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CRITICAL PATH ANALYSES VIA CHANCE CONSTRAINED AND STOCHASTIC PROGRAMMING*
1. Introduction: |

A question whigh combines statistics and linear programming considera-
tions was first raised by G. Tintner in [ll].l/ It concerns the distribution
of optimum functional values when a linear programming problem has
probabilistic constraints.

We propose to accord a chance constrained programming formulation
to this kind of problem and to deal with it in a way that bears on project
scheduling of the kind that is usually associated with critical path
analysis.g/ For instance in PERT -- and related versions of critical path
scheduling —- an attempt is made to deal with random time variations by
reference to a procedure like the following. Three times are assumed
for each task: (1) a pessimistic time value, (2) a normal time and (3)
an optimistic time. These are multiplied by, respectively, 1/6, 2/3
and 1/6 and summed to derive a new time for each task. The new times
'are then used to derive a critical path from which an estimate of the
total timé is then derived.

In the present paper we shall assume that a particular distribution
of times applies to each branch of the project network. Then we attempt
to characterize the resulting distribution of total project completion
times. This is done by virtue of a minimizing principle which implicitly
‘carries with it a characterization of the critical paths that are

associated with each set of time realizations that the distributions

1/ See also [10].
2/ See (1], [6], L7], [8] and (9] as well as the references cited therein.

* We are indebted to Dr. D. Learmer, and others on the staff at Batten, Bartonm,
Durstine and Osborn for numerous discussions, assistance and encouragement on
various aspects of this and related work.

Note: The material in this report provided the basis for one part of a talk
presented by the authors at The Symposium on Mathematical Programming, Chicago,
Assoc. for Computing Machinery and USAF Project RAND, June 19, 1962
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admit for each branch of the network. We do not deal with these critical
paths in any detail here, however, but reserve that topic for treatment
in a subsequent paper. Only the simplest kind of decision rule--i.e.,
the zero order rule of chance constrained programming--will be exhibited
here only for illustration to show how it encompasses the PERT rule as

a special instance of a general class of risk control and evaluation
procedures.

The main focus of this paper is on the statistical distributions of
the project completion (and sub-completion) times. The question of total
time distributions that we deal with can therefore be given a managerial
policy flavor by assuming that, ab initio, a management is considering a
contract for a certain project;” The task sequences are known but the
times are not known except in probability. Before contracting for a
target completion date--with resulting delay penalties--this management
would like to know the likely distribution of total times in order to
decide whether to accept an offered contract or else bargain further

on the completion dates, penalty rates and progress payments and prices.'

2. Direct and Dual Linear Programuing Problems for a Project Graph:

With known task times, tj’ the critical path scheduling problem

may be formulated as a network flow problem

n
max jzl tj xj
subject to
(1) AP T
j=1
lez 0
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where a =~l, a =1 andall other a, = 0. The Xy > 0 corresponds

i

to uni-directionil time progressionj the eij ars the incidence numbers
for the netw0rk.~/
This is a linear programming problem. Hence it has a dual
m
nin iEO uy a;

(2) subject to
n

Z u. € Zt

im0 + =37

In fact this dual provides the basis for an efficient computational
algorithm--e.g., of the sub-dual algorithm variety.g/ Moreover, the
value I u, a; for any u; satisfying the constraints of (2) provides
an upper bound for the completion time associated with the critical path
and, hence, associated also with the project®s completion. Furthermore,
the structure of. the dual problem 1s such that for any given set of tj,
the optimal ui may be determined by one pass through the network
associated with (1). |

Suppose that the known tj's are now replaced by task times which
are random variables with known statistical distributions. Because of
the property of the dual (2)--and the related sub-dual algorithm5 --it

is possible to compute, successively, uy values which are minimal with

l/ See[[h] for further details or, more generally, sse Chapter XVII
in [3].

2/ See [3] and references cited therein. See also [1].

3/ See [1] and [3].




=

respect to the sub-graph constraints to which they apply. Thus when

the tj values are random variables these uy values will also emerge
as random variables. This means that, in principle, it is possible to
determine the distributions of the ui's in terms of the distributions
of the tj's which are constraining for these u, values on the project
graph.

The matter may be put another way by assuming that one starts back
from the node associated with the projectts completion. Moving back up
the graph one then determires successive us values on & maximal time
path to the associated node. Then, for fixed times, one applies to
these uy .values the probability associated with each of the tj times
on the path leading up to this node. In this fashion one can obtain
probabilities :or the different time values ccrresponding to the uy

values achieved via the possible maximal time paths.

3. The Zero Order Rule:

The simplest of the chance constrained programming decision rules

is a limear rui; in which the coefficients of the tj variables are set
1 .
equal to zero. This means that we seek a set of values u, which solve

m
min ifo ui ai
(3) subject to
( m
P( 2 .E.. >t.)>
i=0 b ! i3 - J) ﬁj ?

1/ Vide, e.g., [2].
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where "P" means "probability" and O < ﬁj < 1 is a preassigned probability

measure for Jwl, 2, ..., n.

A solution of this problem amounts to determining a set of times
associated with the inauguration of various tasks in such a n‘;anner that
the probability of being able to complete the j-@- task is at least ﬁj.
The latter may be called the risk guarantees desired for this jﬂ task.

The left hand side of each chance constraint j=l, ..., n can be

rephrased analytically to achieve an expression in which 2 uy é“i 3 is
a parameter. Thus, if Fj is the marginal distribution of 1 3 we may
write
m m
(L) P(tji z “iei;j)"Fj(z uiaij) .

i=0 i=0

The chance constraint is thus transformed into a deterministic equivalent
m
Z €. >

(5) Fj ( 120 Uy 13) z ﬁj

or, in view of the monotonicity of Fj R

= -1
(6) 2 uiQij sz (ﬁj) .

i=0
Via this mode of development we have the following
nin Z u, 2

subject to
(7) .

-1
o Wiy 2 Fy (B
J=l, ecey, n




as a deterministic equivalent for (3). The number F (ﬁ ) represents,
of course, the fractile associated with ﬁj. I‘\u'thermore s this
deterministic equivalent has:a dual which exhibits, perhaps somewhat
better, the charactler of the problem since it is in direct network

form. This problem is
n

max 2 j (Bj)x

jz

subject to
n

It may be instructive to observe how the F:_j'l( B;j) coefficients,
in the functional, appear under some of the statistical distributions

that might be assumed. If Fj =N (p.j, cj) then
(9) B =y o W (B

where N~ " is the.inverse of the N(O, 1) distribution function. The

functional of (8) then bacomes

(10) jEl () xj-jz (g + oy W70 (B))) xy

Another example is the log-normal distribution which gives the

objective function




B all D (u, ¥V .0
(11) jfl FJ (ﬁj) Xy jfl (e'7d Q) 3 xj

where e M) is the median of the jEE log-normal distribution and

L. is the g fractile of N(0, 1).

qJ
The PERT rule corresponds to using the population mean of the

three valued random variable tj with probabilities of, respectively,

Pye = % > Pyn = % > Py = 1/6. In general, for this distribution,

the mean will not be an actually realized time. The protection level

ﬁj’ associated with this mean depends critically on whether the difference
between the optimistic and normal time is greater or less than the
difference between the normal tiﬁe and the pessimistic time. The first
case gives a protection level ﬁj < 1/23 the second case gives 53 > 1/2,
When the two are equal, so that meén coincides with the mode and the
median, then P = 1/2 will obtain.

With the above formulation we are thus able to relate the
functional used to the risk levels desired. The PERT procedure, when
the assumed distribution applies, also carries this feature with it.

Cn the other hand, it is there presented in the guise of an estimating
procedure which has an evident implication for the risk protection that
is secure@ upon effecting the planning decisions. Thus, in particular,
the choice of symmetric low and high estimates carries an implication
that the actually realized times will, by random occurrences alone, lie

either above or below the assumed value virtually all of the time.
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L. Determination of Distribution of Times:

We now turn to the task of determining the critical path node
varisbles for each possible set of values that the tj variates may
assume. That is, we want to determine implicitly the critical path
for every possible ¢ollection of tj realizations with their associated
probabilities. We shall do this indirectly, however, in that we

%
determine the distribution of the wj (tj,--+, £ ) satisfying

m
min Z W, a,
i=0 * %
with
(12) m
2w . > 1

=L, eesy, N o

To compute the distributions for the W, e need have recourse
only to cbtaining the distribution function for sums of known random
veriables and for the maximum of a finite number of known random variables.
For some distributions--e.g., finite and discrete distributions, garma
distributions, etc.--it is possible to carry out these operations
explicitly. This may be an onerous task, of course, but the ekctronic
computer may offer relief in cases like discrete distributions. Thus,
in these particular kinds of cases, it is possible to develop the related
distribution functions directly and thereby answer the question originally

posed by Tintner [11].
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To conclude tHis section we shall preseni an example of such

Coripider the greph shown in Figure 1. The times of the

jobs are marked alongside

the arrow representing the job.

~ FIGURE 1

For this example the inequalities of (12) become

(13)
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Since the solution of (12) is equivelent to finding the longest
path through the network, the distribution of completion times can be
found by’successive;y finding the distribution of two jobs in series

as in Figure 2(a), or in parallel as in Figure 2(b).

FIGURE 2

Clearly in (a), the time to complete both jobs is the sum s+t of the

random variables; and in (b), the time to complete both jobs is the

maximum of the two random variables. It is easy to establish the
following two rules.

(A) The density of the sum of two independent random

variables is the convolution of their densities. —/
! 1
| (B) The distribution of the maximum of two independent

l/ For the critical path inequality structure it is possible to reduce
all calculations to the use of these two rules even though at some
! stages one wants the maximum of two stochastically dependent random
: variables. See the example below.
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random variables is the product of their two
distributigns.
In order to carry out the calculations explicitly we assume that

all job times have an exponential density function

-8t
(L) 6 e , 05t <,

which has a distribution function

(15) Fla) =P(t<a) =1-e9,

If we now make the further simplifying assumption that the
exponential functions are all characterized by the same parameter, 6,
then we can tabulate the densities and distributions of the various LA
as shown in Table 1.

The calculations needed to obtain the entries of Table 1 are all
elementary, but somewhat tedious. Hence we have tabulated them in detail
so that this work need not be repeated by others. The same kinds of
calculations could also be carried out for project graphs of bigger size,
but the answers resulting might be very lengthy, perhaps several pages
long, and, in general recourse to electronic computation would then be
required. Pending completion of the instant codes, however, we can only
conclude that an "in principle” demonstration of these possibilities

has now been made.
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In order to gét a better idea of the values of the functions in
Table 1, we comput,dl/ then'using an electronic computer for various values
of completion time 'and have plotted the results in Figures 3 and 4. Note
in Figure 4 that the density function for wh is bi-modal, although the
area under the first loop of its graph is so sma}l that it does not
appear cn the corresponding distribution in Figure 3, the extremely
flat approach to zero of the distribution for wh is especially evident
in Figure 3. Thesel\and other features are displayea on the following.

charts -- which are based on electronic computations arranged for

values of t running from O to 10 in increments of .02, .to yield a mesh

of 500 equally spaced points.l/

1/ The authors are indebted to Messrs. F. K. Levy and J. D. Wiest for
carrying out these caleculations on Carnegie Tech's Bendix G-20, and
for drafting the accompanying charts, conducting supplementary amalyses,
etc.
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S« Conclusion and Further Extensions:

On the basis of this highly eimplified example we can draw some
interesting (if tentative) conclusions. Note, first, that this
exponential distribution has the property that each modal task time is
zero. Furthermore, the function is monotone decreasing. Hence, larger
completion times are less probable than short ones. Thus, this distri-
bution would tend to produce higher probabilities for shorter overall
completion times than other kinds of less optimistic distribution
functions that might be specified. Nevertheless, asymptotic expansion
shows that the overall distribution--~the one for wh--vanishes to the
sixth order for t=0. I.e., a short overall completion time is highly
improbeble. Thus, the interacting properties of the graph relations
produces & rather striking result for these random variations. The
overall behavier is different than the behavior of each of the parts.
It must be expected that other demnsities can display cther equally
striking (possibly even surprising) résults.

One route of extension that is evidently open involves exploring
other kinds of distributions and also, obviously, other kinds of project
graphs. Computer codes for this purpose are in the process of being
devel oped.

In the present case we have emphasized the distribution of
early start times for all jobs. Then when the final node is achieved
the time that is there attained becomss the early campletion time (in

the usual usage) for the entire project. Of course, by working backwards,
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up the graph, we can effect the same kind of result for the so-called
late start times. The difference between these two represents slack;
but here we must allow for the possibility that negative as well as
positive values of these variables may emerge. The probability of this
happening may, of course, be computed. In fact this probability can
then be accorded the status of a risk measure of departing from any
possible critical path.

In current practice (e.g., PERT, etc.), the analysis is directed
toward an explicit designation of a critical path for an entire project.
But extensions via the higher order;/ decision rules of chance constrained
programning -would suggest a somewhat different course. Early start
times could then be utilized, for example, to provide effective pro-
cedures for developing multiple (dynamic) critical paths that take into
account the deviations from anticipated task times, the precedeﬁce
relations and the overall statistics of task time performance. This
would include both risk and gquality levels -- and associated evaluations
and controls —-- of the kind which chance constrained programming was

2
explicitly designed to handle.=/ It could also include non-independence

~ of earlier and later task times, especially when aspects of task learning

.are involved on various parts of a project graph.z/

;/ I.e., of higher order than'the ones discussed in suprg, section 3.
See, e.g., [2].

See (5].

Such *"learning” or "progress curve functions hLave proved to be of
considerable importance in many cases —- e.g., as in setting contract
terms and schedules for construction and new item production in
World War II.

R ®
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A use of highe; order decision rules with a focus on early start
times makes it posgible to bypass the need for an sxplicit development
of the resulting cénditional critical paths (or portions thereof). That
is, instead of specifying these paths:jilgggg, as in current practice,
the higher order decision rules of chance constrained programming would

follow a different course of development. For instance, the emergence

of specitic early start times would be used to complete the certainty

equivalent relations for chance constrained programming in order thereby
to designate explicitly the next portion of the (implied) overall critical
path.l/ Each of several conditional critical paths would then be
implicitly carried forward and the final total chain (eritical path)

would then be known with certainty only upon the project's completion.
Finally, the dual evaluators (when available) can be used to examine
possible variations in risk or quality levels or, alternatively, the
desirability of undertaking the total commitment implied by the contract
can be ascertained by considering the statistical variations for minimum
completion times which are likely to result from a given project graph

whose links are subject to known random time variations.

1/ Vide, e.g., [2].
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