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FIR,
S I. CONCLUSIONS

g A. The value of an analysis such as this to determine the relative

importance of propellant density and specific impulse is limited because

I of the interplay of unrelated variables. Quantitative criteriao such as

the index n in the expression I can never be applied with generality.

[Analysis can only indicate when density is a major concern and when its
Ieffect is minor.

B. High density is a desirable property of a solid propellant in all

I f.applications.

C. The penalty suffered by a propellant because of low density ranges

[ L frcm being completely negligible to very serious. The magnitude of the

penalty depends on:

1. the particular mission and design of the stage of the rocket

in which the propellant is to be used,

2. the other properties of the propellant besides density.

D. A low-density propellant is at its greatest disadvantage in a sea-

level, first-stage oooster, regardless of the types of constraints

(e.g., constant-weight or constant-volume). A solid propellant with a

density as low as 1.0 g/cm3 is virtually ruled out for this application,

at least at present.

E. The constant-volume-type constraint exacts a greater penalty on a

propellant because of low density than does a constant-weight-type

- - constraint. In terms of equivalent specific impulse, the penalty for a

given drop in density will usually be from two to five times as great in

the constant-volume case as in the constant-weight case.
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F. On the very tenable premise that new high specific-impulse solid

propellants will be used only in upper stages in the foreseeable future,

only constant-weight constraint needs to be considered in respect to

their use.

G. The penalty for low-propellant density in an upper stage (with

constant-weight constraint) is in direct proportion to the combustion

chamber pressure. With present structural materials, and with a

pressure of 200 psi, a propellant of density 1.0 g/cm3 loses about

5 sec of equivalent specific impulse compared to a propellant of density

1.6 g/cm3 . At 1000 psi chamber pressure, the penalty is five times as

great, or 25 sec. It is imperative, therefore, that low-density

propellants have good low-pressure burning properties; but if they have,

the effect of density can, even now, be slight.

H. Low combustion temperature and low erosion and corrosion tendencies

of the exhaust gases -- properties that are often concommitant -- are

favorable to a low nozzle weight. Good properties in these respects can

more than offset the effect of a considerable drop in density.

I. For space applications, a low absolute burning rate is also

desirable. This can serve to mitigate the effect of low density.

J. Future improvements in structural materials will constantly reduce

the importance of propellant density for upper-stage use. Eventually,

we can expect density to be an insignificant factor in this application.

K. Structure weight reduction, itself, will continually diminish in

importance as a research goal. This leaves high specific impulse per se

as the outstanding objective of long-term, solid-propellant research.

L.2



II. INTRODUCTION

A. Nature of the Problem

The reason the relative importance of propellant density and specific

t limpulse has sometimes been in dispute is that it is extremely sensitive

to the context -- either hypothetical or real -- in which the question

$ is examined. To fix the basis of comparison, interest is usually centered

on a given rocket stage (i) with a specific mission to perform, e.g., to

* - impart a total velocity increment AV to a payload Mui The following

question is then asked: "If the size of the stage and the mission require-

ments are fixed, how many seconds of specific impulse (- or +) must be

traded for a given change in propellant density (+ or -)?" The answer to

this question, it turns out, depends very strongly on what is meant by

Tsize" -- whether it is weight or volume -- and on what the mission

requirements are.

The basic equation is

AV, = g I(sp, Ix R. i)

where g is the acceleration of gravity (constant), I sp, is the specific

impulse and Ri is thc mass ratio, defined as toLal weight when the i.th

stage is ignited (and after separation of the prior stage) divided by the

weight when it has burned out (and before separation of the subsequent

stage).



The way in which various factors enter Eq. (1) can be seen by

writing Ri in an expanded form, as follows:
0

AV, = g Isp, i 1 - 1(1 (2)

Here, Ai is the propellant weight fraction in the ith stage and i is

the "payload ratio," the ratio of weight of the payload (everything

above the ith stage) to the total weight of the rocket down (from the

top) to, and including the it h stage. If we let Mu,i represent the

payload weight, M the total stage weight, Mpi the propellant weight,

and MsVi the structure weight, the symbols Ai and i in Eq. (2) can be

written

M
Ai M +M

p'i s,i

M
U, i

~iM + Mu, i m,i

where M M +M
m,i p,i Si

Equation (2) can then be expanded, as follows, in order to further

reveal the significance of several variables:
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i~M, i

1

A Avi = i M

Here, it will be noted, the magnitudes AV and M serve -- so far

as can be done by mathematics -- to define the mission. The term

M /(M + M ) in the denominator is an expression for the weight
m, i m,i u, i

of the stage, expressed in terms of payload weight. The factors I spi

and Ai may be regarded as primarily determined by the properties of

the propellant and the structural techniques. We may then consider

that the rocket designer starts with the mission requirements

(AVi and Mu), puts in values for Ispi and Ai appropriate to the

propellant he is going to use and the current structural state-of-the-

art, and solves the equation for Mmi, the total stage weight required

to accomplish the mission.

If I sp i and Ai were single-valued propellant properties, the

rocket designer's job would be much easier than it is in practice. The

specific impulse, indeed, is not very sensitive to various mission re-

quirements and structure considerations; and, for a first approximation,

it can be assigned a nominal value that derives only from intrinsic

properties of the propellant. On the other hand, the propellant mass

fraction Ai, although it depends partly on the intrinsic density of the

propellant, is strongly influenced by other magnitudes and by the nature

of the mission itself.
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3 In the first place, as is well known, the propellant fraction

depends somewhat on the size of the rocket motor: it generally tends

to be greater, the larger the motor, other factors being equal. It

also makes a great deal of difference to the value of A whether the

stage burns near the ground, at a high ambient pressure, or in space,

where the exhaust gases emerge in a vacuum. When the exhaust is near

sea-level pressure, the chamber pressure must be high in order to get

the necessary expansion. This means a strong, heavy case. In the

vacuum of space, on the other hand, the expansion ratio is determined

0 solely by the nozzle geometry; and the chamber pressure -- being set

by other factors -- is generally lower. In consequence, a space engine

can be more lightly constructed than a sea-level booster. The rocket

thrust also determines the size of nozzle needed to accommodate the

flow of propellant gases. A rocket rising vertically near the earth

should have high acceleration to minimize the effect of gravity; the

nozzlethen, must be large, and A tends to be low on this account. *

A rocket unaffected by gravity, on the other hand, can operate with

low thrust -- and, consequently, with a small nozzle if this meets

other requirements.

To further complicate matters, A depends on the burning properties

of the propellant. If the exhaust gases are highly erosive or corrosive,

a heavy tungsten throat insert may be required in place of graphite.

The flow rate of exhaust gases is also determined to a greater or

lesser extent -- depending on what other factors are involved -- by the

T 6



absolute burning rate of the propellant. A faster burning propellant

may require a larger nozzle; although this is not always the case.

3i Finally, A depends on the materials of construction, the shape

of the pressure vessel, and the structural features needed to meet

mechanical requirements such as stiffness. These factors may or may

* •not interact with the propellant properties.

Propellant density is therefore deeply buried in a welter of other

variables. And only by freezing the action of all the other factors

can the effect of density be extracted. This must always be considered

an arbitrary and unrealistic procedure. For, when one propellant is

substituted for another in practice, several factors besides density

usually change at the same time. Some of these may have an even

greater effect on A than density; and their net influence may be

either of the same sign or of opposite sign. A complete redesign of

the rocket motor is needed when such a change is made -- usually, in

fact, not simply redesign, but redevelopment.

What, therefore, is to be gained by analysis of this problem?

Obviously, only some heavily qualified and rather vague generalities.

But the net conclusion, even of this preliminary examination, is worth

attention: The importance of density is bound up with the influence of

so many other propellant characteristics, as well as with the mission

and system requirements, that it would be very unwise to focus

attention on it during the early stages of research on new propellants

when these other properties, both favorable and unfavorable, are still

unknown, and when the end uses can still only be conjectured on.

?7



I"
B. The Constraints

The effect of density is usually derived under either a constant-

5 weight or constant-volume constraint. In the constant-weight case, only

the term A in Eq. (3) is sensibly affected by a change in density; in

the constant-volume case, both A and M will be subject to change.
m

Mathematically, there is no difficulty in deriving the results.

But to do so, further assumptions -- or constraints -- have to be

imposed. Due to the important way in which propellant characteristics

besides density affect A (as outlined in the foregoing section), these

ad hoc assumptions may be just as important in their own right as the

main constraint of fixed volume or fixed weight.

One implicit constraint is chamberapressure. Since the only way

in which propellant density enters the propulsion equation is through

its effect on the proportional distribution of weight as between

propellant and structural hardware, some assumption must be made about

the chamber pressure because pressure is the major criterion for the

strength of the motor casing required. For want of a more general or

more plausible assumption, pressure is usually considered to remain

unchanged when the propellant density is altered.

Another implicit assumption is that the total weight of all the

inert parts other than the motor case remains constant. Since the

weight of these other parts often totals to two or three times that of

the motor case (in upper stages), and since these components are

strongly affected by the propellant characteristics (other than density),

~8



fixed inerts weight can almost never be maintained in practice when

one propellant is substituted for another. The constant-inerts-weight

i lconstraint is therefore highly artificial; but -- as in the case of

chamber pressure -- there seems to be no better alternative, since

I
the propellant characteristics that influence these weight factors

are not functionally related to density in any general way.

For the sake of brevity, and to be consistent with conventional

practice, we shall further perpetrate the use of the terms "weight-

limited" and "volume-limited" to designate the two major constraint

groups. But it must be borne in mind that these are merely labels.

The risk taken in using these terms is that they might be construed as

if to cover important practical situations in rocket design.

Unfortunately, situations as simple as this seldom arise in the world

of reality.

C. The Density-Exponent Expression

For purposes of a performance criterion or a tradeoff relation,

specific impulse I and density p are often combined in an expression
sp

The meaning here is that if two propellants of different I and p
sp

are considered, their relative performance can be gauged by the value

n
of Isp n . Or, from another standpoint, if the value of this quantity

is equal for two propellants, they will give equal performance under

conditions for which the expression is valid.

9



a It is this last phrase "under which the expression is valid" that

tv points up the weakness in this simple form of criterion. The qualifica-

tions restricting the range of validity for any particular value of the

exponent are so confining as to make it almost useless as a quantitative

indicator. The exponent n may have values ranging from almost 0 to

almost 1.0, depending on the constraints imposed when the expression

for n is derived, and especially on the figures that are substituted

in this expression for the various rocket parameters in order to assign

to n a numerical value.

Even within the narrow range of such restrictions, the expression

7 1pn cannot be used to compare propellants of widely differing density.
SP

This is because n is derived on the basis of differential changes in

I and p as follows:sp

n" V

where AV is the velocity increase of the rocket due to the burning of

the propellant in the particular stage in question. (Equation (4) is

derived from the significance ascribed to I p n as a figure of merit.
SP

It may be regarded as a definition of n consistent with such an

ascription.) In general, the expression for n as defined in Eq. (4)

involves parameters that themselves depend on p; hence only an instan-

taneous value of n at a particular density can be obtained.

10



Equation (4), it may be incidentally noted, demonstrates the

"tradeoff" significance of n. Here n appears as the ratio of the

change in velocity for a given percentage increment in density to

the change in velocity for an equal percentage increment in impulse.

In this sense, n may be regarded as the ratio of a density "index"

to an impulse index. However appealing it is to have a single number

representing the relative importance of impulse and density, the

* practical use of the concept is severely limited. In fact, generaliza-

tions on the basis of a particular value ior n are always misleading

and can result in seriously erroneous conclusions.

The important information to be gained from the Isp n concept is

not a precise knowledge of the significance of propellant density, but

rather a general idea of when density plays a prominent role and when

it plays a minor one. Table I can be used to gauge the significance

of various values for n derived in the following sections. The values

AlS given in the table are the tradeoff increment in specific impulsesp

(+ or -) corresponding to a change of 0.1 g/cm3 in density (- or

The calculations are based on a nominal reference propellant with

I 260 sec and p = 1.60 g/cm . It will be noted that this tablesp

cannot be used to extrapolate for large density changes greater than,

say, 0.3 or 0.4 g/cm3 .

11
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Table I

APPROXIMATE TRADEOFF IN SPECIFIC IMPULSE
FOR A DENSITY CHANGE OF 0. 10 g/cm3

n ~I(sec)i n sp(Sc

0.05 .8

1 0.10 1.6

0.25 4.o

I 0.50 8.0

0.75 12.0

1.00 16.0I
It is the purpose in what follows, first, to examine critically

the generalizations that have often been made on the basis of derived

expressions for n. Secondly, we shall study in detail, from a strictly

quantitative viewpoint, the effect of gross density changes under a

constant-weight comparison criterion. Finally, we shall attempt to

draw some conclusions from this, and find a basis on which the promise

3 or lack of promise of new developments in low-density solid propellants

I ma', 1 Judg!ed.

I
I
I
1 1



III. DIFFERENTIAL EXPONENT n FOR A WEIGET-LIMITED SYSTEM

Upon differentiation of Eq. (3) in order to find the expression

for n according to Eq. (4), the result for a constant-weight constraint --

I plus the implicit constant-pressure and constant-inerts-weight constraints,

as previously noted -- may be shown to be

I o
n~ (R

n T-Tl Ix R 0
(5)

where weight of volume-dependent structure (case)
h weight of the propellant

In this equation, n is modulated by 0, the volume-dependent structure

3 factor. When 0 is zero, n is also zero. The factor 0 depends inversely

on the strength-to-density ratio of the case material; hence as lighter

and stronger materials are found, the effect of density will be reduced.

The most important effect on the value of 0 (and hence on n), however,

comes from the chamber pressure Pc, since 0 depends on Pc directly.

i Present technology, with acceptable safety factors, gives approximately

S10 4 P (lb/in2) (6)

Thus, for 1000 psi chamber pressure 0 has a value of about 0.1, whereas

for 100 psi the value drops to 0.01. This means that density will be more

important in sea-level boosters where the chamber pressure is high than in

I upper stages where the pressure is generally lower. However, it is to be

1
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noted that a low-density propellant must then have satisfactory burning

properties at low pressures if it is to be useful in upper-stage

I applications.

Aside from its dependence on chamber pressure, the exponent n is

also seen to depend on the mass ratio R of the rocket stage in question.

This again illustrates why it is impossible to assign to n any fixed

numerical value.

Figure 1 shows a plot of n vs R for various values of $. Since in

practice R ranges from about 2 to 5 and 0 takes on values from 0.01 to

0.1 (depending on pressure), n, for the weight-limited case, will range

from truly negligible values up to about 0.25.

When n is as high as 0.25, the effect of density becomes fairly

sizeable. In Table I, the specific impulse tradeoff for a density change

of 0.1 g/cm3 is 4 sec when n = 0.25. Thus, for large changes in density,

the effect could be quite serious.

The value n = 0.25, however, is extreme for this case. If an

average" value can be considered to have meaning, one would be justified

to take, say, n = 0.10 to 0.15. This would mean a tradeoff of about

2 sec in specific impulse for a density change of 0.1 9/cm3.

9@
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jI
IV. DIFFERENTIAL EXPONENT n FOR A VOLUME-LIMITED SYSTEM

* It is to be expected that density will be more important in a

volume-limited than in a weight-limited system. Here again, however,

I a low-density propellant suffers a smaller disadvantage in upper stages

than in lower stages. But the reason is different. For, while the

I performance of the particular stage in question is reduced to the same

I degree by substitution of a lower density propellant no matter where

it is located in the rocket, the decrease in velocity is partly

I compensated when the low-density propellant is used in an upper stage

by the increase in the velocity increments supplied by stages below

this because of the lightened burden they have to accelerate. This is

indeed an interesting result in principle, but probably not so important

in practice because volume limitation -- such as in the POLARIS missile --

usually applies more severely to the booster than it does to the upper

stages of a rocket.

For a volume-limited, first-stage booster, the expression for n

is found to involve only the mass ratio R as follows:

=R-

R -x R (7)

For an upper stage (which we shall designate the it h stage), n is

less th the value given by Eq. (7) because of the reduced-payload

effect on the stages below i as explained above. In this upper-stage

case, n is given by the following expression:

15
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I

n -= [ - ) I (RI Ri ) t et e

n Ri lRi L --I sp, i ( J+l i-J (8)

I where etc. are the so-called "payload ratios" for the stages below

the ith one where the propellant change is made. The payload ratio

is defined as the ratio of the total of the weights of all stages (Mp)
p

I above the given stage (including that of the ultimate payload M.) to

the total of the weights of all stages above together with that of the

I given stage, i.e.,

N N

%= 7  q 7M (9)
q=j+l p=j

Values for n are plotted as a function of R in Figure 1. To

evaluate n for an upper stage (i) from Eq. (8), specific impulse in the

- lower stages was assumed to be equal to that in the stage in question

(i.e., I = I the mass ratio for each of these stages was assumedSsp, P.

to be equal to 3.0, and the payload ratio was assumed to be the same in

all the lower stages and to have a value 0.25.

Irom FiegUrC it - I .ccn that,. .... te rge of R that is crcmn

for most practical rockets (i.e., R = 2 to 5), the differential density

exponent n for the booster lies between 0.7 and 0.5. For a second-stage

motor, the figure is equal to about one-half the value for a booster stage,

16



i.e., n ranges from 0.35 to 0.25. For a third-stage motor, it is still

lower, lying between 0.26 and 0.19. For stages above the third, the

n-values differ little from those for the third stage. (See the curve

for the fourth stage in Figure 1.) For volume-limited systems,

therefore, density has a pronounced influence on performance in a

booster (first) stage; but it is not so important in the second and

higher stages. However, as reference to Table I will illustrate, the

effect of propellant density in the volume-limited case is never by any

means negligible.

An examination of the n-curves for constant-weight and those for

constant-volume in Figure 1 may create the impression -- since the two

sets of curves overlap -- that the difference between the two constraint

conditions becomes small for the upper stages. Actually, this is

probably never true because the value of 0 is usually smaller, the

higher the stage. This is because chamber pressure is generally lower

in the higher stages, and 0 bears a direct relation to pressure. In

most actual cases, it is probable that n would be anywhere from two to

five times larger for the constant-volume case than for the constant-

weight case.

In view of the range in values of n seen in Figure 1, it is

difficult to see a reason for choosing n = 1 to represent any actual

situation in rocketry. And yet often when the density factor is

considered in making comparisons of propellants, it is introduced

through the quantity known as "density-impulse" or "impulse-density" I p,

17
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i.e., the exponent n is assumed equal to one. From the foregoing

analysis it is clear that n = 1 is an upper limit; this is the

case for constant-volume constraint when R = 1, i.e., when the

propellant represents a negligible fraction of the total weight.

The quantity Is p is proportional to the total impulse available

from a fixed volume of propellant. When the propellant weight-fraction

approaches zero, the velocity increment AV is just proportional to the

total impulse, and, therefore, to Is p; but when the propellant comprises

an appreciable fraction of the total weight, AV is proportional to I spPn

where n is less than one. The reason is as follows: When the density

of the propellant changes, the weight of the (constant-volume) rocket

also changes by an amount that depends on the proportion of propellant

in the total weight (this proportion being reflected in the magnitude

of the mass ratio R). Therefore, when density changes either up or

down the propellant has either more or less mass (respectively) to

accelerate. As a result, the effec; on AV of a propellant density

change is actually always less than it is for the limiting case when

the weight of the propellant is negligible compared to the total. This

is indeed the rationalization for the descending trend of the curves

representing constant-volume constraint in Figure 1.

The "density-impulse" expression Is p, therefore, considerably

exaggerates the importance of density in all real situations. It is

hard to justify any value of n as being 'representative or average ;

but, certainly, the value should never be greater than about 0.7. In

18



fact, insofar as a quantity of the type I pn is used to compare
SP

advanced high specific-impulse propellants, very much lower values

of n., lying between, say, 0.1 and 0.2 would have more validity.

The reasons for this will be made clear in the following section.

1

I

10

11
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0 V. EFFCT Or GROSS DENSITY CHANGES OF THE SOLID PROPELLANT
ON PERFORMANCE OF A 1WEIGHT-LIMITED ROCKET ENGINE

The foregoing sections dealing with the exponent n in Isp show

that a solid propellant overy density, say g/cm3, will probably

never be of interest for booster stages, either weight-limited or volume-

j limited. This is not so great a handicap as it might seem. The major

rocket systems of the future are likely to be multi-stage, each stage

making approximately the same contribution to the final payload velocity.

Since advanced high-performance propellants are likely to be expensive

or in short supply -- probably both -- for some time yet to come, economy

will dictate they be used only where the greatest payoff per pound is to

be obtained; and this, of course, is in upper stages.* Therefore, at least

* As a specific example, consider a three-stage rocket of which the
third stage is the ultimate useful payload; that is to say, there are
two rocket motors comprising stages No. 1 and No. 2, and No. 3 stage

- is inert. For simplicity, assume the mass ratio R and the propellant
loading fraction A are the same for stages No. 1 and No. 2 and equal
respectively to 2.72 and 0.90. Also, assume that the same solid
propellant is used in both these stages. If a new propellant becomes
available that has a 10 per cent higher specific impulse, and other
properties essentially the same as the old propellant, it could be
added to the first stage, second stage, or.both. We wish to calculate
for each case the increased weight of payload that could be delivered
with the same final velocity, under the restriction that the total
weight of the rocket be unchanged.

Analysis shows that the increase in payload under these conditions is
the same when either the first-stage motor or the second-stage motor
is filled with the new propellant. The efficiency, pounds of added
payload per pound of propellant, is therefore in inverse proportion
to the weight of propellant in the motor. In this example, the first
stage contains 3.33 times as much propellant as the second, and the
efficiency is therefore less than one-third as much when the propellant
is put in the first stage as in the second. The actual figures are

20



in the first applications, the new high-I5s propellants will be used

only in upper stages regardless of density. And since n is smaller

for upper stages, slight density differences between various advanced

propellants will be of little consequence.

The remaining question is to determine the effect of gross

differences. For this purpose, a new approach to the problem is

necessary because the Isp n concept applies, in principle, only to

infinitesimal changes.

Where upper stages are concerned, weight is of much greater

significance than volume. For example, so far as the performance of

lower stages is affected, the weight of the penultimate stage is

indistinguishable from the weight of the ultimate useful-payload stage.

The weight at this point is therefore a prime consideration. The

volume, on the other hand, is usually small for upper stages anyway,

compared, that is, to the volume of the booster. Hence, space

0.036 ib added payload per pound of new propellant when the
propellant is put in the first stage, and 0.12 lb payload per
pound propellant when it is in the second stage. When both motors
are filled with new propellant, the payoff is 0.050 ib added pay-
load per pound of new propellant.

I In the case of a similar four-stage rocket, the efficiency drops
by another factor of 1/3.33 when the new propellant is put in the
first stage, that is to 0.011 lb added payload per pound of the
new propellant. The efficiency in the first stage here, therefore,
is only about 9 per cent of what it is when the propellant is put
in the third, or penultimate stage of the same rocket.

(These calculations do not, of course, take account of the effects
of gravity or drag. The comparisons would be essentially the same,
however, if these refinements were added.)
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limitations will restrict the size of the booster but will not usually

appreciably affect upper stages. It will, therefore, be necessary to

treat only the weight-limited case when we are concerned primarily with

the use of new advanced propellants in upper-stage motors.

Consider the problem that a "reference" solid-propellant engine

is to be replaced by one containing a propellant of substantially

different density. To compare the propellant performance, we shall

Limpose the restriction that the total weight of the rocket be held

constant. We shall then calculate the change in specific impulse A sp

(tradeoff) necessary to compensate for the change in density, i.e.,

to keep the velocity change of the rocket AV. due to the burning of
1

the propellant in this engine the same.

The basic formula of rocket engine performance (in the absence of

gravity and drag) is

A i  g Ii  Ri  (10)

where we now use I instead of I to stand for specific impulse. In
sp

Eq. (10) AV,, as before, is the increase in velocity due to burning

of propellant in the 1th stage rocket motor, g is the acceleration of

gravity, and R is defined by

M+ M+ M
R total weight at ignition s (ll)

weight at burnout M + M
s u
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where , Ms and M represent, respectively, the weights of thep u
propellant, the structure and the payload" for the particular stage

in question.

Under the constraint conditions we have set up, the total weight

£ * of the rocket is constant, i.e.,

I
M + M + M M (const). (12)
p a u

The change in the velocity increment AV due to the change in propellant
i

I density therefore results solely from the change in the structure weight

3 M in the denominator of Eq. (11).

It is convenient to divide M into two parts: a part M which can
5 x

be considered as fixed, and a part Mc which varies with propellant

density. The quantity M includes the weight of the nozzle, the inter-

stage structure, and all those parts not primarily affected by the

density of the propellant per se; and the quantity M consists solely~c

of the weight of the case or pressure tank. Symbolically,i
M = Mc (Pp ) + Mx(const) (13)

1 where (pp) indicates the dependence of Mc on pp, the propellait density.

In view of Eqs. 12 and 13, Eq. 11 can be written

=~ ) M(onst ) (14)R~p) M(P p  + rM + M l(const)()

S2 x u
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In Eq. (14), Mc is the only propellant-density-dependent factor on

the right, since the numerator and the bracketed quantity in the

I1 denominator are considered to be constant under the restrictions of

the analysis.

To a good approximation, the weight of the pressure tank is just

proportional to propellant volume V .P

i.e., M 0C V (15)
c p

However, this relationship (15) can be derived only under the assumption

that the chamber pressure P is constant, because M depends directlyc c

on P . To include the pressure effect, we should writec

M =S(const) -P *V (16)c c p (6

The constant, S, in Eq. (16) is related directly to the density,

Ps, of the case material and inversely to the strength, 0s. It also

includes a safety factor, F, and a geometrical factor, G. Thus,

S = F G p/ls" (17)

Since the propellant volume V is equal to the propellant weight M
p p

divided by the density pp, we can write, in view of Eqs. 16 and 17,

2
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M SP
C (i8)

p p

where, for convenience, we have designated the ratio of the case weight

to propellant weight by 0.

By rearrangement of Eq. (11), it is possible to show that

L
- M (+ l) (19)

IR- M-M -M
x U

This equation expresses the functional relationship of R to 0. It will

be noted that under the constraints we have imposed, M, M and M are
x U

constant. Therefore, in comparing the substituent propellant to the

reference propellant under these conditions, we can write

substituent -sub (20)

"ref+1reference

In view of Eq. (18) and under the assumption of constant chamber

pressure Pc'

Osub = pref (21)

ref p,sub
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Thus, given values of R and 0 for the reference propellant, we

can calculate these quantities for the substituent propellant from

Eqs. 20 and 21. Then, from the basic equation (10) we can calculate

Alyi, the change in specific impulse necessary to compensate for the

change in propellant density. This calculation is made by use of

the equation

A!sub 1 Ref - R sub (22)
Iref i Rsub

The quantity I sub(Isub - I ref) is the specific impulse "tradeoff" for

the change in density from that of the reference to that of the

substituent propellant.

Figures calculated by the use of Eqs. (18), (20), (21) and (22)

are given in Table II for a large range of values of p, Pc and R ref,

and for two different values of the structural factor S.

The (a) set of figures in Table II is based on an S-value of

1.1 x 10
-4 (g/cm/(lb/in2) and the (b) set of 1.65 x l0-4. These

numbers were arrived at in the following way: The safety factor F

was taken as 1.2 (20% safety factor), and the geometrical factor G

as 3, which, being the number for a sphere, is the lowest value this

factor can have. The value S = 1.1 x 10 4 corresponds to a combination

of these values of F and G with a strength-to-weight ratio a = 0.6 x l06.

The 1.1 x 10-4 figure for S may be considered representative of

state-of-the-art in high strength/weight case materials and of a
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Table II

ADDTIONAL SPECIFIC IMPULSE NEEDED (+ or -) BY A PROPELLANT OF
DENS1TY p TO MATCH THE PERFORMANCE OF A REFERENCE PROPELLANT

Reference Propellant:

I sp(1000 lb/in2, sea level) = 260 sec

Density (g/cm 3) or Sp Gray = 1.60

Structure (a) S = 1.1 x 10- (b) s 1.65 x 10-4
Constant lb/in lb/in2

S -+

Mass P (lb/in2 ) -
P (lb/in2)

R p 100 200 500 1000 p 100 200 500 -1000

o.8 2.6 5.1 12.4 24.0 0.8 3.8 7.6 18.3 34.9
1.0 1.5 3.0 7.5 14.4 1.0 2.3 4.5 11.0 21.0
1.2 0.8 1.7 4.2 8.0 1.2 1.3 2.5 6.1 11.7

R = 2 1.4 0.4 0.7 1.8 3.4 1.4 0.5 1.1 2.6 5.0
ref 1.6 0 0 0 0 0 0 0 0 0

1.8 -0.3 -0.6 -1.4 -2.7 1.8 -0.4 -o.8 -2.0 -3.9
2.0 -0.5 -1.0 -2.5 -4.8 2.0 -0.8 -1.5 -3.7 -7.0
2.2 -0.7 -1.4 -3.4 -6.6 2.2 -1.0 -2.1 -5.0 -9.6

0.8 3.2 6.4 15.6 30.1 0.8 4.8 9.5 23.0 43.6
1.0 1.9 3.8 9.4 18.2 1.0 2.9 5.7 13.9 26.3
1.2 1.1 2.1 5.2 10.1 1.2 1.6 3.2 7.7 14.7

Re f = 3 1.4 0.5 0.9 2.2 4.3 1.4 0.7 1.4 3.3 6.3
1.6 0 0 0 0 1.6 0 0 0 0
1.8 -0.4 -0.7 -1.8 -3.4 1'8 -0.5 -1.1 -2.6 -4.9
2.0 -0.6 -1.3 -3.2 -6.1 2.0 -1.0 -1.9 -4.6 -8.9
2.2 -0.9 -1.8 -4.3 -8.3 2.2 -1.3 -2.6 -6.4 -12.1

0.8 4.4 8.7 21.1 40.4 0.8 6.6 12.9 31.0 58.1
1.0 2.6 5.2 12.8 24.5 1.0 4.0 7.8 18.7 35.4
1.2 1.5 2.9 7.1 13.7 1.2 2.2 4.3 10.5 19.8

ref 5 1.4 0.6 1.2 3.1 5-9 1.4 0.9 1.9 4.5 8.6
1.6 0 0 0 0 1.6 0 o 0 0
1.8 -0.5 -1.0 -2.4 -4.6 1.8 -0.7 -1.4 -3.5 -6.8
2.0 -0.9 -1.8 -4.3 -8.4 2.0 -1.3 -2.6 -6.4 -12.2
2.2 -1.2 -2.4 -5.9 -11.4 2.2 -1.8 -3.6 -8.7 -16.7
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lowest permissible safety factor at the present time. The 1.65 x lo4

value of S represents a more conservative choice, which could allow for

a larger safety factor and/or a less favorable vessel shape. Although

this second figure might seem unduly conservative, it is thought to be

realistic in consideration of the fact that the propellant chamber

liner has not been considered as part of the density-sensitive structure

weight. In practice, one should probably include an allowance for the

liner in calculating 0. Therefore, the two numbers chosen as a basis

for S probably represent, for these purposes the extremes of the range

*of this factor that will apply in the next two or three-year period.

When they are examined for a particular value of density, the

figures in Table II reveal the important effects of pressure. For a

propellant with a density of 1.0 g/cm3 , for example, the range of the

akI values when R is increased from 2 to 5 is as follows (in round

figures):

P(lb/in2 ) 100 200 500 1000

S = 1.1 x 10 2 - 3 sec 3 - 5 8 - 13 14 - 24

S = 1. 6 5 x 10 . 4  2 - 4 4 - 8 11 - 19 21 - 35

The total spread in Al in this case is thus seen to be from 2 to 35 see,

that is, from a truly negligible figure to one that is so great as to

put the propellant entirely out of serious consideration.
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n

Pressure is by far the most important factor affecting AI. The

effectiveness of a propellant with density 1.0 g/cm3 would be seriously

eroded if the pressure were much above 300 psi. Therefore, a propellant

with this low density must be able to burn satisfactorily at pressures

below 300 psi if it is to maintain essentially unimpaired the advantage

it may have in specific impulse. In practice, this is probably not a

severe requirement.
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VI. SYNOPSIS

3 1 jor goals in solid rocket propulsion development. t 'W

high-specific impulse propellants and high propellant loading

I fractions C Progress in the second direction (b) will come through

developmet of materials with higher strength/weight ratio, by the

I discovery \ improved nozzle designs and throat materials, and --

possibly -- y development of cool-burning propellants with non-erosive,

non-corrosive product gases and good low-pressure burning properties.

It is apparent that as A approaches more closely the limiting

value of 1.0, that is, as the relative weight of structure compared to

- that of propellant approaches the vanishing point -- the effect of

propellant density tends to disappear entirely. (This statement applies

in the case of constant-weight constraint, which is the one of most

concern where upper stages are concerned.) Actual calculations show

(cf Table II) that even with presently attainable tankage-structure

factors and combustion-chamber pressure levels the penalties for low

propellant density are not large. Therefore, since the future trend

will be to reduce the density effect still farther, there will come a

time -- if it is not already here -- when concern for propellant density

will be very sliCht indeed.

In fact, a point of steeply diminishing returns will also be

reached in future efforts to increase the loading factor A; and this

will mean more concentrated attention on the single goal of high specific
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impulse to the exclusion of most other concerns. As new materials

with better strength/weight are found, and as other improvements are

3 made to reduce the structure factor (1 - A), further improvements

will obviously become increasingly difficult to make. Besides, a

Ii given percentage reduction in the structure fraction (1 - A) has a

1 smaller and smaller payoff in terms of equivalent specific impulse

as A approaches closer and closer to 1.O.* Eventually, therefore,

I efforts in this direction will not be worth the candle.

We are therefore led to conclude that high specific impulse

I per e (pure and undiluted) is a goal worth pursuing in solid-

propellant research. Special purposes may arise from time to time

for propellants with high density, with very low burning rates, or

with other unique characteristics; but, in general, there seems to be

no valid way of -- or, indeed, any valid reason for -- lumping any of

these properties with specific impulse to provide a criterion or

figure of merit for solid propellants.

* This may be seen from the following expression (for constant-weight

constraint):

Z I R : -- (l (l A)
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