NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
MATERIAL - STRUCTURAL POTTING COMPOUND: FOAMED-IN-PLACE, EPOXY - PHENOLIC RESIN TYPE - QUALIFICATION OF

Published and Distributed Under Contract No. AF33(657)-7248

GENERAL DYNAMICS | FORT WORTH
TEST DATA MEMORANDUM

FTDM NO. 2243
MODEL B-58
TEST NO. F-7729

TEST: MATERIAL - STRUCTURAL POTTING COMPOUND: FOAMED-IN-PLACE, EPOXY-PHENOLIC RESIN TYPE - QUALIFICATION OF

OBJECT: To determine if Adhesive Engineering's Thermofoam 607 meets the requirements of proposed Convair Specification FMS-0076.

TEST SPECIMENS AND PROCEDURES - Test specimens and procedures are given in Table I.

RESULTS: Results are given in Tables IV through XV and Figures 1 through 4, and summarized in Table III.

DISCUSSION: Adhesive Engineering's Thermofoam 607 foamed-in-place potting compound is presently used for structural applications in the B-58 wing leading edge and in repair of brazed stainless steel panels. The material is purchased as a commercial item as no specification exists for its control.

There are three different types of Thermofoam 607 in use at this time. The composition and proportions of these three types are given in Table II.

Information was needed to verify Convair's proposed specification FMS-0076 for foamed-in-place structural potting compound of the epoxy-phenolic resin type; hence this test was originated in order to substantiate known characteristics and properties of Thermofoam 607 (types I, IA, and II) and to establish requirements for future acceptance testing of this material.

A question was raised on the cure of the foam for compression specimens as to whether the cure as called out in the procedures was adequate; hence a few specimens were fabricated using a different cure as shown in Table I (B.IV.b). The results for this alternate cure are shown in Table XV and Figure 4. Of all the compression specimens tested, there was only one that went below the proposed minimum values. However, a rerun of this lot was satisfactory when cured as described in Table I (B.IV.b.).

It was noted that at least one sample of each type of Thermofoam did not meet the density requirement as set up in the proposed specification; hence the proposed specification may need to be changed to comply with the test results.

The cellular structure of the foam as stipulated in the proposed FMS-0076 (1/4 inch maximum, 1/16 inch average voids) was satisfactory for all the lots tested. However, some variation existed in the different lots of material which resulted in varying densities with the same types of foam. Generally as the density increased the compressive strength was also proportionally increased (see Figures 1, 2, 3, and 4).

CONCLUSION: Adhesive Engineering's Thermofoam 607 meets the requirements of the proposed Convair Specification FMS-0076 except for the density requirement as shown in Tables IV through XV and Figures 1 through 4.

Test dates: 7-21-58 to 3-27-59

WITNESS: BY

DATE: 4-29-59

CHECKED

APPROVED
TABLE I

TEST SPECIMENS, FABRICATION, AND TESTING PROCEDURES FOR SPECIMENS OF THERMOFOAM 607, TYPES I, IA, AND II PER PROPOSED CONVAIR SPECIFICATION FMS-0076

A. TEST SPECIMENS

I. Thermofoam 607, Type I: Lot #1412 (Mfg. Date 5-5-58) Adhesive Engr. Co. Lot #1418 (Mfg. Date 6-13-58) San Carlos, Calif. Lot #1422 (Mfg. Date 7-7-58) Lot #1433 (Mfg. Date 8-22-58) Lot #1453 (Mfg. Date 10-14-58)

II. Thermofoam 607, Type IA: Lot #1412 + 2.3 Parts by wt. Diethylenetriamine Lot #1418 Lot #1422 Lot #1433 Lot #1453

III. Thermofoam 607, Type II: Lot #372 (Mfg. Date 1-2-58) Lot #3453 (Mfg. Date 6-7-58) Lot #3457 (Mfg. Date 7-8-58) Lot #2479-A3 (Mfg. Date 9-23-58)

B. PROCEDURES

Fabrication and testing procedures for specimens of Thermofoam 607, Types I, IA, and II per proposed FMS-0076

I. Viscosity - (Types I and IA) Results Shown In Table III, IV, and V.

a. Mix Thermofoam 607 (parts A and B to form Type I) (parts A, B, and C to form Type IA) thoroughly in the quart container that contained part A.

b. Determine the viscosity of the material with a Brookfield Viscometer.

1. Use #5 spindle with a speed of 20 RPM.
2. Keep a uniform temperature of 77 ±2°F.
3. Rotate spindle several times before taking a reading.
4. Report viscosity in centipoises taken from the average of three readings.

II. Expansion Factor* (Types I, IA, and II) Results Shown On Tables III, VI, VII and VIII.

a. Rinse a pint tin can with acetone and place 100 grams of Thermofoam material in the can.
b. Cure as follows:

1. Types I and IA -
 (a) Increase the temperature from room temperature to $180^\circ \pm 15^\circ F$ at a maximum rate of $50^\circ F$ per minute and dwell at this temperature for 30 ± 5 minutes.
 (b) Increase the temperature to $235 \pm 15^\circ F$ at a maximum rate of $50^\circ F$ per minute and precure for 30 ± 5 minutes.
 (c) Increase the temperature to $350 \pm 10^\circ F$ at a maximum rate of $10^\circ F$ per minute and cure for 35 ± 5 minutes at this temperature.

2. Type II -
 (a) Increase the temperature from room temperature to $235 \pm 15^\circ F$ at a maximum rate of $50^\circ F$ per minute and precure at this temperature for 30 ± 5 minutes.
 (b) Increase the temperature to $350 \pm 10^\circ F$ at a maximum rate of $10^\circ F$ per minute and cure at this temperature for 35 ± 5 minutes.

c. When can and material have cooled to room temperature, determine the volume as follows:
 1. Pour a measured amount of water into the can to fill it completely.
 2. Subtract the cubic centimeters of water poured in from 510 c.c. (capacity of empty can) to obtain the volume of the foam in cubic centimeters.
 3. Divide the cubic centimeters of foam by 16.4 to obtain the volume in cubic inches.

d. Determine expansion factor by dividing the volume (in cubic inches) by the total solids in grams to obtain the cu.in./gram.

*See footnote on Table VI for explanation of Expansion Factor.
TABLE I (Continued)

III. Percent Total Solids (Types I, IA, and II) Results Shown On Tables III, IX, X, and XI.

a. Weigh three samples (2 to 6 grams each), for each type of Thermofoam, into pre-weighed aluminum foil dishes.

b. Heat in a circulating oven for 2 hours at 350 ±10°F or until constant weights are obtained. Cool samples in a dessicator.

c. Calculate the percent total solids for each sample using the following equation:

\[
\text{Percent Total Solids} = 100 \cdot \frac{(A - D)}{(B - D)}
\]

\(A\) = Weight in grams of cured sample and dish

\(B\) = Weight in grams of original sample and dish

\(D\) = Weight in grams of aluminum foil dish

d. The percent total solids shall be reported as the average of the three values.

IV. Test Block (Types I, IA, and II) Results Shown On Tables III, XII, XIII, XIV, and XV.

a. Preparation of Test Block -

1. The test block shall be prepared using a clean pint paint can as a mold. Rinse the can with acetone and wrap with strong reinforcing tape to prevent rupture of the seams.

2. Vent the can lid with five 1/8 inch diameter holes equally spaced over the area of the lid.

3. Place 330 grams of Thermofoam Type I, 240 grams of Type IA, or 300 grams of Type II in can.

4. Lay 8 layers of Osnaburg cloth over the vented lid and clamp can tightly between 1/4 inch thick aluminum plates.

5. Cure the material following the same cure cycles as called out for expansion factor (B.II.b. in this table).

6. Allow test block to cool to 100°F or less before removal from the mold.
TABLE I (Continued)

b. Alternate Cure of Test Block

1. Place the foam in cans as per B.IV.a.3. above.

2. Use a control can with a thermocouple inserted in the center to ascertain correct foam temperature.

3. Place cans with Thermofoam in a cold oven and turn the oven on.

4. Allow the temperature to reach 180°F (approximately 36 min.) as determined by the thermocouple inside the can and dwell at 180°F for 30 min.

5. Increase the temperature to 235°F (approximately 40 min.) and dwell at this temperature for 30 minutes.

6. Following the above cure, increase the temperature to 350°F (approximately 32 min.) and dwell at this temperature for 35 minutes.

7. Remove the cans from the oven and allow them to cool to at least 100°F before removing test block from can.

c. Preparation of Test Specimens -

1. Three test specimens (2" x 1" x 1") shall be cut from the center of the test block. Dimensional tolerances shall be ±.02".

2. The two inch dimension shall be parallel to the foaming direction. All surfaces to be parallel within ±.002".

3. Cellular quality of the test specimens shall be that they contain no visible voids 1/4" in diameter or larger.

d. Density of Test Specimens - Results shown on Tables III and XII through XV.

1. Weigh each of the test specimens to the nearest 0.1 gram.

2. Measure the dimensions of each specimen to the nearest .01 inch.

3. Calculate the density of each specimen using the following equation:
TABLE I (Continued)

\[D = \frac{G}{L \cdot W \cdot H} \cdot 3.81 \]

\(D \) = Density in lbs./cu.ft.
\(H \) = Height of Spec. in inches
\(G \) = Weight of Spec. in grams
\(L \) = Length of Spec. in inches
\(W \) = Width of Spec. in inches

4. The reported density shall be the average of the three specimens.

e. Compressive Strength of Test Specimens - Results Shown on Tables III and XII through XV.

1. Determine the ultimate compression load of each specimen at 260°F after the specimen has been soaked at 260°F ±10°F for 30 ±5 minutes.

2. Apply the load on the 1" x 1" bearing surface using a self-aligning head and a loading rate of 1500#/min.

3. Using the ultimate load and the bearing surface area of each specimen (dimensions measured to the nearest .01"), calculate the compression strength in psi by using the following equation:

\[C = \frac{l}{W \cdot L} \]

\(C \) = Compressive Strength in psi
\(l \) = Load Failure in pounds
\(W \) = Width of Specimen in inches
\(L \) = Length of Specimen in inches

4. The average of the three specimens shall be reported as the compressive strength.
TABLE II

COMPOSITION AND PROPORTIONS OF ADHESIVE ENGINEERING'S THERMOFOAM 607, TYPES I, IA, AND II

<table>
<thead>
<tr>
<th>COMPONENTS</th>
<th>TYPE I</th>
<th>TYPE IA</th>
<th>TYPE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plyophen 5023</td>
<td>Part A</td>
<td>66.67</td>
<td>Part A</td>
</tr>
<tr>
<td>Epon 1001</td>
<td>Part B</td>
<td>33.33</td>
<td>Part B</td>
</tr>
<tr>
<td>Aluminum Dust (85% min. through 325 Mesh Screen)</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Dicyandiamide (100 Mesh)</td>
<td>6.00</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>Copper 8-Quinolinolate</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Acetone</td>
<td>22.20</td>
<td>22.20</td>
<td>2.30</td>
</tr>
<tr>
<td>Diethylenetriamine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: All proportions as given in above table are parts by weight.
TABLE III

SUMMARY OF ALL RESULTS TOGETHER WITH SPECIFICATION MINIMUM REQUIREMENTS (SHOWN IN TABLES IV THROUGH XV AND FIGURES 1 THROUGH 4)

A. VISCOSITY - Specification Minimum Requirements - None Given

I. Type I - Shown in Table IV (Average of 3 Readings)

- (a) Lot #1412 - 10,020 Centipoises
- (b) Lot #1418 - 9,966 Centipoises
- (c) Lot #1422 - 10,166 Centipoises
- (d) Lot #1433 - 15,533 Centipoises
- (e) Lot #1453 - 14,500 Centipoises

II. Type IA - Shown in Table V (Average of 3 Readings)

- (a) Lot #1412A - 15,266 Centipoises
- (b) Lot #1418A - 19,333 Centipoises
- (c) Lot #1422A - 15,200 Centipoises
- (d) Lot #1433A - 16,600 Centipoises
- (e) Lot #1453A - 21,133 Centipoises

B. EXPANSION FACTOR* - Specification Minimum Requirements - None Given

I. Type I - Shown in Table VI

- (a) Lot #1412 - .0935 cu.in./gram
- (b) Lot #1418 - .0967 cu.in./gram
- (c) Lot #1422 - .1065 cu.in./gram
- (d) Lot #1433 - .0945 cu.in./gram
- (e) Lot #1453 - .0966 cu.in./gram

II. Type IA - Shown in Table VII

- (a) Lot #1412A - .2064 cu.in./gram
- (b) Lot #1418A - .2302 cu.in./gram
- (c) Lot #1422A - .2299 cu.in./gram
- (d) Lot #1433A - .2139 cu.in./gram
- (e) Lot #1453A - .2175 cu.in./gram

III. Type II - Shown in Table VIII

- (a) Lot #3453 - .0957 cu.in./gram
- (b) Lot #3457 - .0776 cu.in./gram
- (c) Lot #372 - .0880 cu.in./gram
- (d) Lot #2479-A3 - .0936 cu.in./gram

*See footnote on Table VI for explanation of Expansion Factor.
TABLE III (Continued)

C. PERCENT TOTAL SOLIDS - Specification Requirements - None Given

I. Type I - Shown in Table IX (Average of 3 Samples)

(a) Lot #1412 - 83.6%
(b) Lot #1418 - 85.2%
(c) Lot #1422 - 83.6%
(d) Lot #1433 - 83.8%
(e) Lot #1453 - 83.3%

II. Type IA - Shown in Table X (Average of 3 Samples)

(a) Lot #1412A - 86.7%
(b) Lot #1418A - 87.3%
(c) Lot #1422A - 89.6%
(d) Lot #1433A - 84.6%
(e) Lot #1453A - 84.6%

III. Type II - Shown in Table XI (Average of 3 Samples)

(a) Lot #3453 - 93.0%
(b) Lot #3457 - 93.3%
(c) Lot #372 - 93.9%
(d) Lot #2479-A3 - 93.2%

D. DENSITY - Specification Requirements Types I and II - 35 ± 5#/cu.ft.,
Type IA - 25 ±5#/cu.ft.

I. Type I - Shown in Table XII and Figure 1 (Average of 3 Specimens)

(a) Lot #1412 - 50.49#/cu.ft.
(b) Lot #1418 - 54.40#/cu.ft.
(c) Lot #1422 - 55.55#/cu.ft.
(d) Lot #1433 - 53.84#/cu.ft.
(e) Lot #1453 - 52.07#/cu.ft.

II. Type IA - Shown in Table XIII and Figure 2 (Average of 3 Specimens)

(a) Lot #1412A - 17.04#/cu.ft.
(b) Lot #1418A - 25.03#/cu.ft.
(c) Lot #1422A - 27.77#/cu.ft.
(d) Lot #1433A - 28.62#/cu.ft.
(e) Lot #1453A - 27.89#/cu.ft.

III. Type II - Shown in Table XIV and Figure 3 (Average of 3 Specimens)

(a) Lot #3453 - 20.31#/cu.ft.
(b) Lot #3457 - 33.89#/cu.ft.
(c) Lot #372 - 29.05#/cu.ft.
(d) Lot #2479-A3 - 30.51#/cu.ft.
TABLE III (Continued)

IV. Types I, IA, and II - Shown in Table XV and Figure 4

(a) Lot #2479-A3 - Type II - 44.50#/cu.ft.
(b) Lot #1412 - Type I - 40.69#/cu.ft.
(c) Lot #1433 - Type I - 39.37#/cu.ft.
(d) Lot #1453 - Type I - 34.69#/cu.ft.
(e) Lot #1453A - Type IA - 26.28#/cu.ft.

E. COMPRRESSIVE STRENGTH - Specification Requirements Shown in Figures 1 Through 4

I. Type I - Shown in Table XII and Figure 1 (Average of 3 Specimens)

(a) Lot #1412 - 2057 psi
(b) Lot #1418 - 1562 psi
(c) Lot #1422 - 1215 psi
(d) Lot #1433 - 583 psi
(e) Lot #1453 - 854 psi

II. Type IA - Shown in Table XIII and Figure 2 (Average of 3 Specimens)

(a) Lot #1412A - 880 psi
(b) Lot #1418A - 1097 psi
(c) Lot #1422A - 768 psi
(d) Lot #1433A - 1319 psi
(e) Lot #1453A - 1217 psi

III. Type II - Shown in Table XIV and Figure 3 (Average of 3 Specimens)

(a) Lot #3453 - 378 psi
(b) Lot #3457 - 848 psi
(c) Lot #372 - 937 psi
(d) Lot #2479-A3 - 788 psi

IV. Types I, IA, and II - Shown in Table XV and Figure 4

(a) Lot #2479-A3 - Type II - 1528 psi
(b) Lot #1412 - Type I - 2156 psi
(c) Lot #1433 - Type I - 1761 psi
(d) Lot #1453 - Type I - 1262 psi
(e) Lot #1453A - Type IA - 1055 psi
TABLE IV

VISCOSITY RESULTS ON THERMOFOAM TYPE I
AS TESTED PER B.I.a AND B.I.b IN TABLE I

<table>
<thead>
<tr>
<th>Lot #</th>
<th>Readings</th>
<th>Average</th>
</tr>
</thead>
</table>
| A. 1412 | 1. 10,020
 2. 10,040
 3. 10,000 | Avg. 10,020 Centipoises |
| B. 1418 | 1. 10,000
 2. 9,000
 3. 10,000 | Avg. 9,966 Centipoises |
| C. 1422 | 1. 10,200
 2. 10,140
 3. 10,160 | Avg. 10,166 Centipoises |
| D. 1433 | 1. 15,200
 2. 15,600
 3. 15,800 | Avg. 15,533 Centipoises |
| E. 1453 | 1. 14,600
 2. 14,300
 3. 14,600 | Avg. 14,500 Centipoises |
TABLE V

VISCOITY RESULTS ON THERMOFOAM TYPE IA

AS TESTED PER PARAGRAPH B.I.a AND b IN TABLE I

<table>
<thead>
<tr>
<th>Lot</th>
<th>Readings</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Lot #1412A</td>
<td>1. 15,200</td>
<td>15,266 Centipoises</td>
</tr>
<tr>
<td></td>
<td>2. 15,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 15,600</td>
<td></td>
</tr>
<tr>
<td>B. Lot #1418A</td>
<td>1. 19,000</td>
<td>19,333 Centipoises</td>
</tr>
<tr>
<td></td>
<td>2. 19,400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 19,600</td>
<td></td>
</tr>
<tr>
<td>C. Lot #1422A</td>
<td>1. 13,200</td>
<td>15,200 Centipoises</td>
</tr>
<tr>
<td></td>
<td>2. 16,400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 16,000</td>
<td></td>
</tr>
<tr>
<td>D. Lot #1433A</td>
<td>1. 16,800</td>
<td>16,600 Centipoises</td>
</tr>
<tr>
<td></td>
<td>2. 16,400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 16,600</td>
<td></td>
</tr>
<tr>
<td>E. Lot #1453A</td>
<td>1. 20,000</td>
<td>21,133 Centipoises</td>
</tr>
<tr>
<td></td>
<td>2. 21,800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 21,600</td>
<td></td>
</tr>
</tbody>
</table>
TABLE VI

EXPANSION FACTOR* RESULTS ON THERMOFOAM TYPE I AS TESTED
PER PARAGRAPH B.II.a,b,c, AND d IN TABLE I

<table>
<thead>
<tr>
<th>Lot #</th>
<th>Vol. of Cured Foam</th>
<th>Value</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot #1412</td>
<td>8.1 cu.in.</td>
<td>0.0935 cu.in./gram</td>
<td></td>
</tr>
<tr>
<td>Lot #1418</td>
<td>8.4 cu.in.</td>
<td>0.0967 cu.in./gram</td>
<td></td>
</tr>
<tr>
<td>Lot #1422</td>
<td>9.3 cu.in.</td>
<td>0.1065 cu.in./gram</td>
<td></td>
</tr>
<tr>
<td>Lot #1432</td>
<td>8.2 cu.in.</td>
<td>0.0945 cu.in./gram</td>
<td></td>
</tr>
<tr>
<td>Lot #1453</td>
<td>8.1 cu.in.</td>
<td>0.0966 cu.in./gram</td>
<td></td>
</tr>
</tbody>
</table>

*Expansion Factor was called out in the first rough draft of FMS-0076 and was to be determined in this test. Actually the term is misleading since the value obtained is specific volume and not expansion factor. A true expansion factor could be obtained by dividing the foamed volume by the original volume of material before foaming.
TABLE VII

Expansion Factor results on Thermofoam Type IA as tested per paragraph B.II.a,b,c, and d in Table I

<table>
<thead>
<tr>
<th>Lot</th>
<th>Vol. of Cured Foam</th>
<th>Expansion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Lot #1412A</td>
<td>17.9 cu.in.</td>
<td>0.2064 cu.in./gram</td>
</tr>
<tr>
<td>B. Lot #1418A</td>
<td>20.1 cu.in.</td>
<td>0.2302 cu.in./gram</td>
</tr>
<tr>
<td>C. Lot #1418A</td>
<td>20.6 cu.in.</td>
<td>0.2299 cu.in./gram</td>
</tr>
<tr>
<td>D. Lot #1433A</td>
<td>18.1 cu.in.</td>
<td>0.2139 cu.in./gram</td>
</tr>
<tr>
<td>E. Lot #1453A</td>
<td>18.4 cu.in.</td>
<td>0.2175 cu.in./gram</td>
</tr>
</tbody>
</table>

Expansion Factor was called out in the first rough draft of FMS-0076 and was to be determined in this test. Actually the term is misleading since the value obtained is specific volume and not expansion factor. A true expansion factor could be obtained by dividing the foamed volume by the original volume of material before foaming.
TABLE VIII

EXPANSION FACTOR* RESULTS ON THERMOFOAM TYPE II
AS TESTED PER PARAGRAPH B.II.a,b,c, AND d IN TABLE I

A. Lot #3453
Vol. of Cured Foam - 9.14 cu.in.

\[
\frac{9.14 \text{ cu.in.}}{95.5 \text{ grams}} = 0.0957 \text{ cu.in./gram}
\]

B. Lot #3457
Vol. of Cured Foam - 7.44 cu.in.

\[
\frac{7.44 \text{ cu.in.}}{95.9 \text{ grams}} = 0.0776 \text{ cu.in./gram}
\]

C. Lot #372
Vol. of Cured Foam - 8.49 cu.in.

\[
\frac{8.49 \text{ cu.in.}}{96.5 \text{ grams}} = 0.0880 \text{ cu.in./gram}
\]

D. Lot #2479-A3
Vol. of Cured Foam - 8.72 cu.in.

\[
\frac{8.72 \text{ cu.in.}}{93.2 \text{ grams}} = 0.0936 \text{ cu.in./gram}
\]

*Expansion Factor was called out in the first rough draft of FMS-0076 and was to be determined in this test. Actually the term is misleading since the value obtained is specific volume and not expansion factor. A true expansion factor could be obtained by dividing the foamed volume by the original volume of material before foaming.
TABLE IX

PERCENT TOTAL SOLIDS RESULTS ON THERMOFOAM TYPE I
AS TESTED PER PARAGRAPH B.III.a,b, AND c IN TABLE I

A. Lot #1412
 Sample #1 - 83.7%
 Sample #2 - 83.6%
 Sample #3 - 83.4%
 Avg. 83.6%

B. Lot #1418
 Sample #1 - 85.3%
 Sample #2 - 85.2%
 Sample #3 - 85.2%
 Avg. 85.2%

C. Lot #1422
 Sample #1 - 83.7%
 Sample #2 - 83.6%
 Sample #3 - 83.6%
 Avg. 83.6%

D. Lot #1433
 Sample #1 - 83.7%
 Sample #2 - 83.8%
 Sample #3 - 83.8%
 Avg. 83.8%

E. Lot #1453
 Sample #1 - 83.4%
 Sample #2 - 83.3%
 Sample #3 - 83.3%
 Avg. 83.3%
TABLE X

PERCENT TOTAL SOLIDS RESULTS ON THERMOFOAM TYPE IA
AS TESTED PER PARAGRAPH B.III.a,b, AND c IN TABLE I

A. Lot #1412A*

Sample #1 - 86.9%
Sample #2 - 86.6%
Sample #3 - 86.5%

Avg. 86.7%

B. Lot #1418A*

Sample #1 - 87.1%
Sample #2 - 87.1%
Sample #3 - 87.7%

Avg. 87.3%

C. Lot #1422A*

Sample #1 - 89.2%
Sample #2 - 89.5%
Sample #3 - 90.0%

Avg. 89.6%

D. Lot #1433A

Sample #1 - 84.6%
Sample #2 - 84.6%
Sample #3 - 84.7%

Avg. 84.6%

E. Lot #1453A

Sample #1 - 84.6%
Sample #2 - 84.5%
Sample #3 - 84.7%

Avg. 84.6%

*Lots 1412A, 1418A and 1422A were cured at 175 ±15°F for 24 hours. This cure
time was originally set up for the proposed FMS-0076, but it was found unsatisfactory for removing all the volatiles from the foam. Another cure of 350°F for 2 hours was used and found to be satisfactory; however, there was not enough of the aforementioned lots of Thermofoam to rerun all the total solids. For this reason, some of the total solids as shown in this table appear slightly higher than they actually were.
TABLE XI

PERCENT TOTAL SOLIDS RESULTS ON THERMOFOAM TYPE II AS TESTED PER PARAGRAPH B.III.a,b, AND c IN TABLE I

<table>
<thead>
<tr>
<th>Lot #</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot #3453</td>
<td>93.1%</td>
<td>93.1%</td>
<td>92.8%</td>
<td>93.0%</td>
</tr>
<tr>
<td>Lot #3457</td>
<td>93.2%</td>
<td>93.5%</td>
<td>93.3%</td>
<td>93.3%</td>
</tr>
<tr>
<td>Lot #372</td>
<td>94.0%</td>
<td>93.8%</td>
<td>94.0%</td>
<td>93.9%</td>
</tr>
<tr>
<td>Lot #2479-A3</td>
<td>93.2%</td>
<td>93.2%</td>
<td>93.1%</td>
<td>93.2%</td>
</tr>
</tbody>
</table>
TABLE XII

DENSITY AND COMPRESSIVE STRENGTH OF THERMOFOAM TYPE I*
PREPARED AND TESTED PER PARAGRAPH B.IV.a,c,d, AND o IN TABLE I

<table>
<thead>
<tr>
<th>LOT NO.</th>
<th>SPEC. NO.</th>
<th>LENGTH (IN.)</th>
<th>WIDTH (IN.)</th>
<th>HEIGHT (IN.)</th>
<th>DENSITY (#/CU.FT.)</th>
<th>LOAD TO AVG. LOAD (#)</th>
<th>LOAD TO AVG. LOAD (PSI)</th>
<th>DENSITY (#/CU.FT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1412</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>50.01</td>
<td>1810</td>
<td>1810</td>
<td>50.49</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>49.79</td>
<td>2545</td>
<td>2057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>51.68</td>
<td>1815</td>
<td>1815</td>
<td></td>
</tr>
<tr>
<td>1418</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>39.67</td>
<td>1880</td>
<td>1880</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>31.76 34.40</td>
<td>1305 1305 1562</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>31.77</td>
<td>1500 1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1422</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>35.66</td>
<td>1140 1140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>34.99 35.55</td>
<td>1265 1265 1215</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>36.01</td>
<td>1240 1240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1433</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>30.40</td>
<td>450 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.02 1.99</td>
<td>33.45</td>
<td>33.84</td>
<td>625 613 583</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1 1.99</td>
<td>37.68</td>
<td>685</td>
<td>685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1453</td>
<td>1</td>
<td>1.98</td>
<td>33.32</td>
<td>870</td>
<td>870</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.00</td>
<td>33.52 32.07</td>
<td>1040 1040 854</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.99 .99 1.96</td>
<td>29.38</td>
<td>640 653</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (TESTED AT 260°F)
TABLE XIII

DENSITY AND COMPRESSIVE STRENGTH OF THERMOFOAM TYPE IA*

Prepared and tested per Paragraph B.IV.a,c,d, and e in Table I

<table>
<thead>
<tr>
<th>LOT NO.</th>
<th>SPEC. NO.</th>
<th>LENGTH (IN.)</th>
<th>WIDTH (IN.)</th>
<th>HEIGHT (IN.)</th>
<th>DENSITY (#/CU.FT.)</th>
<th>AVG. DENSITY (#/CU.FT.)</th>
<th>LOAD TO FAILURE (#)</th>
<th>LOAD TO FAILURE (PSI)</th>
<th>AVG. LOAD TO FAILURE (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1412A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>15.81</td>
<td>17.04</td>
<td>925</td>
<td>925</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>19.11</td>
<td>17.04</td>
<td>585</td>
<td>585</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>16.19</td>
<td></td>
<td>1130</td>
<td>1130</td>
<td></td>
</tr>
<tr>
<td>1418A</td>
<td>1</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>25.75</td>
<td></td>
<td>1225</td>
<td>1225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>23.81</td>
<td>25.03</td>
<td>845</td>
<td>845</td>
<td>1097</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>25.52</td>
<td></td>
<td>1220</td>
<td>1220</td>
<td></td>
</tr>
<tr>
<td>1422A</td>
<td>1</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>23.33</td>
<td></td>
<td>805</td>
<td>805</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>23.77</td>
<td>23.77</td>
<td>755</td>
<td>755</td>
<td>768</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>24.20</td>
<td></td>
<td>745</td>
<td>745</td>
<td></td>
</tr>
<tr>
<td>1433A</td>
<td>1</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>29.21</td>
<td></td>
<td>1135</td>
<td>1135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.01</td>
<td>1.02</td>
<td>''</td>
<td>32.46</td>
<td>30.62</td>
<td>1600</td>
<td>1553</td>
<td>1319</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>''</td>
<td>30.18</td>
<td></td>
<td>1270</td>
<td>1270</td>
<td></td>
</tr>
<tr>
<td>1453A</td>
<td>1</td>
<td>''</td>
<td>''</td>
<td>''</td>
<td>27.90</td>
<td></td>
<td>1230</td>
<td>1230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>''</td>
<td>0.98</td>
<td>''</td>
<td>28.01</td>
<td>27.89</td>
<td>1190</td>
<td>1214</td>
<td>1217</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.99</td>
<td>1</td>
<td>1.99</td>
<td>27.77</td>
<td></td>
<td>1185</td>
<td>1207</td>
<td></td>
</tr>
</tbody>
</table>

* (TESTED AT 260°F)
TABLE XIV

DENSITY AND COMPRESSIVE STRENGTH OF THERMOFOAM TYPE II*
PREPARED AND TESTED PER PARAGRAPH B.IV.a,c,d AND e IN TABLE I

<table>
<thead>
<tr>
<th>LT NO.</th>
<th>SPEC. NO.</th>
<th>LENGTH (IN.)</th>
<th>WIDTH (IN.)</th>
<th>HEIGHT (IN.)</th>
<th>DENSITY (#/CU.FT.)</th>
<th>AVG. DENSITY (#/CU.FT.)</th>
<th>LOAD TO FAILURE (#)</th>
<th>LOAD TO FAILURE (PSI)</th>
<th>AVG. LOAD TO FAILURE (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3453</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20.44</td>
<td></td>
<td>420</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>21.34</td>
<td>20.31</td>
<td>410</td>
<td>410</td>
<td>378</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>19.15</td>
<td></td>
<td>305</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>3457</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>35.39</td>
<td></td>
<td>970</td>
<td>970</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>33.02</td>
<td>33.89</td>
<td>700</td>
<td>700</td>
<td>848</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>33.27</td>
<td></td>
<td>875</td>
<td>875</td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>29.94</td>
<td></td>
<td>1025</td>
<td>1025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>29.53</td>
<td>29.05</td>
<td>1015</td>
<td>1015</td>
<td>937</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>27.68</td>
<td></td>
<td>770</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td>2479-A3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>28.76</td>
<td></td>
<td>730</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>34.94</td>
<td>30.51</td>
<td>1090</td>
<td>1090</td>
<td>788</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>27.83</td>
<td></td>
<td>545</td>
<td>545</td>
<td></td>
</tr>
</tbody>
</table>

*(TESTED AT 260°F)
TABLE XV

Density and compressive strength of thermofoam prepared and tested per paragraph B.IV.a,b,c,d and e' in Table I

Tested at 260°F

<table>
<thead>
<tr>
<th>LOT NO. & TYPE</th>
<th>SPEC. NO. (IN.)</th>
<th>LENGTH (IN.)</th>
<th>WIDTH (IN.)</th>
<th>HEIGHT (IN.)</th>
<th>DENSITY (#/CU.FT.)</th>
<th>AVG. LOAD TO FAILURE (PSI)</th>
<th>LOAD TO FAILURE (#)</th>
<th>AVERAGE LOAD TO FAILURE (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2479-A3 Type II</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>44.04</td>
<td>1485</td>
<td>1485</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>44.80</td>
<td>1630</td>
<td>1630</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>45.64</td>
<td>1675</td>
<td>1675</td>
<td>1528</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>45.90</td>
<td>1450</td>
<td>1450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>42.10</td>
<td>1400</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Specimen broke while being milled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1412 Type I</td>
<td>1</td>
<td>1</td>
<td>.99</td>
<td>2</td>
<td>38.14</td>
<td>1625</td>
<td>1641</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>"</td>
<td>1</td>
<td>2.01</td>
<td>41.86</td>
<td>2065</td>
<td>2065</td>
<td>2156</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>"</td>
<td>1.01</td>
<td>2.02</td>
<td>42.08</td>
<td>2790</td>
<td>2762</td>
<td></td>
</tr>
<tr>
<td>1433 Type I</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>37.96</td>
<td>1555</td>
<td>1555</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>38.31</td>
<td>1720</td>
<td>1720</td>
<td>1761</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>41.83</td>
<td>2010</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>1453 Type I</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>34.98</td>
<td>1335</td>
<td>1335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.98</td>
<td>.96</td>
<td>"</td>
<td>33.72</td>
<td>1080</td>
<td>1149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>"</td>
<td>.99</td>
<td>"</td>
<td>33.81</td>
<td>1215</td>
<td>1253</td>
<td>1262</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>"</td>
<td>36.34</td>
<td>1205</td>
<td>1205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>.99</td>
<td>.99</td>
<td>"</td>
<td>33.99</td>
<td>1290</td>
<td>1316</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>35.41</td>
<td>1285</td>
<td>1311</td>
<td></td>
</tr>
<tr>
<td>1453A Type IA</td>
<td>1</td>
<td>.99</td>
<td>1</td>
<td>"</td>
<td>25.31</td>
<td>.900</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>"</td>
<td>"</td>
<td>27.13</td>
<td>1085</td>
<td>1085</td>
<td>1055</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>26.41</td>
<td>1170</td>
<td>1170</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 1

DENSITY VS COMPRESSION STRENGTH OF THERMOFOAM 607
TYPE I (POINTS TAKEN FROM TABLE XII) WHEN TESTED AT 250° F

Lot #1412
Lot #1418
Lot #1422
Lot #1433
Lot #1434
Lot #1453
Minimum values in proposed FMS-0070

DENSITY (#/CU. FT.)

COMPRESSION STRENGTH (PSI X 10^-2)

25
20
15
10
5
0

15
20
30
35
40
45
50
FIGURE 2

DENSITY VS COMPRESSION STRENGTH OF THERMOFOAM 507 TYPE IA (POINTS TAKEN FROM TABLE XIII) WHEN TESTED AT 260°F

Minimum values in proposed FMS-0076

Lot #1433A
Lot #1453A
Lot #1418A
Lot #1412A
Lot #1422A
FIGURE 3

DENSITY VS COMPRESSION STRENGTH OF THERMOFOAM 607 TYPE II (POINTS TAKEN FROM TABLE XIV) WHEN TESTED AT 250°F

- Lot #372
- Lot #3457
- Lot #2717-A3

Minimum values in proposed FM3-0075
Figure 4

Density vs Compression Strength of Thermofoam 607 Types I, IA, and II when tested at 250°F. (Points taken from Table XV)

Type I
Lot #1412
Lot #1433
Lot #1453
Lot #1453A

Type II
Lot #2479-A3

Minimum Values in proposed FMS-0076