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PREFACE

1Ice is one of the must widely distributed solids on the earth's

surface éncountered-by man in. evérday life. We know that ice some-

times inflicts great iosses on thé national economy; it obstructs naviga=-
ﬁ@i}, exerts an adverse influence on port installations; bridge supports,
!gyd;iitéchnical' equipment, -at-al. However, ice is-also widely employed
as-a g’oﬁjtruétioﬁ material:for ice storehouses, icé-causeways and the

‘like_and for icé crossings and ice roads. Further, it is used to combat

aridity.

All this indicates the need for sound knowledge of the physical
and inechanical properties-of-ice. Studies of these properties have been

‘made and extensive data Liave appeared in the special-literature, but it

is-very difficult to make practical use of this information because the
quantitative parameters of the mechanical properties of ice show very
large discrepancies. For example, the ultimate.compressive zircngth
of-ice found by testing icc safnpies varies from 107to '100,kg/cm2 and more,
i.e., itmay vary by a factor-of ten or more. The:data on-the plastic
propetties of ice reveal even greater discrepancies. In view of this, .the
need has ariscn to aualyze-and-generalize all these:data, to attempt to
explain.the reasons for the large discrepancies in.the various parameters,
to establish the laws of their change and to find the-most rcliable charac-
teristics of the méchanical ptoperties of ice in order-to make recommen=

dations for engineering practice. The present work-is devoted to the solu=

tion of these problems, It is-based on a generalization of the data in the

literature on the properties.of-ice and on the experimcntal work of ihe
author on studies of the plastic properties of ice carried out at the V. A;
Obrichev Permafrost Institute of the Academy of Sciences of the USSR
during the period 1954 through 1958. The author wishes to express his
dcep gratitude to Correspanding Member of the Academy, N. A, Tsytovich,

to Professor 5. S. Vialov and to Professof B. A, Savel'ev for a number of

valuable 3suggestions which have been considered in the present work.
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CHAPTER I

THE STRUCTURE -AND THE PHYSICAL PROPERTIES OF ICE

Ice hascrystalline structure. Ice crystals are optically uni-

-axial and belong to the hexagonal system. The éxternal form of the

crystal varies and depends on.the conditions of the formation and
growth of the crystal. However, one may distinguish three basic types
of.ice crystals: tabular, columnar and needle (acicular). The crystal
size varies greatly (from a fraction of a millimeter to one meter and
more) and changes continually because of recrystallization processes,
by which some crystals grow at the expense of others.

Ice crystals have a sharply defined mechanical anisotropy, as a
function of the direction in which forces.act with respect to the basal
plane (the plane perpendicular to the optic axis.of the crystals), The

-atoms in the space iaitice oi the ice crystai are arranged such that 2

disturbance in the basal plane breaks only two.atomic bonds per unit
cell, while a disturbance in any plane perpendicular to the:basal plane
requires the breaking of at least four bonds per cell (Owston and Lons--
dale, 1948). Therefore, the structure of an.ice crystal may be rep-

resented as a collection of numerous, very thin, durable but flexible

plates (McConnel, 1891). The intervals between'the-elementary plates
(the planes of closest packing of atoms) are planes-of weakness, along

which relative slipping of the .plates may occur.

Due to the anisotropy of the ice properties, one must consider the
stricture of ice and the-direction of the optic axes of its crystals,

In nature one encounters various types of ice, distinguished by
structure, type of distribution and other properties. Actually, large
single crystals of-ice are rarely found. For the most part, one finds
polycrystalline ice, which consists either of randomly oriented fused
crystals (granular ice) or intergrown individual crystals, whose axes

are approximately parallel.

Ice structure is a {function of its mode of formation. The following

basic types may be distinguished (Tsytovich and Sumgin, 1937):




a) Continuous crystalline, which forms during the calm freezing
Qf water;

‘b) Needle, often:with air bubbles, which forms at the point of
contact of water and ice;

c) Lamellar, which forms during the periodic freezing of individual
‘layers of water or during-the densification of iiidividual layers of wet show;.

d) Firn or granular, which forms during the freezing of snow;

e) Fine-aggregate irregular, which forms.during alternate freezing
and mixing (observed in the upper ice layer of large reservoirs);

f) Loose-ilaky, observed in a newly fallen.snow cover and aiso

during the freczing of water which condenses from vapor.

We now have a more complete and better genetic classification of
ice developed by P, A. Shumskii (Shumskii, 1955), in which all types of
fresh ice are taken into account and a detailed description is given of the
conditions of their formation and mcde of occurrence, their structure,.
crystal orientation and the nature of their air inclusions. The broad scope
-of the Shumskii classification makes it somewhat cumbersome, however,

and since we are not concerned with ths genesis-of ice, we feel.we can

limit ourselves to tke above simplified classification and refer our readers

to Shumskii's work for a-more complete classification:

When water freczes calmly, crystals with.optic axes parallel te
the surface of freezing predominate in the upper layer of the ice cover, while

crystals with vertical axes predominate in the lower layers. In lake ice;

according to B. A, Savel'ev (1953), crystals with optic axes parallel.to the

surface of freezing are encountered approximately to a depth of 18 ¢m,.
while below that all crystals have optic axes perpendicular to the plane of
freezing. With increasing depth from the upper surface, some of the cry=
stals wedge out and the lateral dimcnsion of the remaining crystals in=

creases.

In the case of turbulent freezing of water, the axes of the ice cry-

stals have randum orientation.

The melting of ice and sublimation (transition to the vapor state)

are functions of temperature and pressure. Under specific temperatures

" AP AR S M S ot L L
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and pressures, ice and water or ice and vapor may enter into-equilibrium
with each other. The curves of the equilibrium of these phases {fig. 1)
show the limits of the stable state of the icé. The point of intersection

of the indicated curves, the so-called triple point, in which the system
ice-water-vapor is in equilibrium corresponds to a temperature of.

+ 0. 0099°C and a préssure of 0. 006 atmo;iphex_:e. The melting point of
pure ice at normal atmospheric pressure is 0°C. The melting point is
reduced as hydrostatic pressure is increased. It has been established
that a pressure increase of 1 kg/cmz corresponds to.a-0, 0075°C -Feduction
of the melting point. Oriented unilateral pressure can also cause some
change in the melting point, but it will be quite negligible, less than 0. 0°c
(Shumskii, 1955).

Water may freeze at the same temperatures (as a function of pres-
sure) at which ice melts only at the boundary of an extant crystal. phase.
Therefore, when there are no centers of ¢ 3 5
Y'supercooled' considerably below the temperature at which ;hermodvm.rnc
conditions are created for converting water into ire. Cases arc¢ known
where water droplets bave been supercooled to -72°C. Under natural
conditions,. there-are always foreign particles in water which become
centers of crystallization, thcrefore, ordinarily water cannot be super-
cooled more than.a few degrees. 7

In addition to ordinary ice, various poiymorphour modifications
of ice arc known. However, they exist only under great pressures (from
2,000-~50, 000 atm) and are not encountefed under normal conditions,.
therefore, we shall not investigate these modifications of ice in the pre-

sent work,

Impurities in.ice. In ice one usually finds a certain number of

impurities, inclusions of air or of gases-and saits, Furthermore, under
specific conditions (heat influx, increased pressure) ice also contains
water, In natural icc one may find various solid inclusions, c.g., in-=

soluble mineral fragments.

The gascous inclusions in ice come either directly from the atmos-
phere or from freezing water. The chemical composition of these in-

clusions is usually close to that of atmospheric dir. The air inclusions
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in‘ice‘are usually tiny sphavical voids or elongated ciosed cells. Open
fxsra‘-" and c‘xickiraié iiaa fbund ‘ﬁeiué, ftiihii:u‘eht ice eiihéi‘~édntiigxi

1 cm’ /kg) If there isa larga quantity of air mclunons in the ice, :the
-ice:is:less transparent, i.e., cloudy. Such ice is-usually found in the

n‘.d.le and the lower layers of the ice ..over. In-this-case, thé porosity
oi the-ice genoral.ly varies:from 1 to 50 ém /kg Ice with-a very large
number of air-pores (from 50-400 ¢m ~/kg) also océurs. Sach ice is
.opague and 16oks like auow (Savel'ev, 1653), Usually it forms as a Fe-
sult of the fréezingitdgether;of Zn'xoiitg‘ped‘s’now.

freezing of the water. dpon:cooh_ng and passing into the solid gtatc; the
solution becomes in-homogeneous and breaks -up into.its.components.
When a low=concentration solution is-codled below the freezing point of
pure water, pure ice begins to form from-it:and the solution concsatra-
tion.increasés. When a high-conceéntration solition is cooles, it-becomss
supersaturated:and salt crystals.begin:to form.from it.

b tini
e wy n

“Thus, for each solution temperature -below the freezing point of

Bt

pure water, there arc two maximum equilibriam concentrations of salts,
beyond.which ice.or salt crystals separate out (fig. 2). The temperature
corresponding.to-the point of intersection df.thgs; limits is called:the
eutechc temperature. At this temperature and-the corresponding_solution
concentranon, both components separate out simuitancously and the solu-

tion composition reinains unchanged during this ffeczing period;.i.e., the
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solution freezes.completely. ‘As-a Fesult, a-eutectic mixture of icé and

salt crystals forms. If the initial concentration of the solution was less

g Myﬁ#,%&
m‘*‘;}f 1%}':»

than:the eutectic, after cuoling below the eutectic temperature a-mixture

of eutectic and'ice forms; called the hypoeutectic, but if‘the initial con~
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e
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centration of-the solution is grcater than the cutectic, a mixture of eutec~
tic and salt forms, called the hypereutectic. Thus, salts in-the ice above

the eutectic temperature are in the form of a liquid brine, and its concen-
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tration increases and the quantity decreases with intensification of freez-
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ing. When the salt content is small, almost all the brine in the ice is

R

concentrated in the form of films or isolated inclusions at the crystal

Y

o e

boundaries. An increase in-the salt content leads to the formation of inter-
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layers of brine within the crystals in the basal planes, separating the
crystals into.a number of plates (Savel’ev, 1953; Shumskii, 1955).

The préesence of films, isolated inclusions and especially inter-

. ...,A’ Ty e o it o

layers of liquid brine exerts a considerable influence on the mechanical
properties of ice, reduicing the ice strength. However, it should be noted
‘that the amount of liquid brine in fresh-water ice is usually negligible

PN P

| f
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and can exert some influence on the mechanical properties of ice only

at a temperature close-to the melting point.

“'lim\w’rh

Regelation and recrystallization. Ice can regel or freeze together.

This property consists-in the folloWing: external forces may cause some
melting of particles at-the points of contact of ice particles or pieces

of ice. The water which forms in this case is extruded to places where
pressure-is-lower and freezes there, as a result ice particles freeze to-
gether. The freezing together of ice surfaces occurs more slowiy and can
take place without any pressure and without the participation of a liquid
phase, as a result of the sublimaticsn® of ice and'iccrystallization. Con-

sequently, kairline cracks in ice cannot exist for-a long period of time.

Recrystallization takes place continuously in ice and is manifested
in the spatial displacement of the boundary between crystals, in the .change
of size, shape and total number of crystals and in the change of crystal
orientation, The founding of sharp edges and corners is observed in indiv-
idual crystals. Crystals strive toward the equilibrium form (a sphere),
which is characterized by a minimum frce energy. In polycrystalline ice,
the principle of minimum f{ree energy is manifested in the tendancy toward
the fusion of crystals and feduction of the number of crystals., The larger
crystals grow because of the reduction of volume (and even the complete dis-
appearance) of the smaller crystals, i.e., a "sclective" recrystallization
occurs (Shizmskii, 1955). Rounding is rapid ouly when angular ¢rystals are
present, while selective recrystallization takes place only when very small
crystals are present. These processes diminish as-the crystals become
rounded and the tiny crystals disappear.

* By subiimation we mean the process of the distillation of ice from
one place to another through the vapor state, i.c., volatilization, the mig-
ration of vapor and its crystallization.
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The c¢rystailization processes-are more:intengive ifi:ice in a state
of stress under the influence of various mechanical forcés. In this case,
dvie to the- mechanical anicotropy. of the crystals, a non-equilibrium
stressed state is created and recrystallization beging with the growth of
the 1ess. stressed crystals or théir parts at the:expenes of the more heavily

-stréssed crystalé. The orientation of the. ¢rystals may change in this

case. -Crystals with basal planes close:to tic directions-of shear experieace
a smaller stress during the deformation process.than crystals oriented
differently-and under heavier ‘stress and they grow at-the eXpeinsé of the

‘more heavily-stressed crystals.

Recrystallization consists in the transfer-of molecules from the
space-lattice of one crystal to the space lattice.of another crystal adjacent
to it: :Recrystallization may also take place by the.redistribution of material
through:-the vapor.or liquid phase. These latter types of recrystallization
play-a considerable role at teniperatures-close.to.zers.

Densxty -and sgecxﬁc volume, The dehsiiy of:pure-ice.at 0°c and a

pres-ure of i atmosphere 13 0 9168 g/cm3. while-the specific-volume is

L 0908 cm /g. The dennty of water-under these conditions:is 0999863
g/cm . Water: expands 9% upon freezing. “When- the:ice contains. pores
and impurities; its-density differs slightly from the above: The-densitv
of pore-free ice-changes but-slightly-under the iniluence of pressure.
According to: the data of'B. P. Veinberg (1940}, :the compressibility factor
is approximately {1-5) x 107> " per atm. Pressure may exert a-'substantia'l
.influesice on-the dengity of-porous ice Only, reducing the porosxty -and-cor--

respondingly increasing: the-density.

anrmal expjmsxon. The coefficient oLexp‘ansion of ice is:a func-

tion of tcmpcraturc, mcreasmg as-temperatures increase. In thestempéra-
ture range -20°c to:0 °C, the coefficient:of linear cXpension-is, on an
average, 5.5 x lbfs‘}. while ‘tvhc:-cqef;‘iqié'ﬁitdf‘»v_plumgtr'ig: expassion ig coy-
tcquijﬂingly:iﬁ.ﬁ’x{l(?: per °C. In.the tefmperature range -40°Cto -20°C,
the coefficient of lincar expansion; accordingto-the expesiments of-Andruws
(sce Veinberg, 1940) is about 3. ¢ x 1077 pe: °C.

The-specific heat of ice varies as the femperature, décrcasing 2%

the temp&'tatute dc‘c‘mascs. This relationship may be expressed by thse
following empirical formula (Veinberg, 1940):

-7 -




C

ice- = 0-5057 - 0, 001863 @ cal/g degree.

where 8, is the absolute value of the negative temperature of ice in °c.

The latent héat of fusion 4f pure ice is 79.6 cal/g. The latent. neat
of sublimation (vaporization} of 1ce at 0°C is 677 cal/g.

The thevmal coaductivity of ice is a function of the ice temperature.
The coefficient of thermal conductivity of dense ice is a function ol teanpera~
ture and may be expressed by the empirical formula (Veinberg, 1940):

Nee * O 0053 (1 + 0. 0015 8) cal/cm sec degree,
where 0 is the value of the ice temperature in °c.

The presence of air inclusions in ice reduces the conrfficicnt of
thedinal cunduciivity of the ice. LData are now available sluwing thar the
thermal conductivity of ice crystals in the direction of the main crystal-
lographic axis is soiiiewhat greater than in the direction perpendicular

to the axis (Shumskii, 1955), However, this difference is insignificant.
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"CHAPTER II

THE BASIC LAWS OF ICE DEFORMATION

When a force is applied-to ice, the icc begins to deform and
behaves as.an elastic, plastic or brittle body depending on various
facturs, i.e., it déeforms elastically or plastically or it experiences
brittle fracture.

Some of the main characteristic properties of ice compared with
other crystalline bodies are its distinctly expressed plastic propertics,
Under a load, ice may change form without Sreaking and without changing
volume, like a fluid. We know, for examnple, that glaciers "flow" at a
definite speed and, to a certain extent, such flow is reminiscent of the
flow of a river. Therefore, the plastic deformation of ice is sometimes
compared with the flow of a highly viscous fluid.

e B R

FW

The area of manifestation of purely elaatic properties is so small

| .

that in practice one cannot distinguish it. Usually, plastic deformations.

Y

can be observed along with elastic deformations, undcr any stress.
Elastic deformation occurs at the moment load is applied, and the plastic
deformation begins immediately after the elastic. The total deforimation

<L

-r
RS N

generally consists of two components: the elastic, i.e., the reversible
deformation and the plastic, i.e., the residual, In passing, it should be
mentioned that plastic deformations occur only in presence of shear

[ o

stresses, therefore, only elastic deformations and densification will occur

under equal, hydrostatic compression of monolithic ice.

Brittle fracture of ice is observed when the stresses on the ice are

N
© e ——— ot

increased to a certain limit, the ultimate strength of the ice, * and also,

in a number of ¢. ses, under the influence of dynaranic loads.

-

The mechanical propetties of ice, i.e., the capacfty of ice to re-
sist the influences of externa! forces change considerably depending on
temperature, The closer the temperature of the ice is to the melting
point of ice, the greater arc the manifestations of the plastic propertics of

WW&(M%%NW'“ Syt w‘*fr
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¥) This critical stress 1s also called the breawuing peint oF the lamit
of plasticity,
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the ice and the lower its strength. This phenomenon is explained by
the weakening of the cohesion of the ice molecules in the space lattice
of the crystals and the possibility of rearrangement of the atoms. On
the other hand, the lower the temperature is, the more difficult it is
for the atoms to become rearranged in the space lattice of ice and the
more apparent are the elastic and brittle properties of ice.

The structure of ice also exerts a considerable influence on the
character of the ice deformation. In this connection, first let us
treat the deformation of individual ice crystals.

THE DEFORMATION OF ICE MONOCRYSTALS

The character of the deformation of the monocrystal is firet a
function of the direction of shearing forces with réspect.to the basal
plane of the crystal, As has already been noted in Chaptes 1, an ice
crystal may be represented as an accumulation of numerous, very thin
strong but flexible platcs perpendicular to the optic axis of the crystal,
These elementary plates, about 0, 06 mm thick (Nakaya, 1958), cor~
responding to layers of closest packing of atoms, may move relatively
easily with respect to each ~ther. During the deformation of ice, gliding
is observed exclusively along the basal planes. [n cases where the direce
tion of the forces causing shear does not coincide with the basal plane,
the bending and relative shearing of the elementary plates occur simul-
taneously. Only at a temperature close to the melting point can plastic
shearing occur in any direction (Glen and Perutz, 1954), because in this

case many internal bonds are broken in the crystal. Gliding may take
place with approximately equal ease in any direction in the basal plane

(Steinemann, 1954). This type of plastic deformation may reach any

magnitude up to complete extraction of the parts of the ice crystals bounded
by the basal planes,

Figure 3 shows three main possible directions of forces which cause
shearing relative to the basal plane., In casel, where the shear plane

coincides with the basal plane, only translation of the elementasy plates

takes place and the deformation is plastic. If the shearing force acts in

the direction of the main axis, i.e., if the direction of force and the

- 10 -
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shear plane aré perpendicular to the basal plane (case 2), the elementary
plates of the crystal bend ard small relative shearing motions of the
plates occur with respect to the basal planes. After the stresses in the
elementary. plates reach a certain limit, the platés break. Deformation
is elastoplastic and when the stresses are increased, rupture occurs. In
case 3, where the direction of the shearing force coincides with the basal
plane; but the shear plane is-perpendicular to it, the elementary plates
allow only a negligible elastic deformation. However, when the stresses
arc increased and when there is a corresponding increase of the elastic
plane strain of the elementary plates, they may bend due to the loss of
stability and some relative shearing motions.in directions which do not

e v T o TR AR RN P S 2t

coincide with the direction of the shearing force. A further increase of
stress causes the crystal to break,

From what has been said, it is evident that two different types of
deformation occur simultaneously in a monocrystal under the influence of
an external force, namely: elastic deformations of the elementary plates
and their relative plastic shear. These two types of deformation are
closely related and exert a mutual influence on each other., We kunow that
the elastic deformation takes place instantaneously (more exactly, at the
rate of propagation of acoustic waves), while plastic deformation takes
place relatively slowly. Therefore, at the moment force is applied only

elastic deformation of the ¢crystal takaa place, The elementary plates in

this case arc still rigidly connected, as it were, while bending of the plates
is difficult and the total deformation is slight. The internal shearing

stresses which occur cause a corresponding relative gliding of the elemen-
tary plates and their flexure, Plastic deformation begins. The gliding of

the plates and their flexure cause a redistribution of the internal stresses,

which leads to a change of the rate of plastic deformation, depending on the
direction of the force and the magnitude of the deformation of the crystal,
the rate of plastic deformation may decrease, remain constant or increase,
If the shearing stresses on the plancs of weakness between the plates
decreases as a result of bending and slipping of the plates, the rate of
plastic deformation of a monocrystal will also decrease, However, if the
flexures and the rotations of the plates takes place in a direction such that

the shearing stresses between them increase, the rate of plastic deformation

- 11 -




will increase, In.cases where there is no substantial chinge of the
internal stresses, the deformation rate may be constant.

Figure 4 shows curves of the shearing of monocrystals of ice vs.
time, with different shearing stresses, at a temperature of -2, 3°C,
-according to the experimental data of S. Steiniemann (1954). The tests
were ¢onducted such that the direction of the shearing forces coincided
with the basal plane and pure shear occurred. Steinemann established
that two stages of creep may be distinguished in the pure shear of a
crystal. The first stage occurs during gliding when the total relative
angular strain compared with the undeformed state of the crystal does
not exceed 0.1-0, 2; the second stage applies to large shears. In the
undeformed crysteal, gliding takes place relatively slowly, then the creep

%

ST

rate increases ancd a new linear segment appears. A special softening of
the crystal takes plice. The transition from oné stage to the other is
irreversible. The crystal, once deformed beyond the indicaied limit

iy

for.the first stage, remains soft even z{ter several hundreds of hours.

After the trausitional period, the deformed state remains stable. The
relationship between the strain rate y and the shear streas 7 for both

stages is expressed by the equation y = kt", where n is 2, 3-4, 0 for the

first stage and 1, 3-1, 8 for the second stage.

Figure 5 shows the deformation curve for the tension of an ice
cylinder cut from a monocrystal of glacier ice, according to the e¢xperi-
mental data of Jellinek and Brill (1956). The rate of deformation increases
with time. Apparently this increase is explained by the above-described
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"goftening'’ of the crystal and by the fact that under tension the shear

£
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stresses in the sample increase between the elementary plates, due to

S
* v

a reduction of the cross section of the sample and the rotation of the

plates. An ice crystal permits considerable plastic tensile strain, For
example, cases are known where the sample was stretched almost double

its initial length and became a thin tape, but remained a inonocrystal

(Glen, 1952). In this case the optic axis changed direction and hecame almost
perpendicular to the direction of strain. In those cases when the optic

axis of the crystal coincid ed with the direction of strain and primarily

elastic deformation occurred, the plastic deformation was negligible and
the accelerating crecp stage did not occur {Glen and Perutz, 1954),
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In a crystal subjzcied to plastic deformation under some sort of
external force, after the jorce has ceased to act, partial reduction of the
deformation occurs with a tendency toward re-establishment of the initial
form: This recovery does not take place immediately, but over a certain
period of time. The Tecovery process. is similar to that of crystal defor-
mation in the initial period of influence of the force. At the moment the
force ceases, instantaneous elastic recovery occurs due to the removal of

the overail stress state; then one observes a special "reverse creep'' con-

sisting in the gradual reduction of the total deformation of the crystal {at a
decreasing rate).

The work expended during the mechauical action on the crystal is
converted in part into thermal energy, while the remainder is transformed
into the free energy of the crystal. During plastic deformation, work is
converted principally into thermal energy, due to which the tempesature jn-
creases or partial melting begins. The free energy of the ciysiai increascs
during elastic deformation and also when the crystal breaks, in which case
work is expended on creating an additional surface. There may also be a
negligible free energy increment during plastic deformation when there is some
lattice disturbance and when stresses are created which lead to hardening.

The excess free energy of the crystal may be expended on processes connected
with relaxation or again inay be converted into mechanical work, The free

energy increment may ailso cause recrystallization.

THE DEFORMATION OF POLYCRYSTALLINE ICE

The deformation of polycrystalline ice consists in the deformation
and the zelative displacement of its crystals., This second factor causes some
difference between the laws of the deformation of polycrystalline and mono-
crystalline ice.

Polycrystalline ice in which the dircction of the optic axes of most
crystals coincides (a characteristic feature of the ice cover during the calm
freezing of water), is characterized by mechanical anisotropy. The magnitude
of the deformation of such ice as well as the deformation of individual mone

crystals depends, to a considerable extent, on the direction of application
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of the forces relative to the axial directior of most of the crystals. However,
anisotropy is not as pronounced in polycrystals as in monocrystals, since

the ice crystals may slip with respect to each other and the stressed state

in the deformed ice mass is almost always irregular; thus, the shear stresses
act in difforent-directions relative to the crystal axes. Howeve:z, if the ice
consists of randomly oriented crystals (ice which forms during the freezing of
water with mixing, during layer-by-layer freezing, during the freezing to-
gether of snow, et al. ), most of it may be regarded as an isotropic body.

Let us use individual examples to illustrate the laws of deformation,
When polycrystalline ice is compressed, plastic deformation or creep begins
after elastic deformation. If the pressure is relatively slight (a few kg/cmz)
and the ice sample is subjected to unilateral uniform compression, a steady
rate of deformation will be established (fig. 6) some time after the application
of load and then the magnitude of this ¢reep rate will be a fuiction of prassure
and temperature. In this case, the creep rate may be kept constant ics  long
period of time if the temperature as well as the stresses in the sampic are
kept constant. If a high pressuré operates after the stage of steady creep is
established, a stage of accelerating creep or progressive flow will begin, in
which case the creep rate will increase continuously, The higher the pressure,
the more rapidly will the stage of accelerating creep be established and cor-

respondingly the stage of steady state creep will decrease. With a preisure

of the order c£f 10 kg/cm2 and more, the stage of steady creep practically dis-

appears and, after some decrease of the creep rate of the sample, the stage of
accelerating creep begins (fig. 7). The deformation (creep rate) of an ice
sample increases with increasing pressure (Kartashkin, 1947).

It should be mentioned ii: passing that the stage of accelerating
creep is characteristic of cases in which the examined ice sample is subjected
to a constant compressive stress. Since the lateral dimension of a sample
increases during longitudinal compression because of lateral ~xpansion, in
cases where the compression is produced by a static load, there will be a
certain reduction of the compressive stresscs in the sample, which, in turn,

will reduce the compression rate.

When the pressure {g increased above the ultimate strength, brittie

fracture of the ice will occur.




Ice experiencing compression perpendicular to the direction of the
optic axes has a somewhat greater rate of deformation and a somewhat lower
critical strength than icc compressed in the direction of the crystal axes.

Tensile strains of polycrystalline ice (fig. 8) occur basically in
the same manner as the described compressive strains (Kartashkin, 1947).

The difference is as follows: in the case of compression, compres-
sive stresses act in the shear plane increasing the cohesion between the mobile
particles of ice, while in the case of tension, tensile stresses act in the shear
planes, reducing cohesion, As a result, conrditions raay arise which promote
the relative shearing of the crystals and the shearing cf the elementary plates
in crystals, which as a whole will reduce the strength of the ice. The area
cross-section of an ice sample under tension decreases; it thereiore consida«-
ably increascs the influence of the ice structure, the inhomogeneitics, and the
internal-weaknesses., The presence of air pockets, cracks or structural faults
in an extended ice sample results in an inhomogeneous stressed state at such
points and increased tensile stresses, which accelerate the deformation and
increase the chances that the ice will break. Considerabie plastic deformation

can occur in monolithic polycrystalline ice when the tension is smooth and

uniform. However, the test sample of ice may rupture even when the dynamic

effect is slight or in the case of vibrations. Usually the tensile strength of ice

is considerably less than the compressive strength,

Figure 9 sbows scveral curves which characterize the laws of ice
flexure. Prismatic beams, 10 x 10 x 120 cm, of ice with random structure
were uscd for the experiments (Voitkovskii, 1956), The beams were mounted
on two supports with a span of 100 cm; they sagged under their own weight and
an additional load of two weights was placed symmetrically atdistances of 15 cm
from the center of the beam span. When the beam was loaded, at first an in-
tensive increase of deformation was observed; then the rate of deformation
gradually decreased and tended toward a constant value for the given load and
temperature. The deformation may continue at this rate over a very lopg
period of time. For example, fig. ¥ shows a case where the ice beam sagged

at an approximately constant rate over a period of 3000 hours, i.e , more than
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four months. However, immediately after the load had been changed, the sag
rate changed sharply and proved t6 be a function of the size of the acting load
and of the load before it was changed. Thus, when the weight is removed,
besides the "instaitaneous'' élastic décrease of sag, there is a gradual slow
decrease of sag which is most pronounced during the first hour, but a new

increase of sagging begins after 1-2 days, due to the weight of the sampio¢ it-
self.

If the stresses in the bending sample of ice excesd a certain limit,
after the stage of steady creep, a stage of accelerating creep begins which
results in the rupture of the sample,

Polycrystalline ice expériences considerable plastic deformation
during steady bending; bowever, it breaks easily under a dynamic load and
alse in toasicn, Thc Srcoaking of the ice by Leuding usually bogine wiik sbedring
near the neutral axis, followed by rupture of the ice in the extended zonc and
by extrusion of the ice in the compression sone {(Kartashkin, 1947).

Figure 10 shows experimental curves of the deformation of poly-
crystalline ice of random structure in pure shear with a subsequent stepwise
increase of the tangential stresses.

As can be secen from the graph, immediately after the application of
a shear force or after the increase of this force, there is an intensive increuse
of the shear strain, then the strain rate gradually decreases and approaches
a value which is constant for the given conditions. The plastic deformation has
no critical li:nit under small stresses and may take place over a very long
period of time. For example, in my experiment (see fig. 15), one of the ice

tubes deformed over a period of 5, 000 hours under the influence of a torque
2

at 1°C. I this case, the strain

which caused tangential stresses of 1 kg/cm

rate was nearly constant.

If the tangential stresses exceed a certain limit, after deceleration
of the strain rate during the initial perind of stress and after a certain intere
val with an approximately constant rate of strain, the shear velocity begins to
increaszc gradually and may finzlly lead to destruction of the deformable volume
of ice.




In the case of a complex stressed state, the magnitude and rate of
shear strain is a function not only of the tangential stresiés, but also of the
magnitide of the normal stresses in the shear plane. With one and the same
tangential stress, the additional influence of normal strésses may change (in<
.créase) the strain rate substantially (fig. 1i). In other respects, the nature of
the deformation remains the same as in the caz: of pure shear.

Shear strains form the basis of any deformation during which the
form of the body changes. In particular, any plastic deformation of ice charac-
terized by a change in the form of the body without destruction and change of
the volume results from-internal relative movements of the ice particles. There=
fore, the nature of the plastic deformation is approximately the same during the
various modes of deformation, viz., cormpression, tension, bending, torsion
and the complex forms. The differences lié chiefly in the nature of the destruc-

tion and the magnitude of the critical strength,

Foiycrysiailine ice deiorms under the iniiuence of thrers fnctors:

1) elastic and plastic deformations of the individual crystals;
2) displacements of the crystals with respect to each other;

3) destruction of the crystals,

All these factors are closely related and influence each other, In

ice, recrystallization occurs simultaneously with thesc factors and also in-

i
L
¥

fluences the nature of the deformation. Crystals oriented with their basal
plane close to the direction of shear and which, thercfore, experience less
stress during the deformation process grow at the cxpense of the less favorably

oriented, imore heavily stressed crystals., The individual over-stressed crystals

disintegrate and become crystal fragments which are unstressed at the beginning

cf their formation, grow at the expense of the older stressed crystals and then

B s S S ﬂ‘s*»i ¢

become strcssed and deformed themselves. Thus, during the deformation of

jce due to partial destruction cof the old crystals and recrystailization, there
is a partial re-establishment of the undeformed state, a special '"recovery" of
the ice structure. This is also explained by the fact that in a number of cascs
ice has practically no limits of deformation. At the moment load is applied,
clastic deformation begins, caused by the exceptionally elastic deformations
of the ice crystais. The elastic deformations of the crystals cause stresscs

within the crystals and at the contacts between crystals, resulting in plastic
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deformations of the crystals, relative shearings of the crystals and, in in-

dividual cases, in destruction.{disintegration). Thus, plastic deformation
begins immediately after the "instanta.iéous' elastic defermations. At the
initial moment there may be concentrations of stresses at individual points
of the crystals, then internal shearing, gliding along the crystal boundaries
and disintegration of individual crystals occur, which leads to some internal

redistzibution of stresses and to a partial balancing of the stresses. A re-<

arrangement of particles takes place, during which the ice offers more re-
sistance to load because¢ it becomes more rigid, as it were, and this decreases
the rate of strain.

This strain hardening is accompanied by the breaking of bonds be-
tween {he elementary plates of the crystal and between the individual crystals,
and by the i 3 which leads to weakening and ihus 10 an
increased rate of strain: Thus, a load indiices two opposite and simultancous
processes in polycrystalline ice; the breaking of bonds and weakening, on the
one hand, andthe re-establishmentof bonds and strengthening, on the other.
The nature of the deformation is determined by the prevalence of one or the

other of these processes.

In the case of slight shear stresses following instantaneous deferass-
tion and a reduction of the strain rate during the f{irst period after the applica-
tion of load, a dynamic equilibrium is gradually established between the ex-
ternal forces and the total internal resistance. The increased hardness of
the ice due to the increased internal deformations is compensated by the de-
crease of hardness due to the formation of particles of undeformed material
by disintegration of the individual crystals, recrystallization and weakening.

A stage of permanent plastic deformation begins, i.e., stecady-statec creep,
which may continue for an unlimited time as lcng as the conditions of deforma-
tion, i.ec., the temperature, the stresscse and the ice structure, remain un-
changed. However, usually these conditions cannot remain unchanged over

a iong period of time and, therefore, in practice the stage of stcady statc
creep is limited although it may persist over a long time period. Even when
the temperature and stresses are constant, the orientation of the ice crystals

may change during the deformation process. Recrystallization results in the
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gradual formation of a structure with inain axes oriented along a line perpen-~
dicular to the shear plane {Shumskii, 1958) and this increases the strain rate.

.

If:the shear strcsses exceed a certain limit, which we shall call
arbitrarily "limit of prolonged.creep" (for more details, see Chapter IV),
either there will be no internal equilibrium between the weakening and harden-

-ing-processes or it will be short-lived. Weakening prevails over hardening

and there can be no prolonged stage of stcady creep. In this case, deformations
develop relatively rapidly and, as a result, the bonds between the elementary
plates that move with respect to each other in the ice crystals and between the
individual crystals break, the internal resistance of the ice decreases. In
individual cases, glide planes with wealicned cohesion form in the ice, and the
shear along these planes is more intense. All this gradually increases the
deformation rate, which may eventually lead to the disintegration of the ice.
value of the activ
change of the deformation rate. If the stress increases discontinuously (wiih
increasing load) during the deformation process, the change of the deformation
rate will be similar to the change in the deformation rate described above
for the initiation of stress, Following an instantaneous discontinuity of de-
formation, i.e., an elastic deformation corresponding to a discontinuity of
stresses, deformation continues at a decreasing rate. Then, gradually a new
consiant raic of deformation is established corresponding to the equilibrium of
the new external forces and internal resistance, or the rate of deformation

increases, i.e., accelerating crcep begins, A recduction of the shear

stress causes a reduction of the clastic deformations of the crystals, which

in turn causes plastic shearing in the crystals and their relative displacement
in a dircction opposite that of the initial deformation. This process combines
with an increase of plastic deformations due to the acting {(after reduction)
stresses. The result is a quite complex type of deformation; at the moment
of the reduction of stress there is a somewbat discontinuous decrease of do-
formation which fades in time; then a short-term stabilization of deformation
begins and it increases again at a rate which increases to a value correspond-

ing to the stress acting after the change.
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As a-graphic presentatioy, in fig. 12-we give the curve of the
change izt: $ag of an ice beam under successive loadings at various time in-
tervals (Voitkovskii, 1957}. The mechanism cf the elastic aftereifect
{delayed appearance of elasticity) is clear,l'y:manifeiéd’hére. it consists

in the following: in addition to the instantaneous-elastic and irreversible:
plastic deformation after application of load, over-a certain time interval
there is a structurally reversible deformation which disappears with time
after unloading. One'might say this delayed, structurally reversible de-

‘formation is intermediate between elastic and plastic deformation. It

consists of the following: after the load has been applied and instantaneous
elastic deformation occurs, there is a gradual further increase of elastic
deformation of the elementary plates of the crystals proportional to the re-
lative plastic shearings of these plates and thel individual crystals. Cor-

respondinglv: the elantic atrecses in‘the cryvatale do not dicennanye inmadinecly

AeAgp Aty e

after the removal of the load; but, rather, gradually, causing plastic shcaring

in a direction opposite that of the initial deformation.

One manifestation of the clastic aftereffect is the relaxation of
stresses in ice during its steady deformation. In this case; the elastic de-~
formations of the crystals gradually decrease due to increasing plastic de-
formation arcd, correspondingly, the internal stresses decrease and the re-
sistance of the ice decreases. As a result, the force needed to keep the ice
sample in a given state of deformation will decrease with time. Figure 13
shcws relaxation curves based on the experimental data-of B. D. Kartashkii

(1947). The curves show the change in force requirec to maintain the initial

sag value of ice beams 8 x 12 cmn in cross section with a span of 100 cm, as

a function of time and initial load. These curves correspond to the change in
stressed state of the beams and reflect the general nature of the relaxation

of stresses.

The greatest reduction of stresses, relaxation, is observed im-
mediately aiter the ice deformation siops increasing. Then the relaxation
rate gradually decreases. The higher the initial stress, the faster the re-
laxasion in the initial period. Since the elastic limis of polycrystalline ice
is practically zero, during prolonged relaxation the stresses will alao de-

rreasc to approximately zero.




*Th@ plastic deformation of pelycrystalline ice is coiinected with
the partial breaking of the interr.al bonds of the crystals and the bonds between
crystals, 'fhe‘refo;e, it does not.always occur smoothly. K. E. Ivanov and
Vi V. LavVrov (1950) noted that during the bending of samples of polycrystal-
line ice-the deformation increased discontinuously, accompanicd periodically
by a pééuliar scraring sound. However, we did not observe discontinuities
in our experiments (Voitkovskii, 1957) where considerably larger samples
were used. Evidently, discontinuities of deformation can appear only during
the deformation of small ice samplcs. The partial breaking of bonds-in one
¢rystal may have a perceptible influence on the defermation of the entire sampie.
In large samples of polycrystalline ice, the individual discontinuities will
not be.apparent in the overall deformation of the sample and the deformation

will actually be very smooth due to the total effect of a large number of minute
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discontinuities. T author also assunies that the discontinuous nziure of the
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deformation may be perceptible in cases where irregular shcar stresses,
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exceeding the limit of prolonged creep at individual points, occur in the defcr-

o

mable ice mass. Then, at points of increased stresses, conditions:may favor

a progressive flow which will bring about an abrupt redistribution of the inter-

N

nal stresses and, possibly, a discontinuous change cf the deformation rate.

All these questions require further experimental »erification.

L
3

kecently, P. A. Shurmskii (1958) developed a new theory of the

mechanism of ice straining and recrystallization based on the data of crystal-

ol

lographic investigations of ice, firn and snow samples which had been strained.

g

According to his theory, six different mechanisms of ice straining can be
distinguished on the basis of structure, the magnitude of the tangential and

normal stresses and temperature. The first ,:c strain mechaniem consists

.
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in slow shecaring parallel to the basal planes wi the crystals. In this case no

e

structural changes of the ice are observed. Ihe second mechanism is one

whereby the mass of polycrystalline ice flows slowly under the influence of

a tangential stress less thanl kg/cm?' and the intragranular slip along the

basal planes accompanied by a slight distorsion and other lattice disturbances

i

caused by a slow migratory recrystallization of the ice and by an ordering of the

atructural orientation {(a structure forms with an orientat:on of the main
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axes perpendicular to the shear plane). In the third mechanism, with a

high rate of flow, the intragranular slip is accompanied by curvature (dis-
tortion) and crystal lattice disturbances, by disarrangement of the strucsure
of heavily stressed crystals and by recrystallization. The.fourth mechanism
is one in which a further increase of load and the strain rate with breaking
and partial destruction of the crystal bonds is accompanied by intragranular
slip, reduction of crystal size and the formation of random structure in the
shear zone. The fifth mechanism comprices the ice straining which takes
place at low pressures due to large tangential stresses (10 kg/cmz and more);
shearing causes crack formation, slipping along the planes of fracture and
disintegration of the ice. The sixth mechanism is one in which the straining

occurs under great pressure and at high temperatures; there is partial
internal melting of the ice due .to the heat of friction; follnwzd hy fe
together and the formation of the so=calied blue bands.

This classification of the ice strain mechanisms allows one to
draw a clearer picture of the physical essence of the laws of ice deformation
and the specific nature.of the mechanical properties of ice.
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CHAPTER II

THE.ELASTIC PROPERTIES OF ICE

As has already been noted,. the elastic limit of ice is cloce to
zero and ordinarily the elastic properties appear together with the plastic.
Consequently, it is difficult to determine the exact value of the various
factors which characterize the elastic properties of ice (the elastic modulus

E, the shear modulus G and Poisson's.ratio p).

When the load acting upon the ice is changed, three differant types
of deformation appear: 1) elastically reversible instantaneous deformation,
2} irreversible deformation, i.e., creep and 3) the slowly reversibie de-
formation of the aftereffect. Actually, this division is arbitrary, since all
three types of deformation are interrelated and there-are no shu.p Loundarica
between them. This is especially true of the aftereffect. The initial stage
of the aftereffect deformation begins immediately aiter the instantaneous
elastic deformation and is usucally recorded as elastic deformation. The
next stage, however, is part of the total or overall creep value. Since the
rate of increase of the aftereffect is greatest immediately after the load is
changed, the "initial" elastic deformation of the ice which we have observed
will be a function of the rate of application of-load, to 4 considerable extent,
and the time interval between the application of load and the measurement of
strain. Here, time pcriods of even tenths of a second may exert an influence
{Donchenko and Shul'man, 1949). Correspondingly, when the elastic and suear
moduli are determined experimentally, their valuecs may also depend on the
rate of application of load and the duration of loading. This is also cne of the
reascas for the considerable discrepancies in the quantitative valueg of

the parameters that characterize the elastic properties of ice,

THE ELASTIC MODULUS

The modulus of elasticity characterizes the resistance of ice to
elastic deformation in tension or compression. If a cube of ice is subjected
to unilateral compression, its relative elastic compression ¢« may be expres-

sed by the formula:




(1)

where o is the normal stress; E'is the elastic modulus, which is the pro-
portionality factor connecting the normal stress and the relative compres-
sion.

In tension, the elastic modulus is also the coefficient which con-

nects the normal tansile stress with the relative elongation. Two methods,
the static and dynamic, are used to determine the elastic modulus of ice,
Essentially, the static method is the measurement of strain after the applica«

tion of load, when testing ice sam=ples in compression, tension or flexurc.

The dynamic method is based on the calculation of the elastic modulus o= the

H mcasursincnis i ihe rate of propagation of elastic hratione iu ice.

As Veinberg. {1940) pointed cut, :the first experiments for det~r-
mining the elastic modulus-of icc were miade at the beginning of the 19th cen-
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tury by Young (i820) and Bevan (1824). Liter, cxperiments of this type wor.
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conducted by nwunerous other investigators., Tables I and 2 summarize the
results of the principal éxperimeants. As-the.data show, the values of the

elastic modulus of ice may vary within-quite broad-limits. The greatest
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variations arc observed when-the static method is used. The variations arc

e

smaller when the dynamic method is used, but the average value of the clas-

tic modulus is higher. This may be explained az follows: when the static

method of investigation of ice strain is used, tke deformation is not rneasured
at the momerai the load is applied but after a certain time interval. Ordinarily,

this interval is small, a matter of seconds, but this is sufficien: to permit a
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perceptible creep deformation of the ice (chiefly due to the aftercifect) to-

o

gether with an clastic deforination which begins immediatsly 2iter the applica-

tion of load. As a result, the elastic modulus determined by the measurement

SN

of total deformation does not characterize the resistance of ice tv instantancous

elastic deformation, but characterizes the resistance of ice to reversible de-

formation after a specific time interval,
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The greater the tension caused by the load, the more substantial
will be the role played by the creep component of the deformation. The in-
stantaneous elastic deformation may be regarded as directly proportional to
the magnitude c{ the stress, but the creep rate increases considerably more
intunsively with an increase of stresses, approximately proportional to the
square of the stress (see Chapter 1V). Therefore, the magnitude of ice de-
furmation measurable after a specific time interval following the application
of load, say after 5-10 seconds, will not increase linearly with increasing
.stresses, but will increase more intensively, The elastic modulus calculated
on the basis of strain measurements should decrease correspondingly as the
stresses increase. This has been confirmed by experiments. For example,
the data of V. N. Pinegin (1927) show that the elastic modulus of river ice in

compression {at -3°C) decreases with increasing stresscs as follows:

Stress, kg/cm® 1.07-3.75  3.75-6.44 11.80-14.48 17.16-19, 84

Elastic modglus.

x 103 kg/cm 37.5 13,7 6.0 3.4

Our experiments showed a similar picture. We determined the

elastic modulus on tke basis of measuraments of the flexural strain of pris-
matic ice beams 10 x 10 x 120 cm. Figure 9 gives a schematic view of the

apparatus and the loading of the beams. The experiments were designed to

study the plastic properties of ice and we investigated chiefly the long-term
plastic deformations. However, in passing we measured the deformations

which occurred after the application of load. The first reading was made

b e

5-10 seconds after the application of load, then after 1, 5, 10 and 30 minutes,

and further after longer time intervals. Similar measurements of the de-

[ S

formation were made after the magnitude of the load had been changed. T'he

clastic modulus was caiculated un the basis of the first measnrement of sag

after the application of load or the change of load, according to formula:
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where A P is the change in magnitude of loading-of the beam in kg, A§ is the
discontinuity of thé sag value caused by the change in load incm, £, a and J
are, correspondirngly, the span of the beam, the distance between weights and
the moment of inertia of the cross section of the beam.

Table 3 shows the results of ona series of experiments. Thrue
beaims were tested simultaneously. Beams 1 and 2 were cut from ice of reg-
ular structure, which bad formed during the calm freezing of water in an open
reservoir, and beam 1 was tested such that the axcs of the crystals were hor-
izontal, perpendicular to the plane of flexure (01 f and 0l 2), while beam 2 was
tested such that the axes of the crystals were vertical {(0ll f). Beam 3 was cut
from ice of random structure frozen from a mixture of pieces of ice, snow and
water. Predetermined weights were placed on the beams, the beams deformed
plastically for a long period of time and then the weights were removed. After
several days the last stage of loading was applied to the beams. It should be
noied ihai ibe decrcase of deformation upon removal of the weighis correapended
approximately to the increase of deformation upon application of the loads, i.e.,
the values of the elastic modulus during loading and unloading were nearly
identical, despite the considerable plastic deformations which occurred during
the period between loading and unlvading. From the data given one can sce that
the magnitude of the elastic modulus is determined basically by the size of the
load (the strese) and decreascs as the load is increased. However, a differance
in ice structure and the direction of the crystal axes with respect to the action
of the forces did not cause any substantial difference in the obtained values of

the elastic modulus.

According to the data of V. P. Berdennikov (1948}, the elaztic
modulus of ice is a function of the ice temperature and decrcases as the tempera-~
ture increases (at -40°C, E = 95 x 103 kg/cmz; at -2°C, E = 90 x 103 kg/cmz).
The salinity of ice increases the temperaturce dependence of the elastic modulus,
in this case the decrease of the elastic modulus of salty ice compared with pure

ice is a function of the liguid content in the form of brine cells,

With frequent repeated loading and unloading, the elastic mcdulus

of ice increases with the number of ioadings (Pinegin, 1927; Kartashkin, 1947},

and the rate of increcase of the modulus decrecases as the number of loadings 18

incrcased {table 4).




The elastic modulus of ice depends essentially on the density of
the ice and decreases witk decreasing density, e¢.g., Nakaya's (1958) data
show the elastic modulus of ice of density 0.910-0. 914 to be 90 x 103 kg/cmz,
while ice of density 0. 900 has an elastic modulus of only (70-80) x 103 kg/cm3
and ice of density 0, 700 a modulus of 4C x 103 kg/cmz.

Generalizing the results of the investigations, Veinberg (1940)
considered the elastic modulus of ice to be (70-80) x 103 kg/cmz. Later,
Kartashkin (1947), on t! - basis of numerous oxperiments, established that the
elastic modulus in compression, tension and flexure at temperatures frem -5°

3 2

to -16°C is, on an average, 40 x 10° kg/cm®, At the same time, Berdennikov

(1948), having determined the modulus by the acoustic method considered it to

be 90 x 10° lq;/cm2 for monolithic ice.

Analyzing these recommended values for the elastic modulus of ice
and also kecping in mind the results of experimental determinatiuns reporicd

above (in tables 1 atd 2), we came to the following conclusions:

1. The elastic modulus of ice is, to a certain extent, indetermin-
able, because it is very difficult to distinguish the purely elastic diformation
of ice.

Elastic deformations are those deformations of a body which
disappear after the forces which caused the deformation have been removed,
i.e., they are reversible deformations. The theory of clasticity contends that
the deformation occurs at the moment the load is applied and disappears com-
pletely when the load is removed. However, the elastic aftereffect is strongly
manifested in ice and the reversible part of the deformation does ot occur
immediately after the application of load, but increases over a certain period
of time., Correcspondingly, when the load is removed that part of the deforma-
tion docs not disappcar immediately. Thereforc, the magnitude of the elastic
(reversible) deformation of ice is a function (in contrast to the deformation of
clastic bodies) of the duration of loading. Correspondingly, the clastic modulus
of ice, which characterizes the relationship betwaen the magnituds of the dofor-

mation and the lcad, will also be a function of time

2. If by clastic deformation of ice we mean only that part of the
reversible deformation which occurs instantancously (at the speed of sound) at

the moment the load is applied, the clastic modulus should be determined only
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by dynamic methods of investigation. In such a case, the most reliable value
of the elasti¢c modulus of ice will be E = 90, 000 kg/cmz. It is recommended
that this value be used in calculating the elastic deformation of ice under
dynamic loading.

3. When the loading effect is quite prolonged, som-.times it is ex-
pedient to take the value of the reversible deformation, which occurs duzing
the first seconds after the load is applied and which is a more realistically per-
ceptible value, as the initial elastic deformation. For calculations of the value
of such deformation in compression, tension or flexure, the value E ° 40, 000
kg/cmz may be taken as the elastic modulus of ice and in this case one should
consider the above-mentioned relationship of this value to the stresses and
other factors,

THE SHEAR MODULUS

Vg e e ‘ ; Ur‘.ﬂ(

The shear modulus characterizes the resistance of ice to shearing

SN

strain.

If an elementary cube is removed from a mass of deformable ice,
its angular strain y , in agreement with the theory of elasticity, may be ex-
pressed by the formula:
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where 1 is the tangential stress and G the shear modulus.

As in the case of the elastic modulus, static and dynamic methods
are used to determine the shear modulus. The most frequently used static

method consists in testing cylindrical or prismatic ice samples in torsion,

:
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since in this case conditions are created for purce shear.

Table 5 shows some results of experiments for determining the
shear modulus of ice. The reasons for the considerabie discrepancies in the
valucs obtained arc basically the same as those which arise in determining the

elastic modulus.

By analogy with the recommended values of the elastic modulus,

we propose the following values be accepted for the shear modulus of ice:
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a) for calculating the elastic deformation during dynamic loading,
G ~ (30-34) x 102 kg/cm?;

b) for calculating the initial deformation during prelonged loading
(deformation occurring during the first few seconds of application of load),
G = 15 x 10% kg/cm®.

POISSON'S RATIO

The coefficient of transverse deformation, or Poisson's ratio, is
the ratio of the transverse deformation to the longitudinal deformation of a
sample when compressive (or tensile) forces are applied to the sample and

when the dimensions of the sample may change freely in transverse directions.

In the case of elastic deformation, Poisson's ratio iz vcnnectid

with the elastic modulus and the shear modulus by the following relation.

(4)

V. N. Pinegin (1927) has made the only direct measurements of
Poisson's ratio for ice. Veinberg (1940), on the basis of an analysis of the re-
sults of thesc measurements and on the basis of a comparison of the propaga=-
tion velocities of longitudinal and transverse vibrations in ice and also by a
comparison of the elastic and shear moduli values drawn from the data of varivus
investigations, established that the value of the Poisson ratio closest to reality
isp=0.36 Lo.13.

The considerable variations of the possible values of Poisson's ratio
may be explained in part by the fact that the clastic deformation of ice takes
place in conjunction with plastic deformation and thatit is difficult to distinguish
purzly elastic deformation. The plastic deformation is characterized by a
change in the form of the ice sample without a change of its volume, thus Pois-
son's ratio for pure plastic deformation1s 0.5. Consequently, when the load
is increased, when the plastic deformations appsar more rapidly, Poisson's
ratio will increcase to a certain extent. Further, the anisotropy of ice also

affects the value of Poisson's ratio,
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B. D. Kartashkin (1947) considers that Poisson's ratio, on an
average, is 0.34 for ice in the temperature range -5°C to -16°C. He bases
his value on his experimental determinations of the value of the elastic and

-shcar moduli,
B. A. Savel'ev (1953) recommends that the value 0. 36 be taken

for Poisson's ratio in calculations.
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CHAPTER 1V

THE CREEP OF ICE_

Creep is the term used to define slow and steadily increasing de<
formation of a material under the influence of constant forces or stresses.
Creep deformatioa in ice is irreversible (plastic) and is often regarded as
slow flow,

The creep process is associated with continuous changes of form
without change of volume and occurs only in presence of shear stresses, be-
cause only densification occurs under uniform hydrostatic compression,

Therefore, the basic laws of creep are given first for the case of pure shear.

CREEF IN PURE SHEAR

Figure 14 shows characteristic creep curves of polyrrystalline

ice. In all cases, elastic deformation y takes place at the moment the

clastic

shearing force is applied and creep deformation y begins; in the initial

creep
period the creep rate gradually decreases to a value which is a function of

the value of the shear stresses,

In the case of small stresses a constant rate of creep is subscquently
established, i.c., the stage of steady-state creep which may continue for an
indefinite period of time (providing, of course, that the stresses, temperature
and conditions of deformation arc constant and lie within certain limits where
the change in structure and orientation of the ice crystals may be neglected).
When the stresses increase, the rate of steady creep increases and, correspon-
dingly, possibilities arise for a more rapid chaige of the ice structure, which,
in turn, may change the rate of deformation. Therefore, when the stresses
increase, the stage of steady creep becomes limited in tirne and passes into the
stage of accelerating creep. The greater the stress, the shorter the time inter-
val of steady creep and the sooner accelerating creep begins. Finally, when the
stresses exceed a certain limit, the distinct segment of steady-state creep dis-
appears,

In this case, after a smooth decrease of the erceep rate during the in-

itial period to 2 minimum vclocity, the creep rate begins to increase gradually,
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becoming progressive {low, and this scts in the more rapidly the greater the
stress,

One.may judge the validity of the general laws of ice creep given
above by the experimental creep curves shown in figure 15, obtained from
long-term experiments on the torsion of cylindrical ice samples (Voitkovskii,
1957). Hollow ice cylinders 800 mm long, with an outer diameter of 120 mm
and an inner-diameter of 78 mm, consisting of artificially frozen polycrystalline
ice were used in the experiments. In torsion the stresses were quite uniform
in all the cross sections of the tubes, which permitted us to calculate the.mag-
nitude of the relative shear deformation and to cstablish the quantitative re-
lationship between the magnitude and rate of shear and the value of the tangen=-
tial stresses on thc basis of the angular strain of the tubes. The experiments
were conducted at a constant temperature and over a sufficiently long pozind
of time. As is cvident, with stresses less than 2 kg/cm2 in all cases uu 3p~
proximately constant creep rate was established after 50-100 hours following
the application of load. Individual experiments lasted up to 5, 000 hours and
even after such a long time interval there was no tendency toward an increasc
of the creep rate.

With a stress of 2 kg/cmz, a constant creep rate was established
after 70 hours, but after 200 hours (at a temperature of -1, 8° C) the creep
rate began to increase gradually. /Yitha stress of 3 kg/cmz there was no
clearly defined straight-line segmert. During the initial 30 hours, the creep

rate gradually decreased and then began to increase.

For convenience in some of the conclusions which follow, the author
has uscd the term "the limit of prolonged creep* or Tp to indicate the stress
above which prolonged creep at a constant rate is no longer possible. [In pag-
sing, it should be mentioned that this limit is somewhat arbitrary, since there
is no clear stress limit to define the conditions which would permit prolonged
stcady-state creep, on the one band, and transition to the stage of accelerating
creep without the stage of steady-state creep, on the other. A quite prolonged
stage of steady-state creep, which then became accelerating creep, wan obser-

ved in a certain range of stresses. Furthermore, even in absence of the steady
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creep stage, with a transition from the initial stage of decelerating crecep to the
'stage of progressive flow (characterized in figure 14 by 2 bend in the curve 74),
there was a segment wherxe the creep rate changed comparatively little and

during short-term experiments this is sometimes erroneously assumed to be
steady creep.

In this connection, it has been proposed that the limit of prolonged
creep should be the stress at which there is a clearly defined stage of steady
creep lasting at least as long as the initial stage, namely, the st2ge of decelera-
ting creep (of the order of 100 hours), i.e., when the tendency toward an in-
crease of the creep rate may not appear sooner than 200 hours after the begin-

ning of the deformation (with constant stresses and temperature).

According to my experimental data, the limit of prelenged creep
T_ of ice is as follows: approximately 1. 6 kg/cm2 at -1.2°C { Voitkovskii, 195:;,
approx. 2 kg/cm2 at -1.8°C (sce the creep curve for 7 = 2 kg/cm2 in fig. 15}
and 3 lt:g/cm2 at -4°C (sce fig. 16).

Figure 16 shows the character of the change in the rate of stcady
creep as a function of the stress value. The shear-rate values taken here as the
basia for the experimental works of the author on the torsion of ice cylinders
with a stepwise increase of stresses are as follows: for curve 1, values taken
from an earlier published work (Voitkovskii, 1957); for curve 2, the values from
table 6 (ice cylinder No. 53). In figure 16a, where the experimental data arc
plotted against the corresponding valucs of tangential stresses, it ig evident
that the rate of shear is small when the stressces are small. When tho stresses
incrcase, the ratc of shear also incicases, at first smoothly and then quite
abruptly. When these values are plotted on a double logarithmic scale {fig. 16b),
the points lic fairly well along straight lines. This means that the relationship
between the steady rate of creep Yoo and the valuc of the tangential stress

with constant temperature may be defined by the cquation

Yo ° kef (5)
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where korand n are constant factors (in the given case, n = 2-2. 2; in other
experiments by Voitkovskii the n-value for ice of random. structure varied
from 1.6 to 2.2).

Gerrard, Perutz and Roch (1952) first proposed an equation of
this type for ice on the basis of measurements of the vertic~! distribution of
flow velocities in a glacier. They used the following values for the constants:
n<15 and kG = 10-8. where the stress is measured in bars and the rate of
shear y in seconds.

Glen {1952, 1955)used a similar equation. He eltll;lilhed that in
the case of unilateral compression of cylindrical samples of fine-grained poly-
crystalline ice, the ratio of the minimum strain rate ¢ cbscrved during the
experiment and the stress value ¢ (within the limits 1-10 kg,’cmz) is expressod
by the formula

€ = ko {0}
where n = 3, 2-4,

Glen's values of n are frequently cited these days in glaciological
literature, but one must remember that they are toe high to be representative
of the prolonged steady creep of ice. In most of Glen’s experiments the stres-
scs exceeded the limit of prolonged creep and there was no stage of steady
creep, while Glen comparcd minimum rates of deformation without considera-
tion of the character of the creep curves.

For small stresses, the minimum rate corrcsponds to the rate of
steady creep, but {or stresses exceeding the limit of prolonged creep it merely
characterizes the transition from the decelerating creep in the initial period
of stress to progressive flow. Therafore, it is doubtful whether the laws of
change of the minimum creep rate would remain identical *n both cases. One
can sce this b; examining the logarithmic relationship (fig. 16) between the
rate of shear and the stresses, where one may sce that the straight lines tend
to bend upward at stresses ncar the limit or prolonged creep, which indicates

an increasec of the n-value at thesa stresscs. This also follows from a
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comparison of the expcrimental creep curves given iu figure 15. For example,
5

a comparison of the rate of steady creep when 1 1.0 kg/cmZ (y =L5x10"
1/br) with a minimum creep rate when T = 3 kg/cm? (y = 50 x 10™° 1/hr) will
show that the minimum shear rate-increased more than 30-fold with a 3-fold
increase of stress, i.e., approximately proportional to the cube of the stress,

which corresponds to the n-value determined by Glen.

When temperature is taken into consideration, tue relationship ke-
tween the steady rate of creep of polycrystalline ice in pure shear and the

value of the tangential stresses is defined by the equation (Voitkovskii, 1957)

. - K n
Yoo ~ e (7

where 0 is the temperature of the ice{in °C without the minus sighy; Kand n
are factors dependent upon the ice structure (for ice of random structuie,
nZ1.6-2.2 and K = (1. 6-4) x 10° * degree/kg" * hr.

This latter cquation is obtained from the relationship between the
strain rate and the temperature, :f the y_ value from formuia (5) is substi-

tuted for y o and if K= (1 + Goﬁo'

The increase of the deformation-value during the creep process,
with consideratior of the initial stagc may be expressed by the empirical for-
mula (Voitkovskii, 1957)

—
{(1+a t)m

Y~ Yelastic T Yo ¥ Y0 % 1-

(8}
where y  is the total deformation after any tine interval t {in hours) following
the application of forces (the beginning of the effect of shear stresses); y clastic
is the clastic deformation; t is the time from the moment of application of load
in hours; to.a, m arc empirical coeffictents (in the described experiments they

have the following values: t = 30-100 hours; a = 0.5; ;m = 0, 5-1.0).

Ir this formula the total deformation is expressed as the sum of

the clastic and creep deformations and the creep deformation is arbitrarily
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divided into two componenta: steady creep (the second term) and trangient
creep (the third term). Figure 17 depicts the division of the total deformation
into the indicated componants. The creep rate in the initial period after
loading may be expressed as the time derivative of equation (8)

lmto

1+ )m+r 9)

(1 +at

For the case where the shear siressss oxceed the limit of pro-
longed creep, thus far we have not been able to establish the quantitative rew
lationship between the creep rate, the stress value and time becausc under
such circumstancos the creep rate is variable and may change within very
broad limits depending on the conditions of deformation, the structure of the
ice and other factors,
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In a number of cases it is desirable to know the time dependence
of the shear strongth of the ice (resistance of the ice to shenr) with a given
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rate of deformation. Thus far, no direct measuromants have been mede ¢

the resistance with small strain rates which do not cause destruction of the ice
However, one may get some idea of the nature of the change of resistance by
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analyzing the creep curves, The laws of the rate of ciiange of creep of e
with time and various constant stresses, based on the experimental curves
of creep (sce fig. 15}, are of the form represented in figure 18a, If a horizon-
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tal line corrosponding to a spucific creep rate (c. g., y'4) is drawn across thus
schome, the v-valuus at the points of interscction of this curve with the ¢urves
Yt 2 const - f{t) may, undey certain assumptions, be regarded us the valuos
of the roaistance at a constant rate of shear y ., If thene rosistince valuos
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ares pioited against the corrosponding times (fig. 18b), one will get the curves

L

of the change in magnitude of the resistance of fce with time and a constant rate

M

of deformation,

gl
N

As is ovident from this scheme, the change of the shear strength
(rosistance) value is a function of the given rate of deformation, Witk a small
rate of shear, the resistance will Sncrease smoothly to a certain value which
may be determined from equation (7), after which it will remain constant, If
the shear rate corresponds to the steady-state crosp rate with a stress close

to the limit of prolongad creoep rp, after an interval of constant resistance




it may decrease siightly in connection with the gradual change of ice structure.
When the shear rates =xceed the possible rate of prolonged steady creep, the
value of the resistance after attainment of the maximum value will gradually
decrease to a value close to the limit of prolonged creep.

THE INFLUENCE OF TEMPERATURE

The creep rate increases with increasing temperature. This rela-
tionship is especially strong at a temperature close to 0°C. On the basis of
experimental data, Royen (1922) described the relationship between the value of

the plastic deformation of ice (in compression) and temperature by the empirical
formula

i

(10)
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wherc @ is the temperature of the ice without the minus sign and B is a conatant
which differs in each individual case.
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Experiments on the flexurc of ice beams and the torsion of ice
cylinders (Voitkovskii, 1956, 1957) have shown that the change in the valuc

of the rate of steady creep with given conditions of deformation (stresses) as
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a function of temperatures within the range -1°C to -40°C is expressed by an
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empirical forsula analogous to Royen's (10)
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where Y‘o is the experimentally determined rate of steady creep at any tefme

perature @ ; \}0 is the zate of steady creep at any temperature 0,

This formula is acceptable for cases of pure shear as well as for
other types of deiormation (compression, tension, flexure, deformation with

a complex state of stress), provided therc is a stage of steady-state creep
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and that the stress values remain the same at all points with a change of tem-

perature, i.e., provided a change of tumperature does not cause a re~distribu-

¥

tion of the internal stresses.

Figure 19 siiows the results of one of the experiments on the in-

fluence of tempervature. The experim 2nt consisted in the fullowing: Weights
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were placed on a 10 x 10 x 120 crm beam of ice of random structure (the dia-
gram of the apparatus and the loading of the beams is shown in fig. 9), after
which the sag values were measured systematically, which made it possible to
determine the rate of sag of the beam. The temperature in the room where the
experiment was conducted was kept approximately constant during the time
rcquired to establish a constant sag rate, after which it was changed and the
steady rate of sag was again determined. The temperature was varied from
-1°C to -40°C. In figure 19, the experimentally determined rates of sag of

the beam at the corresponding temperatures are indicated by the circles, As
can be seen, within this temperature range these circles correspond satisfac-

torily to the curve which depicts graphically the relationship between the creep

rate and the temperature, in agreement with formula (11), if we assume that
Yo T 4x107 cm/hr at -3.5°G (0 2 3.5).

The examined relationship between the rate of stecady creep aud
the temperature may be employed to determine the influence of temperature on
plastic deformation after a specified time interval during the initial period
after application of load, as follows from an analysis of formula (8). In this
cade it should be kept in mind that this can be accepted fully only when the
stresses do not exceed the limit of prolonged creep. If the stresaes arc largo,
however, the temperature relationship may be more complex, since the very
limit of prolonged creep is a function of temperature; furthermore, the creed
rate, as indicated above, is very variable under these conditions and depends

on many factors,

Some investigators have proposed other cquations for the relation-
ship between the creep rate of ice and temperature, but these equations have
not been properly verified by experimental data. For example, Glen (i955)

accepted the equation

(12)

az an cxprossion of the relationship between the compressive strain rute ¢
and the absolute ice temperature T. Here A is a constant, & the gas constant

and Q the activation encrgy (a heat of activation).
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Earlier, A. R. Shul'man (1948) declared it possible to use such
an equation to express the relationship between the viscosity of ice and tem-
perature. Later, Jellinek and Brill (1956) used a similar equation. However,
Voitkovskii's experimental data indicate that the above equaticn (12) does not

ceflect the actual abrupt increase of creep velocity with temperature above

-5°C to -3°C; therefore, we do not recommend its use.

CREEP UNDER THE SIMULTANEOUS INFLUENCE OF
X

STRE A

Uniform hydrostatic pressure does not exert a substantial influence
on the character and the rate of creep. Rigsby (1958), in conducting experiments
on the shearing of ice crystals at pressures up to 366 aiin, established that the
rate of shear deformation is practically independent of pressure if the difference
between the ice temperature and the melting point (which varies 31 a functicn: of
pressure} remains constant. If the temperature of the deforining 1ce rematue
constant, the shear strain rate will increase somewhat with ipcreasing pressure,
but this increase becomes substantial only at quite considerable pressures. Feor
example, at a pressure of 306 atm, the shear rate approximately doubled. Thua,
for the most part hydrostatic pressure is expresscd merely as follows: it re-
duces the melting point of ice and its influence on the creep rate is equal to the

effect of an actual increase of ice tamperature during the deformation of the ice

Irregular or unilateral pressure, as distinct trom hydrostatie, has
a substantial influence on the creep rate. To arrive at a quantitative estimate
of its influence, I conducted long -term experiments on the simultancous torsion
and longitudinal compression of hollow ice cylinders consisting of ice having
randomly oriented crystale. During the experiment, normal and tangential
stresses, distributed quite uniformly and identical 1n magnitude, were created
in all cross sections of the ice cylinder. This made 1t casy to determine the re-
lative angular and longitudinal strains. The values of the torque and longitudinal
force were chosen such that the influence of normal stresses on crecep could be

traced for given constant values of the shear stresses.

In all, six ice cylinders were tested. Various cwnbinations of the

simultaneous effect of normal and tangential stresses were created for cach




cylinder (normal from 0-5 kg/cmz, tangential from 0, 75-2.5 kg/cmz). Each
stage of loading was continued for at least 200 hours, so that the rate of steady
creep could be determined.
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Figure 20 shows the order of magnitude of the change in the value
of the stresses and the character of the creep curve for one of the experiments.
The results of the remaining experiments are given in table 6. As can be seen
from figure 20, a constant rate of creep was established for all combinations
of stresses except the case where the limit of prolonged creer was exceeded.

In this latter case, the rate of shear did not depend solely on the value of the

tangential stresses but also on the value of the normal stresses acting in the
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shear plane and increased as the normal stresses increased. Similarly, the
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rate of longitudinal compression at a constant compressive stress increased as

2

the tangential strésses increased in the planes perpendicular to the direction

Hal

of compression. Thus, the steady rate of creep in the compiex stressed state

ved to

Al
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Analysis of the experimental data shows that the steady-stale creep
of polycrystalline ice in the complex stressed state may be expressed with the
aid of equations of the theory of plastic flow {Sokolovskii, 1950), assuming that
the value of the shear strain rate of ice L is a specific function of the valuc of
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Here it is assumed that the stressed state at any point of the body is charac-
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For the case of pure shear, when L= §y and S T 1, this relation-

ship, in agreement with eq. (7), should appear as follows
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L: s" (14)

Proceeding from the generally accepted hypothesis of proportion-
ality of the principal shear rates and the principal tangential stresses, the
ratio of the deviator of the strain rates Di to the deviator of the stresscs D«
should be proportional to the ratio of the value of the shear strain rates to the
value of the tangential stresses:

L
1y

D.
€
B,

Substituting the L-value from (14) in this equation, we get the
generalized relationship between the rate of steady creep of ice in the com-

plex stress state and the temperature and stresses in the form:
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Table 6 gives the actual values of the relative increase of the shear
rate due to normal stresses and also shows the values calculated on the basis
of formulas (16). A comparison of these figures shows the agrcement of the
given experimental proposals concerning the generalized relationship between

the creep rate and the stresses and temperature.

Figure 21 shows graphically the results of determining the steady
rate of shear y ,  for cylinder 6, plotted on a double logarithmic grid against
corresponding values of the rate of change of tangential stresses, The dashed
line here characterizes the relationship between the rate of shear and the value
of the tangential stresses in purc shear, while the tangent of the slope angle of
this line characterizes the magnitude of the coefficient n in formula (7}, The
points corresponding to shcar rates with identical values of tangential stress
but with different values of normal stress are connected by solid lines. The
points lie along straight lines, the tangents of the slope angle ol these lHues are
approximately a unit smaller than the tangent of the slope angle of the dasied
line. This means that the rate of shear and the rate of change of stresses with

constant tangential stresses in the shear plane arc related by a power function

of the type \'rw s aSn-l, corresponding to formula (16).

Employing relationship (16), one may calculate the rate of steady
crcep of ice with different types of deformation: tension, flexure, compresgsion,
and the more complex types of deformation. Then, by comparing the aclually
observed rates of creep with the corresponding calculation formulas, one may
determine K and n, which characterize ice creep. Thus, on the basis of an-
alytical calculations of the sag rate of ice beams, proceeding from the relation-
ship (16) and the experimental data on the bending of beams, I found the following
values for ice of random structure: n = 1.8 and K = 2, 3-2,5 cmzn. dcgrce/kgn. hr
(Voitkovskii, 1957), which fully corresponds to the values of these coefficients

in pure shear. This is another indication of the applicability of eqs. (16).

As experiments have shown, the basic featurer of the laws of the
creep of polycrystalline ice 1n a complex stressed state are the same as thase
described above for pure shear {sce fig. 14), except that the hmit of prolonged
creep in this case corresponds to a value of tangential stresses which, with

some approximation, may be regarded as the maximum shear stress. One may




assume that the calculated cocfficients K and n, characterizing the creep rate

and the limit of prolonged creep, are the same as in the case of pure shear¥,

Here we should emphasize, as we did in describing creep in pure
shear, that the proposed gencralized relationship {i&) is completely valid only
for cases where the stage of steady-state creep is observed. Quantitative laws
have not yet been established for the change of the rate of deformation during

the stage of accelerating creep.

The change in the magnitude of ice deformation during the initial
period of creep after the application of load may be calculated by an empirical
formula similar to formula (8), substituting in it the steady-state creepina
given stress state calculated on the basis of (16) in place of y . For examrle,

E o ‘:'C

£ .
AVa wa 4

asc of unilateral coipressiva {ur lension}, a change i~ tne value -t the

relative compressive (or tensile) strain is expressed by the formula

[

e 3¢ ¢ Usres)

{taking n = 2 and m = 1),

Sometimes Royen's (1922) empirical formula
co W us)
T+ 0

is still nsed to calculate the value of ice deformation in compression and the

thermal stresses in ice. In Royen's formula ¢ is the relative compressive

* l'agsume that the normal stresses and especially hydrostatic pressure
may raise the limit of prolonged creep of ice somewhat, however, this has not
yet been confirmed experimentally.
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strain and ¢ < (6-9) x 10‘4. However, Royen's formula has a number of sub-

stantial defccts, First, it assumes a linear relationship between strain and
stresses, while the strain actually increases approximately in proportion to
the square of the stress. Secondly, according to the formula the strain rate
should decrease continuously, while actually it decreases only during the
initial period and then a constant creep rate is established or accelerating

creep begins. Therefore, we do not rccommend its use in calculations.

VISCOSITY

Most researchers have examined the creep of ice as viscous flow,
with a velocity that can be characterized by the viscosity coefficient. There-

fore, the study of the creep of ice usually amounts to a determination of the
viscosity coefficient.

The coefficient of viscosity characterizes the internal friction
which appears during the relalive movement of the adjacent isyere ot a Lidy
and which depends on the forces of adhesion between the molecules. It may be
examined as the resistance of the body at a given moment of its deformation
per unit surface of the shear layer and per unit angular velocity of the shear

{Veinberg, 1940). The coefficient of viscosity is mcasured in poises:

1 poise = 1 dme. sec = 0. OOIOL& v;t. * sec

cm cm

Results of determinations of the viscosity coefficient can be found
in the works of B, P, Yeinberg (1906), Deeley (1908), Lagally (1930), P. P.
Kobeko (1946), V. V. Lavrov (1948), A. R. Shul'man (1948), S. K. Khanina
(1949) and others. The data obtained are so contradictory (individual values
of the coefficient of viscosity for ice vary from 1010 to 1015 poise, i.e., they
may differ by a factor of 100, 000), that they are not coaducive to establishing
a definite law of change of the coefficient of viscosity. ‘The discrepancics
have been ascribed chiefly to the influence of the ice structure and the direc-

tion of the defermation with respect to the optic axes of the ice crystals.

Actually, however, the main reason for the large discrepancion

between the determined values of the viscosity coefficient 15 that this coefficient,
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when applied to ice, is not a specific physical constant but is arbitrary,

since it may vary within wide limits depending on the magnitude and dura-

tion of the stresses, in addition to their dependence upon the structure and
orientation of the crystals and the temperatur2. Furthcrmore, crude methodo-
logical errors are commonly made since the above factors are usually

ignored in determining the coefficient of viscosity,

The coefficient of viscesity of ice is usually calculated on the
basis of measurements of the rate of deformation {strain), proceeding rrom
the assumption that ice satisfies Newton's law of viscosity, i.e., that the re-
lationship between the stress values and the rate of strain is linear. The works

of Glen {1952, 1955) were the first to show that ice does not satisfy Newton's
law of viscosity.

The works of a number of investigators, namely, Glen (1952, 1955),
Gerrard, Perutz and Roch (1952), Haefeli (1952), Steinemann {1934}, Voitkov-
skii (1956, 1957) and others have proved decisively that the relationship beivicen
the stress values and the strain rate is not linear and that the coefficient of

viscosity of ice is not a specific physical constant but a variablc dependant
upon many factors.

The relationship between the strain rates and the stresses in ideally

viscous flow (n = 1} can be expressed in general form by the cquation

D, (19)

where n is the coefficient of viscosity.

If the stage of steady creep is examined arbitrarily as viscous
flow, the coefficient of viscosity of ice for this casc, using formulas (16) and
(19), should be

(20)

i.e., it depends on three factors: ice structure, characterized by the coefficionts
K and n, temperature, and the intensity (rate of change) of the tangential
stresses.,




In cases where there is no prolonged stage of steady creep, the
coefficient of viscosity becomes a completely indeterminable value. There-
fore, the coefficient of viscosity of ice may be examined only as aun arbitrary
value characterizing the relationship between the stress values and the creep

rate with given strain conditions at a given moment of time,

CREEP WITH VARIABLE LOADING

When the load is changed, the rate of deformation changes abruptly
and within a certain time after the load is changed (up to 100 hours) the charac-
ter of the change of the deformation and the rate of change are functions of
both the magnitude of the acting stresses and the magnitude of the stresses
before the load was changed, due to the appearance of an elastic aftereffect
(see Chapter II).

If the load on the ice at a specific moment of time 4 is changcd
and the stresses consequently change from T to T, the further behavior of

the deformation may be described by the formula (Voitkovskii, 1956}

Y t R (T‘ll t) + ¥ (Tzr t'tl) -y (Tls t‘tl) » (Zl)

where y N is the magnitude of the deformation {strain) at any time, y Tl' t

is the deformation which would have occurred at time t if the stresses had
not changed (with 1'1); Y (rz, t-tl) is the deformation calculated on the basis
of formula (8) for t-t, with stress T Y (1-1, t-tl) is the same as above with

stress -rl.

Figure 22 shows a scheme for calculating the magnitude of the defor-
mation on the basis of this formula, Here it is assumed that the total defor-
mation at any moment ir time after the change of stress may be expressed
as the sum of two arbitrary values., The first of these is the strain which
would occur at the time of interest to us if the stresses did not change. The
second is the dilference between the calculated strain values for the new z2nd the
old stresses. In the diagram, which shows a casec of the reduction of stresses,

this difference is negative and is shown by the shaded portions.
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The subsiequent changes of stress may be calculated analogously.
In the case of unilateral compression of the ice, with a change of stress from
LA too, (stress o 1 acted during time interval t ), the further change of the
relative compressive strain, in agreement with (17) and (21), is expressed as:

a
1 R LTI SO EEISY
(22)
32
L+ TFaleqg) || -

It should be noted that the values ct the empirical coefficient
to may vary within quite broad limits. In cases of initial loading and an
increase of stresses t, * 30-100 hours, as shown by my experiments, but
when stresses are reduced to < 5-10 hours, aud with repeated increasen~ of
astresscs ¢ - 5-20 hours {Voitkovahii, 1550). Therefore. 3= formuia [D2)
two values of the coefficient to - tOl and tOZ are introduced, which shcuid be

assigned according to the specific conditions of deformation.
If the sign of the stresses changes when the direction of the loading

is reversed, the creep rate usually increases. For example, in my cxperi-
ments (Voitkovskii, 1957), the sag rate of the ice bcams approximately doubled
with the same loading values when the direction of sag was changed. This

can be explained as follows. Usually, the creep of ice is associated with some
breaking of bonds and in a number of cases with the partial destruction of the
crystals in the shear surfaces, thercfore the shear strength of the ice de~

creases in the direction oppoeite the initial direction.

RELAXATION

The term relaxation is used to define the decrease of the resis-
tance of 2 body during its stcady deformation. The laws of relaxation of
stresses in ice have not yet been studied sufficiently. B, P. Veinberyg (1907)
held that the relavation of ¢tresses in ice obeys Shvedov's law, which states

that the stresses decrease exponentially when the strain is constant
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where ° is tke stress at the initial moment; o \ is the elastic limit and
a i the relaxation time.

However, this law is not very applicable to ice, because the
assumpiions a2ccepted initially in deriving the formula are not applicable
for the deformation of ice. The reason for this is ttat the elastic limit of
ice is close to 0, while the relaxation time, which is related to the cocf-
ficient of viscasity, is variable.

Kartasbkin (1947), in analyzing the results of his experiments,
came to the conclusion that the relaxation of stresses can be expressed roughly
by a formula similar to formula (23), but with the {inal value of the stress
after a specified period of relaxation substituted for the elastic limit. How-
ever, this modification of the formula leaves quite a bit to be desired since
usually the final stress value is not known. Furthermorc, the rclaxation

time a remains an indefinite value,

We have used the above-described laws of ice creep and the
general postulations about relaxation to derive a more acceptable relaxa-
tion formula. The postulations about relaxation can be summarized as
follows: the total deformation value at any moment may be examined as the
sum of the zlastic ang plastic deformations, further, during the process of
relaxation the reduction of stresses is due to the gradual reduction of the
clastic deformation and the addition of the plasiic deformation to this same

value, according to the system:

- 48 -
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7 initial Y elastic (t) ty plastic (t) = const  (24)

or

Yclastic Yplastic ~ 0,

where y elastic and y plastic are, correspondingly, the elastic and plastic

deformations at any moment in time t and y and v are the

elastic * plastic
rates of elastic and plastic deformation.

The rate of plastic deformation of ice {creep) is determined by
the intensity of the tangential stresses, thus the condition of relaxation, in

agreement with the above scheme, may be expressed ac a sum of the rates

of changs of elasti,

sy : f e
and niagtic shear strain amounting tc &

Lelastic * Lplastic =0 (25)

The rate of change of elastic shear strain, according to the thecory
of elasticity, is

1 dS§
Letastic ° © ot (26)

where G is the shear modulus.

Iet us assume that the rate of plastic deformation during the relax-
ation process is equal to the creep rate according to {3). Substituting the
value of the shear strain rate L for the value of the rate of angular strain
y in formula (9), we get [with considerativn of (14) and m = 1] the following

values for the rates of change of plastic deformation:

e |
K o i
Lplasuc 1+0 splastic 1 0+ a'.\z (27)

—

Substituting the vaiues of L, .. . and l'plastic in eq. (25), dividing the
variables and integrating, we get
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The last equation is also the equation of relaxation of stresses,
In agreement with the experimental data on the creep rate of ive with varis-
ble loading, the value of the empirical coefficient t should be from 5 to 3u
hours. If the relaxation begins immediately after the initial elastic defor-
mation, the to-value will be of the order of 30 hrs. Howevor, if the ice
cxperiences stresscc and creep deformation before relaxation begins, the
t, value will decrease to 5-10 hours.

For the case of umaxxal compression of ice, assuming G 2 15, 600
kg/cmz; n=2K33x10"7;a30.5; t, ° 10; the relaxation equation will
assume the form

g, ...
initial
14 9:26 t (o )
176 7 initial 140, 5t

(29)

Figure 23 shows the curves of relaxation of siresscs calculated by this for-
mula for the initial stresses 0{ 10, 5 and 3 kg/cmz at -i.6°C. As one can

sce {rom the graph, the character of the relaxation curves corresponds to the
experimental relaxation curves obtained by Kartashkin (see fig. 13). However,
the relaxation formula which we have proposed requires further experimental

verification and refinement,
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THE DEFORMATION OF ICE IN AN INHOMOG:%EOUS
T SIRESSEDSTATE

A homogeneous stressed state in ice is created only in experiments
with unilateral compression or elongation of samples of regulay form ot in
experiments with torsion of samples made of thin-wailed tubes. Experiments
of this type are required to establish the laws of ice creep and to evaluate
these laws quantitatively, In all other cases, after a load has been applied to
a mass of ice or to an ice sample, an inhomogenecous stress is created in

which the inagnitude and direction of the main stresses differ at different points,

The appcarance of an inhomogeneous stressed state during the defor-
mation of ice causes a redistribution of internal stresses, since the laws of
the distribution of stresses differ for initial elastic defermation and for creep.
In the stage of elastic deformation there is a lincar rclationship bewween the
magnitude of the deformation and the stress, while in the ca<e of creen Lhe
magnitude {rate) of deformation increases considerably mo.o iapidly than the
stress. Rapid plastic deformation can occur in places where higher shear
stresses develop during initial elastic deformation, but since the deformations
are continuous this will be prevented to a certain extent by the more slowly
deforming (less stressed) adjacent sectors. To summarize, the stresses in
the more stressed portions will decrease in part (relax) due to the increase of

stresses in the nearest less stressed portions.

An example of the redistribution of stresses for the case of the bend-

ing of an ice beam (Voitkovskii, 1957) ie illustrated in figure 24. The dashed

line here shows the distribution of stresses in the cross section of a beam at
the initial moment after application of load (during elastic deformation). The
solid line shows the distribution of these same stresses during steady-state
creep. The maximum stresses at the upper and lower surface of the beam

decreased, while the stresses in the middle part increased.

The rate of redistribution of internal stresses depends on the mag-
nitude and the inhomogencity of the initial shear stresses in the deforming

mass of ice. The more intense the shear stresses are, the more rapid will
be the plastic deformation and the more rapid can be the relaxation of stresses,

An especially intensive redistribution of stresses occurs in cases where shear
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stresses uxTeeding the limit of prolcaged creep appear at the initial moment
after application of load, since conditions are created for progressive flow

at points of increased stress. Shear stresses exceeding the [imit of prolonged
creep may be preserved only during a [imited time pericd. Under such
stresses, the deftrmakle volurme may Xsintegrate as a result of accelerating
czeep or the large stresses decrease due to their redistribution.

The redistribution of internal stresses causes & reduction of the
rate of plastic deformmation of the loaded sample or of the mass of ice 2s 3
whols. Toerefore, in the cate of ar inhomoageseous stressed 2tate, the initial,
graduallyedecreasing transient stage of creep may be very prolonged. This

may be seen in the case of the insertion of rizid dies into ice. For example,

according to the experiments carried out by Votiakov in 1958 in the Laboratery
of Soil Mechanics of the Northeastern Section cf the Inatitute of Permafrost,

Academs of Sciances of the USER® the

P AL Senoe -~
SOLS UL SNSST S .

gradually decreased over appsoximately I, 000 hours and only then: wis a con-
stant rate of insertion established (fig. 25). Here, tke period of time ocufore
the establishment of a constant rate of deformation was [0«20 times loager
than in the: case of pire shear.

In examining the problerms of the redistrmbution of interral stresses
in a deformable mass of ice, one rmueat alwayy strictly distinguish between the
shear siresses and the stresses cof hydrostatic compression. The redistridu=
tion: of internal stresses ts due to processes of creep and relaxalion, whick
may exist only in predence of shear stresses and iz practice is independent
of the stresses of kydrostatic compression. Therefore, the presence of large
and irregulaciy distributed normal stresses do not in themaselves indicate the
possibikity of a redistriin.tion of streases. For axample, there can &e no re-
distribution of inte_4al stresses under the middle part of a large heavily loaded
die, despite the great stresses, since such ige will be compressed hydrostatz-
cally. The ma:n regicc of redistribution of stredses will be Lue areas arocad

the edges of the die where greater shear siresses appear.

. takoratorna mekhanile: gruntov Severv~Vostechnogo Ctdelenna
Instisuts Merzlotovedeniza Akaderm: Naak SSSE.




THE INFLUENGCE OF ICE STRUCTURE ON ICE CREEP

Ice crystals have sharply defined mechanical anisotropy. There=~
fore, all the above~indicated quantitative relaiionships and creep character=
istics are fully applicable only to the deformation of pelycrystalline ice with
randomly oriented crystals in volumes larger than the dimensione of the
individual crystals, when ice imnay bc regarded as a solid isotropic body., For

ice with a clearly defined crystal orientation, the basic creep laws remain

e e o o B o wmomersmn e e

unchanged, however, the creep rate may vary as a function of the direction of

S

the acting shear stresses with respect to the direction of the crystal axes., As
a result, the coefficients n and K, which characterize stcadyestate crcep

[ formulas (7} and (16)], may differ from those previously indicated, mostly
they will be larger, This may be explained as follows: for oriented structure,

in individual cases there is an increased possibility of the deformation of ics

without disintegration of its individual crystals, for example, when the ciizrr

FE | ey

planes coincide with the basal planes of the crystals or with the contacte between

crystals. In such cases, the internal resistance to deformation may be smal-
ler than in the case of the deformation of ice of random structure and corre e

pondingly the crecep rate may be greater. In our experiments on the torsion of

&

Iy %
L
e

ice cylinders and the bending of ice beams with specific orientation cf the

e B
1

crystals (Voitkovskii, 1957), the nevalue in individual cases reached 2. 4 and
the Kevalue 9 x 162,

The influence of ice structure is expressed particularly strongly
in the casc of shear stresses which exceed the limit of prolonged creep, when

there is accelerating creep.




CHAPTER V

THE ULTIMATE STRENGTH OF ICE

The ultimate strength or the breaking point of any material is the
stress at which the material ruptures. For ice this magnitude is conditional
to a certain degree, since the rupture of ice is due not only to the attainment
of a certain critical stress, but, in view of the considerable role played by
creep phepomena, the beginning of ice rupture and the magnitude of internal
stresses corresponding to this moment depend substantially on the rate of
application of load, the conditions of deformation and other factors. This is
also one of the reasons for the large fluctuations of the ultimate strength values

of ice determined by various investigators.

The uiilmate strength of 1ce usually is defined as the greatest
stress (resistance) in the test sample of ice before its rupture due to "rapid"
loading. The ultimate strength of ice depends on the type of deformation, thus,
there are ultimate strengths i1 compression, tension, flexure and shear, Due

to the specific nature of the mechanical properties of ice, the determinable

values of its ultimate strength are somewhat different in nature and design

than the ordinarily applied ultimate strengths of various materials, The ulti-
mate strength characterizes the ultimate resistance of the material to external
forces and ordinarily is used to determine the possible loads which can be
supported by some structure or structural unit made of the given material,
However, when ice is used as a construction material or as a bearing founda~
tion, the permissible load is determined from the permissible tnagnitude and
rate of plastic deformation of ice under the specific conditions and not by the
magnitude of the permissible stresses, which should be less than the ultimate
strength (Voitkovskii, 1954).

Data on the magnitude of the ultimate strength of ice are required
basically in cases where the problem of combating ice is examined, For
example, such data are required for cxzlculating structures that are subject to

ice action and for determining the possible forces of interaction between the




ice and the structure. The magnitude of ultimate strength characterizes the
force required for the mechanical destruction (disintegration) of the ice.

The crushing strength of ice, Table 7 gives the basic results of

experiments to determine the ultimate strength of ice under unilateral compression
conducted by various investigators. From these data it is evident that the ra-
sistance of the ice varies within broad limits depending on the structure of the

ice, the orientation of the crystals with respect to the direction of coinpression,
the temperature and other factors, One also observes a considerable scatter

of ultimate strength values, even in tests of samples of analogous structure

under identical conditions.

It should be noted that the magnitude of the ultimate strength of ice
depends to a considerable extent on the conditions of deformation, namely, the
dimensions of the test samples and the rate of application of load {or the rate
of deformation), which have received little attention from most investigator-.
Accurding Lo ihe daia of N, A, Tsytovich {see Tsytovich and T mgn, i1937; the
ultimate strength in compression of identical ice samples varied within the

following limits as a function of the rate of increase of load:

Rate of increase of load,
kg/cm . min 20 36 50

Ultimate strength in coms
pression, kg/cm* 60 37 24

K. N. Korzhavin (table 8) noted similar phenomena, He established
that an increase of the rate of deformation leads to a reduction of the ultimate
strength, in which case the influence of the rate of deformasticn is particularly
strong at luw lemperaturzs, and the influence decrcases as the temperature
approaches 0°C. Korzhavin (1951} represents the relationship between the ulti-

mate strength and the rate of relative deiormation S (within the limits 0, 0007~

0. 0417 scc-l) by tiie empirical formula

{200

wherc a is an empirical coefficient (at -3°C, a2 3.1; at 0°c, a = 2. 5).




reee e e N ]

ks

W‘!;!-;H

"

x}’
B
ia
&
k.
»~
[

R e ST E R

Let us note that this type of relationship may exist only with rela-
tively large rates of deformation, since the reverse picture is observed in the
case of small deformation rates: an increase in the deformation rate lezds
to an increase in the resistance (see fig. 18). In compression, an ice sample
often begins to disintegrate before the stresses in it reach the breaking point.
For example, in compression tests of samples of underground ice (L. S.
Khomichevskaia, 1940} it was noted that cracks began to appear in the samples
at stresscs 2-3 times less than the breaking point (ultiniate strength). An ice
sample in which cracks have formed may disintegrate in time without an increase
of stresses, i.e., under the more or less prolonged effect of the same stress
under which the cracks formed, with the following result., The ultimate strength

of ice may decrease substantially under the prolonged effect of loading or a very
low rate of increase of load.

To date not enough study has been devoted to the influence of the
size of the test samples on the magnitude of the ultimate atrongtn. Comparing
the results of tests of 10 cm and 20 cm cubes of ice, K. N. Korzhavin (1940)
noted an increase in the ultimate strength of the large ice samples. However,
this increase is not always observed. For example, Butiagin (1955) asserts
that in experiments carried out under natural conditions of destruction cf an
ice cover, the ultimate strength of various types of deformation of large ice
samples was less than that of the small samples tested.

The ultimatc strength of ice is a function of temperature and in-
crcases as the temperature decreases. This relationship may be expressed by
the empirical formula (Korzhavin, 1940):

¢ = A+ B8, (31)

where 0 is the negative temperature of ice in °c {without the minus sign);

A and B are empirical coefficients (for the case of the crushing of 10 em cubes
of ice at a rate of v = 2 cm/min in the temperature interval 0°C to -10°C.

A= 15and B = 3, 4),

The ultimate strength of ice in compression in the direction of the
crystal axes o is usually greater than it 13 in the direction perpendicular

to the crystal axes ¢ . For example, according to Korzhawvin‘s data (1951)




the ratio o, /o, for the ice cover without conspicuous indications of the

wéakening of the bonds between the crystals at a temperature of 0°c to -3°C
is, on an average, 1. 3-1.5. During the spring thaw, when there is a per-
ceptible weakening of the bonds between the crystals, this ratio increases
and may reach 3. 6.

The strength of a natural ice cover is not uniform vertically. The

ice is strongest in the central part of the cover and weakest in the lower part.

The tensile strength of ice. This depends basically on the same

factors a3 the crushing strength, except that the ultimate tensile strength is

considerably smaller than the crushing strength and varies within smaller
limits (table 9). Furthermore, various inrclusions and structural irregulari-
ties, which may become centers of destruction, have a great influence on the

tensile strength value. In compression an ice sample may permit a further

AN § oM a2 A N !%EMEMGMM

increase of load after cracks have appeared, but in tension the ice sample

usualiy breaks without preliminary crack formation.

The fracture strength of ice is determined by bending ice saraples
or a portion of the ice cover, for example, by bending strips of ice cut frem
the ice cover, the so-called "ice keys" (literally, "piano keys of ice, ' tr. ).
The most probable centers of rupture are the breaks in the tension zone o
the shearing (cleaving) at points of greatest tangential stresses and, corre-
spondingly, the beginning of rupture should be determined by the attainment

of critical tensile stresses or critical shear stresses.

The ultirnate flexurzl strength of ice is usually defined as the maxi-
mum tensile stress in the bending sample of ice before its destruction, cal-
culated on the basis of formulas for a linearly clastic body. In such an approach,

the determinable magnitude of the maximum stress is greater than the actual

stress in the test sample, since during flexural testing of 1ce plastic detorma-
tions appear along with clastic deformations and 1n the case of these plastic
deformations, the distribution of stresses in the flexure sample changes com-
pared with the distribution of stresses in hincar elastic deformation. This

change tends toward a reduction of the maximaem stresses {sce fig  24).

Thus, the determinable ultimate strength1s an arbitrary value to
a certain extent, somewhat greater taan the actual maximum stress in fracture

In our opinion, this can be explained by the following. According to the data




of most investigators, the ultimate flexurai strength of ice (table 10) is
greater than the ultimazte tensile strength, since it is not very likely that 1he
actual tensilec stresses in a flexure sample would increase beyond the uitimate

tensile sirength

The concepts outlined above do not prevent the practical use of the
given ultimate strength values for computing the conditions of ice fracture,
considering that the over-valuation of the str .ies allowed in determining the
cltimate strength will be compensated by a corresponding under-valuation of
the actual stresses compared with the calculated stresses in the cases of in-
terest to us. One need but observe the following. In the calculations one must
proceed not from the value of the actual stresses, but from the calculated

stresses, and regard ice arbitrarily as a linearly elastic body.

The magnitude of the flexural strength of ice depends very subsiya-
tially on the size of the bending samples and the ratc of application of load.
For example, according to the data of I. P. Butiagin (1955}, the ultirna:e
strength of small samples (7 x 7 cm and 10 x 10 ¢r2 in cros3 section and 50 cin
long) on an average is three times greater than the ultimate strength of large
strip samples cut from the ice cover. V. V. Lavrov (1958) attempted to give
a theoretical explanation of the influence of the size of the ice test samples on
the magnitude of the ultimate strength and to prescat corresponding calculation
formulas. Lavrov's theoretical premises arec somewhat debatable, so we have

not given his formulas here.

For exarnple, according to Lavrov's formulas, the ultimate flexural

strength of a sample 4. 5 cm thick and 35 cm long would be 23 kg/cmz. while

it would decrease to 9 kg/cm2 for a sample 34 cm thick and 250 em long.

Similarly, while the ultimate fracture strength of an ice cover 0. 35 cm thick
would be 2} kg/cmz. it would be only about 7 kg/cm2 for an ice cover 1-2 m
thick.

K. N. Korzhavin treated the relationship between the fracture strength
and the rate of loading. According to his data (sce table 10), an increase of the
bending rate from 2 to 20 em/min decrecased the vlumate strength from 9.2

2
to 3.6 kg/ecm”.
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Orlov (1940) noted that the fracture strength of an ice sample in
water is somewhat less than the fracture strength of "'dry" ice. The bending
of ice 'keys' has shown that the strength of an ice cover usually is greater
with bending from above than with bending from below {Neronov, 1946;
Butiagin, 1955).

The higher the temperature of the ice, the smaller its fracture
strength. According to the experimental data of F. F. Orlov (1940), the
ultimate strength of ice decreases approximately 46% with an increase of
temperature from -10°C to -0.5°C.

The shearing strength of ice. Table 1l presents the basic data on

the magnitude of the shearing streagth of ice, based on the information of
various investigators. Obviously, the shearing strength may vary within

broad limits. For the most part, the shearing strength is less than the

o

tensile strength (Veinherg, 1940), on an z2verage about
= 2 N .
(o tensile 1. kg/em”, o shear 5.8 kg/cm

tures in individual cases the shearing strength may be considerably greater

a< 1aif ihe tensiie =ireagth
2). However, at low tempera-
than the tensile strength. The magnitude of the shearing strength, as in the
case of other types of destruction, increases with decreasing temperature and
may change as a function of the ice structure and the direction of shear with
respect to the direction of the crystal axes. Furthermore, as the experifiicuts
of Vialov (1958) have shown, the shear strength of ice is a function of the imag-
nitude of the normal pressure in the shear plane, increasing as the pressure
increases There is also some basis for assuming that the shearing conditions
exert a considerable influence on the magnitude of the shearing ctrength, viz.,
the imanner of conducting the experiment, the size of the sample, the rate of
application of the load or the rate of shecar, et al. However, not enough study

has been devoted to these problems,

The adfreezing (freezing together) strength of 1ce and various sub-

stances is a function of the material, the character of its surface and the tem-
peratuxe. Table 12 shows some values of the maximum adfreczing forces of
ice. From the data it is evident that the adireezing forces increase substan-
tially with dec-casing temperature and with rougnness of the surface The
adfreezing forces also change as a function of the conditions whereby ice freezes

together with another body and thesce are responsibie tor the structure of the
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ice and the direction of the crystal axes at the point of contact. The ad-
freezing forces depend on the rate of increase of load. When the load in-
creases rapidly, brittle fracture results and rupture may pass in part along
the ice and not strictly along the contacts, depending on the material and the
condition of its surface. For example, in experiments on the extraction of
wooden rods (stakes) frozen into ice, Vialov (1956) observed cases where the
destruction was accompanied by a sharp cracking sound and rupture of the ice,
individual pieces of which remained on the extracted rod. The greatest values
of the adfreezing forces were noted in these cases. However, when there was
a prolonged interaction of loads or when the loads were increased slowly, the
rod slipped along the ice. In such cases, the adfreezing forces were consider

ably smaller.

Figure 26 shows a curve of long-term adfreezing strength of ic.
with wooden rods (stakes) frozen into it (Vialov, 1956}, which shcws how the
adfreezing strength varies as a function of the time of activu ivading up ic the
moment the stakes were extracted. When the load was increased rapidly. the
adfreezing forces reached 5 kg/cmz. With lcads that created adhesive forces
of 1 kg/cmz, the rods were pulled out in 8-12 hours, while 1, 000-3, 000 hours
elapied before extraction of the rods with adhesive forces of 0. 5 kg/cmz.

The resistance of ice to iocal crumpling may be considerably

greater than the resistance of ice to crushing. Korzhavin's (1955) data show
that the uitimate local crumpling strength of ice may be 2-2. 5 times greater
than the ultimate strength in general unilateral compression. He proposcs

the following formula for cases of the crumpling of river ice

¢ crumpling i compression 17/ %— (32)

This formula defines the ultimate crumpling strength of ice o ]

crumpling at
a function of the ultimate compressive strength o compressive’ the width of
the floe B and the width of the crumple ar«a b {wc have in mind the crumpling

at the edge of a floe, along its entire vertical face).

When a solid body (a dic) iy inscrted into ice. the magnitude of the

resistance of the ice and the natures of its destruction arc functions of the size
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and shape of the die, the rate of insertion (or the rate of application of load
to the die) and also the siz2 and shape of the volume of ice into which the die
is inserted. Finally, other factors which affect the compressive strength of
the ice, namely, temperaiure, ice structure, et al., also play a role here.
For cxample, Korzhavin (1955) observed that the force required to insert the
die decreases 1.5 to 2-fold if a triangular die with a peak angle of 60° is used
instead of a semi-circular die, other conditions being equal.

In the case of a slow increase of load and prolonged loading, causing
stresscs beiwcath the die which are small compared with the ultimate strength,
tlie die penetrates into the ice smoothly due to the creep of the ice. A rapid
increase of load caucges brittle fracture of the ice with crack formation in a

zone ncar the die.

The strength of river ice decreases considerably dvring the bi cak-

up period (1.5 to 3-fold). The sun's rays and heat cause thc icc to begis to
melt throughout its volume by the time of the spring breakup. First, melting
occurs at the contacts betw- ;n the crystals, where iilms of mineralized
water formed during the freezing process, freezing and subsequently melting
at a low temperature. During the melting of these interlayers, voids having
a lower pressure formed and water could penetrate into themm. As a result,

the ice became cloudy and friablc and became rapidly weaker.

To determine the possible forces of interaction between bridge
supports or various hydrotechnical structures and ice during the spring break-
up period, onc may use the calculated values of ice strength as a function of

the rate of movement of the ice (table 13) proposed by Korzhavin (1955).

The resistance of ice to dynamic loads. Usually the term dynamic

loading is uscd to define loadings during whicn there is a substantial accelera-
tion of the particles of the loaded body or of another body in contact with it,

for example, in the casc of impact or oscillations.

During forced oscillations, causing stresses which vary in sign,
cracks may appear in the ice, gradually grow and cause destruction. Cone
scquently, ultimate strength decreases with an increasing number of cycles

of changing stresses.
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B. D. Kartushkin (1947) noted that in most cases ice beams under
a relatively small static load disintegrated during forced oscillations. The
greatest additional dynamic stress which an ice beam was able to withstand for
a fairly long time (10, 000, 000 cycles) without disintegrating, at a tempera-
ture of -5°C tv -5°C under a siatic load causing a maximum stress of 2.5 ky.g/cmZ
with an ultimate strength of 16 kg/cmz, was approximately 1. 5 kg/cmz. The
smallest additional dynamic stress above which the beams disintegrated almost
insi.antaneously was approximately 2. 75 kg/cmz. Thus, the ultimate strength
decreased 3 to 4-fold during dynamic loading.

mm“mtmmm\‘ !
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The nature of the impact deformation is a function of the active
rate of loading (the impact). A small impact velocity causes only elastic
deformations. When the rate of impact is increased, elasto-plastic deformations
appear and finally brittle fracture. As yet, too little study has been devoted to
problems of the resistance of ice to impact stresses.

SRR

3%
L i

poln e oo ety

AT ] e

Ry

-

T T I e
A NN SN
- n——

4

S N

2 SN BEHETY

7oy

st RS T U ¢ TR
L]
C
3
[

HEHE




[

TABLE 1

Elastic Modulus of Ice, According to Data from the Static Method

Elastic
Type of Tgmp. modulus 2
Investigator | Type of Ice | Loading -C x 103 kg/em Lit.
Bevan, 1824 | Lake Bending -—-- 52 Veinberg, 1940
Fabian, 1877 |Artificial Tension 0 17 "
Koch, 1833 iake Bending -——— 70-90
Trowbridge
and McRea,
1885 Pond Bending 1 41-57 "
Ditto 1" " 3 58-72 "
Ditto " " 5 88-104 "
Ditto " " 7 59-83 "
Hess, 1902 Glacier " 0-5 5-42 Hess, 1902
Koch, 1913 Lake " 6-8 59-68 Koch, 19!2
Koch, 1914 River " 0 RL-117 Koclk, 1G:.3
Matsuyama, o
1920 " ", o.‘,f and £* § 3.9 9 Lintkos, 1957
Ditto . ", ot 2.6 6 »
Ditto " AYY | 3.7 19 "
Pinegin, 1923 |" Bending 5.9 12 Pinegin, 1923
Ditto n " 15. 19 21 u
Pinegin, 1922 (C)Iomprcssion.
1925 " 3 3-37 Pinegin, 1927
Ditto " gomprcssion,
{ 8 48-84 v
Sokolov, 1926 |Monocrystal | Bending 6 27 Sokolov, 1926
Ivanov, K E. {- Bending of 1ce
cover (sheet) --- 44 [-anov, 1946
Shul'man - - -—— -- Shul'man, 1943
Kobeko, 1946 |- - -- -- Kobeko, 1946
Kartashkn, Fluid (loose, '
1943-1945 pourable)} Compression 3.5 31 Kartashkin 1947
Ditto " " 7-8 48-60 "
Ditto " Tension 9 36-55 } "
Ditto v h I8 1e-60 ! .
Ditto Reservorr 6-7 25-46 '
Ditto River " 5.5-8 37-50 :
Ditto River Bending 1.5-21 35-62 |
Ditto Fluid (louse, :
pourable) Bending 1-18 5p 3j-59 ‘
Ditto " Bending 20-27 | 35-75
Ditto " 40 I 73-89 ‘
1

% 0 is the direction of the optic axis of the crystals, { the direction of the
force and [ the length of the sample.
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TABLE [ (CONT'D)

Investigator

Type of ice

Type of
Loading

‘Elastic
Moduius
x 103 kg/cm

J

Voitkovakii,
1954-1958
Jellinek and

Brill, 1956
Ditto

Artificial

Finz-grained
Monocrystal

Tensgion
Tension, axis
at 45° angle to
force

25-65

21-78
49-83

Jellinck and
Brill, 1956
111
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TABLE 1l

The Elastic Modulus of Ice, According to Data of the Dynamic Method

Investigator | Type of ice

Method of
Investigatiorn

Toemp.

Elastic
modulus
x 10 kg/cm

Trowbridge
and McRae,
1885 Artificial

Brockamp
and Mothes, |Alpine-
1929 glaciers

Boyle and
Sproule, 193} Artificial
Ditto "

Ewing, CraryArtificial
and Thorne, jand
1934 Lake

Berdennikov,
1948 Artificial

Nakaya, 1958 |Glacier, den-
sity 0.914

Ditto Glacier, den-
sity 0.90

Ditto Glacicr, den-
sity 0. 70

Longitudinzl
and trunsverse
prism oscilla-
tions

Seismometric

Acoustic

Veinberg,
1940

Brockamp
and Mothes,
1930

Boyie and
Sproule, 1931

Ewing, Crary
and T'nornz,
1934

Berdennikov, 1948

Nakaya, 1958
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TABLE IlI

Variation of the Elastic Modulus of Ice During Bending as a
Function of Load

Beam 1 Beam 2 Beam 3
Range of = g
change of .&' )
load, in T%mperature,kd-?: ~ Li;"“N
ke - e w36 5§

\
~
N

i #
[~ 23]
F

0-12 53 65 65
12-0 . 65 65 53
0-21 . 57 57
21-0 51 51 46
0-30 . 51 37 35
30-0 . 55 32 --
0-40 . 38 37 44
40-0 . 33 34 --
0-40 . 42 40 29
40-0 . 37 37 40

TABLE IV

Variation of the Elastic Modulus with Repeated Loadings
and Unlvadings (Kartashkin, 1947)

; 31 fem?
T%mpcraturc, Elastic modulus E x 10 l.g/cm

Test Type |- C El* EZ E3 Es EZO

Compression . . 42.
Tension . . 48,
" . 43.

Bending . 43.

" I L2 | 4.

¥ [he subscript with the E indicates the number of loadings for which the value
of the clastic modulus was determined.
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The Shear Modulus of Ice

TABLE V

Investigator

Type of ice

Method of
Investigation

Shear
modulus 2
x103 kg/cm

LAt.

Veinberg,
1905

Ditto

Ditto
Ditto

Koch, 1914

Matsuyama,
1920

Brockamp
and Mothes,
1930

Ewing, Crary
and Thorne,
1934

Kartashkin,
1943-1945

Ditto
Ditto

Voitkovskii,
1958

Glacier

Lake

River

Glacier

Artificial

Fluid (loose,
pourable)

River

Artificial,
randosn
structure

Torsion of
cylinder,
O‘Lf

L1}
Torsion of
cylinder

"
Torsion of
prism

Torsion of
gylinder,
1 f

Seismometer

Torsional
vibrations

Torsion of a
cylinder

Torsion of
tubes of
ice

Veinberg,
1906

Koch, ‘914

Veinbery,
1940
Brockamp
and Mothes
1930

Ewing, Crary
and Thorne,
1934

Kartashkin,
1948

1]




TABLE VI

Steady-State Angular Strain Rates for Ice y (1.0'6 1/hr) With Normal
and Shear Stresses Acting Simultaneously (for Tube 1*) at a Tem-
perature of -1. 2°C, for the Remaining Tubes, -4°C)

Stresscs in kg/cm® Tube Number *¥

2 3 4
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According to formula (13) —2“—'“""’
S = //i__— + 12
YTV 3

for sorsion and longitudinal compression of the tube.

y.. are the minimum shear rates in absence of the prolonged stage of
si?:ady creep; Rycpual i8 the actual relative increase of the shear rate due
to normal stresses R 18 the

- , thecoretical
Rictual vy(o =g1°'

same ratio calculated theoreticaliy according to formuia (16) when na 2

Riheoretical = /7
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TABLE Yl

The Ultimate Strength of Ice for Unilateral Compression

Strength, in kg(cn}_z__

Type of Temp. o o ¢
Investigator Ice -°C 1 i Literatr:e
Vasenko, 1899 Artificial 10-18 - - 12-50 Vasenko, 1899
intto River 12-17 20 37-46 | -- v
Bell, 1911 River 0 37-55| 25-54 Komarovskii
Ditto River 8-10 ~- -- 34-78 "
Barnes and
McKay, 1914 " 0 17-40} 16-39 | -- "
Bessonov, 1915 " ——- 10-26 | 29-61 | -~ Bessonov, 1923
Sexgeev, 1921 " “ee -- -- 10-75 | Sergeev,1929
Pinegin, 1923 River, upper
part 0-2 18 21 - Pinegin, 1923
Ditto " 12-15 25 29 - "
Ditto " 31-35 28 38 -- "
Ditto River, middlq
part 0-2 28 36 .= v
Ditto " 12-15 33 33 .- "
Ditto " 31-35 69 76 .- "
Ditto River, lower
part 0- 2 12 18 -- "
Ditto " 12-15 18 20 - "
Ditto " 31-35 32 38 -- u
Arnol'd-Alia- From Gulf 0 22 -- - Arnol‘d-Alia-
blev, 1923-28 of Finland b'ev, 1929
Ditto " } .26 -- .- "
Ditto " 2 35 -- -- "
Ditio " 5 47 - - "
Ditto " 9 56 -- - "
Ditto " 13 52 -- - "
Korzhavin, 1934 River 0 10 30 -- Korzhavin, 1951
Ditto " 0.3 12 22 - "
Ditto " 0.¢& 10 37 -- "
KOVM team, Khomichev-
1936-1937 Underground|0, 1-9 -~ -- 9-32 skaia, 1940
Ditto, con-
taminated
Ditto with ground | 3-7 - - 16-43 "
Ice of ground]
Ditto naled (icing)}| 0-86 -- -- Jo-122 "
Mean value
for upper
Veinberg part 3 29 33 - Vetnberg, 1940
Ditto, for
Ditto lower part 3 23 28 -- -
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TABLE VII (CONT'D)

Investigator

Strength in k
o

Literature

Kartashkin
1943-1945

Ditto

Ditto

Korzhavin,
1938

Ditto

Korzhavin,
1950

Bucdiagin,
1953

Reservoir
Fluid (loose
pourable)

1]

River
”"”

Kartashkin,
1947

Korzhavin,
1952
n

"
Butiagin,
i95%

Remarks:

o, is the ultimate compressive strength in a direction pzre-
pendicular to the crystal axes;

o,, , ditto, for compression in the direction of the crystal

axes;

o , ditto, in cases where there is no clearly defined
crystal orientation in the test sample or where the orienta-

tion is not known.
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TABLE VIIL

2
The Ultimate Compressive Strength of Ice (kg/cm™} as a
Function of the Strain Rate and the Temperature

o
Temperature, - C

Strain rate v
in cm/min#* ' 6 8

* The rate of compression of cubes i0 x 10 x 10 cm3 perpendicular to the
crystal axes.
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TABLE IX

Ultimiate Tensile Strength of Ice

Tgmp. Strcng&b.

Investigator {[Type of ice |« kg/cm Lit.
Vasenko, 1897]|Artificial 4-12 11-i9 Vasenko, 18937
Hess, 1902 Glacier —emew 7 "
Pinegin, 1923 [River, iniddle

part, f 0-2 10 Pinegin, 1923
Ditto " 12-15 12 "
Ditto " 31-35 14 "

River.omiddle
Ditto pari, N { 0-2 11 "
Dittc " 12-15 i5
Ditto " 31-35 18 "

River, lower
Ditto part, A f 0-35 5-8 "
Ditto Ditto, but

cng 0-35 10-13 "

Average valud
Veinberg, 1940 of 235 tests | ---«= 1.1 Veinberg, 1940
Kartashkin Kartashkin

1943-1945 River 3-8 9-12 1947

Fluid (loose, '

Ditto pourable) 3-18 i 10-18 "
i
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TABLE X

Ultimate Bending Streagth of Ice

Investigator Type of ice Temp. -°c Strength, kg/cmz Literatvre

Vasenko, 1897 River 15 25-45 Vasenko, 1897
Ditto Artificial 15 30-42 "
Veinberg, 1912 | River,upper
pt. 6 8.3 Veinberg, 1913
Ditto River, middle
Pt. 13.0 u
Ditto River, lower
pt. 12. 7
Bessonov,
1913-1915 River 11-31 Bessonov, 1923
Sergeev, 1921 River, upper
pt. 11. 4 Sergeev, 1929
Ditto River, middle
Pt- 9- 9 o
Ditto River, lower
14. 4 '
DPinggin, 1022 e id Punegin, 1523
Ditto 33 -
Pedder, 1925-28 5.7-22.1 Pedder, 1929
Basin, 1934 11.8 Korzhavin, 195!
Korzhavin, 1937 | River, strain
rate v=2 cm/
min 9.
Ditto Ditto, v=20
cm/min 3
Orlov, 1940 River 3-
Ditto River, fractur
in water, v f 25 "
Ditto River, {racture
in water, © 14 "
Veinberg, 1940 | River, av.
value . 16 Veinberg, 1940
Troshchinskii, River, flexurc
1942 of ice strips
in water 7.1 Korzhavin, 1951
Shishov, 1938- 1.4-8.3
43 " (av. 4) Shishov, 1947
Ditto, 1942 River 9-13 "
Ditto Raver 10-16
Ditto " 13-20
itto " 18-19
Neronov, 1943 River, flexur
of ice strips®* 2.8-5.6 Neronov, 1946

]

;
E
|
5
|
{
]
f
i

2
.6 "
45 Orlov, 1940

TIOIIEE

P

> ST

LR o
NI

LI S
W e

Lo

TN e e oy
LI AN

LAY

-4

# lce strips, literally pieces in the form of piano keys (tr. note)
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TABLE X (CONT'D)

Investigator

Type of ice

[+

Temp. - C

Strength, kg /cmz

Literature

Kartashkin,
1943-1945

Ditto

Ditto

Ditto

Butiagin, 1953

River

Fluid (loose,
pourable)

"

111

River, flexure
uf ice strips®

3-21

1-3

4-27
40

0

8-24

8-16
12-23
20-24
i.5-5.5
{av. 3.6)

Kartashkin, 1947

Butiagin,
1955

$ ice strips, literally pieces in the form of piano keys {tr. note)




TABLE X!

Ultimate Shearing Strength of Ice

|
i
.'
i
i

Investigator Type of ice Temp. °c Strength, kg/cm2 Literature
River, middle
Pinegin, 1922-23] part, °‘Lt‘ 0-2 6 Pinegin, 1923
Ditto " 12-15 10 "
Ditto " 31-35 i3 "
River, middle
Ditto part, O f 0-2 6 "
Ditto " 12«15 9 "
Ditto " 31-35 12 "
River, lower
Ditto part, OLf 0-23 7-9 "
Ditto ",onf 0-23 6-9 "
Finlayson, Komaievskii,
1927 River 1-24 5-35 1932
Sheikov and Tsytovich and
Tsytovich Artificial 0 9 Sumgin, 1937
Ditto " 0.4 il "
Ditto " 2.9-6.1 27-138 "
Ditto " 10. 1 56 "
Veinberg, Av. value for
1940 111 tests ———- 5.8 Veiuberg, 1940
River (section
of a strip
Butiagin, between holes 1,6-8.3
1956-1957 in the ice) 0 {av. 3.5) Butiagin, 1958
Ditto Ditto, before
breakup of ice] 0 2.2 u
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TABLE XUII

The Adhesion Between Ice and Other Substances

s Hi

Material and ty;2 ° Adhesion 2
Investigator of Surface Temp. - C} force, kg/em”| Literature
Bell, 1711 Concrete with plast- 1] 8-11 Komarovaskii,
ered surface {Non- 1932
ionized) 1.1 13«16 "
: Tsytovich, Wood (pine)} with a Tsytovich and
1930 smooth surface 1 5.2 Sumgin, 1937
;3 Ditto " 5 6.2 "
3
'ﬁi Ditto " 7 11.6 "
3
% Diiiv & 10 13.7 "
gé Ditto " 20 22.0 "
%‘T;’} Ditto e 5-10 1.5 "
it Ditto Concrete with a
) §~\\I smooth surface 5-10 9.8 "
4 Al'tberg, 1948 | Iron 0.085 | 0.14 Al'tberg, 1948
E Ditto " 0.32 0.52 "
5 Ditto " 0.50 0.81 "
E% Ditto " 1. 09 2.95 "
=3
i Ditto Asphalt {biiumen) 0.08 0. 025 "
i
§ Ditto “ 1.09 0.28 "
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TABLE XIlI

Ultimate Strength of River Ice (kg/cmz) During the Period of

The Spring Break-up as a Function of the Rate of Ice Movement
(m/sec) :
Rivers of the North and Siberia [Rivers of the European USSR
Ice mo- Ice mo-
tion Full break-up tion Full-break-up
Type of force 0.5 [T1.0 1.5 0.5 1.0 1.5
; Compression 6.5 5.0 4.5 3.5 2.5 2.0
15 Local crumpling 16.0 13.0 11.5 8.¢ 6.5 5.5
23 Bending 7.5 6.0 5.5 4.0 3.5 3.0
; Shear -- 3«6 -e -- 1.5-3.0} --
if.‘ Tepsion -- 7-9 .- - 2.4 -
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Fig. 1. Schematic diagram of the phase state of witer {the dashed
line is the equilibrium curve of vapor and supercooled

water),
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Curves of the solidification of an aqueous solution of
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Basic directions of the shearing forces with respect to
the basal plane of the crystal,

O-optic axis of the crystal; BPebasal plane; FiFeulecmen-
tary piates; Pe-shearing force; l-direction zf ikc shear
plane coincides with BP; 2-direction of the shearing force
and shear plane is perpendicular to the BP; 3~directicn of
the shearing force coincides with BP, but the shear plane
is perpendicular to the BP,
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time in minutes
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Relative shear
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Shear strain of icc monocrystals at temperature -2. 3°¢,
when the shear plane coi.icides with the basal plane.

l-r1=22kg/c 5.2+ 1219kg/ecm®; 3 - 120,55 kg/em®
4 - 1= 0.45 kg/ecm?2.
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Fig. 5. Tensile utrain of an ice monocrystal at temperature -5°¢c
{tcnsion at an angle of 45% to the crystal axis).
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Curves of the compressive stram of polycrystalline ice
samples, after Glen [14535)

2 .0,02°C; 2. ¢ = 2.6 kg/em®,
26 1kg/cm®, t = «6.7VC;
t = -12. 7°C.

1. ¢ = 6.
t * <0, 02°C; 3.
4. ¢ 6.0 kg/cmi.
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. 7. Curves of the comnpressive strain of ice,
1. ¢ =21 kg/cmzz tz-6.7°C; 2. 0 =16 kg/cmz;
£2-5°C; 3. ¢ =15kg/cm®; t = -6.4°C

[}

2] Lorals
T
e

W
¥
A

e
O

-
<

3

H
1
o
i
H
p v
.
;

/

i ——

i

<

2
|
|

PRENTI

5

o
H

-~

»n

Relative tension

. o
time in hours

Curves of the tensile strain of ice.

. o 5.3 kg/cmz, t2-7°C: ¢ ¢ 24.75 kg/cmz,
t = -7°C.




O W

A}

- e s LW

R I Y A A KA M SN ST )y o e, i s sy

hours

-gg . [ x4 Fadd — '.',:” — 200 '!'l-‘,
- 4. 1
Ba¥ _,’\*\ B N | .
U"‘ 4 ‘). - é. —y— -~
0, A \K ,
3-¥
o E ETY
o

¢
38 >

P

s

o

Fig. 9. Thoe sagging cf ice beams at a temperature of about
=2"C and various loads Q in kg.

l. ice beam; 2. loads (weights}); 3. indicators for
determining the displacements of tie beam.




Lo td

. e eSS SWeAm T e o

s

9wisn CRST NEDP SN EETRPE M RIR 0 wrov-4-saars smovmonan mm oo ot ¢

%

<

Relative shear

s

Rk . o
time in hours

. 10, Pure shearing of ice at a tempaegature of -4°c

(r is tangential stress in kg/cm®)

- 83 -

R

. e +




WREIRES, |

)
|

A i A et T8 AP LT

3

4

A

it ok | 1

ST M

FE= 0 [T b e e Tt s bt aar PN PN G

s
R S

DR

I IPR R

s -

«
b g

;s
=

3

Rehti\%e shear

o - =
time 1n honrs

Fig. 1l.  Shear strain with simultaneocus tangential and normai »tscsses
in the author's experiments to determine the torsion and
longitudinal compression of ice tubes:

T = tangential siress; o - normai stress; L, Tt = L5 kg/cm‘;
2. 731,0kg/cn”,

g
X

g

-t

v :zr———l [—7[—]—' '-————
—OQ oF [L l

0 [ " « e . ” o » hours

£ e Tho— "= L

~

]

e =

v

ﬁ 144 + = amed

: ¥ |
-—

B el N N

e '-—--__

0 T~

? . o \‘\’.‘.‘i
2 T e T N e e " ! i
o A7 bl X )
e
L

%

)
L d
g Fig. 12. The sag of an ice beam for sequential loadings and unloadings.

-84 -

Vi g o

Ly e oin

- s o




b i s

A%

gk 5
s

RS

R RN A Y

P

EARERE R SR Ml ot 1T oo

hY

an

N S AR R ERT
. Lo ¢

Fig, 13,

Fig. 14.

strain vy

S e S i i e - ——— —

/

.~
\\
\\

|

load in k

. % R ]
tune in minutes

Curves of relaxation

Teta

"!i.:?"
{Locont LA
T
—— 1Y creep

a3

time, t

A\{ elastic

Curves of icc creep (*rl = limit of prolonged creup)

- 85

g




o — - et  FRIES AR Bl LB 2R e il SR BT SR

e Y By

e e

I

8 2
]
% g
-
NG: -
ol
!

Relativ: shear
%3

¥
L]
i
ol
4

- 3
-
N
b 1
A
~
1
\
.‘\.\

5

time in hours
2
Qp\
N
\‘.\
\

g
I
\

-

Fig. 15. Curves of the cre_,. of polycrystalline ice in pure shear
at temperatures_-1, 2°C and -1, 8°C (r is the tangential
8tre’ga in kg/cm?)

2% 2
10

W e A W 7 NI S IAPRGES W

N

/‘I

! /2 /

/ A
-~

A

7] 0 K %zs Gy LW
tangential streas in kg/cm

Fig. 16. Change in the rteady state shear as 2 function of tangentiat
strerd: a-graph in ordinary cosidinatee; b-the same, in
logarithmic coordinates; 1. att T -1, 2°C; 2, at t ¥ -4°C; tha
black dots indicate points corresponding tw the mistmum shear
velocity with stresses exceeding the limit of prolonged « reep,
‘when there is no prolonged stage of steady creep.

e W

14
|
0 }
|
/

L e

o~
| \\&?\\‘

- 86 -




PIILAED 128 PERRESIEI XTSI HO RV IVEI Sth et o rernrie < e -

Fig. 17. Diagram of the arbitrary division of the total strain,
according to formula (8).

o

o

<

Shear strength

time t

Fig. 18. Diagrams of the change of the ice creep rate with a
permanent stress (a) and the cbhange in the resistance
with steady shear rates (b).
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Rate of sag of an ice beam as a function of temperature
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