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On the " Best" First-Order Linear Shell Theory * 

by 

Bernard Budiansky and J. lyell Sanders« Jr. 

INTRODUCTION 

In marked contrast to the theories of bending and stretching 

of flat plates» the general linear theory of thin elastic shells has 

not yet received & universally accepted formulation} it Is only a 

slight exaggeration to say that each Investigator favors a different 

theoiy« The comparative studies of Koiter [1960] clarify and substan- 

tiate the widely held Impression that there is little difference, fron 

the point of view of accuracy, among many of the existing sets of shell 

equations, and also show that some must be regarded with suspicion« 

Nevertheless, it is inconvenient to have to study and assess the equations 

underlying each new work on shells. 

A more satisfactory state of affairs would prevail if a set of 

equations that uniquely embody certain clearly desirable chararteristlcs 

could be logically deduced and then generally adopted. A derivation of 

this type, leading to equations originally presented in lines-of-ourvmturb 

coordinates by Sanders [1959], is given in this paper* 

A TENSOR IHECRI 

The first criterion to be met in the search for a standard theory 

is that it be susceptible to formulation in general tensor notation in 

This work was supported by the Office of Naval Research and by a John 
Simon Guggenheim Memorial grant in 1961 to the first author. 



terms of an arbitrary coordinate system in the middle surface of shells 

of arbitrary shape» We cannot defend this requirement on strict logical 

grounds« It Is not even clear that exact laws of nature oust necessarily 

be expressible In tensor form, and so it is even less possible to insist 

on a tensor representation of approximate theories. But the elegance of 

tensor notation« the generality It affords, and Its utility In theoretical 

studies constitute strong arguments In its favor. At the same time, general 

tensor equations in arbitrary coordinate systems can, of course, always be 

transformed into "physical" equations in special coordinate systems} the 

reverse process is not always possible« 

Let the middle surface of the undeformed shell be defined by means 

of the cartesian position vector  x (£a) . In the present paper the 

Ka     coordinates are used to label material particles in both the undeformed 

and defomed middle surfaces. The metric tensor and the curvature tensor 

of the undeformed middle surface are given by 

!<* • *Uxi.t (" 

where     N       is the unit normal to the undeformed middle surfacei 

comas denote covariant differentiation throughout this paper«   According 

to the fundamental theorem of surfaces these two tensors completely 

define a surface (within a rigid body motion) provided they satisfy the 

Gauss and Codazzi identities«   The deformed middle surface Is defined 

by Its cartesian position vector 

y1   -   x1 + ua xf ♦ i«1 (3) 
»0 
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where  u   and  v  are the diaplacements given as functions of  C • 

The two fundamental tensors of the deformed middle surface.  0 .  and aß 

B a ,   are given by formulas similar to (1) and (2). op 

FIRST ORDER THECR7, IHE KIRCHOFF ASSUMPTIONS, AND STRAINS 

The meaning of the characterisation * first-order"   (or " first 

approximation" } in shell theory is that the deformed state of the shell 

is determined entirely by the deformed configuration of its middle surface. 

The displaced locations of material points off the middle surface are 

rendered determinate by means of the Kirchoff assumptions   material nor- 

mals to the undeformed middle surface do not change length and remain 

normal to the deformed middle surface after deformation of the shell« 

Accordingly, in any first order theory, the deformed shell is character- 

ized geonetrically entirely by     0 .     and     B .    , the metric and 

curvature tenders of the deformed middlu purface. 

It follovs then, that the distortions of the shell are defined 

adequately by the stretching strain tensor 

Eap   '   ? (0aß - V M 

and the bending strain tensor 

'«p   -   Bap-bap <« 

These tensors obviously vanish for rigid body motions.    In terns of the 

surface displacement veclor     u0     and the normal displacement     v   , 



these strain tensors when linearized, can be calculated to be 

Eaß   "   1 (ua,ß + UM> * % * (6) 

where the rotation vector       fi       la 

■ -Vbflpuß (« 

We note. In anticipation of what Is to follow, that the measures 

of stretching and bending strain need not be precisely  E D  and ap 
K  • Any two linear combinations from which  E .  and  K .  can 

be recovered might be used instead. Part of the problem in deriving a 

complete shell theory is to decide which two combinations of  E 
*? 

and  K „  to adopt as basic strain measures. 

FORCES AND MOMENTS 

As ordinarily defined, the stress measures in the theory of thin 

shells, namely the membrane stress tensor  N0^  and the bending moment 

tender  M*^ mast satisfy th« following well-known exact system of 

equilibrium equations 

«V^V»" -0 (") 



«^oß - bap "^ + P * 0 (9b) 

.«P CN^ - bP MY0 ] . o (9c) 

where  p"  and  p  «re external load intensities assumed applied at 

the middle surface« 

It Is characteristic of both approximate and exact theories of 

structural mechanics that they involve, as basic ingredients, a certain 

luubber cf strain measures and an equal number of stress measures linked 

by constitutive relations» As was shown in the previous section six 

measures of strain are sufficient for a first order theoiy. But now there 

are apparently eight measures of stress since  N**  and  M^  are not 

in general symmetric. One possible tentative renwdy for this unpleasing 

lack of symmetry in the theory is to define modified stress measures 

H^ - J (k* ♦ if*) do) 
2 

ir* - N^.bjM*0 (ii) 

which are symmetric tensors, the first by definition, the second by 

equation (9c)» The question of the adequacy of those modified stress 

mcasurec is partially resolved by the remarkable fact that the remaining 

equations (9a) and (9b) can be written exactly In terms of  3**  and 

tf*  as follows t 



,ap       aß   y op 

(12) 

The idea of reducing the number cf stress measures in the theory 

of shells from eight to six (without approocimatlon) was first suggested 

by Lurie Cl950j and used by Novozhllov [1951] but, as will be fehown sub- 

sequently, the Lurie-Novozhllov reduction performed in lines-of-curvature 

coordinates is not consistent with any general tensor representation of 

the modified stress variables• 

The temptation is new strong to adopt     N0^     and     R"^     as the 

basic stress measures in shell theory and to form constitutive relations 

between them and     S .     and     K . •    But an important question presents 

itselft    would this lead to well-defined boundary-value-problems for the 

determination of the configuration of the distorted shell with uniqueness 

of solution guaranteed? 

VIRTUAL WORK, UNIQUENESS, AND MINIMUM PRJNCIPLES 

By means of a direct calculation we can show that the familiar 

three-dimensional internal-virtual-work expression     J   a.. i.. dv 

reduces exactly to the following integral over the shell m .Idle surface 

/ 4 <*%*** V ^ (13) 

when the deformations are cnnHtrainr>rt Vy the Elreheff asguaptioria» 



This result is quite independent of the stress distribution» 

Under the sane assumption the external virtual work is exactly 

Nl^VP^dA^g  [(T0.b°tP»VK 

*H. t. * ;Q- rt)»] ds 

(1U) 

n Tn 

where the line Integrtvl is over the boundary     S     of the shell middle 

surface, and on     S 

T   -   mambrane force-per-unit-length vector (• Np   n0) 
P 

Q   ■   transverse force per unit length    (■ H**   n.) 

M   ■    normal bending moment    (■ M „ n   n.) n op    a   p 
M. ■   twisting moment    (■ -M** n„ t0) 

|   ■   normal rotation (■ /9   n ) n a 
ta ■   unit tangent vector 

n   ■   unit normal (in middle surface) to     S . 

For simplicity     5     is assumed smooth} otherwise addxtional terms enter (lb) 

at comers.    Now by virtue of the three^limensional principle of virtual 

work, it follows without the need for further proof that (13) and (lit) must 

be equal to each other whenever    (a)     E and     K.     are derivable via 

(6) and (7) from displacements     ua ,   w ,    and    (b)   tf* ,   ff* ,    T8 , 

M.  ,   M       and     Q    are the resultants of any three-dimensional stress state 

in equilibrium with    pa    and     p • 

From the form of (lb) one naturally defines an effective boundary membrane 
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force     T6,   ■   T0 - bo *   ^t     and "^ •^ec*iv# transvars« fore« 

an 
(as In plate theory) TJ ■ Q - g-j • It turns out then, that  T0 , 

Q  and  M^  are expressible exactly in terms of the modified tensors 

and   M**  as follows t 

r . (ir,p*bairP + bat«t irP)nfl (15) y to        y p 

'    -    ^VrrS^crV ^) 

Mn   -     lf*%nß (17) 

Now« as one would suspect, the requirement (b) for the equality 

of (13) and (lU) may be relaxed simply to the stipulation that     V^ , 

H0^ ,     pa ,   and     p     satisfy the equilibrium equations (12) rod that 

T" ,   ^ ,    and     Mn     be defined by (15), (16), and (17).    This can be 

verified by direct use of the divergence theorem« 

We are now in a position to formulate classical types of boundary 

value problems with admissible boundary conditions as indicated by the 

form of (lU).    Thus we can specify either     T*     or     u0 ,   M       or   f , 

9     or     w )    or we can impose elastic constraints by relating     7°     and 

ua    , etc.        If we     Introduce constitutive relations between   V0^ , 

and     B « ,     K-     which render (1» positive definite, then a uniqu* 

solution of the fiald equations (6), (7), (12) and these constitutive 

relations is guaranteed (except possibly for rigid body motions)«    The 



proof is of the usual typ« that exploits a virtual work principle. 

The question of existence remains open. 

We shall not devote much attention here to the form of the required 

constitutive relations}   suffice it to say that Novoshilov [1951 j and 

Kolter Cl96o3 have given compelling arguments, based on considerations of 

strain energy* that can be used to defend the accuracy of the uncoupled 

(Love) relations between    U0^     and     E^    , and between    Tf?     and 

K . •   We do not insist that other relations must not be used as long 
W 

as they keep (13) positive definite« 

Vith such constitutive equations adjoined to the •quilibrlum 

equations (12) and the strain-displacement equation« (6) and (7) we not 

only have a virtual work principle (snd hence uniqueness) but, in the usual 

fashion, we can easily formulate and prove principles of minimum potential 

energy and minimum complementary energy and reciprocal theorems analogous 

to those of three-dimensional elasticity»   The use of    Tt"*     and     H0^ 

as stress measures has turned cue to be entirely adequate because we have 

at this point derived a complete and satisfactory theoretical apparatus 

for shell analysis«    But additional considerations will lead to a better 

theory« 

ALTERNATIVE STRAIN VARIABLES 

As stated previously, there was no obvious requirement for using 

B .     and     K .     as the tensors describing the deformation of the shell« 

We ehall consider alternatives, but In so doing, we shall simultaneously 

Introduce new modified stress and moment tensors so as to leave unchanged 

the form and content of the virtual work expression (13), and so retain 
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All of th* d«slr«ble faaturts of th« theory Just darivad. 

In exploring alternative strain measures v:e are z-vluctant to discard 

B . «   Stretching of the middle surface has to do only with metric proper- op 
ties and has nothing to do with     K . •    In the membrane theory of shells 

and in all the different bending theories of shells     E .     is accepted as 

the standard measure of the middle surface stretching strain.   However, 

the measure of bending strain is not at all standard.    We consider as 

alternatives to     K ~     a class of linear combinations of     K.     and    1. 

of the foxa 

*«P   -   *ap   -   C$V (18) 

where     C*?     is required to be aymmetric in     a     and       ß •   For dlaen- 

sional reasons, and in order that     K .     reduce to     K .     in the case of 
V op 

flat plates,    C^*     will be assumed to be a homogeneous function of degree 

one r£ the sh^ll curvature tensor«   For simpiiclty     C^T     will ta assumed. OP 

farther to be a linear function of the components of       b a •   Then,   to 
op 

within constant factors, there exist Just the follow^«g four independent 

tensorlal forms of  C*? E .  (Rivlln Cl955J) 

W-) op^i ' «oß b^a car 

«%>t ■ b?E«p 

VJ ■ b«PE? 

^>JI - ^b:«? 

^ 

(19) 



n 

The additional for» 

V$ ■   "a ^ * b? Ea« M 

which appears to belong in the list, Is actually given by 

V5  "  Vl * (V2 * (V3 -(Vu 

according to the extended Cayley-Hamilton theorem of Blvlin il95Sl • 

It should be remarked that the alternative forms for     K . op 

given by the subtraction from     K 0     of terms of the type in (19) op 
are all acceptable in the sense of Kolter [l960]t   who shows that the 

error in Love's uncoupled strain energy expression (consistent with 

uncoupled stress-strain relations) is essentially the SJJ» no matter 

which of these alternatives is used*   Kolter himself prefers the ex- 

pression 

which, in llnes-of-curvature coordinates, is the snam as that of Sanders 

tl959J, and is the one which will ultimately be preferred here«   A pleasing 

feature of     K _     remarked upon by Kolter is that it can be written neatly 

in the form 

'cp   -   7 <'«,* * *ß,a> * 1 V <V * bJ V) (22) 
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in terms of the rotation vector     t       and the rotation-about-the-normal a 

tensor     u^   ■   « (ua fl ~ u0 a^ *   ^ wil1 ^ 8Mn' thare 'f* even mor» 

cogent reasons for the adoption of     K 0     as the standard measure of op 

bendlne strain. 

To retain a virtual work expression of the form (?3) when     K . op 
is adopted,     H .     maj be retained as the basic modified bending moment 

tensor, but a new modified membrauü stress tensor 

v* - r**§(b°ii*♦*;**) (23) 

must be introduced, siring the virtual work expression 

/ 4 <*%♦*%)« (2U) 

The equilibrium equations in terms of N0^  and  R8^ , still exact, 

bee« 

♦ b^ ff^ ♦ i (b^ S^ - ba H1*) „ ♦ pP - 0 (25) 

^-»„•"♦f • 0 (26) 

Note the striking point that (26) in terms of  N**  and  tf*  has 

precisely the earns form as (9b) in terms of the unsyametrlcal tensor« 

N0^  and  M4* » Now, anticipating the ultimate preference for  K . 

and  H** , the general alternative version of K - will be written 
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k 
?«P   "   ^   *   Z Ci ^aßh W 

i-1 

«bar« the     c.      «re constants.    The modified     H0^      associated with 

pP     that proridM a virtual work density     (i8^ 1^   ♦   HP"   I .)     is 

readily found to ba 

U 

1-1 

where the  c.  are the same as those In (27)» end where 

'1       Y 

<p<% -b;" (29) 

il*)3 - g^b^IT 

(p*). - g** b» r 

Note that the second and fourth of the forms in (19) and (29) are similar, 

but that (Q^i     h*8 th« structure of  (P0^),  and  (^-0)3  has that 

of  (P<*)1. 

We can now state categorically that the modified bending strain and 

membrane stress measures used by Lurie and Novoshllov In their analyses 
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in lines-of-curvature coordinates are not special cases 01' (22) and (28)« 

The shell theory given in Novozhilov's book [1951J has a virtual work 

principle, and the bending strain variables are " acceptable" in Kolter's 

sense, but the equations can not be cast into tensor form in general 

coordinates for arbitrary shells« 

Now we can begin to discuss the further advantages of (21) and 

(23) over any of the alternative forms (27) and (28) provided by all 

possible choices for the       c.    • 

THE STATIC-QECMETRIC ANALOGY 

The Russian literature on shells often refers (see, for example, 

Goldenveizer [1961], Novozhllov Cl95lj, Lurle [l96l]Jto an interesting 

type of analogy between equilibrlxun equations (with no external loads) 

in terms of forces and moments on the one hud, and compatibility 

equations in terms of certain stretching and bending strains on the other. 

However, the analogy, as exhibited fay Novozhilov and Lurle in lines-of- 

curvature coordinates involves, of coutse, non-tensorlal force and bending 

strain variables»   But a static-geometric analogy found independently by 

Sanders [1959J can be written tensoriaUy in terms of     d r ,   H** »   ^«0 » 

and     K a     as follows. 

Let 

W**   -   ft4* - i [e*» & K   J (30) 
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Then, in the absence of loading terns jr     and  p , the real parts 

of the following equations are the equilibrium equations (2$)  and 

(26), while the imaginary parts are, rigorously, equations of strain 

conpatibilltyt 

W^ ♦ b^ Zro ♦ 1 fbP 2^ . b0 2^ )   - 0 
,0  Y  #o  < \ Y     Y   ' fö 

«*, - ^* 

(32) 

An iamdiate, useful consequence of the static-geometric analogy is 

that homogeneous equilibrium states can easily be generated in terms of 

stress functions     8,     and   i     simply by replacing     u       and     w • • a 
in the strain-displacement relations (6) and (22) by     ß       and   ffl   , 

and setting the resultant expressions, multiplied by     a0^ »^     , equal 

to     W*     and     -N0^   , respectively« 

Ve now consider the question: which, if any, of the alternative 

versions (27), (26) for     K „     and     N0^     would enjoy a static-geometric op 
analogy?   A detailed study of all the possibilities ^.«tals that the set 

of admissible alternatives is reduced somewhat by this criterion, to 

*«*■ *<* - C2 V2 ■ % Vfc " Cl C(9<«P,1 " (Q#)33 f3: 

ar* - ff* ♦ c2 (paP)2 ♦ c^ (paP)u ♦ c1 [(p
(*)3. (P^^J     (310 

Note that the     K.     and     irp     we first arrived at in our 

development are not members of these sets} they can not lead to a static- 
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geometric analogy, and so we reject, at this point, the previously derived 

theory and turn our attention to the equilibrium equations (25) and (26), 

and the strain-displacement equations (6) and (22).    The virtual work 

principle, with    H0*      and     K .     replaced by    M0^     and     K .     remains 

intact, and the effective boundary membrane force is now given by 

f«.tt*»J(b«f*-^Hr) ♦b«t«tTStf Jnp (35) 

while (16) and (17) still apply. Once again, the introduction of 

appropriate constitutive relations provides a complete system of equations, 

with associated variatlonal and reciprocal principles available. Retention 

of the uncoupled Love relations between a"*     and  E 0 , H**  and 
■V 

K .     still appears to be a sensible and, on the basis of Kolter's and op 

Novozhllov's work, a Justifiable procedure. 

But now, before considering this apparatus as the definitive one, we 

must give some good reasons for rejecting the alternatives afforded by 

(33) and (3U). 

TOE FORM OF THE EQUATIONS JN SPECI1L CkSEä 

In contrast to the many different sets of general shell equations 

that have been proposed, there appears to be common agreement on the 

equations for syranetrical bending of shells of revolution) the classical 

theory of Love [1927J is generally followed in this important special case. 

It would clearly be desirable for a standard general theory to agree with 

Love's theory in this case»   The presently preferred theory does so agreej 

in the special case considered, only the diagonal terms of     K .    , when op 
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written in llnea-of-curvature coordinates! are non-vaniahing, and they 

are found to agree with the corresponding two bending strains of Love* 

Furthermore, none of the alternative expressions for     K -     afforded by 

(33) enjoy this diatinciion. 

It might be noted, next, that curved beam theory can bo regarded 

aa a special case of cylinder theory in which the deformations are inde- 

pendent of the axial coordinate.    In this case, with     5      taken In the 

circumferential direction,     K*,      reduces to the meaeure of bending strain 

corresponding to the simplest curved beam theoxy«     In alternative measure 

corresponding to     !„      (equal to the linearised change of curvature) has 

occasionally been used but   it leads to awkward energy express ions« 

It may be observed, incidentally, that when lines-of-curvature coordinates 

are used for the general shell, the preferred expression     o^     has the 

attractive feature that     N and     N        are identical with the unmodified 

componenta     N        and     N of the unsynmetrical membrane stress tensor» 

This is true also of the Lurie-Novozhllov modified stresses, which, in llnes- 

of-curvature coordinates differ from     ft*^     only in the shearing termj 

similarly, in the same coordinates, only the off-diagonal terms of       K . op 
differ from the Lurie-Novozhilov components of bending strain«    It appears« 

then, that the only one of the various characteristics cnat we consider de- 

sirable in a standard general shell theory that is violated by the Lurie- 

Novozhllov formulation is that it have a general tensor character* 

CONCLUSIGNS 

We have arrived at a linear first order theory of elastic shells that 

is considered by us to be the " best"   on the basis of various logical and 
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esthetic criteria; thl« theory was originally proposed by Sanders [19592 

in lines-of-curvature coordinates.    To sum up, the features that characterise 

this theory are: 

(a) the equations can be written in general tensor form for arbitrary 

shells) 

(b) the deformations are described by six strain measures, three of 

which are the components of the usual membrane strain tenbor) 

the other three deviate from the components of the geometrical 

curvature-change tensor only by terms that are bilinear in the 

components of the curvature and the nwnbrane strain tensor| 

(c) the stresses are described by six stress measures that satisfy 

the equations of equilibrium without approxiaation) 

(d) the theory has a principle of virtual work that is exact for dis- 

placements obeying the Klrchoff hypotheses} in conjunction with 

appropriate constitutive relations between the stress and strain 

measures, well-set boundary vclue problems can be formulated, and 

the usual minimum and reciprocal relations of structural mechanics 

apply» 

(e) the theory contains an exact static-geometric analogy) 

(f) when applied to the symmetrical bending of shells of revolution, 

the stress and strain measures agree with those generally used) 

they are consistent, too, with those of the most simple curved 

beam theory» 

If, finally, we stipulate, for the sake of simplicity and deflniteness that 

(g) the stresc and strain measures obey the uncoupled Love constitutive 

relations,then the features (a) - (g) appear to characterise uniquely 
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the presently preferred theory.    Thus, whether or not this theory Is 

generally art opted, it is hoped that ehe present study will facilitate 

the assessment of any given alternative theory by revealing which of 

the characteristics (a) - (g) it necessarily fails to embody« 
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