are in the same boat we

were with FORTRAN some time ago--nobody likes it but the

investment was just so great that we had to continue going

that way. Might we recommend that there be less emphasis on

JOVIAL and more on say, NELIAC, so that we can try something

else; so that we don't have this tremendous commitment to one

language two years from now?

* : How do you get out of that box? The only

thing you can recommend is: don't standardize on JOVIAL--

get spread so thin that there will not be so much resistance

to going down one particular road later--but so what?

OPLER: To this point I think the really important thing

is the question of the time scale.

In preparation for this meeting I sat down and wrote out

some of the arguments against standardization. I decided

that I would wear ray anti-standards hat this time. (I have

also a pro-standards hat.) Eventually the arguments boil

down to two classes. One is the set of arguments against

programming language standardization at this time. The other

is the set of arguments against programming language standard-

ization at any time. I think the more interesting set is

the arguments against standardization at this time. Just to

show that I was trying to be objective I sat down last night

and wrote down all the counter-arguments against the arguments

against standardization.

-93-

PATRICK: I think it would be appropriate to list these

arguments on the board.

KOORY: I'd like to ask if we're listing arguments

against standardization from the point of view of the DOD or

from the point of view of the rest of the computing world.

OPLER: Actually, these are from the point of view of

the rest of the computing world although I have been doing

a lot of thinking about the problems with reference to

Command and Control.

The arguments against standardization now are as follows;

1. Programming languages are changing too much.

2. Programming languages have not developed sufficiently.

3. Promising alternatives are just now appearing.

The arguments against standardization at any time are

as follows:

1. Administration is too time-consuming.

2. Poor past experience.

3. Adverse effect on computer progress.

4. Specialized languages are more efficient.

5. Programming languages are not the right level.

6. Language standardization is only a part of the solution.

Figure 3

ARMER: I'd like to hear Ascher elaborate on that point:

''Alternatives are just now appearing." I'd like to hear him

enumerate one or two.

-9^-

OPLER: I think this is one of the most serious arguments

against standardization right now. It seems that we"re just

at the beginning of a new period.

In the past it has been believed that the preparation

of a compiler to translate from a source language to an

object code has been a tremendous job--one that can't be done

every day, that demands man-years of effort. New tools, such

as syntax direction and table direction and the type of com-

pilers that can be built on hierarchies and list structures,

give to the future a freedom that we haven't had in the past.

We will have freedom to agree on something radically new,

implement it, test it, and if we don't like it, throw it

out and iterate again. In the past we have had 20 to 50

man-years devoted to a compiler to the point where once you

have created it you have too much of an effort expended—too

much inertia to overcorae--to try to change it. I am reminded

of a remark by the late Dudley Buck, speaking about micro-

miniaturization and printed circuits when he said that some-

day we may be able to write our computer instead of writing

the programs that we want. With syntax direction, if you

don't like the language you've developed today you can write

a new one tomorrow. So one promising alternative is the

release we now have from this vast implementation effort.

LITTLE: From the user's standpoint I hear you digging

ray grave. Right now they change them to the point where it's

difficult to keep going. You see I think that testing of a

-95-

language is done when you imp lenient real jobs. If I'm going

to have to implement real jobs some of which are obviously

going to take longer than it takes you to write a new compiler,

somehow our time phasing will never be in synch.

OPLER: out Jack, I'm talking about language development.

PATRICK: The kind of stuff that Galler is doing, not

the kind of stuff that is done out in the field.

LITTLE: But I have to use something everyday to do the

job with.

OPLER: I understand that. I'm just thinking that in

1975 we will look back and feel that in U'65 we were just

beginning to find out what the structure of these languages

was. 1965 marked the time when the second big round of these

experiments began to end. I feel that we have just begun

to climb but have scarcely gotten off the toe of the curve.

I hardly think that we can say now that we have reached the

plateau; that we can say that we know enough now to set up

our first standards.

My feeling is that we are at the beginning of a very

exciting period of development. If we standardize now, we

will be sorry. I do not think we can now look back to a

long enough period in which various ideas have been tested

and rejected.

LITTLE: I agree, Ascher, that we are probably on the

verge of some very exciting times in developing the languages,

but we are also on the verge of some very exciting times in

•96-

ixnp lernen ting very large jobs, like Comaand and Control systema.

If your argument doesn't carry over in some proportion to

enable us to do these jobs either over or better now, we're

in some sort of trouble.

DOBRUSKY: It seems to me we're confusing the difference

between language and the implementation of that language.

We've talked about the techniques of things like table handling,

list structures, and the syntax of the language. The language

itself is not reflected necessarily in the way we implement

it. Anyone capable of writing a compiler can take any lang-

uage that exists today and write an iraplementer for it that

will take advantage of one measure of efficiency. With

various implementations we will find the best means of doing

this with the help of the universities and of various groups

in private industry. I think the direction of a language for

describing problems had better be solidified somewhere. We

must cut down continued proliferation of different languages.

We still don't have a measure of their effectiveness yet.

OPLSR: Let's consider all the effort that has gone into

NELIAC and JOVIAL, for example. Supposing tomorrow someone

comes up with a radically new language. Suppose this new

language requires the expenditure of 30 to 50 man-years of

effort to get it to the point where we can put it to use and

see if it's any good. If we can write a syntax table for this

new language so that we can give it to somebody and have a

compiler in a few days, then wc have given people more freedom

-97-

to design languages. We are not then restricted to a small

set of languages like the ones we have now.

DOBRUSKY: Ascher, I agree with that approach but I

don't think we're smart enough to write such a processor yet.

I don't think we can achieve the various measures of efficiency

that have been described here such as fast compile time,

efficient object code, easy training, and so on.

GRUENBERGER: You guys aren't arguing.

OPLER: I agree, I don't think we really are arguing.

I am simply saying that I think it would be premature to

standardize because we are just now getting into our hands

new tools to work the area. I don't think it has been proven

that programming language standardization is the only point

of standardization. Perhaps we should consider procedure

standardization, problem definition standardization, descrip-

tion standardization, or data standardization.

McCRACKEN: Perhaps programming language standardization

is the only one we know how to attack now.

PATRICK: Maybe we're not attacking one where a problem

exists. Maybe the problem isn't in the coding.

ARMER: You don't think that we know how to standardize

on files, on labelling, on format, on character sets, and

things like that?

McCRACKEN: All right, take files, for instance. I don't

know how we could standardize there until we have standardized

on character sets first.

-98-

ARMER: O.K., so we raust standardize character sets first.

McCRACKEN: O.K., give them your speech, Dick.

CLIPPINGER: You mean the work that is going on in

character sets? Well, X-3.2 has a proposal for an American

standard on character sets. I thought you would all be aware

of this.

McCRACKEN: It's up for a vote at the present moment.

CLIPPINGER: It's reached the point where X-3 has had it

in their hands for a while and it's up for a vote. The votes

are supposed to be in by the end of June.

PATRICK: After they vote will the rest of us get to see

it?

McCRACKEN: It was published somewhere about a month ago.

CLIPPINGER: There are users groups in X-3 including

JUG. Harry Cantrell, for example, is involved here.

PHILLIPS: This includes such groups as the Air Transport

Association, ABA, and National Retail Merchants Association.

There are nine groups all together.

CALLER: What would be the effect if this resolution

goes through for a standard character set?

CLIPPINGER: I would guess that the effects are going

to be extremely extensive. You can use your Judgment on this

as well as I can. IBM, for example, has a group set up to

study the effects and see what they will be on IBM. I'm

sure that when they complete their study they still won't

know the extent of the effects. Look at it yourself. There

■99-

are 128 characters in this set, with a subset of 64 standard

characters. I'm sure you'd like to see this standard reflected

in such things as keypunches. The letters of the alphabet,

for example, are a connected set among these and they are

not in the current keypunches, nor on the 407 printers. The

collating sequence of every machine will be affected. The

appropriate packages for minimizing the cost of the inside

of the computer would probably be affected. It seems to me

that every aspect of computer hardware will be affected.

Now, of course, a standard is never compulsory and it's up

to each person to decide to what extent he wants to go along

with it. Clearly, for example, IBM is not going to obsolete

all its keypunches overnight, nor all of its printers.

Neither are the rest of us. You can see, though, that there

would be economic pressure on each manufacturer to move in

this direction so that his costs would go down as a result

of accepting this standard. Who can say what the total

effect is going to be? There will be some effects which will

increase costs and some which will decrease costs for the

manufacturer and the user and what the net result will be

I'm not sure. Personally, I think the net result will be to

decrease costs. This is just an intuitive feeling.

To those of you to whom this is complete news, let me say

that X-3.2 has worked a couple of years at this problem and

worked very hard. They have explained very carefully how

they went about arriving at the conclusions that they arrived

•100-

at. There is a 20- or 30-page document—pretty well put

together--that you will all want to read.

PHILLIPS: I can furnish this document to anyone who is

interested. I also now have found a list of the groups

involved in setting up this standard. There is LOMA, JUG,

the American Bankers Association, the American Petroleum

Industries Association, the American Gas Association and

Electrical Industries, General Services Administration.

PATRICK: GSA is an important one.

PHILLIPS: Yes, GSA is listed among the users and the

Department of Defense is listed under the general interest

groups. Among the manufacturers we have IBM, RCA, NCR,

Monroe, Remington Rand, Minneapolis-Honeywell, Pitney-Bowes,

Standard Register, Burroughs, Royal McBee,...

GORDON: What about NMAA?

PHILLIPS: They should be here somewhere. Let me go on.

In the general interest groups, we have ACM, Department of

Defense, The Engineer's Joint Council, the Telephone Group,

AIEE, ACM, ERA, IRE, and NMAA. The American Management

Association is in the general interest group and also EIA,

the Electronic Industries Association. There are ten general

interest members, nine users groups, and ten manufacturers.

CLIPPINGER: If you're interested, this character set

has provision in it for the letters of the alphabet and the

ten decimal digits, of course. The usual special characters

that we're familiar with, control characters (such things as

•101-

carriage return and carriage shift on a typewriter), data

delimiters (end of field, end of group^ and a character for

escape which is an important one in case you want to type in

an entirely different set of characters (a group like the

weather bureau might like to do this). There are other

control characters such as those used for wire transmission

("where are you") and so forth.

Some thought has been given to the problems of international

communications; the substitution of alphabets for example.

Members of X-3.2 have travelled through Europe and held dis-

cussions with other national standardizing bodies. They have

explored the possibility of moving toward international

agreement. There are people in the United States who are

not interested in any standard coded character sets unless

they can be assured that it will also be an international

standard. Of course an international standard is much more

difficult to achieve. (In general, in the world there are

about 2,000 national standards in a country like the United

States and only about 100 international standards.) I'm

sure if you examine the character set that is being proposed

you can imagine some of the implications yourself.

In preparing for a meeting in Stockholm of the Programming

Languages Standardization Committee, we put an item on the

agenda to consider the implications on programming languages

of a standard coded character set. Bob Bemer is summarizing

the results of such activities in a note.

-102-

The character set proposed by X-3.2 contains all of the

characters used in COBOL and many of those currently used in

ALGOL. It couldn't include all of those that you might like

to use in ALGOL, That would probably take more than 128

alone, but obviously no one now using ALGOL needs nearly

this number anyway. You might, however, like to take

advantage of this escape mechanism whereby you can use any

other character sets you would like. In the FACT language

we provide for editing information coming in from paper tape.

As you know, people have a tendency to use 5-, 6-, J-, or 8-

leval paper tape; they like to indicate the end of a field

with an end of field character, for example. FACT recognized

all such characters, provided that you define them to FACT

by means of tables.

Well, I've tried to list some of the implications to

programming languages of a standard coded character set.

It's a very complex problem.

PHILLIPS: There's something I would like to add to that.

In the X-3.2 area we have an example of premature standardi-

zation. Several years ago the Department of Defense, in the

absence of anything better, adopted what is now called the

Field Data Code. The Array led this off. I contend that

this standardization was premature because they did not bring

into the discussion as far as I know, representatives from

the data processing community as well as communications people,

It is primarily a communications code. They made no provision

-103-

for expansion of the alphabet beyond the English alphabet.

The order in which the characters were arranged in the code

did not lend itself well to sort and collate operations. And

yet it was considered as a principal candidate for the charac-

ter string by X-3.2. Incidentally, the Navy and the Air Force

have since adopted it; so it is now standard for the military.

I'ra not sure whether or not it has been adopted by civilian

agencies of the government.

PATRICK: NATO is currently discussing it.

PHILLIPS: Here is an instance where the Federal Govern-

ment--the biggest user in this field--adopted a standard

several years ago and yet it may be cast aside by the X-3.2

group. That group thoroughly considered it before designing

the present code we were talking about.

CLIPPINGER: Since there seems to be a large lack of

information about what's actually going on in standardization

it might be worthwhile mentioning one or two other things.

The X-3.1 group is trying to decide on a character set

for optical character reading. This could be the first

standard in that particular area. The current status of

that effort is that they have tentatively decided on a set

of 16 characters in three different sizes. (There was much

debate as to whether they could get by with one size or

whether they would need a set of sizes.) The ABA standard

for MICK will also be proposed, of course, through X-3.7.

X-3.6 is working on a set of flow chart symbols. There

are also people in X-3.4 (programming languages) who are

■104-

working on flow charting symbols. There is more to it than

just agreeing on symbols.

PHILLIPS: X-3.6 also has problem description and analysis.

CLIPPINGER: X-3.5 is working on a glossary in the data

processing field.

X-3.3 concerns itself with coraraunication. It works in

close conjunction with the EIA coraraittee. They have a pro-

posal in the mill for a set of standards on transmission

frequencies. They are also considering standards for input/

output media (cards, paper tape, and so forth).

GALLER: You mentioned the MICR standards. When I saw

it they were concerned only with standard shapes for the

digits. Do they have alphabetic characters in there too?

I was astounded when I found that they showed such little

foresight in allowing only for decimal digits.

CLIPPINGER: I wouldn't want to defend that but you

have to recognize that the ability to recognize 24 or 36

characters with little chance of error (rather than the 16

they're working on) is a difficult engineering problem.

BROMBERG: To do it later is even more difficult.

GALLER: After you set standards to provide sensitivity

to distinguish between 16 characters, then to later extend

those standards to provide sensitivity to distinguish between

64 characters is a much worse problem. It's almost impossible.

GRUENBERGER: All you have to do is specify that the new

system must be compatible with the old.

-105-

get some controversy going on this.

PATRICK: It sounds to me like from what Dick Clippinger

and Charlie Phillips have said that they are laying what looks

like a superb foundation to build on. It looks to me like a

strong argument for Opler's case of waiting a while.

BAGLEY: How long do you wait before you pick one in

order to get your current work done? I feel encouraged by

this SDC report. They happen to have picked two years. I'm

not that much of an optimist. I would still like to see the

kind of effort they suggest; namely, get a bunch of brains

together like was done in the COBOL effort.

* : They picked six months.

CLIPPINGER: I'm sure it would be desirable at some

time in the future to have programming languages that are

better than the ones we have now. On the other hand all the

manufacturers are faced with the problem of providing COBOL

for their customers. There are questions of interpretation

that arise and it costs us money. It costs us money when we

can't get an answer and it costs us money later on when we

can get an answer. I think a good case can be made, particu-

larly in the case of COBOL, for accelerating the process by

which the language becomes defined. Just the fact that 15

manufacturers are implementing COBOL on 35 different machines

makes a case, it seems to me, for declaring it to be standard

at an early date. I think we need a period of use, for the

languages we now have will provide a criterion for the

■106-

GALLER: This is some constraint.

GRUENBERGER: You bettcha it is!

PATRICK: This is the same problem that the military

has with their Field Data codes. Since they adopted Field

Data we actually have Field Data constructed into the hardware

in these big communications systems. If they had said,

"Stay loose boys, we're not sure which one we're going to

adopt," it then could have been implemented several different

ways at no more additional cost.

In my opinion this is a clear-cut case of suboptimization.

It's like the language designers designing a language that

is easy to write. That is obviously suboptimization, because

they forgot about the damn user. In this case they sub-

optimized on something for communications purposes without

any thought of what you want to communicate. If you want to

order some Air Force parts from Oklahoma City, you're going

into a data processing system.

PHILLIPS: I think there's a difference here. If you

adopt something as a military standard as they have with the

Field Data Code, I think that all three of the military depart-

ments are required to follow that standard. Their alternative

in this case (referring to X-3.2) is to adopt it as an alter-

native standard. If there is an alternate standard then you

have the option of going with whichever one is best suited

to your needs.

ARMER: I still haven't heard anyone say, "We ought to be

going this way instead of the way we're going." I'd like to

-107-

improvements in future languages.

LITTLE: Je need the use but we also ought to investigate

what these criteria should be. For example, FORTRAN has been

in use for quite a long time but if you try to go and get any

statistics on how it operates you bump up against a pretty

cold, hard wall. Usage alone doesn't do the job.

GO.IDON: COBOL is not a standard, _de facto or anything

else; just the fact that you have N manufacturers implementing

something, on M machines, all called by the same name does

not make it a standard. You know, and I know, Dick, that

there are no standard programming languages in the commercial

area today. One COBOL looks as much like another COBOL as

FACT and Commercial Translator look the same.

CLIPPINGER: I agree with you Barry, of course. V/hat I

meant was that the notion of COBOL has achieved a kind of

acceptance which is extremely broad. There is something

standard about it, although it is certainly not the language

itself.

GORDON: The name is about the only thing that is standard,

KOORY: It's not that bad.

BROMBERG: I would much rather have the job of taking

a Honeywell COBOL program and converting it so that it would

be acceptable to an RCA COBOL translator than I would to take

a COMTRAN program and convert it to any other machine.

GORDON: Even leaving Honeywell out of it, is it possible

to take a COBOL program written for the RCA 501 and convert

it to the 601 without a major rewrite?

-108-

BROMBERG: Of course it is. It is even easier because

of the family relationship which can be accoraodated automatically

by the object compiler.

GRUENBERGER: I'd like to address a question to the manu-

facturers' representatives who are here. If you, the manufac-

turers, could have your druthers and the DOD said tomorrow

morning, "KLUDGETRAN is it, by golly we're frozen!" (and

let's assume that they could define KLUDGETRAN)--that's the

language for Command and Control--would that make you happy?

Or would you like to see this decision put off another five

years? Define it any way you want, but answer the question.

BROMBERG: If you have a language specification to which

a number of people agree and they agree that this language

would perform the job and you have one big fat user who says,

"Yes, I'm going to use it," and if you have a strong authori-

tative body that is going to handle the interpretation,

modification, and extension of the language, I think that we,

as a manufacturer, would be glad.

GORDON: Now I know, Howard, why you insisted on those

compound :'IF" statements, but I agree with you anyhow.

My personal opinion is that if anyone were to come up

with a proposed standard in this area tomorrow morning it

would be premature by several years, and would be, in the

long run, a bad thing for the industry.

GRUENBERGER: Then you'd be unhappy.

PATRICK: This is in the business area you're talking

about Barry, isn't it?

■109-

GORDON; No, he said Conmand and Control. The business

language area is one in which we might be ready to standardize

within two years, but in Command and Control I think it's

farther away.

PATRICK: Could we list on the blackboard the reasons

why you feel that way, and see if we could get some agreement

on it; that is, why you feel we shouldn't standardize now on

a Command and Control language?

GORDON: Because we don't have any Command and Control

languages yet which are generally felt to be worth standard-

izing on. It's simply that a Command and Control language

has not yet evolved; it's just that simple. I'm of the

evolution school. Perhaps the noun ''standard" or the verb

"standardize'1 needs some definition. To me the verb "stand-

ardize" means to declare or recognize as a standard. IJhen

I think of standardizing I do not think of creating a standard.

GRUENBEPvGER: All right, suppose we put it this way.

We have a KLUDGETRAN definition and we have already implemented

it on five machines. Now the proposal is made that this

language we have which is a real hot-dog language--it does

everything (oh, there are a few things it doesn't do, like

handle algebraic statements, or loops, and so forth)-be made

the standard Command and Control language.

GORDON: Then I'd say fine, let's publish the darn

thing and let's see people jump to use it because it's so

great. Then a year from now when 857. of the industry has

■no-

embraced it, it is obviously a standard and let's say so then.

BROMBERG: Should we carry over the same exact remark

that you just maoe, Barry, into the current real practical

world as it now exists around COBOL?

GORDON: No, we can't.

BROMBERG: '.Jhy not?

GORDON: Because of the Defense Department.

* : There's not a free choice there.

PHILLIPS: They're the only ones who have a basic use

for it. They're the only ones who would use Command and

Control.

ARMER: But Howard put it into a different context,

referring to COBOL. There's another way for the world to go.

The DOD could rescind their statement about C0B0L--that state-

ment about they're not going to order a machine unless there

is a COBOL translator for it.

PHILLIPS: You're going to have to read that thing,

Paul; it doesn't say that.

PATRICK: Yes, but it works that way.

GORDON: Crabgrass doesn't say that it's going to take

over the lawn, Charlie; it just works that way.

ARMER; You understand I'm not arguing this point,

Charlie, I'm just trying to get some discussion because I

think it's rather implicit in some of the things that are

being said.

PHILLIPS: The statement says that you will purchase a

machine that has a COBOL compiler available unless there are

•Ill-

reasons why you don't need it.

PATRICK: Who judges? Has anyone done it?

MacKENZIE: I know what the directive says and I think

I understand the reasons behind it, but is its intent carried

forward into the invitations to bid? I don't believe it is.

PHILLIPS: All three of the departments are going through

the problem now of deciding how and where to make their

equipment selections. This has been going on for some time.

There isn't a lot of selection that is done at the local

level anymore. In fact, it hasn't been for some time. The

ones who will be making equipment selections at the various

echelons are fully aware of the fact that they don't have to

conform to this directive if they don't have reasons to use

COBOL.

CLIPPINGER: VJhat you're saying expresses the psychology

of the DOD user but from the psychology of the manufacturer--

he has salesmen out there trying to sell his machines and the

people he's trying to sell them to are saying, "Look at the

GSA contract." Now can you choose freely whether you are

going to use COBOL or not? The answer, of course, is pretty

clear. You're going to do COBOL. It doesn't matter what it

costs you, you have to do COBOL so that you get a fair chance

to market your equipment.

* : There were a lot of users too, at the last

SHARE meeting and the last Commercial Translator meeting who

said that they were going to go COBOL simply because of the

DOD requirement.

■112-

ARMER: It seems pretty obvious to us that IBM Is going

to abandon Commercial Translator because of COBOL. I've

never heard them say so explicitly, but you can Judge by

their actions.

GORDON: There were people who were unhappy about this

in IBM but there wasn't really any choice.

Speaking of Commercial Translator reminds me of something

that I found very interesting. One of the things we were

asked to read before this meeting, was Joe Wegstein's article

on ALGOL in the September 196l, Datamation. Let me quote

from it:

"... have led to the development of numerous artificial

computer languages such as: FORTRAN, ALTAC, IT, PLOWMATIC,

COBOL, ALGOL, LISP, COMIT, I PL, JOVIAL, MAD, and NELIAC."

You know, Dick, we might Just as well not have bothered.

The two independent research activities in the Commercial

languages have sort of been written out. They have been

"new-thunk" out of existence.

PATRICK: It does seem as though DOD is a wet blanket

here, whether you really Intended to be or not.

PHILLIPS: It was intended to support COBOL, let's not

be coy about it. You try to face these things positively.

If you're going to support something you do it positively and

we were supporting COBOL.

GALLER: I understand that CODASYL has a long range

effort also. I remember reading something in Datamation about

-113-

decision tables influencing this language. What is the

position of COBOL with regard to this long range effort?

Is COBOL a subset of what they hope to accomplish? If it

isn't, what will the status of COBOL be? What are the

attitudes?

CLIPPINGER: The article you read, of course, represents

just someone's opinion.

CALLER: Well, whatever happens, whatever they come up

with, are they pledged to COBOL or can they go off in new

directions? Is the long range group committed to the short

range group's COBOL?

PHILLIPS: Not necessarily.

CLIPPINGER: Speaking as a member of the language

structures group of CODASYL, there is an article in the current

(April) issue of the ACM Communications on "Information Algebra"

done by a group of people in CODASYL with no connection with

anything else. These are six people who simply found it

convenient to go off by themselves and do some work. The

work of the systems group is an extension of the notions of

3urt Grad on tabular languages. This group is working inde-

pendently of the COBOL effort and I w»uld guess it would be

at least a couple of years before we could properly evaluate

their work. It's too early to tell whether it will have any

influence with what is going on with COBOL. The COBOL group

at the moment is polishing the extensions that they have

already decided to add to COBOL (such as a report writer and

-114.

sort)--these will 30 into Extended COBOL 61. They will then

turn their attention to clarifying ambiguities in the current

language; that is, maintenance.

They will eventually put all this together in what will

probably be called COBOL-63. It is most unlikely that there

will be any influence by the systems group on that effort.

It is my opinion that you won't sec any interaction between

the systems group and the COBOL group before 1964, and then

it will be done by salesmanship on the part of the people

in the COBOL group. This is all personal opinion, of course,

GORDON: Dick, is it not true that the systems group

in developing these tabular formats nave been working along

the lines of having the COBOL 61 language oe the language

used in the tabular format?

CLIPPINGER: Yes.

GORDON: 3o I would question your saying that they're

working independently of each other. They're working inde-

pendently of the COBOL committee, but they are not independent

of COBOL at all. They are merely casting COBOL into tabular

form the way it looks now. They are making a few slight

improvements like using the word "SET" instead of 'COMPUTE"

(and other such "radical" advances). In addition, they're

recasting COBOL 61 into square form.

PATRICK: This is some of Bernie's upwards compatibility.

CLIPPINGER: But this probably wouldn't see the light

of a COBOL proposal — that is, something to be adopted--before

1964, looking at the rate at which these things arc adopted.

■ 115-

GORDON: This ties in with the item of frozen progress

on our chart. In 1964 we'll still be effectively using the

1960 short range coraniittee language.

PATRICK: That is the six month version.

GORDON: Right.

GALLER: It's not really my idea of upwards compatibility.

The upwards idea is that you re free to try something else

provided that you can map into it. These people aren't feeling

quite that free. As the years go by, and people write more

and more programs in COBOL, they're going to feel less free

the same way people are in FORTRAN now.

LITTLE: le keep coming back to the distinction between

common and standard and I'm not sure we've made the distinction

clear. And we keep wandering away jfrotn Command and Control

languages which interests me. That's all right; I didn't

even get a letter. Anyway, supposing v/a don't come up with

standard language for Command and Control, how about a common

language?

GRUENBERGER: As far as that goes, I asked a question

a little while ago and two of our alert manufacturers answered

it, but two of them didn't seem to answer it and Id still

like to hear what they have to say. The two who answered it

were poles apart, incidentally.

CLI^INGER: You won t catch me saying anything now.

MacKENZIE: The reason I haven't answered your question,

Fred, is that I'm not familiar with this subject.

-116-

GORDON: That didn't keep me from replying and that's

a fact.

CLIPPINGER; I'll answer anyway. The general frame of

reference in which Honeywell works (and I don't think it's

too different from others) is that if something is required

because our users need it, and it will help to sell machines,

then we'll provide it and we'd like it to cost as little as

possible. We'd also like it to be as good as possible. If

it is well defined, that will help us to get it done at less

cost. You said, among other things Fred, that we assume that

it's well defined and here today and the question was, "Would

that make us happy?" The fact that it's well defined would

definitely make us happy, but I still don't believe your

postulates and so my answer doesn't mean much. I don't think

such a language will be well defined.

PHILLIPS: Fred, if you can compare today's situation

regarding a Command and Control language with what we had

in 1959 and 1960 with regard to COBOL, then I would offer

this thought. At that particular point in time several

manufacturers came to me and said, "Take a firm, strong hand

toward COBOL and push it. We'd like to have you." By this

they meant that they'd like Defense to take a strong position

on COBOL and push it.

* : I'll bet IBM wasn't one of thern.

GORDON: I would guess that neither IBM nor Honeywell

were among those manufacturers because these are the two

-117-

companies that had taken the Initiative and put in some work

in this area where a need was felt. These two companies saw

the need and did something to fill that need along two

similar but somewhat different approaches.

CUNNINGHAM: At the risk of going back Just a little

bit further in history, the Air Force attempted to get the

manufacturers interested in developing a common language in

1957^ with AIMACO. Only one manufacturer supported it. The

others decided to develop their own common languages. So--

GORDON: But I think you're confusing two different

things, Joe.

CUNNINGHAM: No, I'm only speaking to your point that

IBM and Honeywell weren't interested in what the manufacturers

had asked the Defense Department. I'm Just going back a

little further and pointing out that the Defense Department

(the Air Materiel Command) had asked you to work with them

In solving this problem long before you had anything but

visions of COMTRAN.

CLIPPIKGEIl: Is this discussion advancing the ball In

any way?

PATRICK: I think it has one interesting implication.

The military didn't know what they were asking for in 1557

and hence misinterpreted a response. We had FLOIMATIC in

1957, which was just developing. This didn't have any of

•118-

the facets that were advertised with COBOL. It was not

machine-independent, and it did not materially raise the

output of the programmer. Then Wright Field rewrote the

thing into AIMACO. When COBOL was first launched the AIMACO

translators weren't working. I know, because I was working

for Clippinger at the time. That was all just sales talk

and you guys couldn't even see through it. You had bought

a pig in a poke and didn't know it.

GRUENBERGER: It never did work.

CUNNINGHAM: I'd really have to ask someone here who

is more familiar with it than I am.

PATRICK: I'd be delighted to discuss it with him too.

PHILLIPS: Bear in mind that I did not Identify the

level at which I was encouraged.

PATRICK: It's like a bunch of kids with their nose

pushed against the glass of a restaurant and they're saying,

"Gee, Charlie, do something to get me a ticket." Some of us

were inside eating and we didn't need any ticket. Charlie

was busy redistributing the wealth and giving everybody on

the outside a ticket. The people on the inside were supposed

to help him redistribute that wealth. Note that sign on

the wall: "You can't put garbage in one end and get fruit salad

out the other." I think we could be in the same position

with Command and Control languages today.

-119-

I'd like to chalk up another fact and you fellows from

SDC can feel free to challenge It if you want to.

(Patrick added to the list on the board the phrase

"object efficiency is poor.") I'd like to chalk that up for

Command and Control.

DOBRUSKY: I don't know what it means so I can't address

myself to that.

PATRICK: I mean efficiency compared to what you and I

could do coding an assembly language.

DOBRUSKY: The whole job?

* : You couldn't do it.

PATRICK: The part that's important to get the job

dene, we could. "The object efficiency of the running code

is poor. Their jobs are already pushing the machine."

DOBRUSKY: Jerry Koory and his group have Just finished a Job

(that we discussed earlier) with 65,000 instructions. Could

you have done it, Jerry, in the allotted time with the level

of people you had without a compiler?

KOORY: I'll have to think a bit before I can answer

that.

PATRICK: Let's put it this way. Isn't that about the

same order of magnitude as the FACT compiler, Dick? He just

said 65,000 instruetiens; didn't you say you had 285,000 in

the FACT compiler, Dick?

-120-

CLIPPINGER: He's talking about one-address instructions

which makes it about half the size of PACT.

GALLER: You're really talking about two different

questions. You're changing the raecsure. One man says the

object code efficiency is poor; the other one says you couldn't

get it done in that time.

LITTLE: We haven't really given Koory a chance to

answer yet.

GORDON: I think he's pretty happy about that situation.

KOORY; While looking over our SAGE experience and com-

paring our productive rate there with what we've done in the

last six months (with the present compiler we have on the

1604) we find that we produce programs faster—from design

through systems test — than we could with hand coding. By

faster, I'm referring to the rate of checked out instructions

per day.

DOBRUSICY: I agree with Galler here; I did not address

myself to the efficiency. This is one measure of what a

compiler will do for you. Again, you can achieve better

efficiency with either a POL or an ML. As I said earlier,

if you use the whole power of the language there are some

forms that we know indeed will produce more efficient code

than if we use parts of the language. If we use a complex

FOR statement it does not produce as good machine object as

if we break it up and get closer to the machine language

itself.

•121-

PATRICK: Olcay, but Jerry spoke on a different subject

from what you're now talking about. Jerry spoke on the subject

of whether higher level language would help Command and

Control, which doesn't have a thing to do with standards.

GRUENBERGER: Or object efficiency.

ARHER; If Lhey don't help, then there is mighty little

reason for standardization. We sure don't want to standardize

on some things which results in our doing the job slower and

in a poorer fashion.

OPLER: We agree that higher level languages are better

for the kind of systems you're talking about than lower level

languages. Some say that standardization is better than non-

standardization, and drav; the conclusion that standardized

higher level languages are best for doing the job. What is

confusing us is the difference between the gain from higher

level languages and that from standard languages.

PATRICK: Jerry said that a higher level language helped

him in doing the code that they just delivered.

ARMERDING: That's not really what he said, is it? He

said they produced more checked out instructions, by which

I think he meant more machine instructions, but he didn't say

whether or not that was an efficiently written list of

machine instructions.

PATRICK: That's right.

ARMERDING: I can create a compiler than can turn out

500 machine language instructions for every statement written.

-122-

r.VnilCIC: Host of tliain KO-OPG.

ARIiTRDIUG: ?ä3at. The sort of thins where three hand-

written instructions would really do the job to represent each

statement. The only V7ay to really test that would be to take

two groups of like people and put them side by side and have

thai;! both do the sane job, one group using JOVIAL and the

other group using assembly language.

G.-VLLEPv; That's the measure of comparison then? How

well the object program runs? Or how soon they finish the

job? Or how soon they get answers? Or what?

;"'-\TRICK: The subject I had up there on the blackboard

was object code efficiency.

LITTLE: Or is the real difference you're talking about

the ability of the group itself?

GORDON: Let me go off at a slight tangent here. Armer

raised the question a couple of times. ::',.raat should we be

doing?"

Now perhaps I'm on a subject that's irrelevant to the

current discussion. But we've been talking about standardiza-

tion; standardization of character sets and formats and

languages among other things. Armer asks what we should be

doing and up on the chart there we have subjects like train-

ing, level of users, etc. Maybe we should consider standard-

ization of programmer levels. Maybe we should define what a

guy ought to know before he calls himself a programmer. Maybe

if we establish certain minimum standards of programmer competence

•123-

we might then have a lot less trouble with worrying about

standards of programming language and object code efficiency.

How's that for where x\re should be going, Paul?

ARMER: That's a pretty good one, Barry.

GALLER: There is too much of a shortage of people

right now to enforce standards like that.

GRUENBERGER: It's not getting any better.

PATRICK: As an example, I will predict what our most

commonly used language is going to be in the next few years:

It's going to be SPS for the 1401. International Bullmoose

is delivering eleven 1401's per calendar day, and they have

7,000 or so on back order. 3P3 is going to be your most

popular language.

LITTLE; There's something else that's not clear.

There may be a shortage of people out we may be creating it

to some extent. To take the example Dan used, we have six

good people who are not really very good floating around.

Did we really need them?

OnLER: Be careful. Those are the people who will be

the compiler experts next year and will be ringing your

doorbell.

GRUEKBE3.GER: You know, I've never seen a hot dog

language come out yet in the last 14 years--beginning with

Urs. Hopper's A-0 compiler (you'll pardon the expression)--

that didn't have tied to it the claim in its brochure that

this one will eliiuinate all programmers. The last one we

got was just three days ago. Like all the others, It makes the

•124-

same claim for the G-WIZ compiler that this one will eliminate

programmers. Managers can now do their own programming;

engineers can do their own programming, etc. As always, the

claim seems to be made that programmers are not needed anymore.

DOBrOJSICY: I'll take exception with you. The JOVIAL

brochure says, ''This is for programmers." You're going to

need more of them.

ARMERDING: Okay. But to whom are these ads addressed?

When computer manufacturers put out ads like that, are they

speaking to programmers? Of course not; these ads are not

run in the Communications or in Datamation. They are run in

Business Week and Time and in the Wall Street Journal. Whom

are they talking to?

PATRICK: They are talking to the same guys that didn't

understand IBM's reluctance to get on the FLOWMATIC bandwagon.

They're talking to the guys who buy the machines.

DOBRUSKY: I'd like to get back to Bob Patrick's statement on

the blackboard concerning object efficiency being poor.

Object efficiency of many large programs has been proven

(granted, with a number of iterations) to be better in space

allocation when done with a compiler than have been accomplished

with skin machines. "Jhen you have a 10,000 word application

that uses 5 words of temporary storage, this is a lot better

than a handcoder can do. Human coders just don't go through

the endless process of checking what storage is available.

There are many things that a compiler can do well for you

that programmers don't normally do.

-125-

PATRICK: I usually leave my particular code fairly

loose as far as storage allocation goes because that's the

only way I can check it out. I like to leave intermediate

products lying around so that I can take a snapshot of them

and see what I did wrong.

DOBRUSKY: You're using techniques that are machine-

oriented, which is fine.

PATRICK: If you compile tight code I defy you to check

it out. If you lay these intermediate procucts out by giving

them different names, then you can get pretty good checkout

efficiency. If you tighten them up real tight, I don't think

you're going to check them out any faster than I am.

CHEATHAM: I don't think this is going to be a useful

argument. You can build a compiler that will lay them out

during the checkout phase and squeeze them up later.

PATRICK: Now you're talking about a two-mode compiler-

one that has a checkout mode and a production mode.

* : I think there's a fair amount of enthusiasm

for that concept.

GORDON: There is enthusiasm for more compilers than

you can write already. This tends to double the number that

you're committed for.

CALLER.: Not necessarily. One of the objectives of the

next version of MAD is that it be done in such a way that we

can hook in optimizers. One of the optimizers will be

temporary storage assignment. This feature will just move

in when you're ready, and every such optimizer will be optional.

■126-

TALMADGE: I thin!: people, in general, will agree that

during the period of checkout it doesn't pay to waste time

trying to optimize. That is, one would like to get a checked

out program that is logically correct even though it may be

clumsy. Later the packing can be done by optimizers; or in

a real-time application, one may even call in the best pro-

grammers on the staff and polish up the machine code.

CHEATHAM: Don't you do that already to some extent,

in order to take out the debugging aids from the finished

result?

GORDON: I'd like to amplify the equation you have in

front of us, Bob. In your equation you have, as two separate

terms, dollars to compile and dollars to assemble. These are

more or less the same thing. I'd like to suggest that these

be broken up into a product of two things; namely, the cost

per compilation and the number of compilations per checked

out program. If you are looking to reduce compile costs you

can do it in one of two ways. You could, for example, design

the compiler so that you could compile in 42 minutes instead

of 45, or you can design it so that you can complete the

checked out program in three shots on the machine instead of

8. I think that an intelligently designed source language

can perhaps produce greater savings in terras of the number

of compiles required, rather than in worrying about every

nit-picking millisecond in each compilation run.

PATRICK: Those must be IBM times that he had in mind--

42 minutes to compile, etc.

■127-

MacKEUZIE: Possibly he's on the subject of how one ought

to look at a compiler. It may seem ridiculous, but from the

user's point of view you ought to look on it almost as a

fancy loader. If the compiler performs satisfactorily as a

loader, should you care whether you recompile or not? You've

got to get the information into the machine. Admittedly,

this may not seem attainable, but it might be something we

could agree on.

GORDON: I don't think there's any one thing we can

agree on.

PATRICK: And that may be the one thing we can agree on.

CLIPPINGER: You asked earlier whether anyone would be

willing to make statements as to whether or not we are on

the right track. I'd like to pass along the experience of

one of our customers who is using FACT. This is not intended

to be an indication that I think we have the right answer.

It indicates merely that what we have is going to appeal to

some of the users in such a way that we aren't going to be

able to let it drop. One of our users started in January to

write a payroll application. The application involved* daily,

weekly, monthly, and yearly runs. The effort represented the

work of about one-and-a-half programmers from January through

the end of March. The result is a complex of 18 integrated

programs involving about 40,000 three-address instructions

(roughly equivalent to 00 or SC,0u0 single-address instructions)

If you extrapolated this experience, this would be roughly

-128-

equivalent to 3:'Ü,CÜÜ single-address object program instruc-

tions written in a man-year. The job concerned happens to bo

a data processing application, of course, with a real purpose

and it is in operation. That's the sort of thing the users

are looking for and that's what they're going to get. It

costs us manufacturers a pile of dough. Admittedly, the

object code is not as good as we'd like it to be; we can

improve it. '/hen we get through improving it, it still may

not be as good as we'd like, but it will be good enough so

that users will use it.

There may be better ways to do it, but I think English

language coding is here to stay, '.'e've got something that

is going to do the users some good.

I'm working as hard as anyone in the United States in

the direction of standardization, but you all seem to be quite

skeptical of the rate at which we're going to accomplish

anything in the way of creating useful standards. I'm not

at all certain of what the right path is toward standardiza-

tion. I do know that standardizing a programming language

is an extremely complex business. I happen to think it's

desirable, but I don't know to what extent we're going to

succeed in it.

GORDON: I question your statement that you will not be

able to abandon it simply because customers like it. I can

assure you that this is no necessary impedinient to abandoning

something. We have been through this.

•129-

CLIPPINGER: It may be a daydream that you will be able

to abandon Commercial Translator.

GORDON: It may be, but it looks as though we'll be able

to. There may be some unhappiness on the part of some

customers.

PATRICK: Have you ever thought of taking the Commercial

Translator maintenance crew and have them put bugs back into

it and use that as a way to kill it?

* : They don't have to do that.

CALLER: Has IBM talked about a translator to go from

Commercial Translator to COBOL to help your people change

over?

C0?JX)M: SHARE talked about that at the last SHARE

meeting.

LITTLE: It's called a programmer.

GORDON: lull has not spoken about it as far as I know.

I have a question for Dick. As I recall, COBOL will be

available for the Honeywell 400, but not FACT.

CLK'PIMGER: Correct.

GORDON: Both FACT and COBOL will be available for the

800?

CLIPPINGER: Correct.

GORDON: './hat about the 1800, Dick?

CLIPPINGER: The 1300 is logically the same as the 8.0.

GORDON: Go FACT will be available for the 1300?

CLIPPINGER: Right.

-130-

GORDON: GooJ lud:,

CLi:"'Ti;GEP>.: There's no problem ;:t all there since the

tv;o machines are losically identical.

PATRICK: .'e' ve slipped sideways into another way to

solve the incorapntioility problem and that is not to tamper

with the machine order list. I may be wronj;, but I think

Honeywell was the pioneer in upwards compatibility. The 400

and Ö00 were upwards compatible.

CLIPPINGS^: Mold on. Je have never claimed that the

400 and GOO were upwards compatible.

PATPJCK: Isn't the order code of the 400 a logical

subset of the 300?

CLIPPINGER: Mo.

: Mot the least little bit.

CLIPPINGER: There is one language (EASY) which will

run on either machine. The 800 and 1800 are upwards compatible,

of course.

OPLER: There is tape compatibility so that certain

files would be upwards compatible between the H400 and H800.

GRUENBERGER: Is the collating sequence the same?

CLIPPINGER: Yes.

PATRICK: Does Philco have upwards compatibility in the

210, 211, 212 series?

DOBRUSICY: I think that's correct.

PATRICK: And IBM is getting on this bandwagon?

GORDON: I think so, starting about 1956 to 1957.

■131-

PATRICK: ./hen the 704 went to the 709 and 7090?

GORDON: Yes. The claim was never made in going from

the 701 to the 704 and the compatibility going from the 704

to the 709 was a less than perfect solution. The 705-III and

the 7030 have been pretty well compatible for some time.

PATRICK: But with a switch, isn't that so?

GORDON: The 7^03 /.as a switch; the 705-111 doesn't.

The 705-111's order code is a proper superset on the 705-11.

The 7070 and 7074 are highly compatible. The programming,

though, is identical with the exception of things that depend

on Liming. Jince the 7074 is much faster on the main frame,

you could get into trouble if you program real tight on read

and write operations. r.Tithin the main frame the loj.;.c is

identical.

GRUENBEPvGER: Isn't it funny that all of you can oat

around machine numbers so freely, but Clippinger and Phillips

are the only two I have ever heard who speak so freely of the

X-3 numbers.

ARriER: I was trying to do more than try to coax people

to say that they thought they were doing things right. I

was trying to challenge those people who say we're doing

everything all wrong to indicate how things should be clone

differently. Barry's suggestion is ■,. good one, but it's not

really a change in what we should ':2 doingj but an addition.

That is, his emphasis on standards regarding what is a pro-

grammer.

-132-

GORDON: Yes, and stop designing languages for three-

year-old progranimers.

MacKENZIE: I think we ought to do two things differently,

in a sense. I like the point about directing more attention

at the level of users. In a way it is an argument against

standardization, although I would not like to identify it

as such. Lots of times you have to give people what you think

they need, not what they claim they need. In the case of the

language we are talking about, we are essentially talking

about "stuffing" into present programmers the type of training

that it took to make them reasonably good machine or assembly

language programmers. I think this is a very serious short-

coming in a lot of our approaches. Another point is the con-

straint that exists at the hardware design level. I think a

question well worth looking into is to what extent will

research in problem-oriented languages reflect itself in

proposed machine organizations. If you'll agree to remove

these constraints, I think you'll see different types of

machine organizations in the future.

GORDON: The machine organization itself, I think, is

another argument against standardization, at least at this

time. Take a look at committees such as the COBOL committee

or the ALGOL committee. On any of these inter-company or

industry-wide committees you have men who may have a darn

good idea of things going on back in their plant relating to,

in effect, unannounced hardware. It's darn difficult to be

•133-

able to get up in a committee meeting and say, "Look you

guys, we're announcing a machine next year. But it's not going

to work this way at all." You just can't get this into a

standard very effectively. It's tough to say "it's this way

instead of that way" and not give a reason for it. If you

want any effort to go a certain way, you've got to be able

to say why. If you're basing your ideas on things that will

come along in the future, you can't say why. In effect, then,

any of these committees will be working several years behind

what any individual manufacturer could be doing. People at

Honeywell can be working on systems to support future hard-

ware that they can't talk about. It's the same with Burroughs,

and even IBM.

This is a real limitation on any sort of committee

action. The individual manufacturers, who can see what's

coming up, can plan for it individually, but can't talk about

it collectively.

BROMBERG: Are you saying that language functions may

be precluded by machine design?

GORDON: Influenced, not precluded.

BROMBERG: Is it possible then that one could come up

with a machine that would make things like report writers

and sort generators unnecessary?

GORDON: Okay, so what?

GRUENBERGER: I don't think that was the point he was

trying to make, Howie.

_134-

BROMBERG: I want to know what you're goin^ to do to

iraplement a language that you can't talk about because of

proprietary machine design.

GORDON: I would tell you if I could talk about it.

LITTLE: There's an interesting point the other way

around, though. If you once came up with a really good

standard language, you would probably see a turnabout in the

hardware. You may come up with general purpose languages

and special purpose computers; that is, computers would be

designed more and more to handle a particular language. That

tends to stop the progress of machines.

MacKENZIE: It forces the progress to be directed in a

particular way. For example, suppose that language A were

really a standard language; certainly then some manufacturers

might like to sell to the audience that was using language A.

They should tend, in their development areas to produce

machine organizations that could efficiently handle language r

GALLER: Do you really think that's true? Take FORTRAN.

Let's assume that history might repeat itself and that there

will be a super FOPJUAR. (Some of us would like to see a

super FORTRAN that would be amenable to Command and Control.)

Now is it really the case that machine design has been so

strongly influenced by the fact that FORTRAN has been so

popular? I don't know; I'm not prepared to argue for or

against.

" : flow much evidence is there, Bernie?

■135-

GALLER: I don't know. I think it's tremendous, though,

that Burroughs took the step with the B-5000. I think it's

the one really clear-cut example we have, but they may not

succeed with that machine. But certainly any future machine,

at least in the design stages, has to compare itself with the

B-5000 to see if it can do better; or whether it should go in

that direction. You hear all kinds of rumors that maybe IBM

is moving in this direction, too. I don't really care whether

they're moving in this direction or not, but they had better

be thinking about it, and that in itself is good.

PATRICK: We've already seen new machines being selected

on the basis of their compile time on a specific application

and the object code execution on that same application. It's

only natural that the manufacturers tend to weather vane.

If you're going to do a lot of sorting, for example, maybe

you ought to have a D-1000, simply because it will sort better.

CLIPPINGER: Don't start selling D-lOOO's. le don't

make them anymore.

PATRICK: Don't they have some to spare, Dick?

GRUENBEPvGSR: Like seven?

G0?JX)N: It sorts like a bomb; if only you could carry

the tape files over to it.

PATRICK: Can we agree that something might be done

about the level of programmers and then design languages

compatible with that level?

McCRACKEN: I'd like to take a certain amount of excep-

tion to that idea. It seems to me (thinking about such

■136-

matters and getting ready for some writing jobs that I have

in mind) that the real problem in training a beginner in how

to do good programming is not that big a function of the

language, '/hat has to be taught to a guy who has just walked

in off the street? He is taught in the context or framework

of some language or other but the things we spend a lot of

time teaching him are not that language. Ue teach him such

things as what is the difference betv/een a problem and a

procedure. r.Te teach him what is the whole problem of run-to-

run communications. IJhat are control totals all about? 'That

is data verification?

TJe do these things traditionally in the framework of

giving him a machine language course or a COBOL course or

something, but the details of that language are not the

toughest thing for him to get straight on. You can rapidly

verify this if you give a guy a course on the details of a

language and then turn him loose on i problem. So I don't

react too favorably to the idea of designing a language to

be easy to train.

PATRICK: No: to teach.

CLIPPINGER: I think there are two aspects in the problem

of training someone to use a language-computer combination.

You do a good job in getting the guy started in understanding

the language. Before we finish with him though, we have to

teach him all the special things about restrictions without

which he really dcesn't really know how to use that language.

-137-

These have to do with the particular implementation that x^e

have invented to put that language into operation. That part

of it gets to be bigger than the part about getting a broad

general feeling in the language to the point where you can

readily dash off problems that work.

McCRACKEN: I understand what you said perfectly. I

have had some recent experiences with this myself (in trying

to work from a manual) and in a real short program I have

found six important things that had to be done that weren't

in the manual. What I am saying, however, is that the details

of the language, plus all of this still is not the main thing

that has to be taught.

PATRICK: I think you two are talking about different

things. I think, Dan, you're talking about the teaching of

programming per se independent of language; namely, how do

you analyze a job and do it? Dick, on the other hand, is

talking about a specific language embedded in an operating

system in a facility with its operational procedures and

techniques.

McCRACKEN: And I'm saying that teaching the details of

the language is a relatively small job. Of two equally good

languages the more teachable one is to be preferred, I guess.

BROMBERG: Jasn't that exactly Barry's point? He wanted

to set up certain standards for comprehension of what pro-

gramming is about.

McCRACKEN: Look, let's take the familiar experience

that after you know one machine, it isn't hard to learn

.138-

another. It's clear taen that when you were learning the

first one, what you were learning was not the machine; it was

concepts,

5?vOIIBEuG: I '.lon't thin!: v;e're arguinj. I thinl; the

^oint is the same. If you're going to set up standards for

programmers, just set up standards for whether or not they

understand the concepts of stored programming, not whether

they understand a certain language. Once they've gained a

certain level of competence, then you are able to address

your languages no tnera.

TALM.iDGZ: .'lien Gordon and I were having our discussions

on what Commercial Translator might be, there was a certain

uharacter who hept popping up: the poor accountant who was

going to use this language, '.Je started calling him "Joe

Accountant/' he became a much used (and abused) character,

how, my background is scientific computing and Gordon's Is

commercial so that I was always faced with this character

whenever a question came up as to whether or not we should

include a certain item in the language. The whole point was

that Joe .Accountant really didn't know anything about how to

use the machine, and we were designing the language for him.

If we could restrict the users of the language so as to be

able to demand a certain level of competence, then we could

do things in an entirely different way.

McCHACKEN: And all I'm saying is that you can design

a language so that Joe Accountant can use it with very little

difficulty; then you have still not begun to solve the

■139-

training problem. You still have to teach him all tl.cse

other things that I mentioned before. Once he has learned

all those things, then he can understand a more difficult

language.

GOrJDON: I'll go you one better. If you can design a

language that Joe Accountant can learn easily, then you're

still going to have problems because you're probably going

to have a lousy language.

HcCIlACKEN: That's opinion.

CALLER: Not necessarily.

GOPJDON: Maybe you've been living in an ivory tower,

Bernie. I've been working with Joe Accountant for a long

time. Incidentally, I want to apologize to Dick Talmadge

for last year.

CALLER: All I'm saying is that it's not necessarily a

bad language to work with just because you can teach it,

PATRICK; It may be rather weak though.

CALLER: Again, I say, not necessarily. I look at HAD.

It's easy to teach, and it's wonderful to use.

* : vJhom are you teaching it to though?

CORDON: You're not teaching it to Joe Accountant.

PATRICK: He couldn't get into the University of Michigan.

CORDON: You're teaching it to Joe College on campus.

CALLER: All I said was, here was a counter-example.

McCRACKEN: ''/hat you're teaching to Joe Accountant is

not a language in any case. Further, ALCOL is easy to teach.

•140-

GORDON: ALGOL is not easy to teach.

HacKENZIE: Bemie can go off and teach things to students

in college and have thera understand them. They can be fairly

complex things. You can go to a group of "professional"

programmers and try to teach them these same things and run

up against a brick wall. It has to do, I believe, with the

open-mindedness with which people approach the subject.

V/e've been criticized a great deal for wanting to teach people

the syntax of a language, as opposed to conventional ways in

which they might want to view the language. By and large,

there has been a great deal of success with this method at

the university levels. Many of these people did not have

prior programming experience and after a few months came up

with a much better understanding of how the language "worked"

than the people who wanted to approach it by some method akin

to the way these things are normally done.

GRUENBERGER: The earlier you catch them the better it

is.

MacKENZIE; Sometimes you shouldn't give them what they

think they want; you have to give thera what they need and

you may have to be pretty arbitrary if you're convinced

you're right.

GORDON: I still say that when you're working at the

university level, particularly with math majors and engineers,

you're dealing with a pretty select group. When you get out

among the great masses who are going to be programming in

-141.

SPS, these guys...

MacKENZIE: I think you're missing the point, Barry. I

raay be very presumptuous, but I think you can approach these

people on the basis of "this is what you need to know to be

able to use this thing" and they either never know the differ-

ence or they are willing to accept the approach on faith.

VJhen you go to a user or any environment of people who have

done previous programming, frequently you find that they have

preconceived notions—preconditioned ideas of what the terms

are under which they will accept any new thing.

LITTLE: I think Barry may have a point there. I don't

really know; I'm asking those people who have university

experience. Of all the people you teach to use the machine,

what percentage breakdown do you get out of particular fields?

How many sociologists do you have programming a computer, or

economists, or psychologists?

GORDON: Never mind those guys. Let's take the guy who

graduated from high school at the age of 20 by going to

school at night. Perhaps he left high school at the age of

14. He has never had elementary algebra and doesn't know

what a negative number is. But after 15 years of running a

tabulator he is suddenly one of your programmers.

LITTLE: I agree with you there, but I think by the

nature of areas that people are in, sometimes, they are more

open to learning certain things than other people are.

Take open shop people for example. Ive have an open shop

-142-

operation here at RAND. I would suspect that you ^et a lot

noi-e reasonable response out of the ensineers in the corpora-

tion than out of the psychologists, for example, but in a

real world we have to go out and do jobs for these people.

If you're going to design a language or a system that is to

be used by these people, please recognize that there is a

broad spectrum among any group. As a matter of fact, some

of the really big jobs are done not for people who could

grasp it if you gave them the chance, but for people who

may never understand it. Furthermore, they don't have much

of an interest.

PATRICK: The military is the best example you have

there. They couldn't care less what your problems are. "Just

tell me what supplies we've get out in the warehouse." They

don't want to know how you do it.

OPLER: We consider that the COBOL user is a skilled

systems analyst who understands both the machine and the

system. There is the difference between the training level

of a person who will use a data processing language well and

the training level required to use an algebraic language.

Instead of visualizing the bank clerk knowing the cora-

plesity involved in the data description and the interplay

between it and the machine procedure, we feel that probably

the best user of the language will be the man who has not

avoided systems analysis in the past. He can use such lang-

uages to get on the air quickly and to produce 250,000

instructions per year.

■1^3-

McCRACKEN: How long does it take to teach him systems

analysis compared to how long it would take to teach him

COBOL? Much longer. The language isn't the problem.

CLI^PINGER: What you're saying is the manufacturer

ought to tell the customers that it takes good people to use

this well. If you want to get by with very poor people, you

do it at your own risk. You might expect to get something

done, but it could be pretty bad.

CALLER: I was talking to some people who were getting

ready for the 1401. They had been sending their tab people

to school to learn how to program for the 1401. They were

astounded when I recommended that they get at least one

person who knows programming and doesn't know their business.

GORDON: But the salesman said you didn't have to!

BROMBERG: National Cash Register put out an interesting

document that they called the "NEAT COBOL Manual." It's

been a sort of vogue the last 12 months or so for everyone

to flood the market with their COBOL manual, but NCR deviated

slightly for about one-quarter of the manual. Instead of

talking about how well they had implemented COBOL, they

talked about systems design. They made the following comment,

which I thought was terrific. They said, "COBOL is not a

substitute for good systems analysis." This is just what I

think the sense of this group is.

McCRACKEN: There's one thing that I think that COBOL is

efficient at and that's wasting one hell of a lot of machine

time if you use it wrong.

-ihh-

LITTLE: One thing v;e seem to be agreed on is that the

training problem is a very important one. It seems to me

that there's a lot more work going on in building compilers

than there is in the problem of training. No one seems to

be much v;orried about how you make up good training courses

and make up good material for them.

ARMEU: It's even hard to get people interested in this

area.

GOIIDON: I'd like to remind everyone about the fable about

the emperor's new clothes. You remember the con man convinces

the emperor it's a gre,Tt suit, that only the pure in heart

can see it. So the emperor winds up walking around naked and

no one has the guts to say so. And finally some kid says,

"Hey, look! He's naked!" and everyone realizes they've been

had.

To put it bluntly, I think it's about time somebody had

the guts to get up and say that the emperor is naked.

: IJho is the emperor in this case?

GOIIDOK: I think the emperor is a very large segment of

the computing industry. That includes users.

PATRICK: Like the guys that believe these ads.

BROMBERG: I don't understand why you speak so dispar-

agingly of users. I would like to go on record as saying

that we at RCA like users.

GORDON: I'm not sure you can do anything about the

advertising boys or the salesman, but in spite of what they

-145-

do we have a responsibility to see what we can do to bring

some order out of the chaos to produce useful equipment to

do jobs and to produce useful programming tools. We must get

the word out as best we can. I realize this is very ideal-

istic.

LITTLE: It would seem to me that if anyone is real

eager for a good set of training devices, etc., it would be

the Department of Defense and the military. Nevertheless,

we still train people by the old buddy system, although SDC

has more formal training. Work along these lines would seem

to be very valuable.

PATRICK: We have some facts, gathered at HAND (see

Table 2). We were concerned as to just how much we had to

pay for higher level languages. We seem to think we know

what we're getting in higher level languages. (Although we

don't really know.) We use FORTRAN here at RAND and we use

303. It's interesting to look at the time fractions and how

they're distributed. Before Armer's crew went out to get

these numbers we wouldn't have guessed they'd be anything

like this.

This is a summary sheet. The first pair of rows across

the top are the number of jobs that took between zero and five

minutes. The second pair is the proportion that took between

zero and ten minutes (which include, of course, the first set).

This is a 4-month summary on RAND's 7090. Total machine

time is 5C5 hours. Total jobs number 9561. Of these 9500

w
s

<
w
Q

CO
W
o

W
H
Ü
CO

cd

a,
S
o
o

3
o
H

O
CM
K
O
o
Q

<
cd

>5

nj
3

0)

o

VD

H

03
XI
E

>
o
2

>3
-a

CO

c
o

•H
■P
aJ
S^
0)
a
o
fn
0)
-P

&
O
Q

1
c O
o 0)
2 X

ro
\Ä

CO t^- <0-3-

tx,

^

o

.p
o

w

O

co t^-
^r on

VOOD
OJ

CVIOJ
^r on

-l'i6-

•^ C\J ^J- H

OJCX) ONLO

oo in
H H OJ OJ

CO
•P
o

EH

&

^ON- (^JO^

O OJ
inon

0)
6

•H
En

CfVO
MDVO

oi-^r

on on
cr\o

mco
coco

o
2

q
•H

■p
c
0)

Ü
G
H

0)
0

•H
EH

m
fi
0 OJ^I- UDUD

h) 0JC0 OJOO
Chcß H H • OJ H onoj

S CO

LO
o

I
o
o

S CO

o

m to

XX
~t
on^-

mm
ontn

00 H (Ü •
VOVOH c
f-LH ft o
inch g s
II II C0^■

H C E S
a Q -H -H

SBEH

I
o
o

H H H rH
CO Cti CO CO
-P p jo 4J
o o o o
EHEHEH^

0)
•p
o
2

a,

,n
-a
H

O

n

T3
C
a)

O

-a

a;

a)

to

o

0)
E
O

CO

^ C
o 0
(D •H
£! P
ü Ü

3
0) 73
-ö O
o FH
Ü a

73 -O
O o
O 0
bfl b0

Ü cu

m
P
o

01 +J

to
>>
(0

E
O
P
to
3 O
ü p

r to
0 CD

'O
•H C
to 5
P O
3 -d
O Ü

= cti
OJ

•> in
ftjQ
O
x; o
to c

C 73
(U OJ
ap
o u

o
a
0)

P

x;
P

-a
3
H
Ü
C

■H

P CO
O ,Q
G O

CO
QJ T3
O G

X) cti

N O
■HES MS
0) I
H C
ft O
ES
cö
M •

(0
0 •
X! -H

p
o

0)

cti
co
3

OJ

0)
H

CO
EH

■147-

jobs, we had complete data on 5700. The time for them was

345 hours—so it's a fairly good sample.

Of the jobs that took between zero and five minutes,

there were 2922 done in FORTRAN and 1800 done in SOS; the

corresponding times were as shown in Table 2.

"C" means good code check; this means you made a run on

the machine and compiled (or assembled) and tried to execute--

something useful to the programmer in developing a new running

code. """ (for Production) means there were no programming

changes from run to run.

The last column shows the per cent of time not spent in

executing. The 40.87,, for example, is a percentage of the

5,2.64 hours not spent in executing. It includes loading and

dumping and waiting for tapes to rewind, and so forth; that

is, getting ready to execute.

ARI-HvlDING: That includes, also, assembly time and

compilation time.

BROIIBERG: Pecompilations and reassemblies—are they in

7, Non-Exec, too9

APJIEHDING: Everything that isn't in the execution of

the program.

BROMBERG: You can execute the program a number of times

(in between each compilation you execute). That's execute

time (even though it's not execute for production)?

ARI'IEPJDING: Je read the clock when execution starts and

when it stops — this is the clock time other than that.

•148-

LITTLE: On FORTHAN compile-and-go, the execute time

would be considered execute.

BROMBERG: Suppose you get the wrong answer?

GORDON: I don't understand how you can get 74% checkout

and only 497» non-execute. Is execution during checkout still

called execution?

ARMERDING: Yes. Let's look at the percentages under

the second and third last columns labelled per cent C and

per cent P. 747o is code-check and 26% is production for

FORTRAN jobs running less than 5 minutes. In SOS jobs 92%

is code-check and only 8% production. When we go to jobs

that run as long as 10 minutes the percentages change hardly

at all.

LITTLE: Do we have one big SOS job done yet? Maybe

that's our problem.

CLIPPINGER: This means you check your FORTRAN programs

three times and then you run them once.

PATRICK: Remember these figures are just for one shop

and a fairly unique one at that. But this says we spend an

awful lot of time in preparing codes and not very rauch time

in running them.

McCRACKEN; It also says you check out your FORTRAN

programs faster.

ARMERDING: No, that doesn't follow.

GORDON: It sure looks like FORTRAN helps improve your

checkout.

-1^9-

LITTLE: That may be true but you have to also realize

that FORTRAN jobs are basically smaller.

McCRACKEN: Checkout is three to one on FORTRAN and

nearly 11 to 1 on SOS.

ARMER: No, it might be misleading. The SOS jobs might

take longer than 10 minutes as a rule. If most of them took

longer than 10 minutes then on the basis of these statistics

that ratio would be infinite.

BROMBERG: Was the purpose of this document to say some-

thing good or bad about common languages?

PATRICK: Neither. I think you can conclude just one

fact; that if you design a hardware-software system and expect

to run a lot of production on it, that principle is not very

well borne out on the basis of this installation's figures.

This installation seems to run a lot of code-checks.

CALLER: At the university we probably have more code-

checking than any other place around. Quite frequently when

our students get a program running that's the end of it

because that was the problem.

GRUENBERGER: Yes, that's the way we operate, too,

CALLER: I looked at our log for January and brought some

figures along that were very surprising to me.

In our January billing we had 6064 runs. This is on the

709. I don't have the breakdown of these jobs in terms of

MAD, FORTRAN, and so forth but I do have these figures for 242

hours of use. Execution took 167 hours or 69% (in March

■ISO-

that was 787,) ; MAD translation time took 46 hours or 191 of

the time; FORTRAN took 20 hours or 8% of the time; our assembly

program took 9 hours or 47, of the time. The average job

length was 2 1/2 minutes (although it seems that every time

T bring a visitor in to see the machine there's a 45-minute

job on at that time).

McCRACKEN: Doesn't MAD compile faster than FORTRAN?

CALLER: It's possible to have a shop where the trans-

lation is very fast, leaving plenty of time for execution,

McCRACKEN: /hy can't FORTRAN compile faster; that's

what I've been trying to find out all this time.

CALLER: You have to look at these figures and see that

the time we're spending in compiling and so forth is really

a function of the particular translator,

PATRICK: That's correct.

GRUENBERGER: Are you getting a 7090?

CALLER: Yes, we're getting one in August.

OPLER: Bernie, do you have any problems that have been

compiled by FORTRAN that run longer than an hour?

CALLER: I would think so.

OPLER: Do you compile these by MAD too?

CALLER: I doubt if we've done the same problems both

ways.

OPLER: The point I'm getting at is this. While FORTRAN

has obviously been sub-optimized for those people who are

doing many, many compilations on small jobs, it is much more

-151'

directed toward long production jobs, where they are concerned

with, for example, the time required to go through a set of

partial differential equations or a long linear progranraing

problem.

GALLER: We have plenty of people doing partial differ-

ential equations in MAD.

OPLER: MAD may have been maligned. I understood that

FORTRAN makes tighter loops on...

GALLER: Definitely. Most of our programs will run any-

where from one to two times as slow. On a real big program,

that would make quite a difference. But that's only if you

are able to run the same problem many times between compila-

tions.

ARMER: Do you have a MAD to FORTRAN translator?

GALLER: It's too hard to write.

* : Could you write it?

GALLER: It would be very difficult.

McCRACKEN: That's what Bob Bemer said about FORTRAN and

ALGOL, too.

GALLER: It's easy from FORTRAN to ALGOL but hard the

other way.

McCRACKEN: Oh sure.

PATRICK: You can't put a 2-yard load of dirt in a 1-yard

truck. We didn't mean to bring out these figures to kill

further discussion. We thought it would stimulate further

discussion.

■lo?.

COFFEE BREAK

ARMERDING: I'd like to make a rash statement, In my

experience the process of problem solution with a computer/

COBOL combination is unteachable, at least to the people we

think we've been teaching it to.

LITTLE: Are you saying COBOL is not teachable?

ARMERDING: No, I'm saying solving problems using a

computer-magic language combination is not teachable to the

great unwashed masses.

McCRACKEN: What do you mean by saying not teachable?

ARMERDING: That I can't pick up the man off the street

or the 407 operator who is about to become a programmer for

the 1401 and make this transition.

* : Ever?

McCRACKEN: Unless he's intelligent. You mean you can't

teach it to him by giving him a set of lectures.

ARMERDING: Bernie can take his people at Michigan and

teach them MAD and how to solve problems using MAD. They go

away fine and they come back and they're able to solve problems,

We can't do this. I'm basing the statement on the experience

that I've had. Your work notwithstanding, Dan. And I've

done a good deal of this teaching recently using your FORTRAN

text. I've done my darndest and I don't think anyone else

is going to have any better success.

CALLER: But if we can't teach it we're doomed. We've

got to teach it to them one way or another.

■153-

* : But we don't have to teach it to everyone.

ARMERDING: We've already decided that the 44 people

that Dan's friend employed don't really represent the solution.

According to Cheatham, who has had some experience In this sort

of thing, and according to others I have heard, what he'd

rather have is three top-notch people. Presumably he could

hire thera if he'd pool the salaries of the 44 and split it

three ways. He would turn out the same work and get a better

compiler and the whole job is done better all the way round.

GORDON: Are you talking about the use of these or their

construction? You started out by talking about training users.

ARMERDING: All right, now I'm talking about the construc-

tion of the compiler, but it's the same principle. If you

talk to a guy like Jack Little who has to implement real live

problems on the machine every day, he too would rather have

a few top-notch people that a whole stable full of no-goods,

So ray question is should we even try bringing in these

great herds of people and training them?

McCRACKEM: It's only by starting with big herds that

you find out who the best ones are. You've got to give a lot

of people the first course in order to find out who should

go into the second course.

GORDON: That's not true. There's a tremendous difference

in level of competence. I don't intend a plug, but you could

give them the IBM programming aptitude test, as we have done

for years, and you can eliminate most of the tab operators

•15^

and file clerks and nephews of people who have worked in the

company for 20 years. You bring in guys with certain basic

minimum requirements, like literacy and the ability to count

up to 2-digit numbers.

McCRACKEN: And having done that, of what's left 99% of

them will turn into the kind of guys who can do COBOL in

three roan-years.

GORDON: But they're the kind of guys who can at least

program applications in a reasonable programming language.

Even so, you ought to eliminate some of them. The point is,

we're not even trying to do that. We're trying to teach the

guys who have been wiring control panels or pushing buttons

on punched card machines for years.

ARMERDING: Who is?

BROMBERG: We're not trying to teach them to write these

things.

GORDON: No, to use them. You cannot teach 500,000 guys

who are basically machine operators to become competent pro-

grammers through the use of any magic language. Isn't that

what you were saying, George?

ARMERDING: That's what I was saying.

BROMBERG: Neither can you teach them to be competent

programmers through the use of any unraagical language. How-

ever what you can get from the use of these magic languages

is some few number out of this great hoard who can carry the

ball and keep enough of their end up to bring the rest along

with them. I just don't understand why you say that these

•155-

languages are so difficult to be taught.

ARMERDING: I'm not saying that. I'm simply calling

attention to whom we're trying to teach them to. I'm

simply saying that building magic languages is not going to

help our education problem.

McCRACKEN: Oh, I agree with that.

ARMER: He's simply saying, "Don't expect magical lang-

uages to solve your training problem." In other words, don't

believe those ads which say that programmers are no longer

necessary for getting the job done.

LITTLE: And if you once assume this, doesn't it also say

something about how you go about constructing these languages?

GORDON: That's a good corollary. If you give up the

idea that these magic languages are going to get production

out of your three-year-old programmer then you can also scrap

the idea that the languages should be developed for a three-

year-old programmer.

McCRACKEN: Now I think we have said something.

PATRICK: I'd like to raise another particularly obnox-

ious point along this line. It doesn't seem to me that the

magic languages help ray documentation significantly.

KOORY: Amen, brother!

LITTLE: I'll speak for the only other iraplementer around

here and also say amen.

PATRICK: You've still got to describe the job, and

usually this description comes in something like flow charts

and some standard symbols. This can all be built into the

■156-

compiler code if you wish but that makes it compile pretty

slow; it's kind of bulky then.

McCRACKEN: Whose documentation problems? Are you an

implementer now?

PATRICK: No, I'm talking about applications.

McCRACKEN: Gee, there are other users who don't say

that. They say very carefully that the magic languages don't

solve the documentation problem; you still have to get a bull

whip on the programmers. But having gotten that bull whip

working then it is a bit easier in say, COBOL, than it is in,

say, Autocoder. Not only that, the program is the documentation.

PATRICK: That's just the point. The program is not the

documentation.

GORDON: The program is the bull whip. What you say to

them is, "If you don't get those flow charts up to date, we'll

make you write in COBOL."

LITTLE: You can put comments on your coding sheets all

you like but I don't think that's a substitute for what I call

a minimum set of documentation. I still want to see flow

charts, a narrative of the problem, symbol definition sheets,

and so on.

GRUENBERGER: And test cases.

McCRACKEN: On the other hand there is more than one

user who uses flow charts written in COBOL as the documenta-

tion and the program. They keypunch from that.

PATRICK: I heard an interesting thing about that down

at STL. The people at STL gave an interesting pitch the other

■157-

day about how they're using flow charts written in COBOL

and how they keypunch directly from them. The fellow said

that it sounded real good but in walking through the key-

punch room he didn't see any of these huge flow chart sheets

lying around on the 026's. What was going on, it turned out,

was that some girl was copying from the flow chart sheets

onto key punch sheets.

McCRACKEN: It's a delightful story but it's not

universally true. There are places that work from the original

sheets.

DOBRUSICY: What rating do they give their keypunch people?

Are they called programmers ?

McCRACKEN: No, they have a flow charting convention.

BROMBERG: The interesting thing about this is that now

the proper perspective has been reached. It is a clerical

function at best, to go from the problem definition sheets

through to key punching.

PATRICK: That may be. There have been some of us who

have been saying all along that there should be the equivalent

of engineering aides following the good programmers around.

I can do about 8 times as much work if I have four more pairs

of hands. I don't have to keypunch my own work. But don't

tell me I don't have to document. The same amount of work

is being done, but just by different hands.

CLIPPINGER: If you go talk to Maurice Halstead, he'll

hand you a thing which is a printout of the input to his

-158-

corapiler, as a definition of his compiler, I don't think

it's very pleasant reading to find out how his compiler works,

but I claim it does tell you what his compiler does. You can

take it and use if it you want to. It's a lot better than

working from machine language,

MacKENZIE: In our case, I don't know how well we'll

solve our documentation problem but I am sure we'll get a

much better solution by the means we are using, namely, by

writing the processors in a machine-independent language,

than we would achieve through any of the earlier techniques.

BROMBERG: Are you going to do this with your COBOL

compiler?

MacKENZIE: Yes, we're going to write COBOL in B-5000

Extended ALGOL.

LITTLE: I put this whole argument in a class with put-

ting comments on SAP sheets. I can't argue that it is not

helpful and if carried through, very helpful, but it is not

a substitute for good documentation, the kind that you need

for people to understand, modify, and pick up that code.

MacKENZIE: I think you touched on a real problem though.

No one says that this is the only way to do it or even the

best way to do it. But by just letting nature take its course,

you get a much higher level of documentation, this way, than

with other methods.

McCRACKEN: It may not be perfect, but it's better than

what we've got.

■159-

BROMBERG: It's a great check-cut technique.

GALLER: One area that's not covered in this matter of

the program looking like its own documentation is that it's

still very local. The global statement is the description

of the relationship between the parts; this has to be done

separately.

McCRACKEN: All right, at least you've got good documen-

tation at the detailed level. You don't even have that now

in Autocoder.

LITTLE: Think back to when you used to do this. In the

first pass through, I, like many people, write pretty good

comments; then I find my first mistake. The line has a big

long comment on it but it usually isn't to be found on the

correction card.

McCRACKEN: That's not what I'm talking about.

LITTLE: But if you're going to use a bull whip, let's

get what's necessary.

GORDON: Jack, you're arguing against yourself. If you

had been working in COBOL, the first time around you would

have named this thing with some long mnemonic. That means

that if you change that card when you find your bug you must

write down the same name.

LITTLE: I have not done this in COBOL. I've done it

in machine language and in FORTRAN.

MacKENZIE: I think you're thinking more of the things

you can write down as comments. I think you're missing the

•l6o-

point that there are a lot of things that you no longer need

to write down as comments because they appear in the basic

code.

GORDON: It would be better to say that they get buried

in the code.

PATRICK: If you do it the way you're talking now then

I will have long names and I will define each of them

separately. If I want a fairly compact code...

McCRACKEN: Source code.

PATRICK: No, I mean object code. I will use names like

working cell 1, working cell 2,...

McCRACKEN: What do names have to do with the object code?

PATRICK: I'll give each intermediate product; a different

object name.

* : That has no effect on the object code.

PATRICK: It will assign them a different cell if you

have a stupid translator.

* : No, it's the data organization which does

this job.

PATRICK: I seem to be having a hard time communicating.

" : That's for sure.

GORDON: We need a good standard language.

PATRICK: What we need first is a glossary. What I was

saying is that if each cell has a separate distinct, unambig-

uous name, then the thing might be fairly easy to read and

could be self-documented. This means that every name gets a

cell or set of cells assigned to it in the object code.

•161.

GORDON: This is typical of business applications where

you're dealing with records and arrays and eventually all of

them...

McCRACKEN: That's just opinion.

GORDON: Look, programmers get stuck with things like

this. A file clerk has made up a data description of a file

and a programmer is presented with it and is stuck with it.

He has to use the name that is assigned to the data every

time he refers to it. In effect, this is a bull whip. If

you turn the systems analyst loose, he's going to assign

names to the files and the programmer is then stuck with those

names.

BROMBERG: You can change the names.

GORDON: How do you do it?

BROMBERG: How does your system handle the "REDEFINE"

clause?

GORDON: You'd have to re-write the whole data description,,

characteristics and all.

LITTLE: And if you use it you're back to a symbol

definition sheet, which is just the way we always did it

before.

PATRICK: If I defined four separate fields, then the

source statements as I write them are relatively self-docu-

mented. If I define two general purpose fields, then the

source statements'are not self-documented. In one case the

object code uses less temporary storage cells than the other.

-162

McCRACKEN: I'd summarize ray statement of the case by

saying that getting good documentation takes a bull whip in

either case. I think that COBOL makes it easier for the

manager to apply the bull whip because the documentation is,

at least to a certain extent, built into the procedure division

by the very act of writing it.

PATRICK: I still think that although it may help me some

in the documentation, that it's going to cost me in the

compile time.

McCRACKEN; I don't see it.

* : I can't tell from your example that it has

anything to do with whether it costs you in compile time. In

most of these languages you can name the same field by as many

names as you want to.

GORDON: Just in Commercial Translator, not in COBOL.

GRUENBERGER: Doesn't it all come back to this same

subject of training? COBOL, in the hands of a master, is a

beautiful tool--a very powerful tool. COBOL, as it's going

to be handled by a low grade clerk somewhere, will be a miser-

able mess. It's going to take 20 times as long to compile and

300 times as long to execute because he's going to manage to

ruin it. The guys you are writing to, Dan, are just not as

smart as you are. They can distort anything. This is true

at any language level. We've surely seen it back at machine

language level, we've seen it in FORTRAN; there is no reason

to believe we won't see it with every one of the magic languages.

■163-

GALLER: Could I ask about this unanimous thing that

went by before that I didn't get a chance to vote on because

I didn't understand it? Did I hear you say that you thought

that half the people were at such a low level that it doesn't

pay to write the language so they can read it, so you write

it for the few who can? What are we supposed to do for the

other half? I just carae from a city where I gave a lecture

and the people I was addressing were supposedly the cream of

the city. It was a big city, too. And they told me that

they couldn't read the Communications; it was too hard for

them. These were people who were programming for 1401's and

so forth.

McCRACKEN: Of course; I can't read the Communications

either, for that matter.

CALLER: But these fellows told me they don't read any

of the literature in the field because they can't read it.

PATRICK: If they tried reading the Information Algebra

article from the current issue, I'll have to agree, I think

I probably could have read that article, but why bother?

GORDON: The guys Galler mentioned were talking about

the personnel notices.

GRUENBERGER: Maybe I could answer this by something

that George referred to a little while ago. In the classes

I teach I am continuously rocked back on my heels by the

things that trouble the class; things like a three-digit

number multiplied by a two-digit number is going to produce

.164-

a five-digit number. I have to stop my class cold and take

about ten minutes out to explain such things. I would have

thought that they learned things like that perhaps in the

fourth grade. Then again, I might assume that they would

know that you could multiply a number like 19 x 21 by squaring

a number in the middle and subtracting something and everyone

looks blank. Maybe I'm just critical of the whole educational

system, but it seems to be these little things that form the

real stumbling block.

George's point was that in dealing with the great unwashed

masses we've been talking about, the magic language does not

help. They don't solve any of the training problem and I

think they obscure it tremendously.

ARMER:: Particularly when the manufacturers of this

equipment tell the buyers that they will solve all these

problems.

GRUENBERGER: Like on the board over there in that ad.

GALLER: But the corollary seems to be that then we

.should upgrade the languages. O.K. But that still leaves

the question of what are we supposed to do with the lower half

of the mass of people.

PATRICK: That is probably the subject of another

symposium. It's also the thing that should be the subject

of another major effort. I don't think you should try to

solve this kind of problem with a programming language.

GORDON: Like social responsibility of computing people.

■165-

LITTLE: Right now I think the programmer is being

asked to carry a lot of people on his back. Not only does

he have to get the job done but he's asked to use a language

that is designed for an ape. Added to that the government

has bought different machines and put them back t.o back. How

many of these things can you overcome and still do a reason-

ably good job? Especially if you perpetuate them. You con-

tinuously expect the programmer to bear more and more of this

burden. Programmers can't keep making up for stupidity all

the way along the line.

PATRICK: I have a fact.

CLIPPINGER: Make sure you do. Last time you said you

had a fact, you didn't come up with one.

PATRICK: All right, this is a real fact. Speaking of

irrational actions, there is a 90-column card reader available

for the 1401. That to me is an irrational act and along the

lines of what Jack called perpetuating stupidity.

OPLER: Moreover, you don't even need one. It's possible

to write a program that will allow you to read a pattern of

45-column holes into an 80-coluran reader and decipher it.

ARMER: We did it here.

OPLER: Sounds like they're wasting a lot of money on

hardware.

GRUENBERGER: Yes, but it has been done.

LITTLE: I'd like to add a comment about teaching. Both

George Armerdlng and I teach at Santa Monica City College at

-166-

night. Some of the problems the students have I attribute

to a lack of motivation. They are interested but their job

doesn't depend on it. I think a tab operator who, if he

doesn't make it as a programmer, might get fired, is in better

shape to learn than some of the students I get. Is it

different when you're teaching people who have to learn, whose

job depends on learning?

McCRACKEN: Sure, they still have a lot of trouble but

they work harder.

* : It all boils down to the fact that you can't

have a language which is all things to all men. Maybe one

answer would be to have these languages at all levels. If

you're going to have to teach Joe Tab Operator, maybe what you

need is a Joe Tab Operator type language. Let him use it for

his particular application but why saddle us brilliant pro-

grammers with it?

GRUENBERGER: But they aren't peddled that way. Each

magic language claims to be all things to all men and that's

one of the things that makes me a little red in the face.

McCRACKEN: I think one of the problems is that we're

trying to live down some totally irrational claims for these

languages that never were true.

OPLER: I think we've run this subject into the ground.

I'd like to open up a new one.

The question I have is this: if common languages are

really going to be the thing, will they be able in time to

•167-

be able to encompass more than the nice job in the middle?

McCRACKEM: And if it never could it would not constitute

a total indictment of the languages.

OPLER: '.Je might put the question another way. \Jhat

percentage of the total range of problems will magic languages

eventually be able to handle?

LITTLE: Me see evidence today that people are trying

to push these magic languages into such areas. Tike Command

and Control as an example. Even leaving out things like

training, would you use one of the current magic languages

in this area?

GRUENBERGER: If a given language has no intrinsic

goodies and is automatically lousy then we shouldn't even

consider it. But if it has all the goodies in the world we're

still supposed to be considering the question of whether or

not it is good to have it common. I suspect that a lot of

our discussion has been dealing with intrinsic goodies rather

than with commonness.

PATRICK: Koory's recent experience indicates that there

is some hope of pushing these higher level languages into

the area of gigantic applications.

CLIPPINGER: That's you saying it. Does Jerry say it

too?

PATRICK: All I said was that there is some hope.

KOORY: I'll agree that there's some hope.

OPLER: We've done a job of approximately the same

-168-

scope using a higher level language that is not a common

language. We produced something on the order of 145,000

machine instructions in a relatively short time. All this

really proves is that we can say, "Hurray for higher level

languages."

* : It has nothing to do with commonness.

PATRICK: I'd say that the last three topics we have

discussed have been categorized by, "Hurray for higher level

languages," and have nothing to do with commonness. (Documenta-

tion, training, and scope of the problem.)

CLIPPINGER: But about three-quarters of you wrote off -

the documentation. I don't see how you can draw any conclu-

sions from this discussion.

PATRICK: All I'm saying is that if our words had any

meaning it was with respect to higher level languages, not

common languages.

DOBRUSKY: I think we did reach some agreement that

higher level languages buy us something. Perhaps we can't

pinpoint it with names but the utilization and the training

and what not indicates that it buys us something. Now if we

continue to proliferate these languages for every application

we will never know what are the attributes needed for Command

and Control in a language.

CLIPPINGER: You have a better chance of knowing if you

proliferate them than if you don't.

LITTLE: Isn't Bill saying that you've got to be able to

analyze what it is they are doing for you?

■169-

DOBRUSKY: That's right. You have to be able to establish

measures on what it is that is required. If, in choosing a

connnon language, you find complete inadequacies in it, fine.

We will eventually know whether we need an extension of the

language we are trying or whether we need a new language.

Right now I think each application has such a large subset

of the other existing languages that we are just tilting at

windmills.

GORDON: I'd like to take one last swipe at commonness.

There are, I think, three levels of commonness; three dimen-

sions, if you will. You could think of a programming language

that is going to be common to both a 1620 and a 7094. Clearly,

such a language is either going to place a tremendous burden

on the 1620 or sell the 7094 tremendously short. Secondly,

you could think of a language which is suitable both for

matrix inversion and Command and Control work as well as

payroll and inventory problems. Clearly, such a language is

going to be pretty poor for one or all of these applications.

Thirdly, you can think of a language that is going to be

shared by your top level programmers as well as by your

retread tab operators. Clearly, this language is either going

to be hopelessly binding on the better programmers or it is

going to swamp the retread tab operator terribly.

If you go further and try to think of one language that

will cover both extremes in all three of the dimensions I

named, you'll have a pretty hopeless task. To the extent to

which you try to satisfy these mutually conflicting aims in

-170-

these three different dimensions, you will weaken the language,

and cut into its utility for any given application or use.

McCRACKEN: I think I agree with your first point, I'm

not sure about the second, and I know I disagree with the

third. I am thinking specifically of ALGOL. In ALGOL it is

perfectly possible to take a subset of the whole language and

teach it to people with a great deal less trouble than you

would teach the same amount of computing power in FORTRAN.

Then if you want to go on and use the rest of the language

it can do things that we don't even know how to use yet.

It's good enough for anyone's purposes. I think that this

is an extremely desirable feature of a language.

GORDON: You're dealing with at least two different

languages though, Dan.

McCRACKEN: No, I don't think so. You could take ray

ALGOL book and you could read three chapters or five or all

eight.

GORDON: But the assignment statement is not the ALGOL

language. You're really dealing with two languages, one of

which is a subset of the other. You may or may not get away

with it.

McCRACKEN: It's the same compiler though.

GORDON: For that matter, we've got FORTRAN, Commercial

Translator, COBOL, and what-have-you all in the same processor.

That doesn't make them the same language. Such a thing on

the 705 even allows you to intermix. I'm not saying you

should, I'm saying that you can. It's even rather cheap.

-171-

It doesn't take more than an hour for any one compilation;

you can actually mix your statements and have one statement

in COBOL and another in FORTRAN, and so on. But they're

different languages, they just happen to be intermixed in

one processor.

PATRICK: That sure sounds like a dog.

CALLER: But you can't go from one machine to another

with such a language.

GORDON: Well it turns out you can. Some of my best

friends have gone from 705's to Honeywell 800's. Of course,

there's one thing required to do this. You have to have

programmers.

CALLER: No, I meant you can't take your programs from

one machine to another.

CRUENBERGER: He means it isn't common in the first

sense you mentioned.

CORDON: That's right. If you stick to one machine

family, like 709/7090/7094, you can think of common programming

systems across such similar machine lines without losing much

effectiveness.

GRUENBERCER: It's the same as the SAP story that Bernie

started out with this morning.

CORDON: Right. If you take a small enough universe,

you can establish standards across it without it costing you

too much. The wider the universe gets the more it is going

to cost you to standardize across it. This is true of

machines, of applications, and of programmer competence.

■172-

GRUENBERGER: Howie, we could just as easily have used

301/501/601.

BROMBERG: I appreciate that. But the point I'd like

to make is that as long as you do go upwards you don't have

to go horizontally across. You made the point about machine

sizes. This can be accommodated very easily...

GORDON: It's not just machine size, it's machine

characteristics, like binary vs. decimal, character addressable

vs. fixed word length, and so on. When you go from the 1620

to the 7090 you have a basically different philosophy in

machine, organization.

BROMBERG: Perhaps we could categorize by size and

application...

PATRICK: No, I don't think so. The guys that are

working on the 1401 can have just as difficult a problem as

the fellows working on the 7080. They've got great big jobs

and many, many reels of tape which have passed over the heads

over and over again. The only reason you hack up the job is

that the machine is small. It's tougher to program for a

little machine. You can't say that he doesn't need it because

he only has a 1401. The only reason he has a 1401 is that

he can't afford anything bigger.

BROMBERG: I'm just wondering why all these things are

points against the notion of commonness, as far as languages

are concerned?

GRUENBERGER: Because Gordon named six fields that are

mutually incompatible. If you foster one, the other five

-173-

have to yield. If you make it work for the man who has a

small scientific type problem on a character addressable

machine, then it won't be efficient on a different, perhaps

larger, machine.

BROMBERG: And I'm saying that we could look into this

problem. Facts are facts. And there is a practical world.

FORTRAN exists and a lot of people are using it. There will

be a thing called COBOL and there will be thousands of appli-

cations. What are we doing at this very moment to assure

ourselves that the use of these languages is going to be

proper and effective, and the languages will grow, that they

will be responsive to change, that they will not have too

many inefficiencies due to their commonness, that progress

will not be frozen--is not effective maintenance the

solution to all these problems?

We have talked about the situation before a language

exists and we say, "What do we need for a Command and Control

language?" Then we say, "We already have this particular

language and it may be no good because it doesn't have some

of the goodies that JOVIAL has." Let's consider that we have

two languages now, and they are widely used and very popular.

What are we going to do with them? They exist; we can't

just say, "I'm against commonness." The languages are here.

PATRICK: It sounds like we need a rational program to

get from A to B, where we're now at A. But the rational

program doesn't seem to be to standardize at the stroke of a

pen.

-17;»-

GRUENBERGER: Another thing we seera to need is some really

elementary research. It's amazing how few iionest facts were

brought out today about common languages. For example, we

don't seem to know any facts at all about the efficiencies of

these languages in any sense that you want to describe effi-

ciency. We haven't compared figures between MAD, ALGOL,

NELIAC, and what-have-you. We've simply never measured these

things. We've done no statistical studies either of machines,

programs, or people. We might well consider exploring this

large area of research before we jump.

BROMBERG: I think one of the problems is that there

exists no convenient mechanism wherein all of us in this

business can have a voice that is heard by the standards

people and by the language extenders. For example, I think

it would be very nice if we had in the FORTRAN or COBOL

maintenance group a huge enough corresponding world whereby

those of us who are engaged in other forms of languages could

interject our ideas into that which is so very popular. I

don't think we should disregard the popularity and go on our

merry way creating more and more languages unless it is an

attempt to coalesce as much as we can.

OPLER: Howard, I wish you could be present at a meeting

of the SHARE COBOL group. These meetings are usually held in

an auditorium that seats about 500 people. There are hoards

of people there and they're all getting up and making suggestions

like, "Why don't we take this statement out of the language,"

or, "Why don't we put this statement in the language," and so on.

-17^-

Now this language is fairly sensibly held and maintained.

But you can get too closely coupled to your own feedbacks.

There are 100 suggestions proposed at every meeting. It

might be better to have a small knowledgeable group that pays

attention to the current needs rather than flinging open the

doors and having everyone making suggestions at once.

GORDON: Howard could attend SHARE meetings quite easily

if he wished.

PATRICK: Howard made a plea for a rational approach to

this and you have turned it around and cited one irrational

approach, Ascher. The open forum is not a very rational

approach.

BROMBERG: What I'm really looking for is some practical

form of language maintenance. I think it encompasses some of

what you mentioned; namely, having a small nucleus who are

actually doing this work.

McCRACKEN: You keep coming back and saying that COBOL

maintenance is no good. I thought it was quite good. Is

this not true?

* : I think COBOL maintenance is quite unsatis-

factory.

PATRICK: It seems to be very slow to respond, Dan.

BROMBERG: Again, smallness by itself, is not a sufficient

prerequisite for getting the job done. You have to have desire,

knowledge, experience, and time. I would maintain that none

of these exist on the COBOL maintenance committee in sufficient

quantity.

-176-

PATRICK: Maybe we're ready to drag out the old proposals

for a data processing institute. This is the sort of thing

where you could get hold of these guys and let them do it as

a full time assignment.

McCRACKEN: You mean an effective ACM.

PATRICK: No. ACM is still a voluntary club. First of

all it's not a professional society and secondly it's not

active. Howard is suggesting some guys who get paid to work

at these things, and not just whip off bright ideas.

GORDON: Several manufacturers have guys who are paid

to work at these things.

PATRICK: We may be paying the wrong people. This is

the advantage of an institute.

BROMBERG: This might be a good point. Lots of the

people on the COBOL committee have additional, separate

responsibilities. They do not put in full time at it.

PATRICK: This is somewhat like what SDC recommended

here in TM-688; namely, that they house the institute and

the government fund the thing. They speak of gathering a

crew of experts together, not necessarily on SDC's payroll,

to attack this very problem. That may be a relatively rational

approach. If you separated the men from IBM and RCA and

other manufacturers and put them in one place, they'd have

to get along eventually--they can't pick up the phone and ask

to come home because no one is listening to their ideas.

OPLER: This better be housed on one of the off-shore

islands.

-177-

* : Christinas or Easter?

GORDON: If you'll pardon an impertinent question, what

are the universities doing?

PATRICK: Bernie is experimenting and I don't think

anyone else is doing anything else at all.

GRUENBERGER: At our 1959 symposium we ripped the

universities apart and they haven't been heard from since.

This is Bernie's second year and if he comes again next year

we're going to have to give him the chair, gold plated.

CALLER: Universities have no authority in this field.

GORDON: You don't want authority. Vie already have too

many guys with too little competence and too much authority.

What I'd like to see is guys with more competence and no

authority.

CALLER: Maintenance implies authority.

BR.0MBERC: For example, suppose you have an implementa-

tion problem in COBOL. How do you resolve it?

CORDON: I ask Bill Donally, who is the IBM representa-

tive on the COBOL committee, and he resolves it. He will

give us an answer based on his discussions with the COBOL

people, or on his knowledge of what was discussed when this

thing came up. His answer is based on his best knowledge

and he will eventually go back and check with the committee.

If he is completely at a loss we will make a decision, based

on implementation considerations. But by and large, Donally's

full, time job with no other responsibilities is to stay with

the COBOL development and keep informed on what is intended

■178-

and we are guided by him.

PATRICK: He makes some of Ascher's 2n sub-decisions

which make the languages not identical.

GORDON; But it's not random. We base it on the best

information available to us.

PATRICK: But that's not like getting it from the horse's

mouth.

GORDON: It's as close as we can get to the horse's

mouth.

BROMBERG: I have great difficulty understanding how

after 12 or 15 COBOL implementations are nearly completed

that all of a sudden the maintenance group says, "I think

now we ought to collect all these known ambiguities and

start resolving them."

GORDON: Howard, you would have less difficulty under-

standing if you got back on the committee.

BROMBERG: No thanks. I'm just bringing these points up

for the edification of those who have not been so fortunate

as to attend one of these meetings.

OPLER: T hope I never see the day that we will resolve

some of these questions by punching up a few cards and going

down to the machine and feeding them in.

BROMBERG: Without such an authoritative organization

it leaves the world open to perversions of interpretations

of these common languages. Anyone can advertise, "Look,

fellows, we now have a COBOL compiler,"

-179-

BROMBERG: Complete with pictures, as a matter of fact.

This certainly defeats what we're trying to do. So I put in

a plea for a strong authoritative maintenance Czar with two

bull whips.

GORDON: I don't think you should enforce something

until you have something worth enforcing. With premature

standardization, forcing it is compounding the error.

BROMBERG: No one has standardized.

McCRACKEN: Don't give him a bull whip until you're sure

there's something in his skull.

PATRICK: They may go hand in hand, though. You can't

give someone the responsibility without the authority.

GRUENBERGER: Are you saying that we should have stronger

design control?

BROMBERG: Absolutely.

GORDON: No, you're not. You're saying, "Let's take

what we're stuck with now and make the best of a bad situation

by maintaining it stronger."

BROMBERG: What's involved in maintenance? There are

three things: interpretation, modification, and extension.

Modification may completely revise what we've got.

GORDON: Lots of luck. You know better than that.

BROMBERG: Why? It could, but it can't if every imple-

menter goes his merry way and collects his own little ambi-

guities after the fact and presents them to the committee as

accomplished facts. And"what happens with the previous years'

-l8o-

specifications? Suppose now some slow guy comes running

into the committee with a dozen and a half proposals for

last year's COBOL specifications. You'd have 15 guys faint.

GRUENBERGER: Are all you guys saying that what we ought

to do is to perfect a higher level language, set up a main-

tenance committee with a Czar and all that, and then worry

about commonness?

BROMBERG: No, that in itself takes a giant step toward

a guarantee of commonness.

GRUENBERGER: But you're also saying that we're not

ready for commonness until those conditions are met, aren't

you?

BROMBERG: I'm saying that we'll never have it until

those conditions are met. I say we're ready and we're well

overdue for it.

GRUENBERGER: Is there agreement on that in the group?

That was the subject for discussion today. Are we saying

that's a necessary and sufficient condition, before we even

approach commonness?

CLIPPINGER: I wouldn't go along with that.

''- : It's necessary but not sufficient. I think

there's a lot of merit in what Howard proposes. But I don't

think he was giving you an answer to the question you raised.

GRUENBERGER: Well, most of you indicated that you agreed

it was a necessary condition but Dan, you didn't agree. Why

not?

■181-

McCRACKEN: I'm not an implementer and I'd like to hear

more about the conditions here. I'd still like to hear more

about the idea of agreeing beforehand that we're going to

try to maintain commonness and work within that framework.

We should find the best people we can, set up the committee

first, and then agree to stick with it.

GRUENBERGER: You mean get commonness first before we

have a language that is maintained?

McCRACKEN: It's a question of states' rights. Are all

the states going to have to perfect their own government

before we can have a federal government?

BROMBERG: The original C0DA3YL charter said just this:

there are two reasons why we're going to establish this

necessary committee function for the creation of what turned

out to be COBOL. One is the provisions of an effective tool

for the specification of data processing problem solutions

and the other is to maintain some degree of compatibility.

That was absolutely stated before one little line was ever

written down as far as the COBOL specifications were concerned,

OPLER: How common? When we talk about a common language

do we mean that we expect to take the card decks of the COBOL

Procedure Division and whorap them into the machine, or do we

mean that we read the program and then start working? If

you mean exact compatibility, where you take the COBOL deck,

read it in a machine and answers come out, forget it. If

you're saying that compatibility can be obtained at very low

cost, then it makes some sense. The 200 decisions I was

-182

talking about before will prevent you from ever putting the

deck in any machine and getting correct answers.

McCRACKEN: All I want is something that's a lot better

than what we have now. It doesn't have to be perfect.

ARMER; Where are we going to be two years from now?

Are you saying that if I'm a guy who uses one manufacturer's

machine that I'm in a sense, no longer tied to him? Not that

I can pick up my cards and run them in this new machine but

that the cost of changing over is not as great as it is today?

That maybe there is some transference of training among my

fairly talented programming staff?

McCRACKEN: That's precisely what I'm saying.

ARMER: Isn't that a big improvement over the state of

things we have today?

McCRACKEN: It'll cost me $50,000 to change machines

instead of half a million dollars and I'd say that's a lot

better.

GRUENBERGER: Even though we pay a terrific price to

get that conversion reduction down to $50,000?

GORDON: That's right, is it a matter of saving the

$450,000 or Is It a matter of paying it out In a

different form, over a longer period?

* : I agree, look at that equation of Patrick's.

ARMER: If we look at these goals instead of the goals

that the common man in the data processing business thinks

these goals are, then maybe we can do it a lot cheaper.

-383-

McCHACKEN: I'm just thinking about the guy that had to

get himself machine B that he desperately didn't want. He's

paying for it. He's paying machine rental every month without

getting the compatibility.

GRUENBERGER: I was just looking at Patrick's equation

there. Supposing it costs you 10 cents more for every machine

run you make. And every three years you save nearly half a

million dollars in conversion costs. You come out about the

same. It's just bookkeeping.

McCRACKEN: I'd love to be able to have the choice.

GRUENBERGER: That would help, if you could make it

freely, I don't think you can.

DOBRUSKY: Standards and commonness are going to cost

you at some level, I don't care where you put it.

McCRACKEN: Of course.

DOBRUSKY: It's dependent upon these trade-offs and the

long run of it in training. Perhaps it's completely intangible

because we don't even recognize it.

GRUENBERGER: We've noticed that in industry there are

certain costs that you can bury very neatly. And those that

you can bury you don't see any more.

LITTLE: You can sit and talk about this all day, but

tomorrow somebody starts a new job. Two years from now we'll

have to face the fact that we have been using some of these

new languages over the last two years, and if we aren't in

better shape then, we've been kidding ourselves.

-184-

GRUENBERGER: At least most of our present progranmers

will have two more years of experience.

LITTLE: Yes, but they will all be supervisors someplace.

* : They'll be compiler writers!

BROMBERG: I think we will be in substantially better

shape. In a practicable fashion people will be able to

emancipate themselves from this slave market business with

their present computer vendor. People will be able to look

at the entire market.

GRUENBERGER: Barry, would you make that same speech?

GORDON: As far as emancipation is concerned I would

like to point out that the electronic emancipation proclamation

was written by IBM several years ago and it is called FORTRAN.

Philco and Honeywell and CDC and a great many other people

have made excellent use of it. Over the years it has proven

itself to be quite valuable, for IBM, for IBM customers, for

former IBM customers, for our competitors, and for the whole

industry. Now, five years later, it is being seriously con-

sidered as a standard. In another half decade (or less, since

we're getting smarter faster) we may be able to do the same

thing in the commercial area. Maybe we can even do it in

the Command and Control area and in other areas. I think you

should first find out what you're doing before you legislate

it into a standard.

ARMER: Is it not true in the Command and Control area

that we have had experience with a few of these languages

-185-

but at the time that somebody froze on COBOL there had been

essentially no experience?

GORDON: Essentially that is correct. At the time that

COBOL was chosen, there had been very little experience.

* : There'd been a fair amount of experience among

FLOWMATIC users.

GORDON: FLOWMATIC is not one of these languages, as you

well know.

McCRACKEN: One of what languages?

GORDON; The so-called higher level English-type narrative

languages. FLOWMATIC is about at the Autocoder-2 macro-

instruction level.

McCRACKEN: That is not my impression at all.

GORDON: You can hold up the opinion bag but I'll stand

by it, FLOWMATIC is just not in the same ballpark.

* : It looks like it but it's not.

PATRICK; That's right, FLOWMATIC is very weak and

AIMACO wasn't working when the COBOL effort went into orbit.

OPLER; A few weeks ago I was sitting with Dick Clippinger

and we were trying to come up with a few figures to estimate

what percentage of data processing problems now running in

this country have been coded with the help of a data processing

compiler. It's only a guess, but we concluded it was about

one per cent. Our next question was, what percentage of the

programs now being written in data processing are using a

data processing compiler. Again it's just a guess but we

-ISO-

estimated that it was less than 10 per cent. It would be

interesting to see how these figures change in the next few

years.

ARMER: Is it not apt to happen, particularly with

respect to the small machines, that we'll find people abandon-

ing these narrative languages and going back to assembly

programs?

PATRICK: Because the machines are too small to compile

on.

GRUENBERGER: Mr. Patrick here has devised an interesting

test for compilers. He asks a simple minded question,"How

long would it take this compiler to compile a HALT?" We've

got some figures on this, and they're very interesting.

BROMBERG: That sounds awfully impractical. Who wants

to compile a HALT?

GRUENBERGER: We do, as a matter of fact,

BROMBERG: Well, we'll build it into our compiler. If

you want to do it, it'll be a special case. We'll do it in

30 seconds,

GRUENBERGER: Yes, and that's exactly what happens. But

just as a matter of fact (this is pertinent, to what you just

said, Ascher) we get times like 20 seconds in FORTRAN, 20

seconds in JOVIAL, 90 minutes in FORTRAN on the tape 1620,

ARMER: That's a fact?

GRUENBERGER: I may be exaggerating that last one a

little bit; maybe it isn't 90 minutes, maybe it's only an

hour.

■187-

McCRACKEN: '/hat is it in MAD, Bernie?

GALLER: On the 7090, if you subtract all the time

necessary to load, it's about 1 second.

OPLER: And that's the whole program?

KOORY: You're talking about the total job time?

GALLER: If you want to throw everything else in the

total job time, it would be perhaps 5 seconds.

GRUENBERGER: When you go to small machines the threshold

effect can kill you. In order to get the system chunking

away so that you can compile anything, you have to chew up a

fair amount of time.

MacKENZIE: You're just checking the algorithms that

were used in implementation, not the commonness of the

language itself.

McCRACKEN: But these are related,

ARi-IER: If you're talking about having a common language

for small machines, when you can show that a common language

for small machines is no good, then you're crazy.

GALLER: It's not the language, it's the translator.

BROMBERG: You're talking now about the overhead time

that any system requires to do a certain amount of work. It

just happens to be very high for a small machine.

PATRICK: Right, that's the intersect.

ARMER: I'd like to get more out of Howard about my

statement that with small machines there's going to be a

great movement back to assembly programs from the magic

languages. Nobody seemed to argue out loud but you seemed

-188-

to indicate that you would.

BROMBERG: I think that's wrong for "wo reasons. First,

I would imagine that the type of individual who is working

on these small machines would find it necessary, for their

livelihood, to deal with these languages.

McCRACKEN: What does that mean?

BROMBERG: They're not programmers. They're tab people.

These are the people who, when the 1401 came out, ran down

the hall and put in an order for 6 of them. Now, they've got

to use them. One way to get to use them is through one of

these languages.

ARMER: And now all he's doing on his machine is compiling.

BROMBERG: Probably what he's doing is using his machine

as a glorified tabulator.

GORDON: We have utility programs that do that without

having to compile.

GRUENBERGER: Or generators.

BROMBERG: Well, you guys are going to have a COBOL

processor for the 1401 aren't you?

PATRICK: Because the DOD said they had to have one.

GORDON: There is an announcement to that effect.

McCRACKEN: Let's move up to the 1410.

BROMBERG: All right, let's.

ARMER: A COBOL translator, I understand, exists for the

1410. Are we going to be throwing it out in six months?

McCRACKEN: That isn't the whole story. I know of a 501

■189-

installation that does their coding in absolute octal. It

isn't just a question of availability, or how good it is;

there are a lot of other factors. They had the COBOL course.

OPLER: We know of one of the earliest cases of disillu-

sionment of a user of a medium sized machine using a COBOL

processor on a job that could be done easily in assembly

language,

CALLER: We ought to keep clear the distinction between

the language and the translator. We're judging languages in

terms of the current translators, which is very unfortunate,

OPLER: Let me go further on the subject. We just

completed the design of a COBOL translator for a small machine.

The size and scope of the COBOL language is such that by no

stretch of the imagination is there any way to fit it in the

core of the machine; therefore, it must be done by multiple

passes, and takes relatively a long time to compile. Therefore,

I am stating that the COBOL language, itself, is such that on

a machine with a small core memory and limited tape ability,

it will take a long time to compile any COBOL program.

CALLER: Did you, for example, organize it so that most

of the features that a person might use could be done by a

small part of the translator, with the rest brought in only

if the user gets exotic?

OPLER: It turns out that this is very difficult if at

all possible.

GORDON: Yes, for example, a feature that a programmer

might use is data description.

■190-

0PLEnv: In a standard method of using COBOL, a larg2

corporation will take all of its master files and make huge

data descriptions for them. Now, a COBOL program, to be

compiled on their computer, may be of the form "Open file,

read in a record, determine whether this employee is over 21

or not, close the file." To process this four-statement

procedure, you have to bring the entire data description of

this tremendous file into the peewee memory of the computer.

BROMBERG: There are certain techniques... On a small

machine one could consider doing an initial compilation,

keeping in mind a finite number of files that you're going to

pass through the machine in this installation. You create a

mechanism wherein the processed data description of that

particular file as it exists now during the initial compila-

tion in the internal manipulatible compiler language is

library stored, and you save a lot of compile time,

OPLER; But you can't convince a customer that this is

the way he has to operate.

GORDON: The original definition of COBOL specifications

says that the library must contain material in source language

form. This is what you call an impleraenter's unique original

extension. And it's very common.

GORDON: You still don't have the COBOL specifications.

Either you're going to talk effective or you're going to

talk conraon.

BROMBERG: You put in a library the original source

language according to the DOD specifications and your internal

esmasazfflaatxmsimMRmm'csmsmszMsii

• 191

language. The function of the internal language is naturally

for fast compilation. The function of the original source

language is for the reference format.

OPLER: In other words, here is COBOL, and here is the

way to get around it.

BROMBERG: I'm just worrying about fast compilation for

the problem Anner brought up about the small machines. It

doesn't violate anything. It obeys all the rules of COBOL.

PATRICK: But if you have only 32,000 words and the

translator itself takes about 70,000 it seems to me it's going

to be like multi-pass.

BROMBERG: I'm not going to give out any more tips to

you guys.

PATRICK: There's one way around it: you can put a

whooping big drum over in the power supply and not tell the

customer about it.

MacKENZIE: I don't think that's quite fair. Bob. Please

don't rule out the fact that there would probably be more

worthwhile reasons for having that drum in the system. For

example, it might be there for organizational reasons not

related to its ability to process some particular language.

PATRICK: If I. have a language of reduced sophistication

and the whole translator takes only 20,000 instructions there

is a good chance it will be a one-pass compiler.

OPLER: I'd appreciate some of this advice with regard

to a 60,000-word compiler that is to operate on a 2000-word

machine.

•192-

GORDON: Does he want to write out a c

advice? ,

PATRICK: If there are no further proi

I think v;e stand adjourned.

GORDON: Would you like to hold up th

how much we accumulated in each one?

PATRICK: I can hardly lift the opini

OPLER: Howard, I really hope you can

laugh a couple of years from now,

DOBRUSKY: I've got a topic for next

"Measures of Compiler Language and System

GORDON: Make it "Measures of Program

(The meeting adjourned.
i

