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On the " Best" First-Order Linear Shell Theory *
by
Bernard Budiansky and J, Lyell Sanders, Jr,

INTRODUCT ION

In marked contrast to the theories of bending and stretching
of flat plates, the general linear theory of thin elastic shells has
not yet received s universally sccepted formulationg it is only a
slight exaggeration to say that each investigator favors & different
theory, The comparative studies of Koiter [1960] clarify and sabstan-
tiate the widely held impression that there is little difference, from
the point of view of accuracy, among many of the existing setz of shell
equations, and also show that some must be regarded wih suspicion,
Nevertheless, it is inconvenient to have to study and assess the equations
underlying each new work on shells,

A more ut‘ilflctory state of affairs would prevail if a set of
equations that uniquely embody certain clearly desirable characteristics
could be logically deduced and then generally adopted, A derivation of
this type, leading to equations originally presented in lines-of-curvature
coordinates by Sanders [1959]), is given in this paper.

A TENSOR THEORY

The first criterion to be met in the search for a standard theory
is that it be susceptible to formulation in general tensor notation in

¥ This work was supported by the Office of Naval Research and by a John
Simon Ouggenheim Memorial grant in 1961 to the first author,



terms of an arbitrary coordinate system in the middle surface of shelle
of arbitrary shape, We cannot defend this requirement on strict logical
grounds, It is not even clear that exact laws of nature must necessarily
be expressible in tensor form, and so it is even less possible to insist
on a tensor representation of approximate theories., But the elegance of
tensor notation, the generality it affords, and its utility in theoretical
studies constitute strong arguments in its favor, At the same time, general
tensor equations in arbitrary coordinate systems can, of course, always be
transformed into " physical'* equations in special coordinate systems; the
reverse process is not always possible,

Let the middle surface of the undeformed shell be defined by mesns
of the cartesian position vector xi(Ea) o« In the present paper the
£® coordinates are used to labei material particles in both the undeformed
and deformed middle sucrfaces, The metric tensor and the curvature tensor

of the undeformed middle surface are given by

" ot e
and
i i
b - . N
o %, (2)
where Ni is the unit normal to the undeformed middle surfacej

commas denote covariant differentiation throughout this paper. According
to the fundamental theorem of surfaces these two tensors completely
define & surface (within a rigid body meotion) provided they satisfy the
Gauss and Codazzi identities, The deformed middle surface is defined

by its cartesimn position vector

yi - xteul xia + wii (3)
?



where u® and w are the displacements given as functions of Ea .

The two fundamental tensors of the deformed middle surface, Gap and
Bup, are given by formulas similar to (1) and (2),

FIRST CRDER THEORY, THE KIRCHOFF ASSUMPTIONS, AND STRAINS

The meaning of the characterization " first-order® (or " first
approximation® ) in shell theory is that the deformed state of the shell
is determined entirely by the deformed configuration of its middle surface,
The displaced locations of material points off the middle surface are
rendered determinate by means of the Kirchoff assumption: material nor-
mals to the undeformed middle surface do not change length and remain
normal to the deformed middle surface after deformation of the shell,
Accordingly, in any first order theory, the deformed shell is character-
ized geometrically entirely by G a8 and Ba.ﬁ s the metric and
curvature tenrirs of the deformed middle asurface,

It follows then, that the distortions of the shell are defined
adequately by the stretching strain tensor

By = 7 (Ogg = 8gp) (L)

and the bending strain tensor

(5)

These tensors obvicusly vanish for rigid body motions, In terms of the
wurface displacement vector u® and the normal displacement w ,



thess strain tensors when linearized, can be calculated to be

1
Eap - i(ua,ﬂ*“ﬁ,a)*baa' (6)

1 1
xap -3 (pa’a + pp,a) +3 (b: ubp + bg ur.a) . bI b?ﬁ w (7

where the rotation vector ﬁa is

f, = =v b uP (8)

We note, in anticipation of what is to follow, that the measures
of stretching and bending strain need not be precisely Eaﬁ and

K Any two linear combinations from which E and Kap can

op * op
be reccvered might be used instead, Part of the problem in deriving a
complete shell theory is to decide which two cambinations of Ec:B

and K to adopt as basic strain measures,

ap

FORCES AND MOMENTS

As ordinarily defined, the stress measures in the theory of thin
shells, namely the membrane stress tensor N%® and the bending moment
tensor M%  must satisfy the following well-known exact system of
equilibrium equations

Pt » bP MYe ¢p$ s 0 (a)

2Q ) §



Haeaﬁ-bapn"!8+p-o (9b)
% cu""-bg M%) a0 (9¢)

where pp and p are external load intensities assumed applied at
the middle surface,

It is characteristic of both approximate and exact theorjes of
structural mechanics that they involve, as basic ingredients, a certain
nunber ¢f sirain measures and an equal number of stress measures linked
by constitutive relations, As was shown in the previous section six
measures of strain are sufficient for a first order theory, But now there
are apparently eight measures of stress since N"p and H“p are not
in general symmetiric, One possible tentative remedy for this unpleasing
lack of symmetry in the theory is to define modified stress measures.

B . %. % . M9y (10)
% . NP bﬂ i (11)

which are symmetric tensors, the first by definition, the second by
equation (9c)s The question of the adequacy of those modified stress
mcasures is partially resolved by the remarkable fact that the remaining
equations (9a) and (9b) can be written exactly in terms of w"ﬁ and
% s follows :



N“‘?c+ bﬁ,aw* 2b$ﬂf‘:a+pp - 0
(12)

- P yre . .
Bq{:ap baab‘rm baﬁﬂapop 0

The idea of reducing the number cf stress mcasures in the theory
of shells from eight to six (without appraximation) was first suggested
by Lurie [1950) and used by Novozhilov [1951] but, as will be saown sube
sequently, the Luris<Novozhilov reduction performed in lines-of-curvature
coordinates is not consistent wiih any general tensor representation of
the modified stress variables,

The temptation is now strong to adopt qu and qu as the
basic stress measures in shell theory and to form constitutive relations
between them and E and K

ap ap *
itselft would this lead to welledefined boundary-value-problems for the

But an important question presents

determination of the configuration of the distorted shell with uniqueness

of solution guaranteed?

VIRTUAL WORK, UNIQUENESS, AND MINIMUM PRINCIPLES

By means of a direct calculation we can show that the familiar
three-dimensional internal-virtual-work expression Iv a:l.:) c“ dv

reduces exactly to the following integral over the shell miidle surface
IJ‘(WBGVH“"IGP)M (13)

when the deformations are conatrainnd hv the Kirchoff ascumpticis,




This result is quite independent of the stress distribution,
Under the same assumption the external virtual work is exactly

¥R (Ppuﬂ*w)dluﬁs [(Ta-b;tput_)ua

(1L)
aM

+ann¢(0- 5'15;)"] ds

vhere the line integrel is over the boundary S of the shell middle

surface, and on S

7% « membrane force-per-unit-length vector (e nPe np)
Q = transverse force per unit length (= Haf = np)
Hn = normal bending moment (= M n, np)

M, = twisting moment (= 4% n_ tg)

¥

Y, = normal rotation (= ﬂa na)
a

I ]
]

unit tangent vector

n® = unit normal (in middle surface) to S .

For simplicity S 4s assumed smoothj otherwise aduitional terms enter (1k)
at corners, Now by virtue of the three-dimensional principle of virtual
work, it follows without the need for further proof that (13) and (1L) must
be equal to each other whenever (a) E B and X o are derivable via
(6) and (7) from displacements u® , w s and (b) ) » ) uid ’ Ta 5

Ht » Hn and Q are the resultants of any three~dimensional stress state
in equilibrium with p® and p .

From the form >f (1L) one naturally defines an effective boundary membrane



force T = 'r“ - b2 1:p Ht and an effective transverse force

B

aut
(as in plate theory) U = Q = 33 It turns ocut then, that e »

T and l& are expressible exactly in terms of the modified tensors

qu and ﬂ“ﬁ as follows :

& a a B

e (ﬂqﬁ-thWp#bmt“’t?m)nﬁ (15)
- Hafanp+a—asmapnat) (16)
Hn - na'pn“n‘3 (17)

Now, as ane would suspect, the vequirement (b) for the equality
of (13) and (1L) may be relaxed simply to the stipulation that N ,

) » P, and | satisfy the equilibrium equations (12) and that
™, ¥, ad M be defined by (15), (16), and (17). This can be
verified by direct use of the divergence theorem,

We are now in a position to formlate classical types of boundary
value problems with admissible boundary conditions as indicated by the
form of (1L)s Thus we can specify either T° or u®, M, or v,
T or wj or we can impose elastic constraints by relating T¢ and
u® ; etc. If we introduce constitutive relations between WP » o
E o8 ? Kap which render (13) positive definite, then a unique
solution of the finld equations (6), (7), (12) and these constitutive

and

reiations is guaranteed (except possibly for rigid body motions)e The



proof is of the usual type that exploits a virtual work principle,
The question of existence remains open,

We shall not devote much attention here to the form of the required
constitutive relations; suffice it to say that Novozhilov [1951]) and
Koiter [1960] have given compslling arguments, based on considerations of
strain energy, that can be used to defend the accuracy of the uncoupled
(Love) relations between ¥ ad E s and between . o A

ap

K We do not insist that other relations must not be used as long

.
a:pthoy keep (13) positive definite,

With such constitutive equations adjoined to the equilibrium
equations (12) and the strain-displacement equations (6) and (7) we not
only have a virtual work principle (smud hence uniqueness) but, in the usual
fashion, we can easily formulate and prove principles of minimum potential
energy and minimum complementary energy and reciprocal theorems analogous
to those of three-dimensional elasticity, The use of na.p and nﬂﬂ
as stress measures has turned outv to be entirely adequate because we have
at this point derived a complete and satisfactory theoretical appaiatus
for shell analysis, But additicnal considerations will lead to a better

theory,

ALTERNATIVE STRAIN VARIABLES

Ads stated previously, there was no obvious requirement for using

laﬁmdloa

We zhall consider alternatives, tut in so doing, we shall simltanecusly

as the tensors describing the deformation of the shell,

introduce new modified stress and mament tensors so as to leave unchangsd

the form and content of the virtual work expression (13), and so retain



all of the desirable features of the theory just derived,

In exploring alternative strain measures we are 1eluctant to discard
E_.
af
ties and has nothing to do with ‘ap o In the membrane theory of shells

Stretching of the middie surface has to do only with wetric proper-

and in all the different bending theoriss of shells Eap is accepted as

the standard measure of the middle surface stretching strain, However,
the measure of bending strain is not at all standard, We consider as

alternatives to ‘up & class of linear combinations of ‘ap and .GP

of the form

~y - - ﬂ
Kg = S = Chg By (18)

where c:g is required to be symmetric in a amd B o For dimen-

sional reasons, snd in order that ;ap reduce to ‘ap

flat plates, c‘;g will be assumed to be a homogeneous function of degree

one rI the shell curvature tensor, For simplicity czg will te assumed.

bap ®
within constant factors, there exist just the follow.iug four independent

in the case of

further to be a linear function of the components of Then, to

tensorial forms of CYO E (Rivlin (1955))

af yb
2 oy
(qu)l 8qp b F‘w
o &Y
Cpla = b Ty
(19)
- Y
(Qaa)3 bca E'r



The additional fora

(Qap)s - b‘: E 2 * bg E, (20)

which aprears to belong in the list, is actually given bty

according to the extended Cayley-Hamilton theorem of Rivlin (1955] ,
It should be remarked that the altemative forms for iaﬁ
given by ths subtraction from KX o of terms of the type in (19)
are all acceptable in the sense of Koiter [1960), who shows that the
error in Love!s uncoupled sirain energy expression (consistent with
uncoupled stress-strain relations) is essentially the s.me no matter
which of these alternatives is used, Koiter himself prefers the ex-

pression
K = Koy =7 (O (21)

which, in lines-of-curvature coordinates, i» the sume as that of Sanders
(1959, and is the one which will ultimately be preferred here. A pleasing
feature of iap remarked upon by Koiter is that it can be written neatly
in the form

~

Kp = 3B+ +3 Mlageta) (22)



in terms c¢f the rotation vector ﬂa and the rotation-about-the-normal
tensor wgg * % (“a,p - “ﬁ,a) . Ai will be seen, there are even more
cogent reasons for the adoption of K o as the standard measure of
bending strain,

To retain a virtual work expression of the form (?3) when Eap
is adopted, R PR be retained as the basic modified bending Romont

tensor, but a new modified memorauc stress tensor

jo8 . rﬁ.%(b;!f’w:n‘") (23)

mst be introduced, giving tlie virtual work expression

,f,fA (N Eapoi“‘efap)m\ (2k)

The equilibrium equations in terms of ;‘qe and gaﬂ » 8till exact,
become

>

A LT NUA GBS oW SN (25)

e 8

flq’faa-baaﬂapop- 0 (26)

Note the striking point that (26) in terms of K% and WP has
precisely the same form as (9b) in terms of the unsymmetrical tensors
)l“p and Hap o Now, anticipating the ultimate preference for i

W of
and idﬁ s the general alternative version of ‘ap will be written



b

‘dﬁ - Kap - z oy (qaﬁ)i (27)
i=]

wvhere the ¢, are constants. The modified 'ap associated with
©®  that provides a virtual vork density (N By ¢ ) o i'.p) is

readily found to be

L
i o Z"i (P‘“’)1 (28)
1ol

where the c, are the same as those in (27), and where

i

(Pap)l - bapn;

(l’aﬁ)2 - b:w (29)

(x>““’)3 - g% bmw
(¢®), = g% X

Note that the second and fourth of the forms in (i9) and (29) are sinilar,
af

but that (Qqe)l has the structure of (P )3 and (Qap)3 has that

of (P"")l.

We can now state categorically that the modified bendinz strain and
membrane stress measures used by Lurie and Novoshilov in their snalyses



- 1L -

in lines-of-curvature coordinates are not special cases or (22) and (28),
The shell theory given in Novozhilov's book [1951] has a virtual work
principle, and the bending strain variables are " acceptable" in Koiter's
sense, but the equations can not be cast into tensor form in general
coordinates for arbitrary shells,

Now we can begin to discuss the further advantages of (21) and
(23) over any of the alternative forms (27) and (28) provided by all

possible choices for the Cy o

THE STATIC-GEQMETRIC ANALOGY

The Russian literature on shells cften :efers (see, for example,
Goldenveizer [1961], Novozhilov [1951], Lurie [1961])to an interesting
type of analogy between equilibrium equations (with no external loads)
in terms of forces and moments on the one hand, and compatibility
equations in terms of certain stretching and bending strains on tas other.
However, the analogy, as exhibited by Novozhilov and Lurie in lines-of-
curvatire coordinates involves, of couise, non-tensorial force and bending
strain variables, But a static-geaometric analogy found independently by
Sanders [1959]) can be written tensorially in terms of N7 h ) . Ecp »
and X as follows.

af
Let

WP . ﬁ"ﬁ-ite"“c"*iwl (30)

2% o RP g [% P E‘“J (31)



- 1f .

Then, in the absence of loading terms pP and p , the real purts
of the following equations are the eguilidrium equations (25) and
(26), while the imaginary parts are, rigorously, equations of strain
compat ibility:

va .1 oY _ 0 oY a
H"faobsz’a+z(b52 sz ),a 0

- } (32)
2% -bapw"p - 0

af

An immediate, useful consequence of the static-geometric analogy is
that homogeneous equilibrium states can easily be generated in terms of
stress functions Qa and é simply by replacing u, and w
in the strain-displacement relations (6) and (22) by 8, and é »
and setting the resultant expressions, multiplied by s cﬁ » equal
to W' and N , respectively,

We now consider the question: which, if any, of the alternative
versions (27), (28) for k‘ap and N would enjoy a static-geometric
analogy? A detailed study of all the possibilities v:.eals that the set

of admissible alternatives is reduced somewhat by this criterion, to
Kap - xaﬁ - (Qap)z -c), (Qap)ls -c [(qu)l - (Qap)BJ (83)
W af® e, 6%), 0 c) 6Py o0 1%, - ()] (W)

Note that the K, and N%®  we first arrived at in our

development are not members of these setsj they can nut lead to a static-



geometric analogy, and so we reject, at this point, the previously derived
theory and turn our attention to the equilibrium equations (25) and (26),
and the strain-displacement equations (6) and (22). The virtual work

principle, with Na" and qu replaced by Rap and iap remains
intact, and the effective boundary membrane force is now given by
R N - P G0, NP
™ o +5(bYﬂYﬁ bYB"*)+b@t t, X an (35)

while (16) and (17) still apply. Once again, the introduction of
appropriate constitutive relations provides a complete system of equations,
with associated variational and reciprocal principles available, Retentiom
of the uncoupled Love relations between aup ad E g ¢ H‘p and

Yop
Novozhilov's work, a justifiable procedure,

still sppears to be a sensible and, on the basis of Koiter's and

But now, before considering this apparatus as the definitive one, weo
must give some good reasons for rejecting the alternatives affo~ded by

(33) and (34).

THE FORM OF THE EQUATIONS IN SPECIAL CASES

In contrast to the many different sets of general shell equations
that have been proposed, there appears to be common agreemei.t on the
equations for symmetrical bending of shells of revolution; the classical
theory of Love [1927) is generally followed in this important special case,
It would clearly be desirable for a standard general theory to agree with
Love's theory in this case, The presently preferred theory does so agreej

in the special case considered, only the diagonal terms of fas » When



- 17 -

written in lines-of-curvature coordinates, are non-vanishing, and they
ars found to agree with the corresponding two bending strains of Love,
Furthermore, none of the alternative expressions for i'a.p aiforded by
(33) enjoy this distinciion,

It might be noted, next, that curved beam theory can be regarded
as a special case of cylinder theory in which the deformations are inde-
pendent of the axial coordinate, In this case, with (1 taksn in the
circumferential direction, ill reduces to the measure of bending strain
corresponding to the simplest curved beam theory, An alternative measure
corresponding to  K,, (equal to the linearized change of curvature) has
occasionally been used but it leads to awkward energy expressions,

It may be observed, incidentally, that when lines-of-curvaturs coordiriates
are used for the general shell, the preferred expression 303 has the
attractive feature that gt and ?‘22 are identical with the unmodified
components Nu and N22 of the unsymmetrical membrane stress tensor,
This is true also of the Lurie-Novozhilov modified stresses, which, in lince-
of-curvature coordinates differ from A% only in the shearing term;
similarly, in the same coordinates, only the off-diagonal terms of iap
differ from the Lurie-Novozhilov components of bending strain, It appears,
then, that the only one of the various characteristics tnat we consider de-
sirable in a standard general shell theory that is violated by the Lurie=

Novozhilov formulation is that it have a general tensor character,

CONCLUSIONS

We have arrived at a linear first order theory of elastic shells that
is considered by us to be the '"best! on the basis of various logical and



esthetic criteriaj this theory was originally proposed by Sanders [1959]

in lines~of-curvature coordinates, To sum up, the features that characterize

this theory are:

(a)

(b)

(c)

(d)

(e)
(2)

the equations can be written in gereral tensor form for arbitrary
shellss

the deformations are described by six strain measures, three of
which are the componemts of the usual membrane strain tensor;

the other three deviate framn the components of the geometrical
curvature-change tensor only by terms that are bilinear in the
componemts of the curvature and the membrane strain tensor}

the stresses are described by six stress measures that satisfy
the equations of equilibrium without approximationj

the theory has a principle of virtual work that is exact for dis-
placements obeying the Kirchoff hypothesesj in conjunction with
appropriate constitutive relations between the stress and strain
measures, well-set boundary vilue problems can be formulated, and
the usual minimum and reciprocal relations of structural mechanics
apply;

the Lheory contains an exact static-geometric analogyjp

when applied to the symmetrical bending of shells of revolution,
the stress and strain measures agree with those generally usedj
they are consistent, too, with those of the most simple curved

beam theory,

If, finally, we stipulats, for the sake of simplicity and definiteress that

(g)

the stresr and strain measures obsy the uncoupled Love constitutive

relations,then the features (a) - (g) appear to characterize uniquely



the presently preferred theorye Thus, whether or not this theary is
generally adopted, it is hoped that the present study will facilitate
the assessment of any given alternative theory by revealing which of
the characteristics (a) - (g) it necessarily fails to embody,
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