UNCLASSIFIED

0 290 b1

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as 1n any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

- - P

3

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

- 7 S L
w3 =S 70

|

MEMORANDUM

RM-3324-PR
NOVEMBER 1962

L
£
¥
St T L LT Y

THE FIFTH
RAND COMPUTER SYMPOSIUM

F.J. Gruenberger, Editor

990 §15

......

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

0 1) P

SANTA MONICA « CALIFORNIA

MEMORANDUM
RM-3324-PR
NOVEMBER 1962

THE FIFTH
RAND COMPUTER SYMPOSIUM

F.J. Gruenberger, Editor

This research iz sponsored by the United States Air Force under Project RAND — Con-
tract No. AF 190638)-700 - monitored by the Directorate of Development Planning,
Deputy Chiel of Stafl. Research and Technology. Hq USAF. Views or conclusions con-
tained in this Memorandum should not be interpreted as representing the official opinion
or policy of the United States Air Force. Permission to quote from or reproduce portions
of this Memorandum must be oblained from The RAND Corporation.

The 2‘” ” Déﬂﬁﬂm

1200 MAIN ST + SANTA MONICA « CALIFORNIA

-111-

PREFACE

This Memorandum 1is an expurgated transcript of the
Fifth Annual RAND Computer Symposium, held at The RAND
Corporation, April 1962. The 1dea for these symposia
grew out of the observation that much of the value of
computing industry conferences comes from the informal
conver3atlions which take place in hotel rooms and con-
ference corridors. The feeling that an organized "bull
session" might be & worthwhile endeavor, led to the
invitation of some twenty individuals to come to RAND for
a full day of discussion on common problems in the com-
puter fileld.

These sessions have been held annually since 1958 on
the day just prior to the Western Joint Computer Con-
ference. The Symposium is, 1n effect, a meetling of
individuals prominent in the industry. The views expressed
in thls transcript are those of the individuals involved
and not those of thelr employers nor of The RAND Corporation.

The discussion during the fifth symposium centered
around the toplc, "Pros and Cons of Common Languages,"
with speclal consideration being giveh to use by the mili-
tary of Command and Control languages. Because this topic
1s of special interest to the U.S. Alr Force, and the com-
puting field in general, the transcript of the 1962 Symposium
1s being released as a RAND Memorandum.

An article based on this transcript appears in the

October and November 1962 issues of Datamation magazine.

SUMMARY

The Fifth Anual RAND Computer Symposium, held in Santa
Monica on April 30, 1962, was concerned with the single
toplc, "Pros and Cons of Common Languages."

RAND was represented by Paul Armer, George Armerding,
Fred Gruenberger, Jack Little, and consultant Robert L. Patrick,
who chalred the session., Other attendees were:

Phillip Bagley, MITRE Corporation

Howard Bromberg, RCA

Tom Cheatham, Computing Associates

Richard Clippinger, Minneapolls Honeywell

Joe Cunningham, U.S. Alr Force

Bill Dobrusky, System Development Corporatilon
Bernie Galler, Universit& of Mlchigan

Barry Gordon, IBM

Jerry Koory, System Development Corporation
Brad MacKenzie, Burroughs Corporation

Dan McCracken, McCracken Assoclates

Ascher Opler, Computer Usage Company

Charles Phillips, Business Equipment Mfrs. Assn.
Dick Talmadge, IBM

The seven-hour discussion dealt wlth the advantages
and dlsadvantages of using higher level languages for
instructing computers; the feasiblllity of makling one of these
languages a standard or common languagej'and the applicability

of these languages (e.g., FORTRAN, COBOL, ALGOL, JOVIAL,

-vi-

(NELIAC) to Command and Control problems.
The original transcript was edited and corrected by
each of the attendees. This Memorandum contains the

final version of the transcript.

THE FIFTH RAND COMPUTER SYMPOSIUM

CHAIRMAN PATRICK: Our objectlive today 1s enlightenment.
The subJect of common languages 1s clouded by claims in
advertising that are unsupported. Some examples are hung
on the walls here today.

I have here two bags. This large paper bag is for
opinions. This small chamols bag is for facts. From time
to time during the session, a speaker may not make his meaning
clear., Should this occur, I will exercise the chalr's pre-
rogative and shall classify hls speech by displaylng the
appropriate bag. If I should happen to mlsclassify someone's
speech, the speaker should attempt to fill us 1n to convince

us that his remarks are not opinions but are indeed facts

-~

(because that's probably the way I will misclassify). Please
supply the supplementary information before you yield the
floor.

Let's look at this chart that we have over here. (See
Figure 1.) This chart will indicate why we should all be
concerned. It 1s rumored that the Department of Defense
(DOD) intends to standardize on a language for Command and
Control. On the right the chart shows an area characterized
by the name, Business, usually characterized by a high ratio
of input and output to computing. On the left we also have
Scientific jobs which are characterized by just the inverse.
We have all heard of the famous Los Alamos job 1in which you
read one card in the morning, compute all day, and print one
line 1in the afternoon. Of course, this job doesn't exist;
in fact nelther of these areas exlst 1n pure form, but sections
and subsections of jobs do fall into these categories. There
is an overlap of the two as 1ndicated by thls Venn diagram
intersect. Thils overlap is seen in areas like data reduction
and heavy actuarial work. In these areas you may think of it
as sclentific, but it has many characteristics of a business
job. Command and Control has characteristics which are common
to these two and also many characteristics of its own. Real-
time applications have characteristics common to Command and
Control and also characteristics unique to real-time problems.
Consequently, 1if anything were to happen such as a standard-
ized language for Command and Control, 1t would affect the

entire field.

T 92an3tyg

J00¢ + LNIVNS + QOHd$ + 1S31$ + W3SSV$ + dWOD$ + 300D + WOd$ + NIVHLlS = 150D

TO0H1NOD
aNY

ONVIWWOD

I

The lower portion of the chart shows a simple equation.
The equation is an expression for total cost. (A similar
expression could be written for time.) As the equation shows,
total cost is made up of dollar amounts spent for training,
programming, coding, compilation, assembly, testing, production,
maintenance, and documentation. All of these factors are
involved in every single job that is done on a computer. (In
some cases the coefficient of a given term may be zero. For
example, 1f you have the facility for compile-and-go, then
the assembly phase does not appear.) But for most problems,
all the terms exist with non-trivial coefficients.

Sales literature and some of the '"technical” literature
that we read implies that we can reduce some one of these
terms without at the same time increasing some of the other
terms. The gullible citizens believe these statements. I
believe that we will be doing ourselves and our country
serious damage 1f we fail to see through these claims.

During the discussion today, I invite you to use this chart
to explain what you mean.

Fred Gruenberger has another chart which he would like
to show you. Fred, why don't you take them around the carrousel?

GRUENBERGER: I hope you'll forglve us for starting out
gomewhat formally this morning. We have had quite a few
meetings, both formal and informal, in the last few weeks,
discussing this problem. We have noticed that during such

dlscussions, people tend to go around and around a merry-go-

round in talking about common languages, so we made up this
chart, 1It's really just a sort of checklist of the topics
that keep coming up over and over (see Figure 2),

Let me just go around these items very quickly. The
first thing that we have found that causes confusion in a
discussion of common languages i1s the tendency for people
to interchange, sometimes in the wmiddle of a sentence, the
ideas of '"what can a higher level language do for us?" (For
example, what goodies do we get by using ALGOL?) and "what
advantages do we gain by using a common language?'' Common
languages are those which cut across installations, problems,
and machines.,

The other topics are pretty obvious. How are you going
to traln people? What kinds of people are going to use a
common language? (We're talking here about the level of
the users. Are they going to be top-notch programmers, or
are they going to be clerks?) Can the system be changed by
the masters and can it be changed out at each installation
where it is used? Do we lose efficiency due to commonness?
This is a claim that has been made, although it might be
refuted. In other words, if we implement a given language
on a glven machine, have we taken advantage of some of the
characteristics of that machine that might be good?

Does the language exhibit design control? That is, was
it designed by a competent man who retained control over its
ingredients or was it designed by a committee? Does the

system freeze progress? Is it going to be maintained? Here

c SJan3Tg

» JONVNILNIVW

T e S
SSINNOWWOD 0L 2 A - $S3Y90Hd
3N0 AIN3IDI443N] h o Y JN. N3Z0Y4
’ .._r = = - -..__ _-._-_ \\...._-. .,
~ - - \\ 'q
/ \ F = \ 7T /
£ \ J ,..m.u.h: !
/ : ; XS~/
4 v\. ’/.-.
JOHLNOD m ! ..». - A \\ TN ,,,,.,,,
o -~ -
NOIS30 /23~ \ X - A / .H».l. 9NI99N83a
| b - - . i .4“..\. \ \\ .\.\. _____
™ - .\..\.-.. \ / - |
| b " .\.........Ij.j.._ i1 / .._\._ \
| - .h_.. - _,1. b Y = /~ \\. |
| - { i - / s
| - [f___,_x .___...\ v~ |
s i i s ~7 / TS /
MR oL WK G e e
SSANIAISNOLSIH e
. / PN \ 4403avy1
.. I o .rrd..-_.f \ .\
\ L,____, 5% / s \ /
ra Fi L9 \ r
.. L.-\_ _‘__‘. ff \ \\\
\ i W
\ I b R P
mmum: ‘f d..._ I ..\.M%'.
40 13A37 v/ g ONINIvYL

S31T009 JISNIYLINI
SA

NOWWOD

again, we have the global and local problem. Can and will

it be maintained globally and can it and will it be maintained
locally? How will you debug in this language? Will the
language and its system allow local managers to trade off
their resources; namely, people and machine time?

We have noticed that as people discuss this subject, they
bounce from one item to another on this list, We don't show
all the forty-five connecting lines, but they should be here.

PATRICK: Now would anyone like to open up the informal
discussion with a fact?

OPLER: I would rather open with a question. Do you
distinguish between a common language and a standard language?

PATRICK: I think we would like to if you would care to
describe them for us.

OPLER: I'm not sure I can, but perhaps I could give
examples, I suppose there is really a Venn diagram inter-
section between the two. A common language is one that would
be acceptable to two or more disparate machines. A standard
language is one maintained and enforced as a standard language
which requires some sort of committee agreement.

Some manufacturers had developed languages which could
be processed on several of their machines. These would be
common languages, but they would not be standard languages.

LITTLE: Are we saying that a common language may not
be the standard, but a standard language, by definition,

must be common?

8-

GALLER: Could I ask whether there is the feeling here
that FORTRAN is a common language? You can say, of course,
that there 1s no one FORTRAN but this isn't very important.
Could we use FORTRAN as an exawple of a common language?

McCRACKEN: 1It's the closest thing there is,

GRUENBERGER: Yes, close, but it doesn't make it. I
know of no example of a language that is common in the full
sense of the word, but FORTRAN does come close,

McCRACKEN: I think there 1s a principle involved here
which is going to operate on us all day. It goes like this.,
This 1s what we've got; it will do our work for us. Someone
comes along and proposes something better; perhaps a standard.
And everyone then says, '"Gee, 1t isn't perfect and, therefore,
it's no good." The question is whether the things that are
proposed are better than what we have now, not how they
match up against some ideal.

BROMBERG: Going back to Opler's attempted definition,
you could conclude (just as we concluded before) that there
1s no such thing, really, as a common language; that there
is no such thing, Dan, as a standard language.

If we consider that, in order to handle a standard
language, it is necessary tc have an authoritarian group to
establish and maintain it, then you aren't going to have a
standard language. If it 1s necessary that all ten of the
things listed on that chart be applied to the language by

one central group, then this can exist only in a finite world

such as the world of a given manufacturer or a single instal-
lation. In that case someone in this finite world can take

a common language and define it to be their standard. But

as far as a national standard language goes, there is no
such thing.

But I feel it 1s unnecessary to labor this distinction
between common and standard. For our purposes here, it seems
to me we can discuss only common languages, by which we mean
those which can function on more than one machine type.

GRUENBERGER: I didn't say it had to be perfect, Dan.

I simply said that we don't have one.

PATRICK: Maybe it would be appropriate to discuss
whether we want one. I think there are some of us who do,
but then there are also some of us who don't. Dick, would
you like to discuss this point?

TALMADGE: Whether we want a common language or a
standard language?

PATRICK: Let's consider them synonymous for a while,

TALMADGE: 1It's my opinion that we don't want a common
language in the sense that most people use that term; that
is, a language that everybody would use. To draw an analogy,
mathematics, which people tend to think of as using a standard
language, in reality uses a standard set of notations that
are widely understood. Furthermore, a mathematician may use
his own notation within very elastic limits, as long as the

meaning is clear. One of the most acute problems in computing

-10-

is that we have not yet developed procedures which allow such
a standard notation. Until we know more about linguistic
structure, it is unlikely that we will. In any event, a
common language (whatever that may be) does not seem to be
the answer.

PATRICK: So you say we're not quite ready yet. Perhaps
we have something more to learn.

TALMADGE: I think we have a lot to learn about how to
use a language to express a given class of problems; and how
to determine what problems are amenable to a given language.

BROMBERG: It strikes me that the sawe comment can be
made with reference to every single human endeavor; we have
a lot to learn., Name anything--scilence, living, or what have
you--we have a lot to learn, But this in itself should not
preclude our being able to use that which we have or that
which we could have. There still exists a long list of jobs
that have to be done with perhaps less than perfect tools.

If something better comes along, why not use 1it?

TALMADGE: I didn't intend to imply that one should net
use whatever tools are available. T merely meant that I
think the present tools are inadequate for the job of forming
a permanent language; rather, they should be used to develop
more powerful tools.

BROMBERG: I assumed that the question was, '"Is this the

time for a common language?" and I would say this is certainly

the time,

-11-

GORDON: I would like to point out, Howard, that there
is a significant difference between utilizing and standardizing.
I would also like to quote from a letter written by Dick Hill...

PATRICK: Is that Richard H. Hill of Informatics?

GORDON: Richard H. Hill, then of Western Data Processing
Center. This was a letter written in June of 1960 which I
clipped out of a SHARE secretary's distribution. He has
something to say about a language system (well known by its

initials), and I quote,

One of the worst curses of mankind is premature standard-

ization. Reasonable standards evolve; they are not

imposed. The penalties of premature standardization

have proved to be far more costly than the rewards,

I think everyone is in favor of standardization in much
the same way everyone 1s in favor of motherhood; but also,
like motherhood, if it occurs prematurely, it can cause a
great deal of inconvenience,

GALLER: 1I'd like to call attention to an example of
successful standardization that came along at a certain time
and was successful for a certain reason. I'd like to hear a
discussion some time of why it was successful and why some
others weren't. I'm referring, of course, to SAP. At the
time SAP was made a standard of SHARE, it served a very useful
purpose. I think it contributed greatly to the progress we
have made from that time on. At that time, there was a need
for something and SAP filled that need. I can't explain
what's so different about things now except possibly that

we know more now, We are perhaps a lot more individualistic

~12-

today, and we can evaluate things better.

It's to everyone's advantage to be able to communicate.
The more standardization we have, the more we can communicate
easily., But there 1s a cost to standardization. Each person
must ask himself, for example, ''Should I use FORTRAN-IV?

What 1s the cost of deviating from using this language?
Likewise, what does it cost other people if I deviate or if
they do or do not deviate?"' I don't think there's a clear
cagse for eilther side,

ARMERDING: The problems involved in standardizing on
SAP were several orders of magnitude smaller than the problems
that we have in standardizing on these magic languages today.
Basically the problem then was to get a group of guys together
to standardize on what three-letter mnemonics we would assign
to each of the machine op-codes plus a few pseudo-ops to
get the assembly system running. All of that amounts to a
trivial problem compared to gtandardization in one of the
non-machine languages today. The difference is so great that
I don't think we can really cowmpare them,

GORDON: Point of information. If we're going to talk
about standard languages and we call SAP a standard language,
we had better clarify what we mean. I don't think SAP was a
standard; it was one of a great many languages for that class
of machines.

BROMBERG: I wonder 1f we couldn't outlaw the use of

the word standard at least for the time being.

-13-

GORDON: Either that or define it,

BROMBERG: Let me give you a little of the background
of what 1s going on in ASA, BEMA, and the X-3.4 Subcommittee
on Common Programming Langugaes. There has been established
a survey director whose function it is to survey all the
common programming languages. Remember, these are languages
which have been developed to be used on more than one machine
type. A preliminary survey which reflects languages of broad
utility has been done, and it has been sent to various overseas
contributors. An Interesting part of this survey 1s that
assembly languages like SAP, Autocoder, and X-1 have by
definition been precluded. They are not incorporated in the
survey because of obsolescence or the level of the language.
The only kind of common language admitted to the survey is
that which is effectively non-machine oriented; that is, it
does not look like any known machine order code. The entries
are essentially problem languages as close to natural language
as we can get,

McCRACKEN: How many common languages have you listed?

BROMBERG: There must have been about 90, I can't be
too sure.

PATRICK: Howard, I can't think of the first one, if -you
set up the requirement that it must be machine independent.

BROMBERG: Of course, it all depends on what you mean
by machine independent., Must 1t be totally machine independent?

PATRICK: Well, if you are going to cut across machine

lines it seems like it ought to be.

~14-

McCRACKEN: It doesn't have to be perfect in order to
be better than what we now have. That's going to be my
standard speech today.

GRUENBERGER: Why don't you give that speech the code
name ''Monkeywrench" then?

GORDON: But the new language we adopt should be signi-
ficantly better than what we now have.

GALLER: 1I'd like to point out that SAP is probably a
small isolated example of what we're talking about. But at
the time it was the language. At that time the decision to
standardize on it was a major decision. As a communication
language it had some of the elements of what we are talking
about now.

GORDON: Not at all.

GRUENBERGER: For one thing, it dealt with only one
machine type. You could just as well say that 650 machine
language is a common language among 650 users. They can't
avoid 1t,

ARMER: Maybe that's why we're having so much trouble
now. We don't have enough tandardization at the trivial
end, For example, on character sets.

PATRICK: I scem to #tear three different cheers for that
sentiment.

OPLER: 1I'd like to say one more thing about the SAP
question before we lay it to rest. We must remember that at

the time of development of SAP there were three situations

which do not apply today. TFirstly, everyone was bleeding
from 701 experience where there was no standardization effort.
Secondly, SAP was pretty well done before the 704's started
to arrive and before there had been a heavy investment in

704 programming. And, thirdly, there were two potential
rivals already in evidence--NYAP and SAP.

In the context of those three items, I'm inclined to
agree that the decision to standardize on SAP was a good one.
I also agree that it is not too pertinent to the situation we
have today.

LITTLE: One wonders why this was such a big step forward
and why we took such a big step backward with the advent of
the 7090. We seem to have diverged again.

Languages may evolve or standards may evolve. I think
that languages can get to be standard or common in a lot less
exotic ways. If a big enough user uses a single language
without regard to the rest of the world, then you are sort
of saddled with that language. DOD may be going down this
road and whether you like it or don't like 1t you may have
the situation with you very shortly. I would like to hear
an outline of some methods that can be used to help insure
that the language we get 1s a good one. I am sure that we
are going to get one. But I don't think we're going to get
one that somehow magically everyone will like.

There are certain things that you want built into it.

For example, you want it to have the ability to change--to

-16-

make itself better, or for people to make 1t better. There
are two items on our chart that seem to deal with this question,
One has to do with the language 1tself and another one has
to do with the problems that we are going to use the language
on. You want the language itself easy to change but 1f the
language does not also allow you readily to change the problem
that the language 1s used on, then it's going to fail.

So I'd like to gee some discussion here of practical
ways which will insure that the language or languages that
do evolve will have in them desirable characteristics.,

PHILLIPS: 1I'd like to go back and add something to what
Howard said about the ASA-X3 program. One part of that
program concerns the development of a standard language.
I'm quite sure (although this may be just an opinion) that
the 18 members of BEMA or the general interest and user groups
that are supporting this program would not feel that they are
bound to adopt and use, to the exclusion of everything else,
a language that might be developed as a result of the program,
By the same token, I don't think that Defense, in supporting
the COBOL program, had any intention of making it a required
program for use throughout Defense unless there was good
reason for it; that is, unless it would serve a useful purpose
and there were definite advantages or needs for communication
that it could satisfy.

PATRICK: Well, that sounds very high and lofty but it

seems to me that if you insist on COBOL before you will

-17-

conslder a machine from a given manufacturer that this kind
of implies that you won't get COMTRAN,

GORDON: Or FACT.

PATRICK: Well, if we're looking to the future it just
doesn't seem that with the money press that is coming on
the manufacturers that they can afford to do two of these
languages. So 1f the DOD says, "I want COBOL," or "I want
JAZZY," or some other darn language, it kind of looks like
we're all golng to be using it whether we like it or not.

T would dearly like someone to convince me that I'm wrong.

LITTLE: 1Isn't it true that if you just get enough
people implementing COBOL, elther you accept it at that point
of time as common or as a standard, or what you develop there-
after as common or standard must be compatible with COBOL?

Mathematics may be a standard language to write things
in but you don't have a lot of people sitting around rewriting
mathematics., They may disagree in the notations but they
don't have to go back and rewrite totally. But when you have
a program or a whole set of programs running on a machine
and a new language comes along it implies a tremendous amount
of work on the part of people to conform,

TALMADGE: 1I'd like to amplify my previous remarks about
mathematical notations. In trying to standardize without
enough knowledge, we may entirely miss the goal. For example,
three or four people here have used the word "language' to

categorize systems I would classify on completely different

-18-

levels: SAP and COBOL for instance are not even comparable,
Perhaps we should first define the meaning of the much abused
word ''language."

MacKENZIE: Good, bad, or indifferent, I think we ought
to be able to rigorously define the language in question.

PATRICK: A la the syntactical chart?

MacKENZIE: Not at all, for the charts are merely visual
aids, We should be able to find ways of producing rigorous
descriptions of languages--ones that people can read and ones
that represent the authority rather than ones which require
inferences to the authority based on observation of a machine
representation in action,

McCRACKEN: T would tend to agree with that,

Suppose you have two languages that do about the same
thing. One of them has a lot of effort behind it; that is,

é lot of people working on it. The other is what you might
call an offshoot of the same thing but just a bit better--
but not widely used, and not being heavily worked on by large
numbers of people. It's mwy opinion that the computing world
would be better off to settle on the one that is more widely
accepted and work within the framework of that one language
to improve it, than to push for acceptance of offshoots which
may, ln some way, be better,

PATRICK: This is contrary to the basic assumption of
all this standards jazz. In the speeches that Bright and Co.

made on the East Coast last fall, they started out by assuming

-19-

that you couldn't do anything 1f it was just one manufacturer's
work. A situatlon which could be described as "1'll assume
FORTRAN out of the way and then I'll look for a common
language."

LITTLE: Dan, did you say work on or work with? You
salid work on the language. I assume you mean a lot of people
are using the language.

McCRACKEN: Well, I actually meant a lot of people fooling
with compilers.

CLIPPINGER: You mentloned throwing out FORTRAN; perhaps
I missed something before I came 1in. ﬁas someone brought up
the fact that X-3.4 has selected three languages to consider
for standardization, of which one is FORTRAN?

PATRICK: No, I hadn't heard that.

GRUENBERGER: And what are the other two?

CLTPPINGER: COBOL and ALGOL. I assumed that everyone
knew that. X-3.4 has requested from IBM a statement as to
their position on this matter and IBM has responded favorably,
and IBM has done some work in providing as a starting point
an initial draft of a form of FORTRAN which could be used as
a kick-off. X-3.4 is about to set up a group to go to work
on FORTRAN along with the other two. You can put that in

the fact bag.
PHILLIPS: Dick Clippinger was on the same panel you

mwentioned thiat discussed this subject back at the Eastern

-20-

Joint Computer Conference. If I'm not mistaken you have
quoted Herb Bright wrong. I don't belicve he said that
because FORTRAN was a one-company language it should be
outlawed. In fact, I think he generally supported FORTRAN
as a candidate for a standard language.

CLIPPINGER: That's right. At that time he was very
much distressed that X-3.4 was considering ALGOL and COBOL
as standard languages and not FORTRAN.

PATRICK: Well, I didn't hear his speech but I have a
copy here in front of me. I hope I'm not quoting him out
of context but he says, ''Unlike ALGOL and COBOL, it (FORTRAN)
was not developed by a broadbase comparative study group but
by a single manufacturer." He doesn't seem to mention the
manufacturer's name. And after that he doesn't seem to
mention FORTRAN at all. He talks a great deal about ALGOL
and COBOL which looks like some sort of an indictment.

CLIPPINGER: Might you not have read in‘the indictment
in your own mind?

PATRICK: I guess it looks that way.

PHILLIPS: 1'm sure you must have, because in the talks
we had before the conference his ideas were the reverse of
what you imply. He was saying that just because it was
developed by one company is no reason to threw it out.

ARMER: But it was a fact that at that time FORTRAN

was not being considered by the committee.

~21-

GALLER: ALGOL and FORTRAN are quite similar in that
they both cover what we have loosely called the scilentific
area. You really don't need both of them. So 1f there's a
move to make them both standard, it would be interesting to
gee why, And here it seems to me that FORTRAN 1s being looked
upon as a standard, not because it's so wonderful but because
it is already so common. ALGOL, on the other hand, doesn't
have much claim to commonness yet but it does have something
to offer. I don't think there is a real tremendous need for
two languages to be standard but it is interesting that both
of them are being looked at.

McCRACKEN: But then why look at three of them? I'm not
referring to COBOL but, for example, why do we also need MAD?

GALLER: MAD is a language that is not used very much
yet. It seems to me that we cannot decide that any one of
the languages we have now is it.

GRUENBERGER: You'd better use a different word, Bernie,
You meant a lower case '"it" didn't you?

GALLER: Sure, but look back to when FORTRANSIT was
distributed. The covering letter for it said something like,
"Everyone recognizes that FORTRAN is the language that we're
going to use from here on out so you'd better get on the
bandwagon.' Simply and historically we know that that was
not true, I don't even want it to be true. There's a
‘difference between standardization at a point in time where

you could get great benefits from it, and abandoning the search

—22i

for something better. ‘Je should always be prepared to go on
to something better, We may choose to develop a language
that is different, and the fact that various people are using
MAD would seem to indicate that there is something there.
There are people who are choosing not to take it on because
of the cost of deviating from FORTRAN and ALGOL and so on.

Ve are very happy that people are looking at it, but some
people who have looked at it have rejected 1t, and that's
fine. There is always a cost involved in deviating. We

have examined that cost. We are examining it right now. We
are asking ourselves whether it is worth while to rewrite

MAD for some other machine or should we try to make a new
version of it. We ask ourselves what is the cost involved

to us. We would have to make some attempt to cover ourselves
and to be able to translate from the old to the new. If this
cost 1s less than the cost of deviating then we'll go ahead.
We have got to be free to make changes if only to allow
ourselves to keep progressing. People tell me "You don't
have tremendous production problems." This is fairly true.
We do a lot of work but the life span of the jobs we do is
pretty short. That means we can write off the life of these
jobs to a large extent. There is a need for people to keep
looking at these languages and to keep experimenting. And I
think it is a mistake to throttle these efforts by decree or
by economic pressures or what have you.

* : Who said we should do that?

% = Unknown voilce.

-23-

GALLER: All right, let's say by talks at conferences
which say we should depend on the manufacturers and we
should stop doing things because it's time to standardize,
(I think that's what Opler once sald.) We've got to look
at where we're going and each person has tc look at each of
these languages.

McCRACKEN: The question was whether in the process of
looking at the new languages we have to create a new name at

the same time. Can't we work within the framework of what is

widely accepted? Can't we try to improve what we already have
or do we have to go off to the side and create something new
that is not cempatible?

GALLER: Scmetimes to make progress we have to go off
to the side and start fresh,

PATRICK: Bernie is making use of the unique position
he is in, where he can experiment without severely changing
the course of the field unless he just happens to find some-
thing very good. Perhaps IBM cannot do this and the Department
of Defense cannot do this, If either IBM or the DOD (and they
are the two powers) do this, thelr experiments will have a
profound effect on the field.

ARMER: God help us if our universities can't experiment.

McCRACKEN: That isn't what I said. They've got to
experiment,

ARMER: What would you have them do differently? Some-

how I feel that you're picking on Bernie.

24

McCRACKEN: No. Bernie is a friend. But if they do find
something good by experimenting in the universities what do
they do about it? Do they go out and say, 'Let's everybody
buy my language now? It just happens to be called MAD and
it's not ALGOL.'" Or should they get back into the ALGOL
effort, having found a good thing? Of course they should
experiment.

ARMER: But it seems to me that thelr experiment has to
involve a fairly large number of users. They can't just
develop 1t and then not use 1it.

GALLER: We've got 2,000 people on campus just writing
programs. We use it,

ARMER: Yes, but it seems to me Dan was arguing that
MAD is not really going to change the world and now you
should put it on the shelf and do something in ALGOL. Is
that what yocu were saying Dan?

McCRACKEN: No, I was askilng a question. The question
is, should they now go out as salesmen for MAD? Alternatively,
should they go to the ALGOL people and sell them on the
improved features that they have developed in MAD?

PATRICK: Selling something to the Secret Society is a
difficult job.

McCRACKEN: There is now a well established committee
of IFIPS for the maintenance of ALGOL.

CLIPPINGER: 1I'd like to make a statement as the American

representative on the programming languages committee of

-25-

IFIPS, who set up the ALGOL committee., The Programming
Languages Committee met in Munich and set up an ALGOL
committee. This committee includes the thirteen original
authers who wanted to continue to participate. Some chose
not to continue, for one reason or another. To this list
was added representatlves from many or most of the groups that
had actively implemented ALGOL, so the group 1s much larger
now, There are about thirty members and they have had their
first meeting as an ALGOL group.

The purpose of this 1s to provide a much broader base
to the ALGOL effort, It provides an authoritative body to
answer questions and provide interpretations. It can extend
the language and do whatever else is required to put ALGOL
on a sound basis., It isn't meant to be a secret society.
Anyone with a legitimate interest can probably find a way
to get on this group. The original thirteen were polled at
Rome to get theilr agreement on this approach. ACM on the one

side and GAMM on the other side (they were the original

sponsors of ALGOL) had wanted to get it into a broader group
and moved it in this direction,

OPLER: 1I'd like to clarify some remarks that I think
possibly Galler has misinterpreted, At the ACM meeting last
year I spoke on what is happening to the effort on programming
languages. At that time I estimated that we had a 3500-man-
year backlog in automatlc programming. This represents

something like the entire membership of ACM working for six

-26-

months. The rate at which this backlog is increasing might
force us to change the name of the society to The Society of
Compiler Wrilters and Language Standardizers. At that time
I stated (and perhaps, I was misinterpreted) that I thought
that production of full-fledged processors by the universities
would eventually taper off. By analogy, while the Electrical
Engineering department does research on electronic components,
they still leave it to the manufacturer to produce working
components., I implied that the processors that we would use
for routine work would be developed and maintained primarily
by the manufacturers rather than by the universities. Heaven
knows, we need the universities to develop the new ideas in
the form of small breadboard models of new concepts, new
languages, and new approaches., The manufacturers, however,
should be allowed to pour the money into developing the big
workhorse processors.

GRUENBERGER: One of the things that impresses me about

the attempt to have a language become common is the very short

half-life of such a venture. FORTRAN is a fine example.

From time to time FORTRAN gets to be a little bit frozen.

A new tape comes out from IBM; we all get a copy of the tape
and we all have the same language for about 5 minutes. Then
everybody goes off in different directions again. Our exper-
ience here at RAND is probably quite typical. We diverged
from FORTRAN~17 (or whatever is currently kicking areund)

about a year ago. Isn't that right, George?

-27-

ARMERDING: Two years ago.

GRUENBERGER: 0.K., two years ago. And we're miles
removed from what everyone else uses. It's no longer common
in any sense except that a certailn amount of training can be
transferred from person to person. But our FORTRAN codes
can't run anywhere else,

GORDON: Excuse me Fred, but I'd like to ask you to
refrain from using the word '"everybody" to mean 7090 users.
There is more to FORTRAN than 7090 use. However, 1f anything,
that makes the situation worse than you just said.

GRUENBERGER: Of course, the same thing applies to
FORTRAN among the 1604 users and everybody else. These
people get a package and they're ccmmon with everyone else
for a few milliseconds and then they think of a goody to put

in or a patch to make and they're not cowmon any more.

CLIPPINGER: 1I'd like to say a little bit about the
process of standardizatien. We in X-3.4 who are trying to

do something about it are not all convinced that we are going

to succeed. Standardizing a programming language 1s an
extremely complex business. Fred's point about half-life

I think is quite pertinent. I don't think we are going to
learn how to do it fast enough to achieve any results on any
of the languages we've selected. This is, of course, just

a personal opinion. And yet, we're hard at work trying to
move in that direction. I feel a need for a von Neumann to

. get to the heart of the problem. We need a definition of the

-28-

syntax of a programming language. The right kind of brilliant
man could lay a firm foundation there which might enable us

to mechanize on a computer the determination of whether you
have a properly specified language. He could provide us with
tools to enable us to determine whether we're ready to con-
sider extensions; to give us further information to enable us
to resolve amblguities. Without some sort of firm foundation
I think we're just golng to spin our wheels and the languages
are going to move faster than we can move to catch up to them.

I'm sorry to have to be so gloomy about it, But I
can't see standardization as a simple enough process at the
moment with our present know-how to be able to keep up with it.

PATRICK: I think that is profound, Dick.

PHILLIPS: 1I'd like to comment on something that Dick
Clippinger just sald and take exception to it, He made
essentially the same statement that we heard just new when
he was a practicing member of the COBOL effort. He didn't
think then that COBOL would ever get off the ground.

CLIPPINGER: Well it is off the ground but it's
different for every implementation and we have no experience
as yet in its use. I woeuld guess that when the 1410 users
discover what it is they have, they will be so sick that there
will be a severe reaction. We'll get the same reactions from
other small computer users (it has nothing to do with the
1410). The fact is that the language is so complex that it
is extremely difficult to put it on any computer with a small

memory.

-29-

GORDON: Some users of big machines are going to be
sick too.

CLIPPINGER: There's at least some hope here. With a
larger machine you have more degrees of freedom, You can
improve what you first get (although it won't be good enough)
and eventually converge toward something which i3 so good
that the users will want to use it. But we have a lot of
learning to do before we know where we stand or can evaluate
what COBOL 1s really worth,

PHILLIPS: I'm not suggesting that COBOL has arrived,
in any sense., I am suggesting, Dick, that you are surprised
at our rate of progress compared to what you thought it
would be two years ago.

CLIPPINGER: That's probably true, I think everyone here
recognized the weight of that DOD mallet.

PATRICK: I'm not sure that's true and that may be why
we're here today. I understand that the DOD says:

"For an electronic digital computer to be installed
on or after December 31, 1962, computers will be

selected from those for which a COBOL compiler is

avallable, compatible with the equipment delivery,
unless it has been determined that thke intended
use of a particular computer would not benefit from
the availability of a COBOL compiler."

I don't think you'll find a military officer in his right

mind who would buck that. I don't think these boys have

-30-

outs enough to stand up to you and say, ''Charlie, my compile
time is gigantic and my throughput is way down, I can't stand
it." I don't think they'll speak to you the way I will,

PHILLIPS: Remember I don't work for the government any
more.

CUNNINGHAM: I don't agree on Bob's comment. I'd like
to invite you to come and sit in my office some day and
listen to the way our data processing people sound off about
things they don't 1like. £And this 1s certainly one of them.
How, in talking about common languages, did we get away from
that chart? We have really been talking about little
segments of the chart at times when we talk about all four
areas. The only portion in which the Department of Defense
has a principal or semi-exclusive interest 1s the top one
(Command and Control). We have a tendency to a variety of
languages because there are d;fferent groups programming in
Command and Control, leading to reluctance of one to use a
concept developed by any of the others. But the problems
in Command and Control and operational uses seem to me to
be different from the general purpose problems. C and C
languages are concerned with hardware systems built for a
certain technologlcal state. The costs and ramifications
to the Defense Department in changing that system include
the cost of changing the program also. When you talk about
the Defense Department in relation to the scientific or

business applications you have a different set of circum-

-31-

stances.

PATRICK: But the big push was toward the COBOI, effort.
I am concerned as an American in the Command and Control
area and that's why Tom Cheatham, Jerry Koory, and Blll
Dobrusky are here because they are the experts in that area.
GORDON: Did I understand Cunningham to say that the Defense
Department 1s only interested in the Command and Control area?®
CUNNINGHAM: No, no, what I sald was that's the area
in which we have a primary interest. Thls as cpposed to
the COBOL or Business systems (see your chart) in which DOD
is jJust one of many, many users.
GORDON: An interest which you share with pretty near
everyone else.
PATRICK: The secondary areas will take care of them-
selves because the directlive 18 published and there isn't
a man alive who 1s man enough to say "I made a mistake" and
rescind 1t. I think this 1s the legacy we received from
Charlie Phillips.
McCRACKEN: Are you saying that COBOL is a big mistake?

There are also people who have gone the first round and are

happy with 1t, so far.
PATRICK: I am saying that the requiring of COBOL 1n

its present state of development could be a hell of a big

mistake.
CUNNINGHAM: Well let me come back to that point. You

read us an excerpt from a Defense directive. That directive

-32-

did not say that it required COBOL. It said that equipment
to be furnished had to provide a compiler for COBOL.

PATRICK: True.

CUNNINGHAM: But that doesn't say that the installation
18 forced to use it. That doesn't direct anyone in the
Defense Department to use it.

PATRICK: Do you fhink if they were bringing out the
H-800 again they would do FACT in the light of that develop-
ment?

CUNNINGHAM: I don't know.

ARMER: 1In the light of that development look what's
happened to COMTRAN (Commercial Translator). COMPRAN and FACT
are both dead.

PATRICK: Yes, in the light of that one statement. Now
1s that good?

CUNNINGHAM: From our standpoint in the Department of
Defense yes, 1t 1s good. Not that elther or both are dead

but that we only have one language. It would be hard to

estimate the cost to us of not having the ability to select
updated equipment due to conversion costs. Common or standard
languages fit the pattern developing throughout the Depart-
ment of Defense in which the department will be dictating
standard practices for use throughout the department. The
tendency in D.P. now 1is toward commonality of procedures and
variation ot equipment. This orientation in the DOD will

lead to writing procedures in something like COBOL rather
than directing the use of a particular kind of equipment.

PATRICK: Don't you think that you're shoeing the

-33-

wrong end of the horse? It looks as though your problem
occurs. ..

CUNNINGHAM: Our problem has occurred already.

PATRICK: The problem gets refreshed every day every
time you order a computer. Thirty-six months from now you
probably won't have anything installed that you have installed
now. In other words you'll get a fresh start in 36 months.

CUNNINGHAM: Gee, I wish you'd talk to the Government
Accounting Office (GAO). But, have you considered the con-
version problem in an installation where there are between
500-600 routines (all dynamic) with over a million instruc-
tions and the problems and cost of changing these programs

and equipment?
PATRICK: These are sort of facts to the computing

field. How many UNIVAC-I's do you still have running and
don't you wish you could get rid of them? UNIVAC-I's and
704's are about the only two machines that are still around
that have been here more than 40 months.

CUNNINGHAM: There are still a lot of 705's, 650's,
etc. that have been around a long time too.

PATRICK: Yes, but they're probably now mod 3's which
are incompatible with the mod 2's and the mod 1's.

CUNNINGHAM: I don't know. You're talking about the
whole Defense Department and I am not familiar with the
situation. I can answer in general about some of the things
you're talking about.

PATRICK: Well, I think your main motivation for a com-

mon language stems from the fact that you want to order one

34—

computer from every manufacturer and set them side by side.
This is bound to zive you trouble. This is like trying to
drive a stagecoach pulled by a zebra, a kangaroag and a mule,
all in harness together and we're going to go to San Francisco,
It doesn't seem to me that the solution of your basic problem
is through a common language.

LITTLE: I think there's a point here though. You're
expecting your common language to cut across machine types
and classes. 1 know from experience in the Air Force that
the different depots, for example, have different kinds of
machines which are expected to implement the same inventory
control system., What happens then 1s that you are not only
forced to take the same problem and impleme.t 1t for different
depots, but you are then forced to make the language compatible
across the machines too. This is a big job, the way things
sit now.

GORDON: There are only three problems the way I see it,
We're trying to standardize the wrong thing. We're doing it
the wrong way. And we're doing it at the wrong time.

Let's take the way we're doing it. Traditionally,
standards become recognized as such by virtue of the fact
that they become standard through usage. After long use
people look around and say, ''Gee, this is a good thing; let's
give it the label 'standard.'' What we're trying to do now
is sit back and pull out of the blue sky something brand new,

that we will call a standard, which will wipe out everything

-35-

that went before. This is why I say we're doing it the
wrong way.

Secondly, we're trylng to standardize the wrong thing,
which 1s what Paul Armer sald before. There are two different
levels at which you can standardize. Bernie wentioned SAP
before, which was a local standard, a standard among a small
group of one-machine users. This was a standard; it just
wasn't a world-wide standard. You had standardization within
an installation, within a group of machine users, within a
single manufacturer, etc. You had geographic levels of
standardization.

Another kind of standardization lies in things like
character sets, tape formats, and module standardization.
Working your way up from there you can have standard functions,
standard routines, and so on,

Perhaps what we should be doing is looking more to
standards on the level of one-user, one-machine-type standard-
ization. As Gruenberger pointed out before, even among the 7090
users (restricting themselves to FORTRAN) there isn't a single
standard. And Paul Armer pointed out that even things as basic as
character sets are not standard. Maybe we should concentrate
more on this area and allew a certain amount of evolution to
take place before we suddenly start at the far end--the way
we talk to machines on a global scale for all problems. This
latter might be the ultimate point at which to standardize.

That's why I say we're doing it at the wrong time. I think

-36-

we might be as much as a decade early for tackling that problem.
There i3 a lot of work to be done in the meantime.

BROMBERG: We are looking at character code standardiza-
tion. You can't put on a set of blinders and close your eyes
to all the progress that 1s current because it doesn't happen
to start at the point that you have defined as the beginning.

GORDON: Unhampered by knowledge, we're going ahead and
laying down some firm, rigid things that are likely to be a
bit of a problem after a while.

BROMBERG: The way that we're approaching-~the matter of
commonness of a language--is perhaps untimely., I would main-
tain that there are two reasons for having a common language.
The first i1s that it provides an effective means for the
specification of problem solution. You can't really say
anything agalnst this. Everyone 1s looking for a good usable
vehicle for expressing problem solution.

The second is this ability (that DOD 1s waving) of being
able to take a given problem specification in thils common
language and run it on another machine.

Now standardization activity can still be done without
considering the second objective; namely, the ability to take
a program written for machine type A and run it on machine
type B. That is primarily DOD's problem. It's a single
problem that they have. This, in itself, should not preclude
the activity that is going on among all the manufacturers.

Our responsibility as manufacturers, (and it is a definite

-37-

responsibility to the users), 1s to provide this effective
vehicle without regard to the ability to put a program written
for one machine on another. That latter ability may come.

It will probably come as a direct result of the standardization
efforts that Clippinger was talking about.

GORDON: You talk about the ability to communicate
effectively with the machine. You need a good problem-stating
language. For all we know, FACT may be the best problem-
stating language yet devised. But we are not goilng to have
a chance to find out because it is not going to get sufficlent
usage. It will get some usage (as did Commercial Translator)
but the blunt fact of the matter is that we are never golng
to have any really effective usage because of the fact that
the standard preceded the evolution.

BROMBERG: Barry, in the creation of any one of these
languages (the creatlon of the actual specificaticns themselves)
there is never any of the wisdom of experience and use.

GORDON: That is correct. Consequently, some of them
don't quite work out. I agree. You have to have a chance
to find out whether they will work.

BROMBERG: That's what we are doing. Consequently, by
finding out what their so-called standard does, you have
every opportunity in the world to come up to the language
maintenance committee and say '"Loek, this damn thing doesn't
work., We have a function in Commercial Translator that is

much better, Why not consider it?" What has ever come up

-38-

in the COBOL maintenance committee, for example? What sort
of things have been suggested that were far superior in
Commercial Translator? I know that there are some things.

1 know that there are such things in FACT also. Honeywell
representatives screamed bloody murder to put a report writer
in COBOL. Not because we had to have a report writer in
COBOL, but FACT had 1t and COBOL didn't, and we had to keep
up with the Joneses.

GORDON: A standard shouldn't try to keep up with the
Joneses, It should represent a core, a nucleus,

You don't standardize everything to begin with. You
standardize the core which can be agreed upon and then your
standard grows.

OPLER: T think I have something for your "fact" bag.
Sometime in the late summer of 1961, the SHARE COBOL committee
solicited improvements in COBOL that people might want.
Someone offered the following suggestion: Let's modify the
COBOL statement that says "Add A and B and C to D" to "Add
A and B and C to D and E;" that is, to permit the result of
an addition to be put in more than one place. I think everyone
agreed that this was a sensible suggestion. When the SHARE
COBOL committee agreed on 1t and the SHARE Executive Committee
approved it, the suggestion was forwarded to the appropriate
COBOL committee. To the best of my knowledge, this suggestion
(which was made in August of 1961) will not see the light of

day in a COBOL compiler until late 1963 or 1964 if approved

-39-

by everybody down the line. Thus, a simple, logical suggestion
takes about three years to appear In the processors that
people use,

GORDON: Ascher, the feature you mentloned has already
been in Commercial Translator for several years.

OPLER: Yes, I know that.

BROMBERG: To clarify, the proposal was submitted by
SHARE in November of 1961, The COBOL Arithmetic subcommittee
reworked 1t to remove many ambiguities in the ROUNDED and
ON SIZE ERROR options., It was then passed by the full
comulttee in March, 19¢2 and will appear in the forthcoming
revision,

GALLER: There are opposing views being expressed here
about the role of a standard. It seems to me that the stand
taken by the ACM COBOL Maintenance Committee was: Let's not
change 1t, let's give it a chance as it stands and see how
it works. (I am paraphrasing thelr views, perhaps.) Now,
with ALGOL, the language got implemented rather fast and hence
things got frozen a little sooner. 1In COBOL the more translators
that get developed, the harder it is going to be to make any
kind of change. I'm not saying that making a change 1s either
good or bad but just that it gets harder to make.

PATRICK: Bromberg sald a moment ago that there are two
reasons for standardizing. One is to have a language to
communicate with and the other 1s that the DOD wanted to put

the same problem on two machines. It seems that the first

=40-

could be handled by a standard language for communication
purposes and the second could be handled by not putting two
dissimilar machines back to back.

GORDON: The first requirement can be handled by any one
of a number of languages or any one of a group of languages.
If the impetus 1s to get a good programming language there
1s no requirement at all that it be the same one that is
being used down the block.

BROMBERG: I disagree,

PATRICK: Why 1s that?

* : Which side are you on?

BROMBERG: Don't overlook all those costs that Gruenberger
has on that chart. Suppose you grant that any one of these
unknown languages 1s adequate for the job. You have training
costs to begin with. If you're using two different languages
you have to do twice as much training as though you use one
language.

PATRICK: Only when I interchange people.

McCRACKEN: May I get in here? I heard several times
the statement made that only the DOD has the problem; that
they are the only ones that have different machines that have
to talk to each other. This is not true and T7'd like to offer
a small fact. I know of a certain user who had a machine,
let's call it Machine A, (Model 3, as a matter of fact).

One machine, one user. They needed a bigger machine, so

they surveyed the market among the various machines available,

~4-

One of the available machines was Machine B, made by the same
manufacturer, Machine B weuld accept the programs of Machine
A. Thelr evaluation of the machines involved indicated that
they did not want Machine B. It was not the best machine,
for the price, for thelr job. They ordered Machine B anyway
because they figured they couldn't afford the reprogramming
cost, which, by their estimate, was about half a million
dollars. So they went ahead and got the machine that they
didn't want just because of this non-common language business.,
It isn't just DOD.

PATRICK: I don't see where that has any bearing at all.

McCRACKEN: If they had been in COBOL in the first place
they wouldn't have had this problem.

PATRICK: If they had been in COBOL in the first place--
prasent state-of-the-art, now--they might have been spending
twice as much to get their programs in.

* : And if they had been in COBOL in the first
place they might very well have been getting the language they
didn't want just because it was standard.

GORDON: And also they might have needed the added
capacity of Machine B sooner.

GRUENBERGER: I think all that Dan was pointing out was
the rebuttal of the statement that only DOD has the problem.
e have seen examples lately of other people having the
problem; Westinghouse, for example. They have recently

stated that they are going to use COBOL company-wide,

4o

CUNNINGHAM: In the first olace the COBOL effort is
made up of a lot of different people besides Defense, so a
lot of other people must at least think they have the same
problem. I'm not speaking only of manufacturers. There are
a variety of users in the COBOL effort who must recognize
a need and be interested in getting on top of it.

Secondly, I don't think that you'll find, even in the
Defense Department, two different machines in the same
installation back to back doing the same job. You won't
find the 501 and the 705 working back to back. What you
will find is the 501 in one place and a 705 in another place.

PATRICK: What 1is at David Taylor?

CUNNINGHAM: I don't know.

* : David Taylor has one of everything.

PATRICK: It seems to me David Taylor has a LARC, a
UNIVAC,

CUNNINGHAM: I presume that the variety of work dictates
a variety of equipment. I'm saying they're not doing the
gsame jobs back to back.

ARMER: How about logical back to back, where you have
one machine at one site doing, say, inventory control and a
different machine at a different slte doing the same 1nventory
control problem?

LITTLE: You can still be hurt by having different

-43-

machines in the same installation because you do not have
the freedom to pick up the load of one from the other.

CUNNINGHAM: Agreed we've just gone through the same
analysis in the Air Force that Dan was talking about; the
one that says that we didn't want to pick up a new machine
because of the programming investment involved. A machine
that we might really want we would never get to because we
couldn't afford the reprogramming costs (both dollar and time).
The question we face is, "How much longer can we afford to
pay what might be four times the cost of the job to walt to
get to the optimum position?" So we decided that the optimum
for the moment is this swap we went through when we changed
705's for 7080's.

LITTLE: There's a very good point here. Is a language
really going to solve this problem? Do we really design
languages for use by what we might call professional pro-
grammers or are we designing them for use by some subhuman
specles in order to get around training and having good
programmers? Is a language ever going to be an effective
substitute for really good people?

* : Is there a difference between those two
groups?
McCRACKEN: It won't be perfect but it will be better

than what we have now,

by

LITTLE: This isn't clear to me. On small jobs you can
stand inefficlency of all kinds. It's not at all clear to
me that on large jobs like Command and Control that you can
gloss over inefficiencies., I'm not sure that my own corpora-
tion--RAND--or the universities ever face this kind of a
problem., Therefore, I'm not sure that the research that is
going on 1n places like RAND and the universities 1is actually
facing up to the problem. In these really big jobs hand
coding will push the limit of the machinery that we have
available today.

CLIPPINGER: 1I'd like to talk to McCracken's point. One of
the reasons that users would like to get a good programming
language is the freedom to change from one machine to the
other. Dan polnted out that the switch is pretty tough when
you are in assembly language. Now there's a fact here that
I think most of us would agree to which seems pretty obvious
but it ought to be stated. That 1f problems were formulated
in an English type language (COBOL, or FACT, or Commercial
Translator), that the statement of the problem contains all
the information necessary for the computer and therefore
contains most of its own documentatien.

McCRACKEN: A very good point.

CLIPPINGER: Now if you want to switch that same problem

from COBOL to FACT, or FACT to Commercial Translator, or even

-5

from COBOL A to COBOL B you have about the same order of
magnitude of work which 18 ten times less than changing from
705 Autocoder to some other assembly language. So there seams
to be an intrinsic value in the English-type language. This
advantage could even be gained in a language that is not English
narrative as long as 1t's some symbolic language that 1s suit-
able for stating problems. The point 1is that compllation
produces documentation. We're all aware that the blg problem
in moving a computer solution from one machine to another when
you are dealing in assembly language (we're talking about very
large problems) 1is that the people involved in producing that
checked-out code are no longer around; they may have changed
jobs or maybe gone to different jobs; and that essentially
you don't know what those checked-out instructions really do.
The programs have probably been patched and repatched and
when you come to rewrite you can find no one who really
understands what those instructions do. 1It's very difficult
to get that kind of information when the problem 1s stated in
assembly language and it's frequently easier to scrap the
whole thing and start all over.

GALLER: You may have the same problem with English-type
languages too.

PATRICK: Yes, it's net clear that you've changed it

any. If you have poor management and you haven't kept your

UG-

source decks up to date you have the same problem.

CLIPPINGER: That's debatable. It depends on how you
do it. The problem can exist.

PATRICK: With long compile times the problem statement
will exist in two forms.

CLIPPINGER: With FACT, for example, you compile and
you don't patch because it's too difficult to patch. You
simply recompile when you redo the problem. Therefore the
final version which is running is supported by a document.,
And you know exactly what that program does. It's my guess
that COMTRAN handles this the same way. In the case of COBOL
there may be varilations from installation to installation
but I'm pretty sure that in most cases COBOL is treated the
same way.

PATRICK: Howard, is it true that in 501 COBOL you patch
because the compile time is long?

BROMBERG: I guess one can do whatever he pleases in
501 COBOL, as far as the object code 1s concerned,

There's an interesting thing about language design
itself. 1In the COBOL area, for example, there is nothing in
the language itself that talks about, or makes provision for,
documentation. The language designers apparently believe
that the language itself is sufficient for documentation.
There is nothing bullt into the language apparently to
accommodate this notion of debugging, or fast recompilation

time. It's just not there. It is a shortcoming.

-h7 -

Little raised the question, "For whom 1s this language
designed?" It 18 my opinion that a language like COBOL is
designed for two kinds of people. First it is designed for
the lmplementers--the guys who are actually going to interpret
the language specifications for a particular computing device.
Second, 1t 1s designed for the salesman, so that he has
something to go out and talk about, It is not really designed
for the user, per se. The secret for the effective utilization
of all these languages 1is the recognition by the user that
he cannot exist in the common programming language cosmology
as a clod,

GORDON: 1I'd like to tell one small anecdote with
reference to the guy COBOL is designed for. At a COBOL
gesslon we had not too long ago we were discussing the word-
iness of the language. COBOL uses words like ADD, SUBTRACT,
MULTIPLY, DIVIDE, and COMPUTE., With the COMPUTE verb, they
allow PLUS and MINUS for the ampersand and hyphen (which were
considered too mathematical at the time). Thus, you were
allowed to write ”A.MINUS B" (all spelled out) and someone
suggested that the committee should also allow the term
"TAKE AWAY."

McCRACKEN: I have a fact, I am strongly impressed by
the remarks that Bromberg made that COBOL can't be used by
clods. I ran a little program to prove it. It was a little
COBOL exercise designed to prove just that. I ran it on

the 1105 at the Air Force Logistics Command. There were two

“48-

versions, both of which had exactly the same procedure
division. They produced exactly the same results. The only
difference between them was in the data division, and the
change was minor,

We compiled the first one and the running time was about
8 seconds, The second one, which was also a legitimate COBOL
program (a slightly modified data division, the same procedure
division, and the same results) took 80 seconds to run. I think
this goes to shew that you can't be a clod. You do have to
know something about machines. It also goes to show, I think,
that the efficiency of the object program is not just a
function of the language, or of the compiler.

I think it also shows that you don't have to know very
much about the machine. I had never worked with an 1105
before. All I used in designing this horrible example was
knowledge of hew alphabetic information is stored in a binary
machine,

BROMBERG: I would bet that a competent 1105 programmer
could make some savings again on your first example.

McCRACKEN: That's quite possible.

GORDON: 1I'd like to thank McCracken for his fact, and point
out that the point that he made was not the one he claimed
to make. It seems to me that he has demonstrated that COBOL

can be used by clods, but with disastrous results. But this

brings up another interesting point. Isn't 1t the responsibility

of the manufacturers and the language designers to come up with

-49-

a language which will encourage effective use of equipment
rather than simply to enhance the sales and allow anyone to
put a program on the machine?

LITTLE: Doesn't the language then gloss over differences
in the machine? Doesn't it sort of hide the machine? 1In seme
sense the statement you just made 1s speaking agalnst languages.

GALLER: Al Perlis once ran an experiment (I can't
remember the details of it exactly); what 1t amounted to was
cutting a program down from 20 minutes to 1 minute on some
machine simply by moving things in and out of DO loops and
computing a couple of things in advance instead of within the
DO loops. It has nothing to do with the machine and nothing
to do with the language. It 1s simply an appreclation of
the structure of a problem and the use of good organization.
You can get people to do this no matter what tools you give
them and you can get people who will do it wrong no matter
what tools you give them, It's a problem in education.

GORDON: There are situations, Bernie, that do have
nothing to do with the language, or with the machine. I
say that there are also situations in which the more "sophis-
ticated" languages get, the more the language can enhance this
sort of thing. I have seen 7090's which pay a very large
penalty in trying to simulate 7080's. Some clod has simply
taken a program written in a common language for one ﬁachine
and run it on another and he's gotten results. I have seen

7090's operating at like 701 speed 1n order to do this, It's

-50-

probably true that there are programming considerations inde-
pendent of language, but it is also true that some of the
never languages, by masking the wachine more thoroughly,

have tended to encourage greater inefficiency.

1acKENZIE: I agree with Galler that the problem is one
of educating the users, and I suggest that it should be so
constrained. Consider that good programmers using a so-
called machine-independent language will tend to construct
machine-dependent algorithms, even though they don't think
of them that way. This point might be overlooked in the
argument that McCracken advanced--that there 1s this latitude, if
I might call it that, in the language which the programmer
might exercise to the advantage or the disadvantage of his
installation, If there were not this latitude, we would
probably find, what were in fact, highly machine-dependent
languages being passed off as machine-independent languages.
I think it is important that there be this latitude. The
real ilmportant question should be, "How powerful 1s the
language?'"--and one should presume intelligent use, arrived
at possibly as the result of proper training.

LITTLE: I agree that it's important to recognize that
this exists. I'm not sure but what these languages aren't
designed to be used by lewer level people (in two senses).
First, there is the guy who is at a lower level intrinsically
(who would never beceme a top netch programmer) and, on the

other hand, there is the fellow who might become a good

-61-

programmer but you want to get him doing useful worlk sooner,
If you don't recognize that this latitude exists you may be
letting yourself open for tremendous problems in your running
time and your problem organization and this type of thing.

MacKENZIE: I'm not trying to be argumentative, but
don't you think the same problem exists at the machine language
level? I can think of all kinds of examples wiere there was
a factor of 10 difference in an object program's running time.
For example, undoubtedly Dan could have achieved that differ-.
ence 1n the procedure division alone,.

GORDON: The complexities of the language you use may
add to thils and if you add to it sufficilently your weekly
payroll may become a critical real-time problem.

PATRICK: T thought Bromberg had covered this pretty well
in his Datamation article. 1In that document he upset once
and for all the idea that these dumb languages are going to
cut down your training problem. He maintained that you had
to know the language and its implementation and the computer
in order to use it well,

McCRACKEN: Now walt a minute. You don't have to know
as much about the computer as if you were going to do it in,
say, Autocoder.

PATRICK: O0.K. I don't have to knew as much about it
but T can't do it as though I were a complete idiot.

GORDON: Who are 'you" when you're talking?

PATRICK: I'm the guy who is writing instructions.

-52-

BROMBERG: There are many guys who are writing. Let's
consider an installation of 15 men. Before the advent of
these English-like languages the 15 men each had the require-
ment to have detalled knowledge of the equipment. What we're
saying now 1s that, being removed from the details of the
machine, this requirement is less stringent., Effective
installation practices can now allow one individual--out of
these 15--to be the machine expert. That one expert can act
as the consulting programmer.

PATRICK: But wasn't that always true? We never did
have uniformity in our shop. There was always a priest who
really knew all the equipment and the other guys kind of
plodded along.

LITTLE: If you have one good guy and 14 others who
just follow along, who takes the place of the good guy when
he moves up?

PATRICK: The trouble is with these languages the good
guy has to be about three times better. He's got to be
really top notch.

GORDON: He's got to know the machine...

PATRICK: And the compiler, and the language.

BROMBERG: But especially he's got to know the machine.
The secret in the area of COBOL, for example, in the genera-
tion of efficient object programs is in a proper utilization
of the data division. This means that you must know how your

computing device handles and manipulates data. It becomes

-53-

the function of this one knowledgeable man we talk about to
be the data describer for the installation. You recognize,
of course, that in business data processing you are going to
manipulate only a small finite number of files. His job then
should be to set up initially, with the computer in mind,
data divisions for each one of the files, keeping in mind
the idiosyncracles of the compiler, He then becomes the
file clerk. We call him a librarian. Then every other pro-
grammer writing a program which uses these files consults
this librarian and 1s guaranteed, to a definite extent, that
he has the most effective efficient description for his file,
PATRICK: This is what SDC does with their COMPOCL.
BROMBERG: This really has nothing to do with the
language specification. This 1s just good efficient instal-
lation practice. Ve can't interject this into a language
design., As Gordon suggested before, a language should enhance
some of the computer's features. That's nonsense. Why
should it? The function of a language builder is only to
assure himself and his corporation that none of the features
that his equipment has will be precluded by a language
specification. There are really two languages. One is the
language that exists in the infinite world of specificatien.
And the other is the interpretation of this language which
1s the finite world of the processor, Clearly, (for example,
In the COBOL specificatlons) it says that you can have a

literal of any size but you can't deal with a literal of any

5=

size in a specific processor. We will allow infinite length
literals if someone will tell us how to write them.

OPLER: I was talking to an installation manager who
uses COBOL. He decided to adopt COBOL because he figured
that his problems divided into two classes: those that would
fit into COBOL and those that were rather unconventional.

For the latter, his best programmers would write in assembly
language. They went ahead on this basis, and found to theilr
consternation that the following situation had developed:

the programmers who were trained in COBOL (but who did not
know much about the machine), were writing programs in COBOL.
After compilation, the object programs would not run. They
would then call the other group of programmers to patch the
COBOL object program, Eventually, they found that they were
using both teams full time on COBOL. Maybe this will be the
final division of people in such installations. Groups A and
B will sit on top of each other to help each other.

CUNNINGHAM: I have an analogy to what you Just said,
Ascher, but I am reminded of our fire in the Pentagon. I
had a call from a user who sounds very much like the man
you just described. He offered me 20 hours a day on a
large scale computer. I thanked him profusely and hung up
and said to myself, "Using the computer only 4 hours per day--
it's obvious he doesn't work for the government." I think
there's the same degree of management efficlency involved in

each case.

-55-

PATRICK: There was a lot of spare machine time that we
didn't know about, It came out when you had that fire,

BROMBERG: On the other hand, there are many cases where
people are using COBOL and using it very well and they have
never compiled a COBOL program.

GORDON: That's probably the best way.

OPLER: That sounds like the story I heard of the wmanu-
facturer who "ordered" a big computer to take over all the
plant functions and, two days before it was scheduled for
delivery, he cancelled it. The truth was that he had never
planned to install it in the first place.

LITTLE: Somebody said a while ago that such arguments
shouldn't be interjected into a debate on common languages.

I don't really think it's nonsensical., I don't think enough
of this sort of thing is interjected when people actually sit
down and do the design of these languages. I think either

a selling job has gone way too far or people don't realize
the degree of latitude that is in there. If the latitude
exists then they should be educated to it.

BROMBERG: I'm just griping about the use of the word
standard. I don't really know what it means in this context,

GALLER: 1I'd like to ask a question. Suppose that the
DOD goes ahead with this idea of standardizing our language.
Can we predict what will happen to ALGOL, if anything? Of
course I include in that question JOVIAL, FORTRAN, NELIAC,

MAD, and all the rest of them. We see COBOL and we ask, "What

happened to Commercial Translator?" They more or less arrived
at the same time and maybe that makes a difference. TFORTRAN

is pretty well established. ALGOL is pretty well established

as far as it's gone. What will be the effect on these languages?
Should there be an effect?

CLIPPINGER: Are you asking whether standardization has
an effect on these languages?

GALLER: Well, will DOD's choice of a language be, in
effect, standardization?

McCRACKEN: Would someone please fill me in. Will DOD's
pending decision involve a language like FORTRAN?

CUNNINGHAM: ‘'/hat decision are we talking about?

PATRICK: A Command and Control language.

CUNNINGHAM: I don't know.

GALLER: One of the things I read in preparation for
this meeting mentioned a language like JOVIAL that might
evolve.

LITTLE: 1 think the question is (to further the discus-
sion here) '"What would be the effect if the DOD adopted
JOVIAL tomorrow for the Command Control language?"

KOORY: 1'd be very surprised.

I have read the document that was distributed (SDC
Manual TM-688) in many forms. There were at least three
drafts before the final version. 1I've liked it better in
each version, perhaps because I'm getting used to the idea.

If you want to talk about standards I'd like to go back to

-57-

the point that Gordon made much earlier in quoting from Dick
Hill. I think it's very important that standards evolve;

that they are not set. I think that you might want to
establish a study activity of some sort to look at the
problems for a particular area, and to decide how best to
describe these problems., You can perhaps define a language

in which we can describe the problems of Command and Control.

I would not suggest that we take anything that exists today
(within my knowledge) and say that that ought to be a standard.
I think that would be a mistake,

ARMERDING: As the standards evolve have we any guarantee
that we're not going to cowe up with the English system again,
rather than the metric? Unless we have top notch people
working on it we're likely to come up with the English system
all over whether we like it or not; and then it will be too
late to change, '

PATRICK: That may be true but we're going to have to
broaden the language design boys a little bit. They can't
just think of producing a language that is easy to describe
without keeping in mind the fact that they are building a
tool, All the things that we have listed on this round chart
will be affected, and will affect the design. If you pick a
language that is impossible to train up to (that is, one that
the lower level people could never be trained to handle) then
that language 1s not going to go.

McCRACKEN: What do you have in mind?

~5S)e

PATRICK: Let's think of the Civil 3ervice types who
llave to be tralned up to use all the data description devices
in JOVIAL (partial word field manipulations). You may be
able to do something to mitigate this problem by writing some
gqood training literature (which is somewhat lacking today).
But it's really asking too much,

GRUENBERGER: Look at the world we just opened up for
you, Dan. There's another book to be written.

LITTLE: 1I'd like to get back to the subject of evolution
of standards. 1 go along with most of what was said but I
think that we're overlooking one fact--that there are Command
and Control jobs that b-2 to be done. 1If, in the process of
implementing these jobs that have to be done, the Defense
Department (or any other large user) decides to standardize
on a language like JOVIAL, then, like it or not, we're geing
to be sitting around talking about JOVIAL the way we have
always talked about FORTRAN.

PATRICK: And in that situation « subset of JOVIAL would
do the FORTRAN job wery nicely.

McCRACKEN: Would it?

PATRICK: I think so.

GORDON: You'd better put that one in the opinion bag.

PATRICK: All right, it goes in the opinion bag. You
have to assume some sort of utopian soclety. You might have
to assume that there is no investment in FORTRAN, which we

know is wrong. There might be a hundrad million dollars

-59-

invested in FORTRAN both in people training and in translators.
This may be too utopian to be possible but if all other things
are equal I think a subset of JOVIAL or a subset of NELIAC
could do the job. Both of these languages are more powerful
than FORTRAN and I think both of them could do the simple,
straightforward, scientific evaluation jobs well.

Of course, this isn't the world we live in where we can
throw away a hundred million dollar investment.

GRUENBERGER: George, are you going to sit there and
accept that remark?

ARMERDING: No one yet has said anything about compile
times.

PATRICK: UWe're talking only about the language at the
moment,

ARMERDING: And I think that's one of the main troubles
with people who design languages. They seem to forget about
things like the compile times and execution times.

* : Not intentionally.

ARMERDING: And when they finally see the result running
on their machines they throw up their hands in horror. As
Dick Clippinger said, when the 1410 users see what COBOL is
going to do for them and to them they're going to be horrified.
You can't really predict this. You can't say what the effect
of COBOL is going to be on a2 machine that hasn't even been
announced yet.

LITTLE: T think I'd feel a lot better if I believed that

-60-

some of the users would have enough sense to scream. Some
of them are going to put a high level language on a machine
and not know any better,

ARMERDING: Yes, that's also true,

PATRICK: Barry, do you hear any screams?

TALMADGE: You'll hear some screams from users of FORTRAN
on the 7070, but there are an awful lot of 7070 users of
FORTRAN who don't scream; and this worries me more. Quite
a blt more.

* : It's quite possible that they're getting
something worthwhile out of it,

GRUENBERGER: There are 705 users who are mighty unhappy
over FORTRAN,

DOBRUSKY: We're talking about compile time on these
large compilers. Agreed that they're much longer in their
compile times than other processors--I'm referring to COBOL,
FACT, JOVIAL, and so forth. At SDC studies are being conducted
among JOVIAL users (not only within SDC but at other places
as well), None of them have complained about the compile
time, perhaps because they have too many other things to
complain about., That was a fact. Thils is an opinion. One
of the reasons they don't complain about compile time is
that they realize that there is nothing else available at
their hands, right now, that can do the job as well. Their
experience with FACT, NELIAC, FORTRAN, and what have you,

indicates that JOVIAL is better than most.

-61-

* : We were talking about both compile times
and run times. They do complain about running times, is
that correct?

DOBRUSKY: Yes, but what 1s program efficiency? We
talked about the old trade-off between space and time., What
is a good program? Is it the amount of space 1t uses or the
amount of time it takes? With a POL we address ourselves to
that problem and to a much more important one; namely, the
elapsed time involved from the formulation of the problem to
the finished result, 1If it's a real-time problem then I say
there's not a compiler in existence today that will produce
you efficient code for this application. As Dan pointed out,
using the power of a language by the unindoctrinated can pro-
duce pretty horrible code. 1It's just like many people are
able in common English prose to describe very crisply in
one sentence what it might take someone else a whole book to
describe,

PATRICK: Be careful what you say about books, with
McCracken around.

GORDON: I take exception to your statement, George,
that language designers do not consider compile times. Some
of them do; that's a fact.

ARMERDING: They can't if the machine hasn't even been
designed yet.

GORDON: Sometimes you're lucky if you're working on a

language for an old machine.

-62-

GRUENBERGER: You mean like one of these days we're going
to get FORTRAN for the 7090, huh?

GORDON: Can we delete Fred's remark?

Basically language designers will take into account (as
best they can) things like compile times. But there are
many other things they have to take into account. For example,
when you design a language, some poor slob 1s going to be
stuck with the problem of teaching it to people. There are
problems of implementation schedules to be met. You aren't
going to design something that you can't iwmplement for the
next thirty years; not deliberately, anyway.

So there are many things that have to be taken into
account and I think that cowmpile times 1s one of themn.
Probably Dick Talmadge could tell us something about compile
times., I know that Commercial Translator was designed with
compile time. in mind. It turns out that for two of the three
machines for which Commerical Translator is running, compila-
tion was complicated by other considerations; i.e., other
than the language itself. For one totally new effort with
Commerical Translator (namely, on the 7090), I think the
compile times are quite respectable, to put it mildly., This
is something that is taken into account but unfortunately it
can't be the only thing., There must be compremises.

ARMERDING: I agree. For example, compile time is not
nearly as important as efficlency of the object code. You

are probably willing to buy a certain amount of long

-63-

compilation if you'll get out an efficlent code at the other
end.

ARMER: Sometimes you have one goal in that equation
of Patrick's, sometimes you have another.

ARMERDING: Each user is going to have to put in his
own coefficients but some of them are locked in whether he
likes them or not., I can't change the FORTRAN compiler on
our machine so that in some instances it will compile faster
at the cost of the object code and sometimes the other way
around. I just can't do it. Those things are locked into
the compiler.

ARMER: 1In the first version of FORTRAN they devoted so
much attention to object code efficiency that the compile
times were way high. That was on the 704. Now they seem to
be going the other way, on the 7090,

TALMADGE: I don't think it's true that you need accept
long compile times in order to get good object code efficiency.
Very often, both in the scientific and commercial field, the
life of a job is only one or two runs. 1In this situation,
1t is most important to be able to connect small parts of

a program rapidly; that 1s, compile efficiency is wuch more

important than run efficiency. This point was kept in mind
in designing Commercial Translater.

As to the comment that a language can force a long compile
time, I believe it to be true to some extent, but net to the

extent many people belleve. Too often the processor designer

6l

loses sight of the fact that his system is going to be run en

a particular machine, in a particular environment. It is

more important to design an efficlent, simple, total operating
system than to turn out a super efficient object code rather
than just an average object code. Most of the lost time

comes from changing tapes and from the operators helplessly
wondering what went wrong with that particular program.

You may lose 20 seconds during an object program if the code

is inefficient, but you could lose 5 minutes or 10 minutes
during the entire job 1f you don't have a good operating system.

PATRICK: If I make a compiler efficient in the way you
just mentioned I make it machine-dependent again.

TALMADGE: You're talking about a processor now.

PATRICK: If I take an easy language and restrict all
my symbols to six characters or less so that they'll fit your
machine then I can't run Clippinger's programs which were
designed for his 48-bit wmachine. And it makes your compiler
a great deal faster: that is machine-dependence,.

BROMBERG: On the other hand, there are some of us who
believe that one of the functions of a compiler is to do
error-checking. We can certainly design a fast compiler (call
it a User Beware Compiler) that lets you effectively write
anything that you'd like. And you can thereby increase
compile times by a factor of 10 and still keep it within
the area of machine independence.

TALMADGE: 1If you're talking about computer independence

-65-

then you're talking about the language description. But you
can't talk about computer independence when you tallk about
the processor which translates from that particular language
to produce an object code on the machine. Then one cannot
be independent, any more than one can be machine-independent
when writing a data description for a commercial problem.
Dan's example 1s a good one: When one writes the data
description to take advantage of the binary machine then the
object program is much more efficient.

I can speak personally for Commercial Translator. In
writing it we used as many machine-dependent technlques as
we could, in order to get the most out of the 7090 for the
CT language. It is up to each implementer to do the same
for his particular machine, since some techniques are good
on one machine and produce a good compiler, while others
might produce a very slow compiler,

PATRICK: The point I was getting at was that if you
are implementing a processor you must be doing it for a
specific machine. There is a threshold point at which it
makes a great deal of difference whether you put restrictions
on the language. or not. 1It's the same language; the syntax
is the same, the verbs are the same, it has precisely the
same meaning, but if I can put some restrictions on the use
of that language by the source programmer it will make a lot
of difference in the performance of the compiler.

TALMADGE: 1 agree with you on that, Bob. There are

_66-

certain things which are critical as far as compilation times
are concerned and which buy practically nothing in language
facility., The point has been made many times that one
shouldn't try to be too zeneral in a given language because
the cost of generality is frequently hizh in terms of compile
time.

The point I'd like to make, however, is that T don't
think this is true until one gets to a fairly advanced stage
in the lanzuace developuent.

PATRTCK: Dut they're not machine-independent anymore.

TALY'\DGT: Tn what sense?

PATRIZX: lell, take the example I used before. 1If
someone has used 30-character names from the COBOL made for
Clippinger's machine, I can't compile them even though they
are supposedly written in the same CODCIL..

TALMADGE: 'ell, we have 30-character names in Commercial
Translator. I don't think it will have made any particular
difference in processor efficiency if we had had 6-character
names or even 2-character names. Again, this is a matter
of technique. Granted some things, such as infinite length
literals (mentioned a while ago), would be very difficult to
implement. But that's because they can't be described well
or are not reasonable to do.

DOBRUSKY: It seems to me that this discussw.on =zight
here borders on the difference between standarc and r~ommon,

The fact that they're standard means that both of y»u can

D 1083

—(67/=

handle tiem in one way and another, If you write them

senerally machine-independent, (acceptable within the con-

straints of the grammar and syntax of the language you re

going to pay for it on any machine. This is typical nf o
every compiler and every language. liowever, I am sure ‘hat
there is a standard subset of CGBOL that both of you could

use; the same is true of Commercial Translator.

It gets down to a matter of stock items again. 4n

example I've often used is that of wire sizes. ilire sizes
are predicated on certain attributes. These are i:EP?
accepter and stocked; you can buy them anywhere.»<: | want

some 17 1/2 wire, everyone knows what I mgfan; it's somewhere

P

between 717 and #16. If I want to Egz(it because of my
particular application, it's go%n{{&o cost me. It seems to
me that continuing this ideg,éf machinz-dependence and
machine-independence, Epfsfe must be to some degree commonness

R
by usage, whether it.“be in power or as a subset of the accepted

~
language. 7

/
OPLE%::~ I think there are several people in this room

who ﬁud&é had the experience of designing two or more processors
.316; the same language. I believe I can outline an argument
which tends to disprove machine-independence.

Consider the definition of the language. In attempting
to write the processor, the design group comes to a question
like this, '"What happens if there is an overpunch in the
fourth character of the message?" etc., etc. They have to

come to some decision. Now, I maintain that for a reasonably

.

-69-

granting the fact that we're talking about the same language?

BROMBERG: There's an easler answer and that's the fact
that there is no authoritative maintenance body; that is, one
that is both knowledgeable and peremptory.

CHEATHAM: Ascher refers to the way that ALGOL and
JOVIAL are described, which is really quite formal. I don't
think that's a really significant part of the problem. The
decoding of the intent of the message is not the difficult
part of getting an efficient code out,

OPLER: ‘ould you like to explain what it means in COBOL
when you meet the message "ADD ALL 43434343" and you name
some particular variable which has a complicated data descrip-
tion? Would you explain how your COBOL processor is going to
treat this case? That's an example of what I mean.

PATRICK: The COBOL language is not completely specified
to the level you referred to.

OPLER: 1It's just like the map of Antarctica where there
is a place that indicates terra incognito. How are you going
to make a decislon under those conditions?

PATRICK: Tom, do you have complete control for these
same decisions for the three cases you mentioned?

CHEATHAM: No, not complete control. There are two
things involved here. First there is the question of inter-
preting what are the formal specifications of a language.
Formal specifications which are, for example, usually pub-
lished really aren't specifications of the language at all.

They are specifications of the class of languages of which

-70-

you are choosing one, by making these n decisions that Ascher
speaks of. Then there 1s the problem of getting efficient
complle times and efficlent object code. These are quite
separate problems. I was addressing myself to the second

of them.
PATRICK: I'm sorry. We thought you were addressing

the first.

MacKENZIE: A few minutes ago Galler brought up a
subject which I think is a very interesting one. He raised
the question, 'What price do you pay for standardization?"

I think this is interesting because it gets you back into
areas like the trade-off mentioned on that chart.

It's my opinion that one very obvious price you pay is
that of inhibiting the future, in some respect. Whether this
is good or bad, you don't know., This is one of the principal
problems involved in dealing with established languages on
established machines. No matter how hard the language
designers have tried they haven't been able to imagine the
way the world might be at some future point in time. You
do pay an apparent price, I'm sure. Yet, there are some
very obvious, good things to be gained by standardization,
particularly at the documentation level.

GALLER: 1I'd like to recount three anecdotes. One
concerns the meeting in Parils in 1960 at which ALGOL was
born. The people involved pretty much decided that pot
every function should be recursive; that they should be

declared by exception. Peter Naur wrote up the report and

-71-

forgot to put this in. I think you all know that now every
recursive function is pretty much a sacred cow that no one
1s going to touch., Everything that is done now has to work
with the fact that every function 1s recursive. That's one
anecdote,

I was at a SHARE FORTRAN Committee Meeting where they
were arguing over changes that they'd like to see made in
the new FORTRAN. There was a tremendous reluctance on the
part of IBM to accept some of the changes that were being
suggested by the committee. They were questions of compat-
ibility with earlier versions of FORTRAN and FORTRAN for
other machines and so Iorth. Bill Heising was there to pro-
tect compatibility, Various such matters were referred to
Helsing and nis attitude was, '"We'll have to look at it to
protect compatibility.'" The claim was that compatibility
had to he protected because there was so much investment.
Ttere was much discussion and many hard looks at the ability
to convert programs from the old FORTRAN to the new. It was
agreed that one could write converters to change from the old
to the new and that this was all that had to be pretected.
That was really the only cost involved in order to go in new
directions. We finally convinced the SHARE Comuittee itself
to go ahead with the work, and the converter from the old
FORTRAN to the new is pretty well checked out by now. As a
result of this work IBM has made changes in the language of
FORTRAN-IV which make it quite incompatible with previous
FORTRAN's.

=708

Anecdote #3. When we put MAD together, we had quite a
few objectives but one of them concerned itself with the
objection that we anticipated; namely, what are we going to
do with FORTRAN, ALGOL, and so forth? Why should we switch
to MAD? It's going to cost us a lot. Other people asked,

"Is FORTRAN golng to be a subset of MAD?" We took the position
that, as far as possible, FORTRAN and ALGOL would both be
isomorphic to a subset of MAD. In figuring out hew to specify
each statement in MAD we asked ourselves how could we translate
ALGOL into this statement? We didn't have to compromise too
much to provide for this translation. As a result we had a
language which contained the ability in theory to translate
from ALGOL to MAD. Ue also have on our master tape the
ability to translate from FORTRAN to MAD and we use it. My
point is, we worried about this $100,000,000 investment also.
You don't necessarily have to protect your investment to the
extent that programs will run without change on the next
machine. It may have to run with change, but if it's a one-
time change it doesn't necessarily have to cost too much.
Preferably the change can be made on the computer. To be

able to do this means that you have to anticipate the need,
when you're designing the language, to be able to make this
translation.

So I don't really feel too bad about seeing another
language come out (even if it gets to be fairly standard)

provided that I can sece a way from getting from the old

_73-

to the new. When we rewrite MAD, 1f it's different enough,
we'll call 1t something else, but w2 will provide as one of
our maln objectives a translator to allow people who are using
the old version to work with the new. We don't anticipate
that it will cost us very much to do this,

MacKENZIFE: Talmadge made a statement a little while ago that
I thought I understood at the time; namely, that you pay a
price for generality. This is really due to two things.

One constraint exists at the hardware level and another
exlsts at the programming technology level.

The point I'd like to make is this: that undue standard-
ization tends to inhibit development of either machine organi-
zation or, for that matter, technological improvement of
programming techniques. I think, therefore we should consider
very carefully what attitude we should have toward this thing.
The anecdote that Bernie told about recursive procedures is
a very good example. It's very easy to understand why people
do not want generality and do not want to allow recursion in
all procedures. They object primarily because of constraints
that exist at the hardware organization level. Is that really
the way to look at the question? Why not look at the question
of "Why should we not have recursion?" and thus identify
perhaps why it is not practical to have it now. My personal
point of view is that we do ourselves a sad disservice if we
don't take this latter point of view. I use recursion simply

as an example.

=74~

GALLER: I'd like to polnt out that the B-5000 gets
around the recursive problem very nicely, and I think it's
wonderful. The reason I mentioned recursion as a thing that
we probably don't want is that it costs so much.

MacKENZIE: You do pay a very great price for it in a
conventional machine organization, but that wasn't my point
in bringing it up. My point was, ""How ought you to look at
these things?" Should you be against them because you can't
do them with the present technology or should you attack the
present technology because you can't do them (and they are
really worthwhile)? 1 didn't mean to imply that you ought to
treat all procedures recursively, but you ought to be able
to treat any procedure in a completely general way and if
you can do this, you will find that most of the recursive
problem has disappeared. The fact that you can't in most
languages is indicative of the state of our technology.

GALLER: Unfortunately, there 18 a time lag, though.
It's one thing to say that we have to change the technology
to meet it and another thing to realize that we have to run
these problems now.

CLIPPINGER: MacKenzie made a point which, incidentally,
turned out to be a minor case agalnst standardization., He
wanted to have the freedom to attack the crucial points. I
agree with what he said but I arrive at somewhat opposite
conclusiong. But I am motivated by the same desires,

Some of you may not be aware that the FACT compiler has

230,000 ingtructions in the processor. I asked myself, why

does it have so many instructions” Ileed it be so comple:!
That's easy to answer. ''No, it neecd not be.” IMuch of what
is there 1s there because of lack of standardization. For
example, 30,000 of those instructions are concerned with the
card editing generator. Vhy is it 30,000 instructions?
Partially because we allow very elaborate editing of the
input information, because we regard it as extremely important
to be able to purge the data that is coming into a data
processing system. But partly there are 30,000 instructions
because of the many different ways people use a card to store
information in practically any way that people could have
found it expedient to store information on a card. A little
more discipline regarding the way you put information on
cards (some agreement, some standardization on what you will
allow) would have made it possible to make that particular
portion of FACT considerably simpler., I'm sure there are
hundreds of places where a little discipline (choosing one
way instead of allowing all possible ways) would have made
it possible to accomplish approximately the same results
with a compiler that is much less complex. So I think there
1is a good case for standardization although I don't see
clearly what it is. But I feel Intuitively that it is there.

MacKENZIE: Quite obviously, I didn't want to make a
case against standardization. I was simply attacking the
basis on which a case for standardization must be made.

For example, in a lot of programming systems teday it's

hard to say that you haven't paid a price in many respects,

-76-

for not allowing generality. To take a simple example, how
many processors today restrict indexing to just three levels?
How much in present day processers is there simply because
the designers were checking for adherence to their restrictive
notions? Some of the programming systems that we have done
have been rather compact at the processor level, due in part
to the relatively high degree of generality present in our
languages. That may be a surprising thing to say but I really
feel that 1t is true. Sometimes, in the interests of arriving
immediately at standardization, we all descend to arguing about
how our present machines can handle the proposed language or
how well aware we are of how we might proceed to implement
such things. I hadn't intended to make a case against
standardization, but only against restrictive choices in
standardization. Frankly, I'm not smart enough to know how
to avoid making such choices.

PATRICK: Dick mentioned earlier that you pay a price
for generality. Ue have indicated that there are some people
who have two different machines, either physically back to
back, or logically back to back across the country who have
made such choices in order to handle the situation. All the
people who don't have the problem also have to pay the price
for generality if the manufacturers are going to provide a
translator that contains that generality.

GORDON: T think that Clippinger's comment reinforced things

that Armer and I said earlier about standardizing the wrong

~T7-

things. What you said, Dick, about the FACT compiler and the
amount in it devoted to editing, applies also to COBOL and
Commercial Translator and similar languages. All of them
have to provide for horrendous formats. Perhaps we would
all be better off if we were to focus attentlon more on the
mlcrocosm--on things like formats. This would be preferable
to having to provide for anything that anyone is likely to
dream up in any installation that might use your compiler.

OPLER: How can you convince ihe customer, though?

GORDON: I think you can convince him of the value of
standardization in modules more readily than you can convince
him of standardizatien in the whole thing. Ve don't really
have standardization in things like COBOL either. Look at
the insistence on things like USE, ENTER, and other loopholes,
which every customer insists on.

OPLER: It amounts to standard circumvention.

GORDON: You might be able to convince customers of
standardization on things like tape format, character sets...

BROMBERG: Tape labelling?

GORDON: Labelling conventions, certainly.

DOBRUSKY: You can if you can show him significant
payoffs,
GORDON: You can if you can get to them in time,

PATRICK: Galler indicated that they had achieved some
measure of upward compatibility in language. He indicated
that this should be done at some reasonable cost if you're

going to change languages. But if you're talking about files

-78-

and file conversion, this is the sort of place where character
sets will hit you between the eyes., If I have files created
on an RCA machine using one character set and sort order,

I can convert it to a Honeywell computer (I picked these two
at random because I'm pretty sure they're incompatible in
every respect)~--sure I can convert from a 6-bit code of one
manufacturer to a 6-bit code of any other manufacturer but

it isn't only once. 1If I'm going to maintain a file in

Sacremento, in Oklahoma City, and in Maine, I'll have to be

converting both ways all the time. I think this is a very

serious problem and one that tends to get glossed over. Ve
find people tending to say, ''Let's COBOL everything.'" You
can't just COBOL everything unless you get some of these
foundations under it,

BROMBERG: Or standardize on one machine--like ours,

s ¢ You mean standardize in the small area.

GRUENBERGER: That's one of the suggestions we made a
while ago that we standardize machines by problem area rather
than plcking them by roulette.

McCRACKEN: 1I'd like to ask the assembled implementers
a question, I talked to the man in charge of software con-
struction for a certain machine. He has 50 people working
for him (give or take one or two). I asked him what kind
of people these are. He said that he had 6 group leaders
who had been in the programming business for three or four
years, For the other 44 the average experience is under one

year. At the time I was talking to him this group had just

-79-

finished, say, COBOL for some machine. I wonder how much
of our trouble these days is simply due to the fact that we
haven t grown up yet.

GALLER: Dan asked the questlon but the answer is
implicit in it,

CLIPPINGER: The answer was supposed to be a number like
27, or 38.

GALLER: I simply wanted to point out that I know our
example well using MAD. The language isn't that different
from FORTRAN., ‘'Je studied what was wrong with FORTRAN in
terms of compilation times and so forth. !le learned a great
deal and we came up with a translator that takes 16,000
instructions instead of 60,000, It compiles on our machine
ten times as fast. Ue have only three people doing 1t--
maybe that's part of the answer.

McCRACKEN: 1It's a big advantage.

GALLER: The three people who did it were experienced--
they knew what they were doing.

GRUENBERGER: You have design control,

GALLER: I don't think the result has to be as bad as
some of these speakers here have made out. 1I'w aware that
we can't apply really experienced people to everything. But
where it's important I think we must concentrate such people.
You are certain to lose when you have 44 people who don't
know what they are doing.

McCRACKEN: Look, I asked this guy, 'Would you be better

off with three people?" And he said, "Of course I would, but

-80-

I can't get them.'" He said, 'There 1s nothing I can do but

let them grow up."

LITTLE: Or do it with the six group leaders. How about
that?
ARMER: 1'd be interested in asking Cheatham how many man

years you estimate the task you mentioned will take and what

kind of people are going to be doing it,

CHEATHAM: Which task is that?

ARMER: The one where you are writing several compilers
for several different machines.

CHEATHAM: Well, for one thing, I never put more than
two or three people on one compiler.

GRUENBERGER: What kind of people?

CHEATHAM: The average man, for example, has 6-8 years
experience.

LITTLE: You're talking about implementing compilers.
I'd like to ask Jerry their experience in implementing systems.

KOORY: What do you mean by systems?

PATRICK: Come on, you can't avold the question like that.

KOORY: No, but it was worth a try. Do you mean a pro-
gramming system?

LITTLE: I'm talking about doing a job for a customer
as opposed to doing a compiler,

* : What we used to call an application, way

back when?

LITTLE: Let me put it this way. How many programmers

do you have, what is their level of experience, and what are

-81-

you trying to do with them?

KOORY: I'm still somewhat stymied. Are you asking how
many people we apply in building a compiler?

LITTLE: I'm trying to get away from compilers and talk
about an application.

KOORY: You're asking, for example, how many people do
we apply to building a Damage Assessment Model for the DOD?

LITYLE: Yes.

KOORY: Well, of course, this is a function primarily
of what we consider to be the requirements of the system.

We have just finished a Damage Assessment Model which will
operate on the 1604, It was written in JOVIAL. For the
actual writing and check-out we used on the order of 25
programmers, as I recall,

LITTLE: Do you have any idea of the level of these 25
programmers’

GORDON: Before or after?

PATRICK: And which way does it go?

KOORY: I would say on the average between one and two
years. We are fortunate enough to have four or five of them
who each had four or five years of experience. We have had
a falr enough number of brand new folks, you might say brought
in off the street (that is, just out of college). We had to
train this latter group.

w : I hope not out of Bernie's college.

KOORY: The table shows the results obtained when we used

an early version of the JOVIAL Compiler for the 1604 in

-8o_

producing two program systems for a customer. There are a
total of 27 programs in the two systems., It should be
remembered that the figure does not include program environ-
ment (internal data storage) in the statistics shown, only

operating instructions,

Jrogran JOVILL (J) Generated (G) Ratio (R) Deviation %

Mo, Statements Instructions™ G/J Mean Ratio
1 116 842 7.25 .02
2 205 1340 6.54 .69
3 442 2792 6.32 91
A 221 15386 7.16 .05
5 242 2400 9,92 2,69
6 105 041 6.10 1.13
7 133 1231 9.27 2.04
3 189 1645 8.71 1.48
9 174 1050 6.04 1.19
10 874 4448 5.09 2.14
11 590 3002 5.09 2.14
12 200 1771 8.85 1.62
13 348 1907 5.48 1.75
14 256 1212 4,74 2.49
15 556 3175 5.70 1.53
16 74 751 10.01 2,78
17 146 1173 8.04 .81
18 142 1038 7ha v
19 338 2395 7.09 14
20 406 2181 Sn 817 1.86
21 265 2531 9.74 2.51
22 954 5363 5.52 1.71
23 173 1491 8.62 1.39
24 673 3557 5.28 1.95
25 112 1048 9.44 2.21
6 200 1952 9.76 2.53
27 2000 12,688 _6.34 .89
10,134 65,261 195.16 41.09

12%7l§ = 7.23 (mean ratio of Generated Instructions

to JOVIAL Statements).

41,09 = 1.52 (mean deviation).

*Program size (G) differs in some cases from the full program
size since internal tables are excluded as JOVIAL generated

instructions.
Table 1

-83-

BROMBERG: I don't know if I'm speaking to McCracken's question
or not, but is not this vast number of inexperienced program-
mers hurting us? I have concluded that it is inevitable
that we are always going to have such numbers of inexperienced
programmers. ‘hen we deal with language implementation for
new computers I thinl the first thing we should do is turn
out a compiler and then perhaps a year later turn out a good
assembler. I reached this conclusion just because of this
problem that Dan brought up. Those customers who are new to
the machine are quite similar to those implementers who are
new to the business and to that particular machine. Only
through use and experience is the customer going to get down
to the measure of the efficient use of the machine. At that
time they should be given an assembler which allows them to
make this efficient use.

McCRACKEN: Leave us just pray that the customers just
don't get so furious at the compiler they receive by that
process that they give up on COBOL.

PATRICK: Yes, I seem to remember the time when a
person would polish like crazy if he was doing utility work,
because you would say to yourself, "Gee, if I can save three
instructions here, that will be three instructions off every-
one's use when they go to use this particular sine routine.,”
What happened to that philosophy? Seems like we're kind of
galloping into second shift rental with the philosophy you

were just mentioning. We're saying, "It only takes an extra

-84-

10,000 instructions so we get into second shift rental in
the third month and who cares?"

BROMBERG: It seems to me that the important thing today
with new machines initially is to get the application on the
alr. Get it done and then star’ worrying about the technilques

for improving it.
PATRICK: 1It's not clear that you get it done with raw

people.
OPLER: I think we ought to have the opinion bag held

up permanently now,

I can't see this approach at all.

When you write an application and you make a slight
error (e.g., your loop 1s one instruction too long) you have
hurt that application only. When you make the same sort of
error in writing a compiler everyone who uses that compiler
gets hurt. I feel very strongly about this. When you're
writing a compiler, you must have your best people on it
exerting their best efforts to squeeze everything out of it
they can.

GORDON: This sort of thing should make very happy those
people who argue that you can put up with a little inefficiency.
We hear a lot from them, What Bromberg said is a good answer to
these guys who say, ''le want it yesterday and we're willing
to put up with a little inefficiency to get it.” Howard's
approach would give it to them.

& : It might give them a little more than they

would want if they follow Howard's suggestion.

-85-

MacKENZIE: There's no real basls for comparing the
efforts or experience levels. I don't think there is any
real argument on this because you have to achieve design
control one way or the other. You had best do this with a
small experienced group. We have found that it 1s one thing
to do a good programming system with a small group; it's
another thing to properly promote it, if you will, to be able
to support it at the installation level. 1It's at these stages,
I think, that you have to start applying considerably more
labor to these tasks than the compiler writers themselves ever
recognized required.

In talking to people about the overall jobs it's impor-
tant to recognize what the basic responsibility of the group
that you call compiler writers is. The outsider tends to
regard it simply as the job of coding the processor to go with
the programming system. Quite frequently the job requires
a great deal more,

PATRICK: Howard, do you want to protect yourself?

BROMBERG: I just don't understand why there seems to
be so much agreement on the "fact” that design control
depends on the smallest possible number of people.

McCRACKEN: You're making a virtue out of your vices
now.

BROMBERG: Clearly, if you have 50 people on a design
effort not all 50 are involved in design. Only 4 people will

be involved in the design or even only 2. The other people

-86-

are going to take the analysis, that is the actual design,

and interpret it, Tae four, who are then the design merchants,
are going to be standing over their shoulders. They will

make sure that the prorer design control is exercised. 1

don t tnink design contvol nas anything to do with the number
of peorle you have in the iwmplementing body.

GRUENBERGER: That s wishful thinking.

"ATRICK: Isn't taat cxactly what Opler was talking
asout vhen he was speaking of the 200 little, tiny, but very
important, decisions? You' re not making those decisions with
the 4 guys, you're making them with the 40.

JROMBERG: Lo sir, you re doing it with the 4 guys. The
only difference between a big sweat-house operation like ours
and the operation at Tom's shop is that his guys are doing
everything. Our guys have a little bit more leisure,

GALLER: You don't really know when they are making
those decisions, They may not have enough sense to come
and ask you about these decisions. If you're there at the
time and they happen to think of it, it's 0.K.

BROMBERG: This is the problem of implementation follow-
up.

MacKENZIE: You seem to have implied that you can dis-
tinguish a point in time when the design is finished and the
implementation effort is ready to be started. I wish we could
sometimes.

GRUENBERGER: All you've got to do is look at one of

these languages and you can just about measure the number of

-87-

huaps on tiue camel that made it.

DRCHELERG: That's fine. I agree when you're talking about
language design. But when you're talking about a processor
design it's a different thing.

CLIUP’INGER: Let's pursue that point. Let's take FACT.
There's a language that is obviously very complex. If you're
going to look at it and start measuring the number of humps
in the cawmel I think you're going to tell me that there were
a lot of people involved in it. The actual number of people
isn't more than three or four.

g : But how many humps did they have?

GRUENBERGER: How many people implemented it? How many
people actually wrote instructions to create FACT? These
people had to make decisions. Each one grew a little hump,

CLIPPINGER: There is certainly some truth in that.

I think you tend to exaggerate it though.

GALLER: Let me give another example. Over the last
summer we rewrote our entire system to go from the 704 to the
7GS. Ve put a group of eight people on it. Eight good
people, not the type of the 44 we were mentioning, but eight
good people. We had lots of discussions about the specifica-
tions and so forth. You can always discuss down to a certain
level. Each of these people went away and did a job, The
resulting system is real nice; it's efficient and it's running
beautifully. I'm still finding out things that these guys

did; each in his own part. I know, overall, what the system

-88-

is doing and it's dolng what it's supposed to do. They came
to me with lots of questions during the implementation.
They'd ask me if it was 0.K. to do a certain thing and I'd
evaluate their questions in terms of the overall problem.

But there were lots of things they did where they didn't ask
me and I have no 1ldea what they did. Some of them I agree
with; some of them I don't, They are just now coming to
light. Neither I nor a group of any size could have possibly
overseen what these eight men were doing., Since I was the
supervisor on that particular project it was a ratio of 1 to
8. How many would we have had to have supervising these people
to really keep control? And how many would we have had to
have on top of them?

GORDON: That's what the other 44 could do.

1'd like to spell out as an axiom that no programming
language is fully defined until there exists at least one
compiler for it,

CLIPPINGER: I would go further than that., TIt's not
defined until it's defunct.

GORDON: I'm not ready to go that far.

MacKENZIE: One possible way around this problem that
was mentioned on design and implementation is to find suffi-
clent means to convey the design to the implementers. In
many cases if you can do this you can eliminate the implementers
to a great extent. This comes back then to some virtue, if

you will, of an approach to standardization. For example,

-89-

writing a processor in its own language certainly tends to
minimize the number of decisions that the actual implementers
might otherwlise be about to make.

PATRICK: I don't understand how that comes about.

MacKENZIE: I made the remark before--we were talking
about the problem of design at one end and applying that
design to large bodies of implementers at the other end--
that people deviate from the designer's intent because 1t
wasn't quite clear what the designer's intentions were, quite
frequently., There are a lot of other reasons why people
deviate too. Perhaps they didn't agree with the designer.

A conveyance of the design specifications 18 an extremely
important thing. Describing a processor in its own language
is one way of minimizing, I think, the prerogatives that

the implementers would otherwise exercise if for no other
reason than it tends to reduce the scope of the implementation
effort.

PATRICK: I still don't see how this helps.

MacKENZIE: Vhat I was saying clearly implies that the
designers are doing most of the implementation in expressing
their design.

GORDON: Maybe there is no clear-cut sharp line between
the design and the implementation. We saw one example of
this in July of 1960 when we published a manual for Commercial
Translator language. As late as a year after this thing was

published we were discovering what we meant by some of the

-90-

things in the book as we were getting around to them. The
book described these things in general terms, and gave an
idea of the kind of thing we would have. But what would
happen specifically under the conditions of compiling we
hadn't gotten around to yet. As these things came up for
implementation they became pinned down. I don't think that
you can say that we will design up to a certain point and
then throw a switch and be implementing.

CLIPPINGER: ‘'Jhat is the subject of this conference?

PATRICK: The pros and cons of common languages. And
what we're after is enlightenment,

CLIPPINGER: I'm not sure we've been talking about that
subject.

PATRICK: Perhaps we've digressed a little bit to more
than a level of detail. So it might be appropriate to review
what we've covered this morning.

We started out talking about visceral feelings. These
were things that appealed to us, like why common languages
were good and why they were bad. These are God and Mother
categories on a high plane. Along the way we uncovered just
a few facts. Ve have made some statements that such languages
are not completely machine-independent. As of the present
state-of-the-art, we don't seem to know exactly how to do
this. In the implementation stage you made them, perhaps, a
little more machine-dependent in order to get some efficiency.

We pointed out that you pay for generality. We noted that it

-91-

was great to have a language that you can translate across
all machines and have it efficient on every machine. I think
it is our concensus that we don't quite know how to do this
just yet.

The last topic we were on, I think, was whether it was
better to have a high quality small staff or a young mob.
With all deference to Bromberg, I think he was talking about
a pyramid of a staff, with a genius at the top and levels
of priests and sub-priests down to the machine clerks at the
bottom, It's rather difficult to administer such a staff
because the design process extends all the way down to the

key-punch stage.

LUNCH BREAK

-92-

ARMER: Let me ask a question., There have been rumors
about the Navy going the JOVIAL route. If this is true we
may find, two years from now, we are in the same boat we
were with FORTRAN some time ago--nobody likes 1t but the
investment was just so great that we had to continue going
that way. Might we recommend that there be less emphasis on
JOVIAL and more on say, NELIAC, so that we can try something
else; so that we don't have this tremendous commitment to one
language two years from now? -

® : How do you get out of that box? The only
thing you can recommend 1s: don't standardize on JOVIAL--
get spread so thin that there will not be so much resistance
to going down one particular road later--but so what?

OPLER: To this point I think the really important thing
is the question of the time scale,

In preparation for this meeting I sat down and wrote out
some of the arguments against standardization., I decided
that I would wear my antil-standards hat this time. (I have
also a pro-standards hat.) Eventually the arguments boil
down to two classes. One 1s the set of arguments agalnst
programming language standardization at this time. The other
1s the set of arguments against programming language standard-
lzation at any time. I think the more interesting set is
the arguments against standardization at this time. Just to
show that T was trying to be objective I sat down last night
and wrote down all the counter-arguments against the arguments

against standardization.

-03-

PATRICK: I think it would be appropriate to list these
arguments on the board.

KOORY: 1I'd like to ask if we're listing arguments
against standardization from the point of view of the DOD or
from the point of view of the rest of the computing werld.

OPLER: Actually, these are from the point of view of
the rest of the computing world although I have been doing
a lot of thinking about the problems with reference to

Command and Control.

The arguments against standardization now are as follows:

1. Programming languages are changing too much.
2. Programming languages have not developed sufficiently.
3. Promising alternatives are just now appearing,

The arguments against standardization at any time are

as follows:
Administration 1s too time-consuming,
Poor past experience.
Adverse effect on computer progress.

1

2

3

4. Specialized languages are more efficient.

5. Programming languages are not the right level.
6

Language standardization is only a part of the solution.

Figure 3

ARMER: 1I'd like to hear Ascher elaborate on that point:
“"Alternatives are just now appearing." I'd like to hear him

enumerate one or two.

9k

OPLER: I think this is one of the most serious arguments
against standardization right now. It seems that we re just
at the beginning of a new period.

In the past it has been believed that the preparation
of a compiler to translate from a source language to an
object code has been a tremendous job--one that can't be done
every day, that demands man-years of effort. New tools, such
as syntax direction and table direction and the type of com-
pilers that can be built on hierarchies and list structures,
give to the future a freedom that we haven't had in the past.
Je will have freedom to agree on something radically new,
implement it, test it, and if we don't like it, throw it
out and iterate again. In the past we have had 20 to 50
man-years devoted to a compiler to the point where once you
have created it you have too much of an effort expended--too
much inertia to overcome--to try to change it. I am reminded
of a remark by the late Dudley Buck, speaking about micro-
miniaturization and printed circuilts when he said that some-
day we may be able to write our computer instead of writing
the programs that we want. With syntax direction, 1f you
don't like the language you've developed today you can write
a new one tomorrow. So one promising alternative 1is the
release we now have from this vast implementation effort.

LITTLE: From the user's standpolnt I hear you digging
my grave. Right now they change them to the point where it's
difficult to keep going. You see I think that testing of a

-95-

language is done when you implement real joos. If I'm going

to have to implement real jobs some of which are obviously
going to take longer than it takes you to write a new compiler,
somehow our time phasing will never be in synch.

OPLER: ©but Jack, I'm talklng about language develcpment.

PATRICK: The kind of stuff that Galler is doing, not
the kind of stuff that is done out in the field.

LITTLE: But I have to use something everyday to do the
job with.

OPLER: I understand that. I'w just thinking that in
1975 we will look back and feel that in 1955 we were just
beginning to find out what the structure of these languages
was. 1965 marked the time when the second big round of these
experiments began to end. I feel that we have just begun
to climb but have scarcely gotten off the toe of the curve.

I hardly think that we can say now that we have reached the
piateau; that we can say that we know enough now to set up
our first standards.

My feeling is that we are at the beginning of a very
exciting period of development. If we standardize now, we
will be sorry. I do not think we can now look back to a
long enough period in which various ideas have been tested
and rejected.

LITTLE: 1 agree, Ascher, that we are probably on the
verge of some very exciting times in developing the languages,

but we are also on the verge of some very exciting times in

-96-

implementing very large jobs, like Command and Control systems.
If your argument doesn't carry over in some proportion to
enable us to do these jobs elither over or better now, we're

in some sort of trouble.

DOBRUSKY: It seems to me we're confusing the difference
between language and the implementation of that language.
We've talked about the techniques of things like table handling,
list structures and the syntax of the language. The language
itself 1s not reflected necessarilly in the way we implement
it. Anyone capable of writing a compiler can take any lang-
uage that exlsts today and write an implementer for it that
will take advantage of one measure of efficiency. With
various implementations we will find the best means of doing
this with the help of the universities and of various groups
in private industry. I think the direction of a language for
describing problems had better be solidified somewhere. We
must cut down continued proliferation of different languages.
Je still don't have a measure of their effectiveness yet.

OPLER: Let's consider all the effort that has gone into
NELIAC and JOVIAL, for example. Supposing tomorrow someone
comes up with a radically new language. Suppose this new
language requires the expenditure of 30 to 50 man-years of
effort to get 1t to the point where we can put it to use and
see 1f it's any good. If we can write a syntax table for this
new language so that we can give it to somebody and have a

compller in a few days, then we have glven people more freedom

-97-

to design languages. We are not then restricted to a small
set of languages like the ones we have now,

DOBRUSKY: Ascher, I agree with that approach but I
don't think we're smart enough to write such a processor yet.
I don't think we can achleve the various measures of efficiency
that have been described here such as fast compille time,
efficient object code, easy training, and so on.

GRUENBERGER: You guys aren't argulng.

OPLER: 1 agree, I don't think we really are arguing.

I am simply saying that I think it would be premature to
standardize because we are just now getting into our hands
new tools to work the area. I don't think it has been proven
that programming language standardization is the only point
of standardization., Perhaps we should consider procedure
standardization, problem definition standardization, descrip-
tion standardization, or data standardization.

McCRACKEN: Perhaps programming language standardization
is the only one we know how to attack now,

PATRICK: Maybe we're not attacking one where a problem
exlists, Maybe the problem isn't in the coding.

ARMER: You don't think that we know hew to standardize
on files, on labelling, on format, on character sets, and
things like that?

McCRACKEN: All right, take files, for instance. I don't
know how we could standardize there until we have standardized

on character sets first.

-98-

ARMER: 0.K., so we must standardize character sets first.

McCRACKEN: 0.K., glve them your speech, Dick.

CLIPPINGER: You mean the work that is going on in
character sets? Well, X-3.2 has a proposal for an American
standard on character sets. I thought you would all be aware
of this.

McCRACKEN: 1It's up for a vote at the present moment.

CLIPPINGER: 1It's reached the point where X-3 has had it
in their hands for a while and it's up for a vote. The votes
are supposed to be in by the end of June.

PATRICK: After they vote will the rest of us get to see
it?

McCRACKEN: It was published somewhere about a month ago.

CLIPPINGER: There are users groups in X-3 including
JUG. Harry Cantrell, for example, is involved here.

PHILLIPS: This includes such groups as the Air Transport
Association, ABA, and National Retail Merchants Association.
There are nine groups all together.

GALLER: What would be the effect if this resolution
goes through for a standard character set?

CLIPPINGER: I would guess that the effects are going
to be extremely extensive. You can use your Jjudgment on this
as well as I can. 1IBM, for example, has a group set up to
study the effects and see what they will be on IBM. I'm
sure that when they complete their study they still won't

know the extent of the effects. Look at it yourself. There

-99-

are 128 characters in this set, with a subset of 04 standard
characters. I'm sure you'd like to see this standard reflected
in such things as keypunches. The letters of the alphavet,
for example, are a connected set among these and they are
not in the current keypunches, nor on the 407 printers. The
collating sequence of every machine will be affected. The
appropriate packages for minimizing the cost of the inside
of the computer would probably be affected. It seems to me
that every aspect of computer hardware will be affected.
Now, of course, a standard is never compulsory and it's up
to each person to declde to what extent he wants to go along
with it, Clearly, for example, IBM is not going to obsolete
all its keypunches overnight, nor all of its printers.
Neither are the rest of us. You can see, though, that there
would be economic pressure on each manufacturer to move in
this direction so that his costs would go down as a result
of accepting this standard. Who can say what the total
effect 1s going to be? There will be some effects which will
increase costs and some which will decrease costs for the
manufacturer and the user and what the net result will be
I'm not sure. Personally, I think the net result will be to
decrease costs. This is just an intuitive feeling.

To those of you to whom this is complete news, let me say
that X-3.2 has worked a couple of years at this problem and
worked very hard. They have explained very carefully how

they went about arriving at the conclusions that they arrived

~-100-

at. There is a 20~ or 30-page document--pretty well put
together--that you will all want to read.

PHILLIPS: I can furnish this document to anyone who is
interested. I also now have found a list of the groups
involved in setting up this standard. There 1s LOMA, JUG,
the American Bankers Assoclation, the American Petroleum
Industries Associatlon, the American Gas Association and
Electrical Industries, General Services Administration.,

PATRICK: GSA is an important one,

PHILLIPS: Yes, GSA is listed among the users and the
Department of Defense is listed under the general interest
groups. Among the manufacturers we have IBM, RCA, NCR,
Monroe, Remington Rand, Minneapolis-Honeywell, Pitney-Bowes,
Standard Register, Burroughs, Royal McBee,...

GORDON: What about NMAA?

PHILLIPS: They should be here somewhere. Let me go on.
In the general interest groups, we have ACM, Department of
Defense, The Engineer's Joint Council, the Telephone Group,
AIEE, ACM, ERA, IRE, and NMAA. The American Management
Association 1s in the general interest group and also EIA,
the Electronic Industries Association. There are ten general
interest members, nine users groups, and ten manufacturers.

CLIPPINGER: If you're interested, this character set
has provision in it for the letters of the alphabet and the
ten decimal digits, of course. The usual special characters

that we re familiar with, control characters (such things as

-101-

carriage return and carriage shift on a typewriter), data
delimiters (end of fileld, end of group) and a character for
escape which 1s an important one in case vou want to type in
an entirely different set of characters (a group like the
weather bureau might like to do this). There are other
control characters such as those used for wire transmission
("where are you'") and so forth,

Some thought has been given to the problems of international
communications; the substitution of alphabets for example.
Members of X-3,2 have travelled through Europe and held dis-
cussions with other national standardizing bodies. They have
explored the possibility of moving toward international
agreement. There are people in the United States who are
not interested in any standard coded character sets unless
they can be assured that it will also be an international
standard., Of course an international standard is much more
difficult to achieve. (In general, in the world there are
about 2,000 national standards in a country like the United
States and oniy about 100 international standards.) I'm
sure if you examine the character set that is being proposed
you can imagine some of the implications yourself,

In preparing for a meeting in Stockholm of the Programming
Languages Standardization Committee, we put an item on the
agenda to consider the implications on programming languages
of a standard coded character sef. Bob Bemer is summarizing

the results of such activities in a note.

-102-

The character set proposed by X-3.2 contains all of the
characters used in COBOL and many of those currently used in
ALGOL. It couldn't include all of those that you might like
to use in ALGOL. That would probably take more than 128
alone, but obviously no one now using ALGOL needs nearly
this number anyway. You might, however, like to take
advantage of this escape mechanism whereby you can use any
other character sets you would like. In the FACT language
we provide for editing information coming in from paper tape.
As you know, people have a tendency to use 5-, 6-, 7-, or 8-
level paper tape; they like to indicate the end of a field
with an end of field character, for example, TFACT recognized
all such characters, provided that you define them to FACT
by means of tables.

Well, I've tried to list some of the implications to
programming languages of a standard coded character set.

It's a very complex problem.

PHILLIPS: There's something I would like to add to that.
In the X-3,2 area we have an example of premature standardi-
zation. Several years ago the Department of Defense, in the
absence of anything better, adopted what is now called the
Field Data Code. The Arwmy led this off. I contend that
this standardization was premature because they did not bring
into the discussion as far as I know, representatives from
the data processing community as well as communications people.

It is primarily a communicatiens code. They made no provision

-103-

for expansion of the alphabet beyond the English alphabet.

The order in which tihe characters were arranged in the code
did not lend itself well to sort and collate operations. .\nd
yet it was considered as a principal candidate for the cnarac-
ter string by iX-3.2. 1Incidentally, the Navy and the Air Force
have since adopted it; so it is now standard for the military.
I'm not sure whether or not it has been adopted by civilian
agencies of the government,

PATRICK: NATO is currently discussing it.

PHILLIPS: llere 1s an instance where the Federal Govern-
ment--the biggest user in this field--adopted a standard
several years ago and yet it may be cast aside by the X-3.2
group. That group thoroughly considered it before designing
the present code we were talking about.

CLIPPINGER: Since there seems to be a large lack of
information about what's actually going on in standardization
it might be worthwhile mentioning one or two other things.

The X-3.1 group is trying to declide on a character set
for optical character reading. This could be the first
standard in that particular area. The current status of
that effort is that they have tentatlvely decided on a set
of 16 characters in three different sizes. (There was much
debate as to whether they could get by with one size or
whether they would need a set of sizes.) The ABA standard
for MICR will also be proposed, of course, through ¥-3.7.

X-3.6 is working on a set of flow chart symbols. There

are also people in X-3.4 (programming languages) who are

-104-

working on flow charting symbols. There is more to it than
just agreeing on symbols,

PHILLIPS: X-3.6 also has problem description and analysis.

CLIPPINGER: X-3.5 is working on a glossary in the data
processing field.

X-3.3 concerns itself with communication. It works in
close conjunction with the EIA committee. Tth have a pro-
posal in the mill for a set of standards on transmission
frequencies. They are also considering standards for input/
output media (cards, paper tape, and so forth).

GALLER: You mentioned the MICR standards. When I saw
it they were concerned only with standard shapes for the
digits. Do they have alphabetic characters in there too?

I was astounded when I found that they showed such little
foresight in allowing only for decimal digits,

CLIPPINGER: I wouldn't want to defend that but you
have to recognize that the ability to recognize 24 or 30
characters with little chance of error (rather than the 106
they're working on) is a difficult engineering problem,

BROMBERG: To do it later is even more difficult.

GALLER: After you set standards to provide sensitivity
to distinguish between 16 characters, then to later extend
those standards to provide sensitivity to distinguish between
64 characters i1s a much worse problem., 1It's almost impossible.

GRUENBERGER: ALl you have to do is specify that the new

system must be compatible with the old.

-105-

get some controversy going on this,

PATRICK: It sounds to me like from what Dick Clippinger
and Charlie Phillips have sald that they are laying what looks
like a superb foundation to build on. It looks to me like a
strong argument for Opler's case of waiting a while.

BAGLEY: How long do you wait before you pick one in
order to get your current work done? 1 feel encouraged by
this SDC report. They happen to have picked two years. I'm
not that much of an optimist. I would still like to see the
kind of effort they suggest; namely, get a bunch of brains
together like was done in the COBOL effort.

* : They picked six months.

CLIPPINGER: I'm sure it would be desirable at some
time in the future to have programming languages that are
better than the ones we have now. On the other hand all the
manufacturers are faced with the problem of providing COBOL
for their ecustomers. There are questions of interpretation
that arise and it costs us money. It costs us money when we
can't get an answer and it costs us money lcter on when we
can get an answer., I think a good case can be made, particu-
larly in the case of COBOL, for accelerating the process by
which the language becomes defined. Just the fact that 15
manufacturers are implementing COBOL on 25 different machines
makes a case, it seems to me, for declaring it to be standard
at an early date. T think we need a period of use, for the

lancuagzes we now have will provide a criterion for the
[e) (@] p

-1006-

GALLER: This is some constraint.

GRUENBERGER: You bettcha it is.

PATRICK: This is the same problem that the military
has with their Field Data codes. Since they adopted Field
Data we actually have Field Data constructed into the hardware
in these big communications systems, If they had said,

"Stay loose boys, we're not sure which one we're going to
adopt," it then could have been implemented several different
ways at no more additional cost.

In my opinion this is a clear-cut case of suboptimization.
It's like the language designers designing a language that
is easy to write. That is obviously suboptimization, because
they forgot about the damn user. In this case they sub-
optimized on something for communications purposes without
any thought of what you want to communicate. If you want to
order some Air Force parts from Oklahoma City, you're going
into a data processing system.

PHILLIPS: T think there's a difference here. If you
adopt something as a military standard as they have with the
Field Data Code, I think that all three of the military depart-
ments are required to follow that standard. Their alternative
in this case (referring to X-3.2) 1is to adopt it as an alter-
native standard. If there is an alternate standard then you
have the option cf going with whichever one is best suited
to your needs.

ARMER: I still haven't heard anyone say, "We ought to be

going this way instead of the way we're going." 1I'd like to

= 0if~

improvements in future languages.

LITTLE: /e need the use but we also ought to investigate
what these criteria should be. For example, FORTRAN has been
in use for quite a long time but if you try to go and get any
statistics on how it operates you bump up against a pretty
cold, hard wall. Usage alone doesn't do the job.

GORDON: COZ0L is not a standard, de facto or anything
else; just the fact that you have N manufacturers implementing
something, on M machines, all called by the same name does
not make it a standard., You know, and I know, Dick, that
there are no standard programming languages in the commercial
area today. One COBOL looks as much like another COBOL as
FACT and Commercial Translator look the same.

CLIPPINGER: I agree with you Barry, of course., ‘hat I
meant was that the notion of COBOL has achieved a kind of
acceptance which is extremely broad. There 1s something
standard about it, although it is certainly not the language
itself.

GORDON: The name is about the only thing that is standard.

KOORY: 1It's not that bad.

BROMBERG: I would much rather have the job of taking
a Honeywell COBOL program and converting it so that it would
be acceptable to an RCA COBOL translator than I would to take
a COMIRAN program and convert it to any other machine.

GORDON: Even leaving Honeywell out of it, is it possible
to take a COBOL program written for the RCA 501 and convert

1t to the 601 without a major rewrite?

-108-

BROMBERG: Of course 1t is. It is even easier because
of the family relationship which can be accomodated automatically
by the object compiler.

GRUENBERGER: 1I'd like to address a question to the manu-
facturers' representatives who are here. If you, the manufac-
turers, could have your druthers and the DOD said tomorrow
morning, "'KLUDGETRAN is it, by golly we're frozen.'" (and
let's assume that they could define KLUDGETRAN)--that's the
language for Command and Control--would that make you happy?
Or would you like to see this decision put off another five
years? Define it any way you want, but answer the question.

BROMBERG: If you have a language specification to which
a number of people agree and they agree that this language
would perform the job and you have one big fat user who says,
"“Yes, I'm going to use it and if you have a strong authori-
tative body that is going to handle the interpretation,
modification, and extension of the language, I think that we,
as a manufacturer, would be glad,

GORDON: Now I know, Howard, why you insisted on those
compound “'IF" statements, but I agree with you anyhow.

My personal opinion is that if anyone were to come up
with a proposed standard in this area tomorrow morning it
would be premature by several years, and would be, in the
long run, a bad thing for the industry.

GRUENBERGER: Then you'd be unhappy.

PATRICK: This is in the business area you're talling

about Barry, isn't 1it?

-109-

GORDON: No, he said Command and Control. The business
language area is one in which we might be ready to standardize
within two years, but in Command and Control I think it's
farther away.

PATRICK: Could we list on the blackboard the reasons
why you feel that way, and see if we could get some agreement
on it; that is, why you feel we shouldn't standardize now on
a Command and Control language?

GORDON: Because we don't have any Command and Control
languages yet which are generally felt to be worth standard-
izing on. It's simply that a Command and Control language
has not yet evolved; it's just that simple. I'm of the
evolution school. Perhaps the noun "'standard' or the verb
"standardize' needs some definition. To me the verb "stand-
ardize' means to declare or recognize as a standard. ‘hen
I think of standardizing I do not think of creating a standard.

GRUENBERGER: All right, suppose we put it this way.

e have a KLUDGETRAN definition and we have already implemented
it on five machines. Now the proposal is made that this
language we have which is a real hot-dog language--it does
everything (oh, there are a few things it doesn't do, like
handle algebraic statements, or loops, and so forth)-be made
the standard Command and Control language. |

GORDON: Then I'd say fine, let's publish the darn
thing and let's see people jump to use it because it's so

great., Then a year from now when 85% of the industry has

-110-

embraced it, it is obviously a standard and let's say so then,

BKOMBERG: Should we carry over the same exact remark
that you just maue, Barry, into the current real practical
world as it now exists around COBOL?

GORDON: No, we can't.

BROMBERG: ‘'hy not?

GORDON: Because of the Defense Department.

* : There's not a free choice there.

PHILLIPS: They're the only ones who have a basic use
for it. They're the only ones who would use Command and
Control,

ARMER: But Howard put it into a different context,
referring to COBOL. There s another way for the world to go.
The DOD could rescind their statement about COBOL--that state-
ment about they're not going to order a wmachine unless there
is a COBOL translator for it.

PHILLIPS: You're going to have to read that thing,
Paul; it doesn't say that.

PATRICK: Yes, but it works that way.

GORDON: Crabgrass doesn't say that it's going to take
over the lawn, Charlie; it just woriks that way.

ARMER: You understand I'm not arguing this point,
Charlie, I'm just trying to get some discussioa because I
think it's rather implicit in some of the things that are
being said.

PHILLIPS: The statement says that you will purchase a

machine that has a COBOL compiler available unless there are

-111-

reasons why you don't need it.

PATRICK: Who judges? Has anyone done it?

MacKENZIE: I know what the directive says and I think
I understand the reasons behind it, but is its intent carried
forward into the invitations to bid? I don't believe it is.

PHILLIPS: All three of the departments are going through
the problem now of deciding how and where to make their
equipment selections. This has been going on for some time.
There isn't a lot of selectlion that is done at the local
level anymore. In fact, it hasn't been for some time. The
ones who will be making equipment selections at the various
echelons are fully aware of the fact that they don't have to
conform to this directive if they don't have reasons to use
COBOL.

CLIPPINGER: What you're saying expresses the psychology
of the DOD user but from the psychology of the manufacturer--
he has salesmen out there trying to sell his machines and the
people he's trying to sell them to are saying, "Look at the
GSA contract.'" Now can you choose freely whether you are
going to use COBOL or not? The answer, of course, is pretty
clear. You're going to do COBOL. It doesn't matter what it
costs you, you have to do COBOL so that you get a failr chance
to market your equipment.

* : There were a lot of users too, at the last
SHARE meeting and the last Commercial Translator meeting who
said that they were going to go COBOL simply because of the

DOD requirement,

-112-

ARMER: It seems pretty obvious to us that IBM 1s golng
to abandon Commercial Translator because of COBOL. I've
never heard them say so expllicitly, but you can judge by
their actions.

GORDON: There were people who were unhappy about this

in IBM but there wasn't really any choice.

Speaking of Commercial Translator reminds me of something
that I found very interesting. One of the things we were
asked to read before this meeting, was Joe Wegstein's article
on ALGOL in the September 1961, Datamation. Let me quote
from 1t:

", .. have led to the development of numerous artificial
computer languages such as: FORTRAN, ALTAC, IT, FLOWMATIC,
COBOL, ALGOL, LISP, COMIT, IPL, JOVIAL, MAD, and NELIAC."

You know, Dick, we might just as well not have bothered.
The two independent research activities in the Commercial
languages have sort of been written out. They have been
"new-thunk" out of existence.

PATRICK: It does seem as though DOD is a wet blanket
here, whether you really intended to be or not.

PHILLIPS: It was intended to support COBOL, let's not
be coy about it. You try to face these things positively.

If you're going to support something you do it positively and
we were supporting COBOL.

.GALLER: I understand that CODASYL has a long range

effort also. I remember reading something in Datamation about

-113-

decision tables influencing this language. What is the
position of COBOL with regard to this long range effort?
Is COBOL a subset of what they hope to accomplish? If it
isn't, what will the status of COBOL be? What are the
attitudes?

CLIPPINGER: The article you read, of course, represents
just someone's opinion.

GALLER: 'Jell, whatever happens, whatever they come up
with, are they pledged to COBOL or can they go off in new
directions? Is the long range group committed to the short
range group's COBOL?

PHILLIPS: Not necessarily.

CLIPPINGER: Speaking as a member of the language
structures group of CODASYL, there is an article in the current

(April) issue of the ACM Communications on "Information Algebra"

done by a group of people in CODASYL with no connection with
anything else., These are six people who simply found it
convenient to go off by themselves and do some work., The
work of the systems group 18 an extension of the notions of
Burt Grad on tatular languages. This group is working inde-
pendently of the COBOL effort and I weuld guess it would be
at least a couple of years before we could properly evaluate
their work. It's too early to tell whether it will have any
influence with what is going on with COBOL. The COBOL group
at the moment is polishing the extemsions that they have

already decided to add to COBOL (such as a report writer and

-114-

sort) --these will go into Extended COBOL Gl. They will then
turn their attention to clarifying ambiguities in the current
language; that is, maintenance.

They will eventually put all this together in what will
probably be called COBOL-063. It is most unlikely that there
will be any iniluence by the systews zroup on that effort.

Tt Is my opinion that you won't scc any interaction between
the systems group and the COBOW. zroup nelore 1964, and then
it will be done by salesmansiuip on the part of the people

in the COBOL group. This is all personal opinion, ol course,

GORDON: Dick, is it not true that the systens sroup
in developing these tavular formats have been working along
the lines of having the COBOL 41 languaze be tae lanzuage
used in the tabular format?

CLIPPINGER: Yes,

GORDON: 50 I would question your saying tnat they're
working independently of each other, They re worlking inde-
pendently of the COBOL committee, but they are not independent
of COBOL at all. They are merely casting COBOL into tabular
form the way it looks now. They ave making a few slight
improvements like using the word "3ET" instead of "COMPUIL"
(and other such "radical" advances). In addition, they're
recasting COBOL 61 into square form.

PATRICK: This is some of Bernie's upwards compatibility.

CLIPPINGER: But this probably wouldn't see the light
of a COBOL proposal--that is, something to be adopted--before

1964, looking at the rate at which these things are adopted,

-115-

GORDON: This ties in with the item of frozen progress
on our chart. In 1964 we'll still be effectively using the
1960 short range committee language.

PATRICK: That is the six month version,

GORDON: Right.

GALLER: It's not really my idea of upwards compatibility.
The upwards idea is that you re free to try something else
provided that you can map into it. These people aren't feeling
quite that free. As the years go by, and people write more
and more programs in COBOL, they're going to feel less free
the same way people are in FORTRAN now.

LITTLE: e keep coming pack to the distinction between
common and standard and I'm not sure we've made the distinction
clear. And we keep wandering away crow Cormand and Control
languages which interests me. That's all vigat; I didn't
even get a letter. .\nyway, supposing 72 don't come up with
standard languagze for Command and Control, how about a common
language?

GRUZNBERGER: As far as that goes, I asked a question
a little while ago and two of our alert manufacturers answered
1t, but two of them didn't seem to answer it and I'd still
like to near what they have to say. The two who answered it
were poles apart, incidentally.

CLI®PINGER: You won' t catch me saying anything now,.

lacKENZIE: The reason I haven't answered your cuestion,

Fred, is that I'm not familiar with this subject,

-116-

GORDON: That didn't keep me from replying and that's
a fact.

CLIPPINGER: 1I'll answer anyway. The general frame of
reference in which Honeywell works (and I don't think it's
too different from others) is that if something 1s required
because our users need it, and it will help to sell machines,
then we'll provide it and we'd like it to cost as little as
possible. We'd also like it to be as good as possible, If
it is well defined, that will help us to get it done at less
cost. You sald, among other things Fred, that we assume that
it's well defined and here today and the question was, '''Jould
that make us happy?" The fact that it's well defined would
definitely make us happy, but I still don't believe your
postulates and so my answer doesn't mean much, I don't think
such a language will be well defined.

PHILLIPS: Fred, if you can compare today's situation
regarding a Command and Control language with what we had
in 1959 and 1960 with regard to COBOL, then I would offer
this thought. At that particular point in time several
manufacturers came to me and said, "Take a firm, strong hénd
toward COBOL and push it. We'd like to have you.’" By this
they meant that they'd like Defense to take a strong position
on COBOL and push it,

% : I'll bet IBM wasn't one of theuw.

GORDON: I would guess that neither IBM nor Honeywell

were among those manufacturers because these are the two

-117-

companies that had taken the initiative and put in some work
in thils area where a need was felt. These two companies saw
the need and did something to fill that need along two
similar but somewhat different approaches.

CUNNINGHAM: At the risk of going back just a little
bit further in history, the Alr Force attempted to get the
manufacturers interested in developing a common language in
1957, with AIMACO. Only one manufacturer supported it. The
others decided to develop their own common languages. So--

GORDON: But I think you're confusing two different
things, Joe.

CUNNINGHAM: No, I'm only speaking to your point that
IBM and Honeywell weren't interested 1in what the manufacturers
had asked the Defense Department. I'm just going back a
little further and pointing out that the Defense Department
(the Air Materiel Command) had asked you to work with them
in solving this problem long before you had anything but
visions of COMTRAN.

CLIPPINGER: Is this discussion advancing the ball in
any way?

PATRICK: I think it has one interesting implication,
The military didn't know what they were asking for in 157
and hence misinterpreted a respoase. ‘e nad FLOWMATIC in

1957, which was just developing. This didn't have any of

-118-

the facets that were advertised with COBOL. It was not
machine-independent, and it did not materially raise the
output of the programmer., Then Wright Fleld rewrote the
thing into AIMACO. When COBOL was first launched the AIMACO
translators weren't working. I know, because I was working
for Clippinger at the time. That was all just sales talk
and you guys couldn't even see through it. You had bought

a plg in a poke and didn't know it.

GRUENBERGER: It never did work.

CUNNINGHAM: 1I'd really have to ask someeone here who
1s more familiar with it than I am,

PATRICK: 1I'd be delighted to discuss it with him too.

PHILLIPS: Bear in mind that.I did not 1identify the
level at which I was encouraged.

PATRICK: 1It's like a bunch of kids with their nose
pushed against the glass of a restaurant and they're saylng,
"Gee, Charlie, do something to get me a ticket." Some of us
were inside eating and we didn't need any ticket. Charlie
was busy redistributing the wealth and giving everybody on
the outside a ticket, The people on the inside were supposed
to help him redistribute that wealth. Note that sign on
the wall: "You can't put garbage in one end and get fruit salad
out the other." I think we could be in the same positien

with Command and Control languages today.

-119-

I1'd like to chalk up another fact and you fellows from
SDC can feel free to challenge it 1f you want to.

(Patrick added to the list on the board the phrase
"object efficiency 1is poor.") 1'd like to chalk that up for
Command and Centrol.

DOBRUSKY: I don't know what it means so I can't address
wyself to that.

PATRICK: I mean efficiency compared to what you and I
could do coding an assembly language.

DOBRUSKY: The whole job?

* ¢ You couldn't do it.

PATRICK: The part that's important to get the job
dene, we could. '"The object efficiency of the running code
is poor. Theilr jobs are already pushing the machine."

DOBRUSKY: Jerry Koory and his group have Just finished a Job
(that we discussed earlier) with 65,000 instructions. Could
you have done 1t, Jerry, in the allotted time with the level
of people you had without a compiler?

KOORY: 1I'll have to think a bit before I can answer
that.

PATRICK: Let's put it this way. Isn't that about the
same order of magnitude as the FACT compiler, Dick? He just
said 65,000 instruetiens; didn't you say you had 285,000 in

the FACT compiler, Dick?

-120-

CLIPPINGER: He's talking about one-address instructions
which makes it about half the size of FACT.

GALLER: You're really talking about two different
questions. You're changing the measure. One man says the
object code efficlency is poor; the other one says you couldn't
get it done in that time.

LITTLE: We haven't really given Koory a chance to
answer yet.

GORDON: I think he's pretty happy about that situation.

KOORY: While looking over our SAGE experience and com-
paring our productive rate there with what we've done in the
last six months (with the present compiler we have on the
1604) we find that we produce programs faster--from design
through systems test--than we could with hand coding. By
faster, I'm referring to the rate of checked out instructions
per day.

DOBRUSKY: I agree with Galler here; I did not address
myself to the efficiency. This is one measure of what a
compiler will do for you. Again, you can achieve better
efficiency with either a POL or an ML. As I said earlier,
1f you use the whole power of the language there are some
forms that we know indeed will produce more efficient code
than 1f we use parts of the language. If we use a complex
FOR statement it does not produce as good machine object as
if we break it up and get closer to the machine language

itself.

-121-

PATRICK: Okay, but Jerry spoke on a different subject
frem what you're now talking about. Jerry spoke on the subject
of whether higher level language would help Command and
Control, which doesn't have a thing to do with standards.

GRUENBERGER: Or object efficiency.
ANMER: IL they don't help, then there is mighty little
reason for standardization. We sure don't want to standardize
on some things which results in our doing the job slower and
in a poorer fashion.

OPLER: We agree that higher level languages are better
for the kind of systems you're talking about than lewer level
languages. Some say that standardization is better than non-
standardization, and draw the conclusion that standardized
higher level languages are best for doing the job. What is
confusing us is the difference between the gain from higher
level languages and that from standard languages.

PATRICK: Jerry sald that a higher level language helped
him in doing the code that they just delivered.

ARMERDING: That's not really what he said, is 1t? He
sald they produced more checked out instructions, by which
I think he meant more machine instructions, but he didn't say
whether or not that was an efficiently written list of
machine instructions.

PATRICK: That's right.

ARMERDING: I can create a compiler than can turn out

500 machine language instructions for every statement written.

ATRICK: liost of tuew WG-073.

AT

ARTRDING: Rigat. The sort of tning where three hand-
written instructions would really do the job to represent each
statewent. The only way to really test tnat would be to take
two roups of lile people and put tnem side by side and have
taem voth do tne sane jod, one group using JOVIAL and tne
otaer zroup using assemoly languagze.

GALLER: “That's the measure of cowmparison then? low
well the odject prograwm runs? Or how soon tuey finisn the
J007 Or how soon they zet answers? Qv waat?

CATRICK: The sudject I had up tinere on the blackboard
was object code eiiiciency.

LITTLE: Or is the real difference you're talking about
the ability of the group itselif?

GORDON: Let me go off at a slight tangent here. Armer
ralsed the question a couple of times. '"/nat should we be
doing?"

Now perhaps I'm on a subject that's irrelevant to the
current discussion. But we've been talliing about standardiza-
tion; standardization of character sets and formats and
languages among other things. Armer asks what we should be
doing and up on the chart there we nave subjects like train-
ing, level of users, etc. Maybe we should consider standard-
ization of programmer levels. Maybe we should define what a

guy ought to know before he calls himself a programmer. Maybe

1f we establish certain minimum standards of programmer competence

-123-

we might then have a lot less trouble with worrying about
standards of programming language and object code efficiency.
How's that for where we should be going, Paul?

ARMER: That's a pretty good one, Barry.

GALLER: There is too much of a shortage of people
right now to enforce standards like that,

GRUENBERGER: 1It's not getting any better.

PATRICK: As an example, I will predict what our most
commonly used language is going to be in the next few years:
It's going to be SP3 for the 1401, International Bullmoose
is delivering eleven 1401's per calendar day, and they have
7,000 or so on back order, SPS is going to be your most
popular language.

LITTLE: There's something else that's not clear.
There may be a shortage of people put we may be creating it
to some extent. To take the example Dan used, we have six
good people who are not really very good floating around.
Did we really need them?

OPLER: Be careful. Those are the people who will be
the compiler experts next year and will be ringing your
doorbell.

GRUZMBIRGIR: You know, I've never seen a hot dogz
language cowe out yet in the last 14 years--beginning with
lirs. Hopper's 4-0 compiler (you'll pardon the expression)--
taat didn't have tied to it the claim in its brochure that
tais one will eliminate all programmers. The last one we

sot was just three days ago. Like all the others, it makes the

same claim for the G-V/IZ compiler that tnis one will eliminate
programmers. Managers can now do tieir own programming;
engineers can do their own programming, etc. As always, the
claim seems to be made that programmers are not needed anymore.

DOBRUSKY: T1'11 talte exception with you. The JOVIAL
brochure says, '"This is for programmers." You're going to
need more of them.

ARMERDING: Okay. But to whom are these ads addressed?
When computer manufacturers put out ads like that, are they
speaking to programmers? Of course not; these ads are not

run in the Communications or in Datamation. They are run in

Business Week and Time and in the Wall Street Journal. Whom

are they talking to?

PATRICK: They are talking to the same guys that didn't
understand IBM's reluctance to get on the FLOTMATIC bandwagon.
They're talking to the guys who buy the machines.

DOBRUSKY: 1I'd like to get back to Bob Patrick's statement on
the blackboard concerning object efficiency being poor.

Object efficiency of many large programs has been proven
(granted, with a number of iterations) to be better in space
allocation when done with a compiler than have been accomplished
with skin machines. “Then you have a 10,000 word application
that uses 5 words of temporary storaze, this is a lot better
than a handcoder can do. Human codexrs just don't go through

the endless process of checking what storage is available.

There are many things that a compiler can do well for you

that programmers don't normally do.

-125-

PATRICK: I usually leave my particular code fairly
loose as far as storage allocation goes because that's the
only way I can check it out, I like to leave intermediate
products lying around so that I can take a snapshot of them
and see what I did wrong.

DOBRUSKY: You're using techniques that are machine-
oriented, which is fine,

PATRICK: 1If you compile tight code T defy you to check
it out, 1If you lay these intermediate procucts out by giving
them different names, then you can get pretty good checkout
efficiency. If you tighten them up real tight, I don't think
you're going to check them out any faster than I am.

CHEATHAM: I don't think this is‘going to be a useful
argument. You can build a compller that will lay them out
during the checkout phase and squeeze them up later.

PATRICK: Now you're talking about a two-mode compiler--
one that has a checkout mode and a production mode,

* : I think there's a f{air amount of enthusiasm
for that concept.,

GORDON: There is entinusiasm for more compilers than
you can write already. This tends to double the number that
you're committed for.

GALLER: UIiot necessarily, One of the objectives of the
next version of IAD is that it be done in such a way that we
can hook in optimizers. One of the optimizers will be

temporary storage assignment, This feature will just move

-126-

TALMADGE: I thin people, in general, will agree that
during the period of checkout it doesn't pay to waste time
trying to optimize, That is, one would like to get a checked
out program that is logically correct even though it may be
clumsy. Later the packling can be done by optimizers; or in
a real-time application, one may even call in the best pro-
orammers on the staff and polish up the machine code.

CHEATHAM: Don't you do that already to some extent,
in order to take out the debugging aids from the finished
result?

GORDON: 1I'd like to amplify the equation you have in
front of us, Bob. In your equation you have, as two separate
terms, dollars to compile and dollars to assemble, These are
more or less the same thing. 1I'd like to suggest that these
be broken up into a product of two things; namely, the cost
per compilation mmd the number of compilations per checked
out program. If you are looking to reduce compile costs you
can do it in one of two ways. You could, for example, design
the compiler so that you could compile in 42 wminutes instead
of 45, or you can design it so that you can complete the
checked out program in three shots on the machine instead of
8. I think that an intelligently designed source language
can perhaps produce greater savings in terms of the number
of compiles required, rather than in worrying about every
nit-picking millisecond in each compilation run.

PATRICK: Those wust be IBI times that he had in mind--

42 minutes to compile, etc.

-127-

MacKENZIE: Possibly he's on the subject of hew one ought
to look at a compiler. It may seem ridiculous, but from the
user's point of viecw you ought to look on it almost as a
fancy loader. 1If the compiler performs satisfactorily as a
loader, should you care whether you recompile or not? You've
oot to get the information into the machine. Admittedly,
this may not seem attainable, but it might be something we

could aaree on,

GORDON: I don't think there's any one thing we can
agree on.

PATRICK: And that may be the one thing we can agree on.

CLIPPINGER: You asked earlier whether anyone would be
willing to make statements as to whether or not we are on
the right track. T1'd like to pass along the experience of
one of our customers who is using FACT. This is not intended
to be an indication that I think we have the right answer,
It indicates merely that what we have is going to appeal to
some of the users in such a way that wve aren't going to be
avle to let it drop. One of our users started in January to
write a payroll application. The apglication involved daily,
weekly, monthly, and yearly runs. Tae effort represented the
woric of about one-and-a-half programmers from January through
tae end of Marci., Tue result i5 a complex of 1§ integrated
programs involving about 40,000 three-address instructions
(vougnly ecuivalent to 3V or 9(,CU0 single-address instructions).

1i you extrapolated this experience, this would be roughly

-128-

equivalent to 300,000 single-address object program instiuc-
tions written in a man-year. The job concerned happens to be
a data processing application, of course, with a real purpose
and it is in operation. That's the sort of thing tue users
are looking for and that's what they're going to get. It
costs us manufacturers a pile of dough. Admittedly, the
object code is not as good as we'd like it to be; we can
improve it. ‘J/hen we get through improving it, it still may
not be as good as we'd like, but it will be good enough so
that users will use it.

There, may be better ways to do it, but I think English
language coding is here to stay. 'le've got something that
1s going to do the users some good.

I'm working as hard as anyone in the United Gtates in
the direction of standardization, but you all seem to be quite
skeptical of the rate at which we're going to accomplish
anything in the way of creating useful standards. I'm not
at all certain of what the right path is toward standardiza-
tion. I do know that standardizing a programming language
is an extremely complex business. I happen to think it's
desirable, but I don't know to what extent we're going to
succeed in it.

GORDON: I question your statement that you will not be
able to abandon it simply because customers like it. I can
assure you that this is no necessary impediment to abandening

something. We have been through this,

-129-

CLIPPINGER: It may be a daydream that you will be able

to abandon Commercial Translator.

GORDON':

It may be, but it looks as though we'll be able

to. There may be some unhappiness on the part of some

customers.

PATRICK:

Have you ever thought of taking the Commercial

Translator maintenance crew and have them put bugs back into

it and use that as a way to Iill 1it?

*

GALLER:

They don't have to do that.

Has 1Dl talked about a translator to go Lrom

Commercial Translator to COBOL to help your people change

over?
GORDON::
meeting.
LITTLE:
GORDON :
I have a
availcble for
CLIMPING
GORDON:
8007?

SHARE tall:ed about that at the last SHARE

It's called a programmer,
I2if has not spoken about it as far as I lnow.
cuestion for Dick., s I recall, CODOI, will be

the Honeywell 400, >ut not FACT.

ED: Correct.

Both FACT and CODROL will be available foxr the

CLIPPINGER: Correct.

GORDON:

‘/hat about the 1800, Dicl:?

CLIPPINGER: The 1300 is logically tne same as tie G0,

GORDON:

30 FACT will be available for the 13007

CLIPPINGER: Right.

-130-

GORDOM: Good luc!:,

CLI'TIGER: There's no problen =t 21l there since tne
two machines are lozically identical.

PATRICK: le've slipped sideways into another way to
solve the incompntinility proolem and taat is not to tamper
with the machine order list. T may be wronj, but T think
loneywell was the pionecr in upwards compatibility. The 400
and 800 were upwards comnvativble,

CLIPPINGER: llold on. e have never claimed that the
400 and 800 were upwards compatible.

PATRICK: Isn t the order code of the 400 a logical
subset of the 3007

CLIPPINGER: No.

w : liot the least little bit.

CLIPPINGER: There is one language (EASY) which will
run on elther machine. The 800 and 1800 are upwards compatible,
of course.

OPLER: There is tape compatibility so that certain
files would be upwards compatible between the H400 and H800.
GRUENBERGER: Is the collating sequence the same?

CLIPPINGER: Yes.

PATRICK: Does Philco have upwards compatibility in the
210, 211, 212 series?

DOBRUSKY: I think that's correct.

PATRICK: And IBM is getting on this bandwagon?

GORDON: I think so, starting about 1956 to 1957.

-131-

PATRICK: Then the 704 went to the 709 and 70907

GORDON: Yes. The claim was never made in going Irom
the 701 to the 704 and the compatibility going from the 704
to the 709 was a less than perfect solution. The 705-III and
the 7C30 have been pretty well compatible for some time,

VATRICK: Dut wiih a switch, isn't that so?

GORDON: The 7000 :as o switen; the 705-I1T doesn't.
The 705-1I1's order code 1s a proper superset on the 765-II.
The 7070 and 7C74 2re nighly compatihle. The prosramming,
thovzh, is identical with the exception of things that depend

on timing. Jince the 7074 is much faster on the main frame,

vou could zet into trouble 1f you program real tight on read

L

anc write operations., lithin the moin frame the logic I3

GXUENBERGER: Isn & it funny that 2ll ol vou can b>at
around machine numbeirs so freely, bhut Clippinzer and Phillips
are the only two I have ever heaxzd vho sicali so freely of the
-3 nunbers.

ARMER: I was trying to do more than tiy i£c coax peogle

to say that theyv thousat they were doing fiings wicht, I
was trying to challenge those people who say we e doing
everything all wrong to indicate how things shovld be done
differently. Barry s suggestion 3 - 3cod one, but it's not
really a change in wvhat we should oo <olir, but an addition.
That is, his ewphasis on standawds regarding what is a pro-

grammer .,

-132-

GORDON: Yes, and stop deslgning languages for three-
year-old prograumers,

MacKENZIE: I think we ought to do two things differently,
in a sense. 1 like the point about directing more attention
at the level of users. In a way it is an argument against
standardization, although I would not like to identify it
as such. Lots of times you have to give people what you think
they need, not what they claim they need. In the case of the
language we are talking about, we are essentially talking
about "stuffing' into present programmers the type of training
that it took to make them reasonably good wachine or assembly
language programmers. I think this is a very serious short-
coming in a lot of our approaches. Another point is the con-
straint that exists at the hardware design level. I think a
question well worth looking into is to what extent will
research in problem-oriented languages reflect itself in
proposed machine organizations., 1If you'll agree to remove
these constraints, I think you'll see different types of
machine organizations in the future.

GORDON: The machine organization itself, I think, is
another argument against standardization, at least at this
time. Take a look at committees such as the COBOL committee
or the ALGOL committee. On any of these inter-company or
industry-wide committees you have men who may have a darn
good idea of things going on back in their plant relating to,

in effect, unannounced hardware. 1It's darn difficult to be

-133-

able to get up in a committee meeting and say, ''Look you

puys, we're announcing a machine next year. But it's not going
to work this way at all.” You just can't get this into a
standard very effectively. 1It's tough to say "it's this way
instead of that way" and not give a reason for it. If you
want any effort to go a certailn way, you've got to be able

to say why. If you're basing your ideas on things that will
come along in the future, you can't say why. In effect, then,
any of these committees will be working several years behind
what any individual manufacturer could be doing. People at
Honeywell can be working on systems to support future hard-
ware that they can't talk about. 1It's the same with Burroughs,
and even IBlM.

This is a real limitation on any sort of committee
action. The individual manufacturers, who can see what's
coming up, can plan for it individually, but can't talk about
it collectively.

BROMBERG: Are you saying that language functions may
be precluded by machine design?

GORDON: 1Influenced, not precluded.

BROMBERG: 1Is it possible then that one could come up
with a machine that would make things like report writers
and sort generators unnecessary?

GORDON: Okay, so what?

GRUENBERGER: I don't think that was the point he was

trying to make, Howie.

-134-

BROMBERG: I want to know what you're going to do to
implement a language that you can't talk about because of
proprietary machine design.

GORDON: T would tell you if T could talk about it.

LITTLE: There's an interesting point the other way
around, though. If you once came up with a really good
standard language, you would probably see a turnabout in the
hardware. You may come up with general purpose languages
and special purpose computers; that is, computers would be
designed more and more to handle a particular language. That
tends to stop the progress of machines.

IMacKENZIE: It forces the progress to be directed in a
particular way. Tor example, suppose that language A were
really a standard language; certainly then some manufacturers
might like to sell to the audience that was using language A.
They should tend, in their development areas to produce
machine organizations that could efficiently handle language A.

GALLER: Do you really think that's true? Take FORTRAN.
Let's assume that history might repeat itself and that there
will be a super FORTRAN. (Some of us would like to see a
super FORTIRAN that would be amenable to Command and Control.)
Now is it really the case that machine design has been so
strongly influenced by the fact that FORTRAN has been so
popular? I don't know; I'm not prepared to argue for or
against.

2 : How much evidence is there, Bernie?

-135-

GALLER: I don't know. I think it's tremendous, though,
that Burroughs took the step with the B-5000. I think it's
the one really clear-cut example we have, but they may not
succeed with that machine. But certailnly any future machine,
at least in the design stages, has to compare itself with the
B-5000 to see if it can do better; or whether it should go in
that direction. You hear all kinds of rumors that maybe IBM
is moving in this direction, too. I don't really care whether
they're moving in this direction or not, but they had better
be thinking about it, and that in itself is good.

PATRICK: We've already seen new machines being selected
on the basis of their compile time on a specific application
and the object code execution on that same application. It's
only natural that the manufacturers tend to weather vane.

If you're zoing to do a lot of sorting, for example, maybe
you ought to have a D-1000, simply because it will sort better.

CLIPPINGER: Don't start selling D-1000's, 7Je don’t
make them anymore.

PATRICK: Don't they have some to spare, Dick?

GRUENBERGER: Like seven?

GORDON: It sorts like a bomb; if only you could carry
the tape files over to it.

PATRICK: Can we agree that something might be done
about the level of programmers and then design languaces
compatible with that level?

McCRACKEN: 1I'd like to take a certain amount of excep-

tion to -that idea. It seems to me (thinking about such

-136-

matters and getting ready for some writing jobs that I have
in wind) that the real problem in training a beginner in how
to do good programming is not that big a function of the
language. “hat has to be taught to a guy who has just walked
in off the street? He is taught in the context or framework
of some language or other but the things we spend a lot of
time teaching him are not that language. Ve teach him such
things as what is the difference between a problem and a
procedure. 'le teach him what is the whole problem of run-to-
run communications. !/nat are control totals all about? 'hat
is data verification?

"le do these things traditionally in the framework of
civing him a machine language course or a CCROL course or
something, but the details ol that language are not tae

toughest thing for him to get straight on. You can rapidly

verify this if you sive a guy a courge on the details of a
language and taen turn him loose on 1 provlem. 30 I don't
react too favorably to the ideca of designinz a languacze to
be easy to train.

PATRICK: ©No: to teach.

CLIPPINGER: I think there are two aspects 1in the problenm
of training someone to use a language-computer combination.
You do a good job in getting the guy started in understanding
the language. Before we finish with him though, we have to
teach him all the special things about restrictions without

vhich he really cceun't really know how to use that language.

-137-

These have to do with the particular implementation that we
have invented to put that language into operation., That part
of it gets to be bigger than the part about getting a broad
general feeling in the language to the point where you can
readily dash off problems that work.

McCRAZKEN: I understand what you said perfectly. I
have had some recent experiences with this myself (in trying
to work from a manual) and in a real short program I have
found six important things that had to be done that weren't
in the manual. Uhat I am saying, however, is that the detalls
of the language, plus all of this still is not the main thing
that has to be taught.

PATRICK: T think you two are talking about different
things. I thinl, Dan, you're talking about the teaching of
programming per se independent of language; namely, how do
you analyze a job and do it? Dick, on the other hand, is
talking about a specific language embedded in an operating
system in a facility with its operational procedures and
techniques.

McCRACKEN: And I'm saying that teaching the details oz
the language is a relatively swall job. Of two equally zood
languages the more teachable one is to be preferred, I guess,

BROMBERG: Jasn't that exactly Darry's point? He wanted
to set up certain standards for cowpreiiension of what pro-
gramming is about.

McCRACKEN: Look, let's take the familiar euperience

that after you know one machine, it isn't hard to ilearn

-133-

another. It's clear tuea that waen you weve learning tae
first one, what you wcre learning was not the machine; it was
concepts.

BROIDIAG: I <oa’t tainli we're arguing. I think the
oint is the sawme, 7T you're going to set up standards fow
programmers, just sct up standards for whether or not they
anderstand the concepts of stored programming, not whether
they understand a certain language. Once they've gained a
certain level of comnetence, tiuen you are able to address
your ranguagzes to tnew.

TALMADGZ: Then Gordon and I were having our discussions
on winat Comaercial Translator migat be, there was a certain
cacracter who lept popping up: the poor accountant wiao was
4oing to use this langrage. ‘le started calling hinm "Joe
Accountant.” lie becawme a muci used (and abused) character,

nowW, my baclzround is sclentific coupuiing and Gordon's 1is

Y

comnercial so tunat T was always faced witin this character
wnenever 1 cuestion cawe up as to waether or not we sihould
include a certain item in the lansuage. The whole point vas
tnat Joe Accountant really didn't know anythinz about how to
use the wachine, and we were designing the language for him.
If we could restrict the users of the language so as to be
able to demand a certain level of competence, then we could
do things in an entirely different way.

McCRACKEN: And all I'm saying is that you can design

a language so that Joe Accountant can use it with very little

difficulty; then you have still not begun to solve the

-139-

training problem., You still have to teach nim all tl.esc
other things that I mentioned before. Once ne has learned
all those things, then he can understand a more difficult
language.

GOTDON: 1I'll go you one better. IE you can desizn a
language that Joe Accountant can learn easily, then you :e
still going to nave problems because you're provbably going
to have a lousy language.

IMcCRACKEN: That's opinion,

GALLER: ©Not necessarily.

GORDON: Iiaybe you've been living in an ivory tower,
Dernie. I've been working with Joe Accountant for a long
time. Incidentally, I want to apolojize to Dick Talmadae
for last year.

GALLER: All I'm saying is that it's not necessarily a
bad language to worli with just because you can teach it.

PATRICX: It may be rather wealk though.

GALLER: Again, I say, not necessarily. I lool at 1iiD.

t's easy to teach, and it's wonderful to use.

!

w : ‘Jhom are you teaching it to though?

GORDON: You're not teaching it to Joe Accountant.
PATRICK: He couldn't get into the University of lichizan.
GORDON: You're teaching it to Joe College on campus.
GALLER: A1l I said was, here was a counter-example,
LCCRACKER: TJhat you're teaching to Joe Accountant is

not a language in any case. Further, ALGOL is easy to teach.

-140-

GORDON: ALGOL is not easy to teach.

MacKENZIE: Bernie can go off and teach things to students
in college and have them understand them. They can be fairly
complex things. You can go to a group of 'professional"
programmers and try to teach them these same things and run
up against a brick wall, It has to do, I believe, with the
open-mindedness with which people approach the subject.

Wle've been criticized a great deal for wanting to teach people
the syntax of a language, as opposed to conventional ways in
which they might want to view the language. By and large,
there has been a great deal of success with this method at

the university levels. Many of these people did not have
prior programming experience and after a few months came up
with a much better understanding of how the language ''worked"
than the people who wanted to approach it by some method akin
to the way these things are normally done.

GRUENBERGER: The earlier you catch them the better it
is.

MacKENZIE: Sometimes you shouldn't give them what they
think they want; you have to give them what they need and
you may have to be pretty arbitrary if you're convinced
you're right,

GORDON: T still say that when you're working at the
university level, particularly with math majors and engineers,
you're dealing with a pretty select group. When you get out

among the great masses who are goinz to be programming in

-141-

SPS, these guys...

MacKENZIE: I think you're missing the point, Barry. I
may be very presumptuous, but I think you can approach these
people on the basis of ""this is what you need to know to be
able to use this thing" and they eilther never know the differ-
ence or they are willing to accept the approach on faith.
'Then you 20 to a user or any environment of people who have
done previous programming, frequently you find that they have
preconceived notions--preconditioned ideas of what the terms
are under which they will accept any new thing.

LITTLE: I think Barry may have a point there. I don't
really know; I'm asking those people who have university
experience. Of all the people you teach to use the machine,
what percentage brealkdown do you get out Of particular fields?
How many sociologists do you have programming a computer, or
economists, or psychologists?

GORDON: Never mind those guys. Let's take the guy who
graduated from high school at the age of 20 by going to
school at night. Pernaps he left high school at the age of
14. He has never had elementary algebra and doesn't know
what a negative number is. But after 15 years of running a
tabulator he is suddenly one of your programmers.

LITTLE: 1 agree with you there, but T think by the
nature of areas that people are in, sometimes, they are more
ogen to learning certain things than othexr neople are.

Take open shop people for exampic., Te have an open shop

-142-

oseration here at RAND. I would suspect that vou get a lot
more reasonable response out of the engincers in the corpora-
tion than out of the psychologists, for euample, but in a
real world we have to 50 out and do jobs for these people.

IL you're gzoing to design a language or a system that is to
be used by these people, please recognize that there is a
broad spectrum among any group. As a matter of fact, some

r

of the really big jobs are done not [fox people who could
arasp it if you gave thea the cnance, but for people who
may never understand it, Turthermore, they don't have much
of an interest.

PATRICK: The wilitary is the best example you have
there. They couldn't care less what your proolems are. "Just
tell me what supplics we've geot out in the warenouse.' They
don' t want to know how you do it.

OPLER: We consider that tne COBOL user is a skilled
systems analyst who understands both the machiine and the
system. There is the difference between tiie training level
of a person who will use a data processing language well and
the training level required to usec an algebraic language.

Instead of visualizing the bank clerk knowing the com-
plexity involved in the data description and the interplay
vetween it and the machine procedure, we feel that probably
the best user of the language will be the man who has not
avoided systems analysis in the past. Ue can use such lang-
uages to get on the air quickly and to produce 250,000

instructions pev year.

-143-

McCRACKEN: How long does it take to teach him systems
analysis compared to how long it would take to teach him
COBOL? !uch longer. The language isn't the problem,

CLIPPINGER: What you're saying is the manufacturer
ouzht to tell the customers that it takes good people to use
this well. 1If you want to get by with very poor people, you
do it at your own risk. You might expect to get something
done, but it could be pretty bad.

GALLER: I was talking to some people who were getting
ready for the 1401. They had been sending their tab people
to school to learn how to program for the 1401. They were
astounded when I recommended that they get at least one
person who knows programming and doesn't know their business.

GORDON: But the salesman said you didn't have to.

BROMBERG: National Cash Register put out an interesting
document that they called the "KEAT COBOL lanual." 1It's
veen a sort of vogue the last 12 months or so for everyone
o flood the market with their COBOL manual, but NCR deviated

slightly for about one-quarter of the wanual. Instead of

talked about systems design. They made the fcllowing comment,
wnich I thought was terrific. They said, "“COBOL is not a
substitute for good systems analysis.” This is just what I
think the sense of this group is.

LicCRACKEN: There's one thing that I think that COBOL is
efficient at and that's wasting one hell of a lot of machine

time 1f you use it wrong.

~1h4-

LITTLZ: One thing we seem to be agreed on is that tae
training problem is a very important one. It seems to me
that there’'s a lot wore work going on in building compilers
than there is in the problem of training. No one seems to
be much worried about how you make uvp good training courses
and make up good material for them.

MUER: It's even hard to get people interested in this
area.,

GORDON: 1I'd lilke to remind everyone about the Lable about
the emperor's new clothes. You remember the con man convinces
the emperor it's a great suit, that only the pure in heart
can see it. 5o the emperor winds up walking around naked and
no one has tihe guts to say so. And finally some kid says,
"Hey, look! He's naked!" and everyone realizes they've been
nad.

To put it bluntly, I think it's about time somebody had
the guts to get up and say that the emperor is naked.

w : ho is the ewmperor in this case?

GO2DON: I think the emperor is a very large segment of
the computing industry. That includes users.

PATRICK: Like the guys that believe these ads.

BROMBERG: I don't understand why you speak so dispar-
agingly of users. I would like to go on record as saying
that we at RCA like users.

GORDON: I'm not sure you can do anything about the

advertising boys or the salesman, but in spite of what they

~145-

do we have a responsibility to see what we can do to bring
some order out of the chaos to produce useful equipment to

do jobs and to produce useful programming tools. We must get
the word out as best we can. I realize this is very ideal-
istic.

LITTLE: It would secm to me that if anyone 1s real
ecager for a good set of training devices, etc., it would be
the Department of Defense and the military. Nevertheless,
we still train people by the old buddy system, although SDC
has more formal training. Work along these lines would seem
to be very valuable.

PATRICK: Ve have some facts, gathered at RAND (see
Table 2). Ve were concerned as to just how much we had to
pay for higher level languages. ‘e seem to think we know
what we're getting in higher level languages. (Although we
don't really know.) Ue use FORTRAN here at RAND and we use
503, It's interesting to look at the time fractions and how
they're distributed. Before Armer's crew went out to get
these numbers we wouldn't have guessed they'd be anything
lile this,

This is a summary sheet, The first pair of rows across
the top are the number of jobs that took between zero and five
minutes. The second pair is the proportion that took between
zero and ten winutes (which include, of course, the first set).

This is a 4-month summary on RAND's 7090. Total machine

C,

time 1s 3¢5 hours. Total jobs number S561. Of these S5C0

¢ 9Iqey

Wwo3sAs 03 s2 UMODPNEaJIq ou pajaodaa

- a8eSn

38Ul sqof pue TgNyy-uoN ‘a°T)
- sdswo3lsnd sptsino, ‘doys usado SPNTOUT jou ssop 82Ts ordwes ayg : 990N
-
. : uotjonpoad pood = g
(.°d, 2q pInoys pue w0, P3TT8qeT aae sqof swog) NoOYD 2pod PooT — “o“ : 390N
(SIH #7665 = ("uoy g SWTL SUTYDIEBR Te30ol
"SJdH #E€°GHE = (ardweg SWTJ, SUTUIEB TB3OL
1966 = M.qoz ¢W eqor Teijog,
8945 = (st1dueg) sqop Tejof t@30N
I ARAY 6 16 G- ge 6°.L¢ €0°88 9g8Te SQs
9°eh 9e 7L 6 re AR 11 £6°6Q 1A% NI 0T-00
L LE 8 c6 8°GT L cgE 99° 1§ 88T s¢s
8 8% 92 L 2'8T 9°06 %9°29 2c6e NIJ S0-00
*oaxyw d & 0% SWIJL "yod®Bl TE307 % Sqop Te3ol ¢ A.mhmvwEﬁB SqOpr °‘ON (UTl) JUSWSIOUT oWy,
-UoN ¢ '

961 ALaenaqayg y3noays T96T Jsquaaop

INTWIMYITA SHONZTIOS HILNAWOD -

NOILYHOJdHOD ONVH

‘Apnag uotaeaadp I9q9nduwo)n

-147-

jobs, we had complete data on 5700. The time for them was
345 hours--so it's a fairly good sample.

Of the jobs that took between zero and five minutes,
there were 2922 done in FORTRAN and 1800 done in SOS; the
corresponding times were as shown in Table 2.

"C" means good code check; this means you made a run on
the machine and compiled (or assembled) and tried to execute--
something useful to the programmer in developing a new running
code. """ (for Production) means there were no programming
changes from run to run.

The last column shows the per cent of time not spent in
executinz., The 43,07, for exzample, is a percentage of the
02,54 hours not spent in executing., Tt includes loading and
dumping and waiting for tapes to rewind, and so forth; that
is, setting ready to execute.

ARFENDING: That includes, also, assemply time and
compilation time,

BROIIBERG: Mecompilations and reassemblies--are thev in
7, Non-lIxec, too?

ARIMERDING: verything that isn't jn the execution of
the prozram,

BROMBLENRG: You can execute the program a number of times
(in between each compilation you exccute). That's eiecute
time (even though it's not ciecute for production)?

ATGERDING: e read the clock when execution starts and

wiien it stops--this is the clock time other than that.

-148- ;

LITTLE: On FORTRAN compile-and-go, the execute time
would be considered execute.

BROMBERG: Suppose you get the wrong answer?

GORDON: I don't understand how you can get 74% checkout
and only 497 non-execute. Is executlon during checkout still
called execution?

ARMERDING: Yes. Let's look at the percentages under
the second and third last columns labelled per cent C and
per cent P, 747 is code-check and 267 i1s production for
FORTRAN jobs running less than 5 minutes. In SOS jobs 927
is code-check and only C7% production. When we go to jobs
that run as long as 10 minutes the percentages change hardly
at all.

LITTLE: Do we have one big S0S job done yet? Maybe
that's our problem.

CLIPPINGER: This means you check your FORTRAN programs
three times and then you run them once.

PATRICK: Remember these figures are just for one shop
and a fairly unique one at that, But this says we spend an
awful lot of time in preparing codes and not very much time
in running them.

McCRACKEN: It also says you check out your FORTRAN
programs faster,

ATMERDING: No, that doesn't follow.

GORDON: It sure looks like FORTRAN helps improve your

checkout,

-149-

LITTLE: That may be true but you have to also reallze
that FORTRAN jobs are basically smaller,

McCRACKEN: Checkout is three to one on FORTRAN and
nearly 11 to 1 on SOS,

ARMER: No, it might be misleading., The SOS jobs might
take longer than 10 minutes as a rule. If most of them took
longer than 10 wminutes then on the basis of these statistics
that ratio would be infinite.

BROMBERG: Was the purpose of thls document to say some-
thing good or bad about common languages?

PATRICK: Neither. I think you can conclude just one
fact; that if you design a hardware-software system and expect
to run a lot of production on it, that principle is not very
well borne out on the basis of this installation's figures.
This installation seems to run a lot of code-checks.

GALLER: At the university we probably have more code-
checking than any other place around. Quite frequently when
our students get a program running that's the end of it
because that was the problem.

GRUENBERGER: Yes, that's the way we operate, too,

GALLER: T looked at our log for January and brought some
figures along that were very surprising to me.

In our January billing we had 6064 runs. This 1s on the
709. I don't have the breakdown of these jobs in terms of
MAD, FORTRAN, and so forth but I do have these figures for 242

hours of use. Execution took 167 hours or 697 (in March

-150-

that was 787%); MAD translation time took 46 hours or 19% of

the time; FORTRAN took 20 hours or 87 of the time; our assembly
program took 9 hours or 47 of the time. The average job

length was 2 1/2 minutes (although it seems that every time

T bring a visitor in to see the machine thevre's a 45-minute

job on at that time).

McCRACKEN: Doesn't MAD compile faster than FORTRAN?

GALLER: Tt's possible to have a shop where the trans-
lation is very fast, leaving plenty of time for execution.

McCRACKEN: Jhy can't FORTRAN compile faster; that's
what I've been trying to find out all this time.

GALLER: You have to look at these figures and see that
the time we're spending in compiling and so forth is really
a function of the particular translator.

PATRICK: That's correct.

GRUENBERGER: Are you getting a 70907

GALLER: Yes, we're getting one in August.

OPLER: Bernie, do you have any problems that have been
compiled by FORTRAN that run longer than an hour?

GALLER: I would think so.

OPLER: Do you compile these by MAD too?

GALLER: I doubt if we've done the same problems both
ways.

OPLER: The point I'm getting at is this. While FORTRAN
has obviously been sub-optimized for those people who are

doing many, many compilations on small jobs, it is much more

-151-

directed toward long production jobs, where they are concerned
with, for example, the time required to go through a set of
partial differential equations or a long linear programming
problem,

GALLER: UWe have plenty of people doing partial differ-
ential equations in MAD.

OPLER: MAD may have been maligned. I understood that
FORTRAN makes tighter loops on...

GALLER: Definitely, Most of our programs will run any-
where from one to two times as slow. On a real big program,
that would make quite a difference. But that's only if you
are able to run the same problem many times between compila-
tions.

ARMER: Do you have a MAD to FORTRAN translator?

GALLER: 1It's too hard to write.

* : Could you write it?

GALLER: It would be very difficult.

McCRACKEN: That's what Bob Bemer said about FORTRAN and
ALGOL, too,

GALLER: 1It's easy from FORTRAN to ALGOL but hard the
other way.

McCRACKEN: Oh sure.

PATRICK: You can't put a 2-yard load of dirt in a l-yard
truck. We didn't mean to bring eut these figures to kill
further discussien. We thought it would stimulate further

discussion,

-152-
COFFEE BREAK

ARMERDING: 1'd like to make a rash statement. In my
experience the process of problem solution with a computer/
COBOL combination is unteachable, at least to the people we
think we've been teaching it to.

LITTLE: Are you saying COBOL is not teachable?

ARMERDING: No, I'm saying solving problems using a
computer-magic language combination is not teachable to the
great unwashed masses,

McCRACKEN: What do you mean by saying not teachable?

ARMERDING: That I can't pick up the man off the street
or the 407 operator who is about to become a programmer for
the 1401 and make this transition.

* : Ever?

McCRACKEN: Unless he's intelligent. You mean you can't
teach 1t to him by giving him a set of lectures.

ARMERDING: Bernle can take his people at Michigan and
teach them MAD and how to solve problems using MAD. They go
away fine and they come back and they're able to solve problems.
We can't do this. 1I'm basing the statement on the experience
that I've had. Your work notwithstanding, Dan. And I've
done a good deal of this teaching recently using your FORTRAN
text, I've done my darndest and I don't think anyone else
is going to have any better success.

GALLER: But if we can't teach it we're doomed. We've

got to teach it to them one way or another.

_153-

* : But we don't have to teach 1t to everyone.
ARMERDING: We've already decided that the 44 people
that Dan's friend employed don't really represent the solution.
According to Cheatham, who has had some experience in this sort
of thing, and according to others I have heard, what he'd
rather have 1s three top-notch people. Presumably he could
hire them if he'd pool the salaries of the 44 and split it
three ways. He would turn out the same work and get a better
compller and the whole job is done better all the way round.
GORDON: Are you talking about the use of these or their
construction?! You started out by talking about tralning users.
ARMERDING: All right, now I'm talking about the construc- .
tion of the compiler, but it's the same principle. 1If you
talk to a guy like Jack Little who has to implement real live
problems on the machine every day, he too would rather have
a few top-notch people that a whole stable full of no-goods.,
So my question 1s should we even try bringing in these
great herds of people and training them?
McCRACKEN: 1It's only by starting with big herds that
you find out who the best ones are. You've got to give a lot
of people the first course in order to find out who should
go into the second course.
GORDON: That's not true., There's a tremendous difference
in level of competence. I don't intend a plug, but you could
give them the IBM programming aptitude test, as we have done

for years, and you can eliminate most of the tab operators

-154-

and file clerks and nephews of people who have worked in the
company for 20 years., You bring in guys with certain basic
minimum requirements, like literacy and the ability to count
up to 2-digit numbers.

McCRACKEN: And having done that, of what's lcft 99% of
them will turn into the kind of guys who can do COBOL in
three man-years.

GORDON: But they're the kind of guys who can at least
program applications in a reasonable programming language.
Even so, you ought to eliminate some of them. The point 1is,
we're not even trying to do that. We're trying to teach the
guys who have been wiring control panels or pushing buttons
on punched card machines for years.

ARMERDING: Who is?

BROMBERG: We're not trying to teach them to write these
things.

GORDON: No, to use them, You cannot teach 500,000 guys
who are basically machine operators to become competent pro-
grammers through the use of any magic language. 1Isn't that
what you were saying, George?

ARMERDING: That's what I was saying.

BROMBERG: Neither can you teach them to be competent
programmers through the use of any unmagical language. How-
ever what you can get from the use of these magic languages
is some few number out of this great hoard who can carfy the
ball and keep enough of thelr end up to bring the rest along

with them. I just don't understand why you say that these

_155..

languages are so difficult to be taught.

ARMERDING: I'm not saylng that. I'm simply calling
attention to whom we're trying to teach them to. I'm
simply saying that building wagic languages is not going to
help our education problem.

McCRACKEN: Oh, I agree with that,

ARMER: He's simply saying, '"Don't expect magical lang-
uages to solve your training problem." 1In other words, don't
believe those ads which say that programmers are no longer
necessary for getting the job done.

LITTLE: And if you once assume thils, doesn't 1t also say

something about how you go about constructing these languages?

GORDON: That's a good corollary. If you give up the
idea that these magic languages are going to get production
out of your three-year-old programmer then you can also scrap
the idea that the languages should be developed for a three-
year-old programmer.

McCRACKEN: Now I think we have said something.

PATRICK: 1I'd like to raise another particularly obnox-
ious point along this line. It doesn't seem to me that the
magic languages help my documentation significantly,

KOORY: Amen, brother.

LITTLE: T1'll speak for the only other implementer around
here and also say amen.

PATRICK: You've still got to describe the job, and
usually this description comes in something like flow charts

and some standard symbols. This can all be built into the

-156-

compller code if you wish but that makes it compile pretty
slow; it's kind of bulky then.

McCRACKEN: Whose documentation problems? Are you an
implementer now?

PATRICK: No, I'm talking about applications.

McCRACKEN: Gee, there are other users who don't say
that. They say very carefully that the magic languages don't
solve the documentation problem; you still have to get a bull
whip on the programmers. But having gotten that bull whip
working then it is a bit easier in say, COBOL, than it is in,
say, Autocoder, Not only that, the program is the documentation.

PATRICK: That's just the point. The program is not the
documentation.

GORDON: The program is the bull whip. What you say to
them is, "If you don't get those flow charts up to date, we'll
make you write in COBOL."

LITTLE: You can put comments on your coding sheets all
you like but I don't think that's a substitute for what I call
a minimum set of documentation. T still want to see flow
charts, a narrative of the problem, symbol definition sheets,
and so on.

GRUENBERGER: And test cases.

McCRACKEN: On the other hand there is more than one
user who uses flow charts written in COBOL as the documenta-
tion and the program. They keypunch from that.

PATRICK: I heard an interesting thing about that down

at STL. The people at STL gave an interesting pitch the other

-157-

day about how they're using flow charts written in COBOL

and how they keypunch directly from them. The fellow said
that it sounded real good but in walking through the key-
punch room he didn't see any of these huge flow chart sheets
lying around on the 026's. What was going on, it turned out,
was that some girl was copylng from the flow chart sheets
onto key punch sheets.

McCRACKEN: 1It's a delightful story but it's not
universally true. There are places that work from the original
sheets.,

DOBRUSKY: What rating do they give their keypunch people?
Are they called programmers ?

McCRACKEN: No, they have a flow charting convention.

BROMBERG: The interesting thing about this is that now
the proper perspective has been reached., It is a clerical
function at best, to go from the problem definition sheets
through to key punching.

PATRICK: That may be. There have been some of us who
have been saying all along that there should be the equivalent
of engineering aides following the good programmers ground.
I can do about 8 times as much work if I have four more pairs
of hands. I don't have to keypunch my own work. But don't
tell me I don't have to document. The same amount of work
is being done, but just by different hands.

CLIPPINGER: 1If you go talk to Maurice Halstead, he'll

hand you a thing which is a printout of the input to his

-158-

compiler, as a definition of his compiler. I don't think

it's very pleasant reading to find out how his compiler works,
but I claim it does tell you what his compiler does. You can
take it and use if it you want to. It's a lot better than
working from machine language.

MacKENZIE: In our case, I don't know how well we'll
solve our documentation problem but I am sure we'll get a
much better solution by the means we are using, namely, by
writing the processors in a machine-independent language,
than we would achieve through any of the earlier techniques.

BROMBERG: Are you going to do this with your COBOL
compiler?

MacKENZIE: Yes, we're going to write COBOL in B-5000
Extended ALGOL.

LITTLE: I put thils whole argument in a class with put-
ting comments on SAP sheets. I can't argue that it is not
helpful and if carried through, very helpful, but it is not
a substitute for good documentation, the kind that you need
for people to understand, modify, and pick up that code.

MacKENZIE: I think you touched on a real problem though.
No one says that this is the only way to do it or even the
best way to do it. But by just letting nature take its course,
you get a much higher level of documentation, this way, than
with other methods.

McCRACKEN: It may not be perfect, but it's better than

what we've got.

-159-

BROMBERG: 1It's a great check-cut technique.

GALLER: One area that's not covered in this matter of
the program looking like its own documentation is that it's
still very local. The global statement is the description
of the relationship between the parts; this has to be done
separately.

McCRACKEN: All right, at least you've got good documen-
tation at the detailed level. You don't even have that now
in Autocoder.

LITTLE: Think back to when you used to do this. In the
first pass through, I, like many people, write pretty good
comments; then I find my first mistake. The line has a big
long comment on it but it usually isn't to be found on the
correction card.

McCRACKEN: That's not what I'm talking about.

LITTLE: But if you're going to use a bull whip, let's
get what's necessary.

GORDON: Jack, you're arguing agalnst yourself. If you
had been working in COBOL, the first time around you would
have named this thing with some long mnemonic. That means
that if you change that card when you find your bug you must
write down the same name.

LITTLE: I have not done this in COBOL., I've done it
in machine language and in FORTRAN.

MacKENZIE: I think you're thinking more of the things

you can write down as comments. I think you're missing the

-160-

point that there are a lot of things that you no longer need
to write down as comments because they appear in the basic

code,

GORDON: It would be better to say that they get buried
in the code.

PATRICK: 1If you do it the way you're talking now then
I will have long names and T will define each of them
separately. If I want a fairly compact code...

McCRACKEN: Source code.

PATRICK: No, I mean object code, I will use names like
working cell 1, working cell 2,...

McCRACKEN: What do names have to do with the object code?

PATRICK: 1'll give each intermediate product a different
object name.

* : That has no effect on the object code.

PATRICK: It will assign them a different cell if you
have a stupid translator.

* : No, it's the data organization which does
this job.

PATRICK: I seem to be having a hard time communicating.

* : That's for sure.

GORDON: We need a good standard language.

PATRICK: What we need first is a glossary. What I was
saying is that if each cell has a separate distinct, unambig-
uous name, then the thing might be fairly easy to read and
could be self-documented. This means that every name gets a

cell or set of cells assigned to it in the object code.

-161-

GORDON: This is typical of business applications where
you're dealing with records and arrays and eventually all of
them. ..

McCRACKEN: That's just opinion.

GORDON: Look, programmers get stuck with things like
this. A file clerk has made up a data description of a file
and a programmer 1s presented with it and is stuck with it,
He has to use the name that 1s assigned to the data every
time he refers to it. In effect, this is a bull whip. If
you turn the systems analyst loose, he's going to assign
names to the files and the programmer is then stuck with those
names.

BROMBERG: You can change the names.

GORDON: How do you do it?

BROMBERG: How does your system handle the "REDEFINE"

clause?

GORDON: You'd have to re-write the whole data description,.
characteristics and all.

LITTLE: And if you use it you're back to a symbol
definition sheet, which 1s just the way we always did it
before,

PATRICK: If I defined four separate fields, then the
source statements as I write them are relatively self-docu-
mented., If T define two general purpose fields, then the
source statements' are not self-documented. In one case the

object code uses less temporary storage cells than the other.

-162 -

McCRACKEN: 1I'd summarize my statement of the case by
saying that getting good documentation takes a bull whip in
either case. I think that COBOL makes it easier for the
manager to apply the bull whip because the documentation is,
at least to a certain extent, built into the procedure division
by the very act of writing it.

PATRICK: I still think that although it may help me some
in the documentation, that it's going to cost me in the
complle time.

McCRACKEN: I don't see it.

* : I can't tell from your example that it has
anything to do with whether it costs you in compile time. 1In
most of these languages you can name the same field by as many
names as you want to.

GORDON: Just in Commercial Translator, not in COBOL.

GRUENBERGER: Doesn't it all come back to this same
subject of training? COBOL, in the hands of a master, is a
beautiful tool--a very powerful tool. COBOL, as it's going
to be handled by a low grade clerk somewhere, will be a wmiser-
able mess. It's going to take 20 times as long to compile and
300 times as long to execute because he's going to manage to
ruin 1it. The guys you are writing to, Dan, are just not as
smart as you are. They can distort anything. This is true
at any language level. We've surely seen it back at machine
language level, we've seen it in FORTRAN; there is no reason

to believe we won't see it with every one of the magic languages.

-163-

GALLER: Could I ask about this unanimous thing that
went by before that T didn't get a chance to vote on because
I didn't understand it? Did I hear you say that you thought
that half the people were at such a low level that it doesn't
pay to write the language so they can read it, so yocu write
it for the few who can? What are we supposed to do for the
other half? I just came from a city where I gave a lecture
and the people I was addressing were supposedly the cream of
the city. It was a big city, too. And they told me that

they couldn't read the Communications; 1t was too hard for

them, These were people who were programming for 1401's and

so forth,

McCRACKEN: Of course; I can't read the Communications

either, for that matter.

GALLER: But these fellows told me they don't read any
of the literature in the field because they can't read it.

PATRICK: If they tried reading the Information Algebra
article from the current issue, I'll have to agree. I think
I probably could have read that article, but why bother?

GORDON: The guys Galler mentioned were talking about
the personnel notices.

GRUENBERGER: Maybe I could answer this by something
that George referred to a little while ago., In the classes
I teach I am continuously rocked back on my heels by the
things that trouble the class; things like a three-digit

number multiplied by a two-digit number is going to produce

-164-

a five-digit number. I have to stop my class cold and take
about ten minutes out to explain such things. I would have
thought that they learned things like that perhaps in the
fourth grade. Then agaln, I might assume that they would

know that you could multiply a number like 19 x 21 by squaring
a number in the middle and subtracting something and everyone
looks blank. Maybe I'm just critical of the whole educational
system, but it seems to be these little things that form the
real stumbling block.

George's point was that in dealing with the great unwashed
masses we've been talking about, the magic language does not
help. They don't solve any of the training problem and I
think they obscure it tremendously.

ARMER: Particularly when the manufacturers of this
equipment tell the buyers that they will solve all these
problems,

GRUENBERGER: Like on the board over there in that ad.

GALLER: But the corollary seems to be that then we
should upgrade the languages. O0.K. But that still leaves
the questicn of what are we supposed to do with the lower half
of the mass of people.

PATRICK: That is probably the subject of another
symposium. It's also the thing that should be the subject
of another major effort., I don't think you should try to
solve this kind of problem with a programming language.

GORDON: Like social responsibility of computing people.

165

LITTLE: Right now I think the programmer i1s being
asked to carry a lot of people on his back. Not only does
he have to get the job done but he's asked to use a language
that 1s designed for an ape. Added to that the government
has bought different machines and put them back to back. How
many of these things can you overcome and still do a reason-
ably good job? Especially if you perpetuate them. You con-
tinuously expect the programmer to bear more and more of this
burden. Programmers can't keep making up for stupidity all
the way along the line.

PATRICK: I have a fact.

CLIPPINGER: Make sure you do. Last time you said you
had a fact, you didn't come up with one.

PATRICK: All right, this i1s a real fact. Speaking of
irrational actions, there is a 90-column card reader available
for the 1401, That to me i1s an irrational act and along the
lines of what Jack called perpetuating stupidity.

OPLER: Moreover, you don't even need one. It's possible
to write a program that will allow you to read a pattern of
45-column holes into an 80-column reader and decipher it,

ARMER: We did it here.

OPLER: Sounds like they're wasting a lot of money on
hardware.

GRUENBERGER: Yes, but it has been done.

LITTLE: 1I'd like to add a comment about teaching. Both

George Armerding and I teach at Santa Monica City College at

~166-

night., 3Some of the problems the students have I attribute

to a lack of motivation., They are interested but their job
doesn't depend on it. I think a tab operator who, if he
doesn't make it as a programmer, wmight get fired, is in better
shape to learn than some of the students I get., 1Is it
different when you're teaching people who have to learn, whose
job depends on learning?

MCCRACKEN: Sure, they still have a lot of trouble but
they work harder. |

* : It all boils down to the fact that you can't
have a language which is all things to all men. Maybe one
answer would be to have these languages at all levels. If
gpu're going to have to teach Joe Tab Operator, maybe what you
need is a Joe Tab Operator type language. Let him use it for
his particular application but why saddle us brilliant pro-
grammers with it?

GRUENBERGER: But they aren't peddled that way. Each
magic language claims to be all things to all men and that's
one of the things that makes me a little red in the face.

McCRACKEN: I think one of the problems is that we're
trying to live down some totally irrational claims for these
languages that never were true.

OPLER: I think we've run this subject into the ground.
I'd like to open up a new one.

The question I have is this: if common languages are

really going to be the thing, will they be able in time to

-167 -

be able to encompass more than the nice job in the middle?
McCRACKEN: And if it never could it would not constitute
a total indictment of the languages.
OPLER: Je might put the question another way. {hat

percentage of the total range of problems will magic languages

eventually be able to handle? —

LITTLE: e see evidence today that people are trying
to push these magic languages into such areas. T-ke Command
and Control as an example. Even leaving out things like
training, would you use one of the current magic languages
in this area?

GRUENBERGER: 1If a given language has no intrinsic
goodies and is automatically lousy then we shouldn't even
consider it. But if it has all the goodies in the world we're
still supposed to be considering the question of whether or
not it is good to have it common. I suspect that a Lot of
our discussion has been dealing with intrinsic goodies rather
than with commonness.

PATRICK: Koory's recent experilence indicates that there
is some hope of pushing these higher level languages into
the area of gigantic applications.

CLIPPINGER: That's you saying it., Does Jerry say it
too?

PATRICK: All T said was that there is some hope.

KOORY: 1I'll agree that there's some hope.

OPLER: We've done a job of approximately the same

-168-

scope using a higher level language that is not a common
language. We produced something on the order of 145,000
machine instructions in a relatively short time. All this
really proves 1s that we can say, "Hurray for higher level
languages.'

* : It has nothing to do with commonness.

PATRICK: 1'd say that the last three topics we have
discussed have been categorized by, "Hurray for higher level
languages'' and have nothing to do with commonness. (Documenta-
tion, training, and scope of the problem.)

CLIPPINGER: But about three-quarters of you wrote off
the documentation. I don't see how you can draw any conclu-
sions from this discussion.

PATRICK: All I'm saying is that if our words had any
meaning 1t was with respect to higher level languages, not
common languages.

DOBRUSKY: I think we did reach some agreement that
higher level languages buy us something. Perhaps we can't
pinpoint it with names but the utilization and the training
and what not indicates that it buys us something. Now if we
continue to proliferate these languages for every application
we will never know what are the attributes needed for Command
and Control in a language.

CLIPPINGER: You have a better chance of knowing if you
proliferate them than if you don't,

LITTLE: 1Isn't Bill saying that you've gotjto be able to

analyze what it is they are doing for you?

169

DOBRUSKY: That's right. You have to be able to establish
measures on what 1t 1s that 1s required. If, in choosing a
common language, you find complete inadequacies in it, fine.
We will eventually know whether we need an extension of the
language we are trying or whether we need a new language.
Right now I think each application has such a large subset
of the other existing languages that we are just tilting at
windmills,

GORDON: 1I'd like to take one last swipe at commonness.
There are, I think, three levels of commonness; three dimen-
sions, 1f you will. You could think of a programming language
that is going to be common to both a 1620 and a 7094. Clearly,
such a language is either going to place a tremendous burden
on the 1620 or sell the 7094 tremendously short. Secondly,
you could think of a language which is suitable both for
matrix inversion and Command and Control work as well as
payroll and inventory problems. Clearly, such a language is
going to be pretty poor for one or all of these applications,
Thirdly, you can think of a language that is going to be
shared by your top level programmers as well as by your
retread tab operators. Clearly, this language is either going
to be hopelessly binding on the better programmers or it is
going to swamp the retread tab operator terribly,

If you go further and try to think of one language that
will cover both extremes in all three of the dimensions I
named, you'll have a pretty hopeless task. To the extent to

which you try to satisfy these mutually conflicting aims in

-170-

these three different dimensions, you will weaken the language,
and cut into its utility for any given application or use,

McCRACKEN: I think I agree with your first point, I'm
not sure about the second, and I know I disagrec with the
third. I am thinking specifically of ALGOL. In ALGOL it is
perfectly possible to take a subset of the whole language and
teach it to people with a great deal less trouble than you
would teach the same amount of computing power in FORTRAN,
Then 1f you want to go on and use the rest of the language
it can do things that we don't even know how to use yet.

It's good enough for anyone's purposes. I think that this
is an extremely desirable feature of a language.

GORDON: You're dealing with at least two different
languages though, Dan.

McCRACKEN: No, I don't think so. You could take my
ALGOL book and you could read three chapters or five or all
elght.

GORDON: But the assignment statement is not the ALGOL
language. You're really dealing with two languages, one of
which is a subset of the other. You may or may not get away
with it.

McCRACKEN: TIt's the same compiller though.

GORDON: For that matter, we've got FORTRAN, Commercial
Translator, COBOL, and what-have-you all in the same processor.
That doesn't make them the same language. Such a thing on
the 705 even allows you to intermix. I'm not saying you

should, I'm saying that you can. 1It's even rather cheap.

~-171-

It doesn't take more than aﬁ hour for any one compilation;
you can actually mix your statements and have one statement
in COBOL and another in FORTRAN, and so on. But they're
different languages, they just happen to be intermixed in
one processor.

PATRICK: That sure sounds like a dog.

GALLER: But you can't go from one machine to another
with such a language.

GORDON: Well it turns out you can., Some of my best
friends have gone from 705's to Honeywell 800's. Of course,
there's one thing required to do this. You have to have
programmers,

GALLER: No, I meant you can't take your programs from
one machine to another.

GRUENBERGER: He means it isn't common in the first
sense you mentioned.

GORDON: That's right. If you stick to one machine
family, like 709/7090/7094, you can think of common programming
systems across such similar machine lines without losing much
effectiveness.

GRUENBERGER: 1It's the same as the SAP story that Bernile
started out with this morning.

GORDON: Right., If you take a small enough universe,
you can establish standards across it without it costing you
too much. The wider the universe gets the more it is going
to cost you to standardize across it. This is true of

machines, of applications, and of programmer competence.

-172-

GRUENBERGER: Howle, we could just as easily have used
301/501/601.

BROMBERG: I appreclate that., But the point I'd like
to make 1s that as long as you do go upwards you don't have
to go horizontally across. You made the point about machine
sizes. This can be accommodated very easily...

GORDON: 1It's not just machine size, it's machine
characteristics, like binary vs. decimal, character addressable
vs. fixed word length, and so on. Vhen you go from the 1620
to the 7030 you have a basically different philosophy in

machine organization,

BROMBERG: Perhaps we could categorize by size and
application..,.

PATRICK: No, I don't think so., The guys that are
working on the 1401 can have just as difficult a problem as
the fellows working on the 7080. They've got great big jobs
and many, many reels of tape which have passed over the heads
over and over again. The only reason you hack up the job is
that the machine 1s small. It's tougher to program for a
little machine, You can't say that he doesn't need it because

he only has a 1401, The only reason he has a 1401 is that

he can't afford anything bigger.

BROMBERG: I'm just wondering why all these things are
points against the notion of commonness, as far as languages
are concerned?

GRUENBERGER: Because Gordon ﬁaﬁed.six.fields that afe

mutually incompatible. If you foster one, the other five

-173-

have to yleld. 1If you make 1t work for the man who has a
small scientific type problem on a character addressable
machine, then it won't be efficient on a different, perhaps
larger, machine.

BROMBERG: And I'm saying that we could look into this
problem, Facts are facts. And there is a practical world.
FORTRAN exists and a lot of people are using it. There will
be a thing called COBOL and there will be thousands of appli-
catlons. What are we doing at this very moment to assure
ourselves that the use of these languages is going to be
proper and effective, and the languages will grow, that they
will be responsive to change, that they will not have too
many inefficiéncies due to their commonness, that progress
will not be frozen--is not effective maintenance the
solution to all these problems?

We have talked about the situation before a language
exists and we say, '"What do we need for a Command and Control
language?'" Then we say, ''We already have this particular
language and 1t may be no good because it doesn't have some
of the goodies that JOVIAL has.'" Let's consider that we have
two languages now, and they are widely used and very popular,
What are we going to do with them? They exist; we can't
just say, "I'm against commonness.,'" The languages are here,

PATRICK: It sounds like we need a rational program to
get from A to B, where we're now at A. But the rational

program doesn't seem to be to standardize at the stroke of a

pen.

=17h-

GRUENBERGER: Another thing we seem to need is some really
elementary research. It's amazing how few honest facts were
brought out today about common languages. For example, we
don't seem to know any facts at all about the efficienciles of
these languages in any sense that you want to describe effi-
ciency. We haven't compared figures between MAD, ALGOL,
\ELIAC, and what-have-you. We've simply never measured these
things. We've done no statistical studies either of machines,
programs, or people. We might well consider exploring this
large area of research before we jump.

BROMBERG: I think one of the problems is that there
exists n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>