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THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS FORMED
IN BRITTLE FRACTURE

By G.N. Barenblatt (Moscow)

This article gives an account, from a single general point of
view, of the bas’c problem formulations in the theory of equilibrium
cracks and of the results obtained in this theory.

The theory of cracks is a rather new field of mechanics and,
as a result, there are no monographs containing surveys of this
problem. Consequently, it seemed advisable to present the principles
of this theory in greater detail.

The first and second sectlions of this article consistute an
introduction to and a brief outline of the development of the theory
of' equilibrium cracks. The third section considers the structure
of the edge of the equlilibrium crack 1n a brittle solid. The fourth
section presents the baslc hypotheses and glves a general formula-
tlon of the problem of equllibrium cracks; experimental confirma-
tions of this theory of cracking are conslidered. The fifth section
deals with a number of specific problems of the theory of equilibrium
cracks; problems of resistance to crackling are considered. Finally,
the sixth sectlon deals with the problem of wedging, which 1s im-
portant for the theory of cracks, and briefly considers the results
obtained which have a bearing on the dynamics of cracking.

In writing this article, the author has attempted to avoid
repetition of avallable surveys of varlous aspects of brittle frac-
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ture. By 1ts nature, thls survey properly touches on the theory

of cracking, which is the mathematical theory of brittle fracture.
In thls connectlon, the voluminous avallable experlilmental reports
are cited only Insofar as they are necessary for confirmation of
the theory advanced and for determlning its limits of appllcabllity.
In contrast to the mathematlcal theory, experimental studies of
brittle fracture arc not once considered in the appropriate surveys
and monographs. In additlon, these sources lgnore or hardly treat
at all of problems related only to mathematlcal techniques for
solving problems of eclasticity theory. Nor do they deal with the
formation of cracks. In attempting to assemble all accounts from

a unified point of view. the author has occasionally permitted
deviation from the original trecatises In clting isolated specific
results obtalned by other Ilnvestlgators.

The author is indebted to Ya.V. Zel'dovich and Yu.N. Rabotnov
(Academy of Scicnces USSR) and S.S5. Grigoryan of the MGU (Moscow
State University) for their unflagging interest and attentlion to
his work on cracks and for a number of valuable suggestions. He

remembers with gratitude his helpful discussions with S.A. Khristiano-

— =

vich (Academy of Sciences USSR). The author considers 1t hls duty
to express his thanks to Professor G. Kyurt', the editor-in-chief

of" the publication Advances in Applied Mechanics, and Professor

G.G. Chernyy (MGU) for thelr obliglng assistance in writling thls
article. The author also notes with gratitude the help of I.A.

Markuzon in complling the blbllography for the present survey.

1. Introduction

The subject matter of the theory of equilibrlum cracks 1ls the
study of equillibrium in solids containing cracks.
Let us conslider a solld which contains cracks (Flg. 1) and
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which 1s In equilibrium under the

actlion of some system of loads.
The sclid is considered to be

capable of withstanding any finite

stresses and to be 1deally brittle,

i.e., to retain the property of
linear elasticity to the fracture
polnt; the feasibillty of using an ideally brittle solid as a model
for a real material will be considered below.

The spread of the crack (the distance between the opposing
crack surfaces) 1is always much less than the length of the crack.
Consequently, cracks can be regarded as surfaces at which disrup-
tion of the continuity of the material occurs, i.e., surfaces at
which discontinuities of the shear vector occur.

Unless otherwise noted, we shall deal below with the two-
dimensional normal-tensile-fracture cracks, 1.e., portions of a
plane which are bounded by closed curves (the boundaries of the
cracks) and are subject to fracture only along the normal components
of the shear vector. We may deal with the case where fracture oc-
curs along the tangential slip components on the fracture surfaces
of an 1deally brittle body in the same fashion as for normal-
rupture cracks.

It might be supposed that research on the equilibrium of elas-
tic bodies containling cracks could be carried out by the general
methods of elastliclty theory, as is done for bodies containing
cavities (Fig. 2). However, there 1s a basic difference between
these two problems. Even when the loads acting on the body are
varied considerably, the shape of the cavitlies changes only slightly.

At the same time. cracks whose surfaces also form a section of
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the boundary of the solid can be widened sharply with even a small
increase in the load acting on the body (see Figs. 1 and 2, where

the broken lines denote the additional loads and the corresponding
positions of the boundaries of the body).

Thus, one of the bacic premises of the classical linear theory
of elastlicity is not satlsfied for problems in the theory of crack-
ing, namely the assumption that the change in the boundaries of
the body under load is small, which makes it possible to assume that
the boundary conditlons are observed on the surfaces of a nonde-
formed bedy. This makes the problem of equlilibrium in a body con-
taining cracks essentlally nonlinear, in contrast to the traditional
prcblems of elasticity theory. In problems of crack theory, 1t is
necessary to determine from the equilibrium conditlons not only the
distribution of stresses and strains but also the limits of the
reglon for which the equilibrium equaticns can be solved.

As we know, nonlinear problems of this type ("problems with
unknown limits") have already long been encountered in various
branches of mathematical physics. It 1is sufficient to note the
theory of the Jjet and the theory of finite-amplitude waves in
hydrodynamics, the theory of flow past a body in the presence of
shock waves in gas dynamics, Stefan's law of freezing in the theory
of heat transfer, etc. The principal difficulty in these problems
1s assocliated with finding the limits of the region in which the
solution is sought. The location of the crack surfaces for a given
applied load presents exactly the same basic problem in the theory
of' equilibrium cracks.

The differential equilibrium equations and the usual boundary
condltions of elastlcity theory are fundamentally unable to provide

solutions to these problems without consideration of additional
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factors. This may be seen from the fact that it is formally possible
to set up a solution for the equations which would satisfy the

usual boundary conditions without even specifying the crack sur-
faces. Analysis of the formal solutions obtained in this case shows
that, generally speaking, the tensile stresses ¢ normal to the
surface of a crack are infinite on the circumference of the crack
according to these solutions. More precisely, near an arbitrary

spot on the cilrcumference of the crack

i

o==§% + a finlte quantity. (1.1)
Here s 1s the distance of a point of the body lying in the
plane of the crack from the circumference of the crack; N 1s the
"coefflcient of stress Intensity," whose magnitude depends on the
applied loads, the shape of the crack outline, and the coordinates
of' the point of this outline being considered, but is independent
of 5. Here the form of the normal section of the deformed surface

of the crack near 1ts edge is unnaturally rounded (as in Fig. 3

or somewhat differently; see detalled discussion below).

Flg. 2. Fig. 3. 1) r. Pig. 4.

Generally speaking, however, there exist exceptional crack
contours for which the stresses at the edges of the cracks are
finite (N = O) with a given load and the opposing surfaces of the
cracks unite smoothly at the boundaries, so that the shape of the
sectlon of the crack surfaces near the edge is of the form shown
in Fig. 4. It 1is possible to show that for such contours (and only
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for such contours) the energy llberated with a small change In the
contour of the crack in the vlcinlty of a given point equals zero,.
Hence it follows that equilibrium cracks can be bounded only by
such contours.

Thus, 1f all the loads actlng on a body are given, the problem
of the theory of equillbrium cracks is formulated in the followling
fashion. For a glven dlstrlibution of the original cracks and a
given system of forces acting on the body, it is necessary to deter-
mine the stresses, deformations, and crack contours for the elastic
body under consideration so as to satisfy the differentlal equilib-
rium equations and boundary conditions, and to ensure that the
stresses are finite or. which is the same thing, that the opposing
banks of the crack outllne unite smoothly. If the location of the
Initial cracks is not specified, the problem presented has a multi-
valued solution, since by virtue of the model adopted, the body
can withstand any finite stresses. This is natural, since one and
the same load on the same body may produce no cracks at all, one
crack, two cracks, etc.

In the general case of curved cracks, their form is deter-
mined not only by the locad exlsting at the moment In question, but
also by the history of the process by whlch the body was loaded.
However, although the symmetry of the body and the monotonically
increasing applied loads ensure the develcpment of surface cracks,
the contours of these cracks wlll be determined solely by the load
acting at the time. All results avallable in crack theory at the
present time correspond to particulér cases of this simplified
statement of the problem.

Generally speaking, 1t 1is necessary to lnclude more than simply

the load applied to a body in the system of forces acting on the
e 16




body. This 18 shown by the following example, Let us attempt to
determine the contour of an equilibrium crack in the case of the
load deplcted in Fig. 1. If, in accordance with the usual methods
of elasticity theory, we assume the surface of the crack to be
free of stress, as is the case for the surface shown in Fig. 2, we
obtain a paradoxlcal result; however we select the contour of the
crack, the tensile stress at 1ts edge is always Infinitely large.
Consequently, there are no equilibrium cracks: at as small a frac-
ture stress as you please, a body having a crack breaks 1r two!
This obvious conflict with reality can be explained very simply.
Having primitively used a model of an elastic body, we did not
study all the forces acting on the body. In order to construct an
adequate theory of cracking, it has proven necessary — and this is
one of the maln differences between the problems of the theory of
cracklng and the traditional problems of elasticity theory — to
consider the molecular cohesive forces acting in the vicinity of
the crack contour where the distance between the opposing races
of the crack 1is small and they attract one another powerfully.
Although, in principle, conslderation of coheslve forces
solves the problem, it seriously complicates research. The dif-
ficulty lies In the fact that nelther the distribution of cohesive
forces over the surface of a crack nor even the dependence of the
intensity of these forces on the distance between the opposing
faces of the crack is known. In addition, the distribution of
cohesive forceg depends in general on the loals applied. However,
if the cracks are not too small, there is a way out ol this dif-
ficulty. The fact is that the Intensity of the coheslve forces
very rapidly reaches a hlgh maximum approximating Young's modulus
when the distance between the opposing faces of the cracks is in-
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creased and then rapidly decreases after passing this maximum. Con-
sequently, we can adopt two simplifylng hypotheses.

The first of these 1s that the area of the section of the
crack surface on which the cohesive forces act can be assumed
negligibly small in comparison with the total area of the crack
surface.

According to our second hypothesis, the shape of the crack
surface (and consequently, the local distribution of cohesive forces)
in the vicinity of the points on the contour of the crack at which
the cohesive forces are at maximum Intensity does not depend on
the applied load.*

For example, the coheslve forces are at their maximum possible
Intensity for a given material under a given set of condltions at
all polints on the contour of a crack formed in the primary fracture
of the material while the load 1s increased. For the majority of
real materials under ordinary conditions, cracking is irreversible.
If an irreversible crack is formed with the help of an artificial
notch and without subsequent expansion or 1if it is produced on a
reduction in the load from a crack that existed under a heavy load,
the Intensity of the cohesive forces at the contour of the crack
will be less than the maxlmum possible value. The cohesive forces
acting on the surface of a crack compensate applied fracture loads
and ensure finite stresses and a smooth junction between the faces
of the crack. With increasing fracture loads, the cohesive forces
increase, adapting themselves 1n thls sense to the lnereasing ten-
slle stresses. In this case, the crack does not widen further until
the maximum possible intenslty of coheslve forces at the contour
of the crack is achleved. Only when the maxlmum possible intenslty

of the cohesive forces 1s achleved at its contour does the crack
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begin to develop.*

The gradual development of the edge of a crack as the tensile
load 1s increased 1s shown schematlcally in Fig. 5.

it we use the first of the
hypotheses given above, the mole-

cular cohesive forces enter the

plcture under the conditions deter-

mining the position of the contours

Bls 5

of the cracks only in the form of

the 1Integral

o
A0
A =§_“/l' (1.2)

Here G(t) 1s the intensity of the coheslve forces acting in
the vicinity of the crack margins, t 1s the distance along the sur-
face of the crack, reckoned along the normal to lts contour, and
d 1s the width of the region in which the cohesive forces act. For
points on the contour to which the second hypothesis is applicable,
this integral is, for a given set of conditions (temperature, com-
position and pressure of surrounding atmosphere, etc.), a constant
for a given material and determines its resistance to the forma-
tion of cracks. It can be shows that the value of K is simply re-
lated to the surface tension To of the material, the modulus of
elasticlty E, and Poisson's ratio Vv:

Jt o AET,

T (1.3}
Further, for all points on the contour of a crack at which
the intensity of cohesive forces is at a maximum, the coefficient
of stress intensity N, which occurs in (1.1) and is calculated
without considering cohesive forces. equals K/m.

For all points on the contour of a crack at which the intensity
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of coheslve forces has not reached tne maximum, the coefficlent
of stress Intensity without considering the cohesive forces is
less than K/m.

The considerations cited above clarify the manner in which
coheslve forces manifest themselves in thls problem enough for us
to formulate the baslc problem of the theory of equilibrium cracks.*
When the symmetry ot the body, the Initial cracks and the monotonic-
ally increasing applied loads ensure development of a system of
plane cracks, this problem 1s stated in the following form.

Let the original cracks in the body have a certaln system of
contours. It is necessary to find the stress and shear field cor-
responding to the load in question, and the system of contours of
the surface cracks which surround the contours of the Initial cracks
(and perhaps are coincident with the original cracks to some extent).

Mathematically, the problem reduces to the synthesis of a
system of contours in which the intensity coefficlent N of the
fracture stress calculated without considering the cohesive forces
at all points on the contours not lylng on the contours of the
original cracks equals K/m and does not exceed K/m at all points
on the contours lying on the contours of the 1nitial cracks.

The proposed formulation of the problem eliminates direct con-
sideration of the molecular cohesive forces (they enter the problem
only through the constant K). Consequently, the stress and deforma-
tion field defined by the solution to this prcblem will not cor-
respond to actuality when we are dealing with a rather small region
around the contours of the cracks.

It is obvious that when the cracks are reversible or when the
applied load is sufficiently large that the contours of all cracks
lie outside the contours of the initial cracks, the form of the
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latter ceases to have significance.

The equllibrium state which corresponds to the maximum possible
Intensity of the cohesive forces, even at only one polnt on the
contour of the crack, may be stzcble or unstable. Depending on this,
further growth of the crack under Increased loads may proceed by
various methods. When the equilibrium is stable, a slow 1lncrease
in stress causes a slow, quasistatic transition of the crack from
one equilibrlium state to another. If equilibrium is unstable, the
crack begins rapid dynamic growth at the slightest increase in the
load over the equilibrium value. In some cases, when there are no
neighboring stable equilibrium states, this leads to complete frac-
ture of the body. The development of the theory of cracks was such
that, until recently, the chief considerations were problems of
precisely the latter type and, consequently, the beginning of crack
growth was occaslionally identified with complete fracture of the
body. It is necessary to realize clearly that the situation in which
this actually obtains 1s a particular case and its practical value
must not be exaggerated.

After a briel sketch of the development of the mathematical
theory of cracks, we shall set forth below the general foundations
of the theory of equilibrium cracks and the results of solving the
most characteristic speciflc problems of this theory that have been
dealt with up to the present time. At the end of the article, we
shall consilder briefly the dynamic problems of the theory of crack-

ing.

II. Outline of Development of Theory of Equilibrium Cracks

Research in the area of the theory of cracks was begun nearly

fifty years ago with the work of Inglis [1]. Within the framework
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of the classical theory of elasticity, this work solved the problem
of the equlilibrium of an infinite body with an isolated elliptlecal
cavity (in particular, with a rectilinear slit) in a homogeneous
stress field. The work of N.I. Muskhelishvill [2], which was also
within the framework of classical elasticity theory, provided a
simpler and more effective solution to the problem of equilibrium

of an infinite body with an elliptical cavity in an arbitrary stress
fililelldl

However, despite the great value of References [1] and [2] for
subsequent research, they still did not set up a true theory of
cracks. The solutlions obtained by these works had two properties
which it is difflicult to explain.

First of all, the length of a crack at a given load was found
to be indeterminate; a solution could be constructed using any
value of this parameter. At the same time, everyday experience
suggested that the size of cracks appearing in a body was somehow
related to the tenclle loads appllied to the body. when the load is
increased, cracks already 1in the body do not begin to widen at
first, as the load was small; when a certain stress was reached,
they begin to widen, and to do so in different ways depending on
the method by which the load ls applied. In some cases, the cracks
grow rapidly until sufficient to fracturc the body while the load
was maintained constant, while In other cases the cracks grew slowly
and ceased to widen as soon as the load stopped increasing. Further,
since the gcpread of the crack is generally small in comparlison
with its length, it is natural to represent the crack in the form

of a slit. Thus, in this case, the tensile stresses at the ends of

the crack prove to be infinitely great in Inglis' problem; generally

speaking, thls was also true of the problem considered by N.I.
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Muskhelishvlli. It 1s clear that solutlons in which infinitely
great tensile stresscs are obtained at the edge of the crack are
unsuitable for any physically correct model of a brittle body.

Thus, the direct application of the classical system of elas-
ticity theory to the problem of cracks led to a statement of the
problem which was lncomplete and gave physically inapplicable solu-
tions,

The work of Griffiths [3, 4] is corrcctly regarded as basic
for the theory of cracks in brittle fracture. These introduced for
the first time the important 1dea that to develop an adequate
theory of cracks, it would be necessary to perfect a suitable model
of the brittle body by introducing the molecular cohesive forces
acting in the neighborhood of the edge of the crack.

Griffiths investigated the following problem. In an infinite
brittle body under tenslion at infinity by a uniform stress PO’ ket
there be & rectilinear crack of definite size 21. It 1S neeessary
to determine the critieal value PO of the stress at which the crack
will begin to widen.

Griffiths dealt with the molecular cohesive forces as forces
of surface tension which were forces interior to the glven body;
he disregarded thelr action on the stress deformation fleld.

With this condition, the change AF in free energy ("the total
potential energy" according to Griffiths' terminology) of a
brittle body containing a erack in comparison with the same body
subject to the same loads but without a crack equals the difference
between the surface energy U of the crack and the decrease W in
the elastic energy of the body caused by the formation of the crack.
In order for this crack to grow, 1t is necessary that an increase
in the size 21 of the crack not cause an increase in the body's
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free-energy change AF. Thus, the parameters of the critical, equi:

librium state are found from the condition
A=W b (2.1)

However, the surface energy U of the crack equals the product
of the surface area of the crack by the energy TO consumed in the

formation of a unit area of the crack. The magnitude of T the

0’
surface tension, may then be assumed constant for a given material
under a given set of conditlions when certalin rather general assump-
Tions are made. Consequently, Griffiths' determination of the criti-
cal load reduces to finding the magnitude of oW/0l ("the rate of
liberation of elastic energy"). For the simplest case as studled

by him, Griffiths calculated thils value using the results of

Ingllis [1] and obtalned expressions for the critical values of

the fracture stress in the form

-

" Sl ~ /S OET,
PRV NP VAL (2.2)

PN
f'or conditions df plane deformation and a plane stressed state,
respectively.

In the theoretical part of thls work, Griffiths also obtained
results with a bearing on research on the structure of a crack near
its ends. Griffiths conducted this research on the basis of the
classical solution of elasticity theory, which was arrived at with-
out considering cohesive forces. In this case, 1t 1is natural that
1f the crack 1s regarded as a slit, the tensile stresses at the
ends of the crack will be infinitely large. In order to eliminate
this infinite tensile stress at the ends of the crack, Griffiths
made an attempt to improve his description o1 the crack, consider-
ing it to have an elliptical cavity with a finite radius of curva-

ture p at its end (Flg. 3). However, according to his estimates,
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the radius of curvature at the end of the crack was of the order
of the interatomic distances, and this obviously proved the incor-
rectness of the approach: 1n any investigation based on the con-
cept of a continuous medium, distances of the order of interatomic
distances cannot be considered finite,

This sectlon of Griffiths' work 1s flawed by the following:
despite the fact that for definite equllibrium sizes of the crack
it 1s possible to neglect the effect of molecular cohesive forces
on the fleld of stresses and deformations, it 1s impossible to do
so in research on the structure of a crack in the vicinity of 1its
ends. The order of distances at which cchesive forces have an ef-
fect compares with the distances over which the shape of the crack
essentially varies. To a conslderable degree, therefore, Griffiths'
analysls of the structure of the crack edges cannot be acknowledged
as correct. In particular, as will be shown in detail, Griffiths!'
conclusion regarding the rounded form of a crack near 1ts end is
HICEREECIE .

This aspect of the matter, which is obviously of baslc impor-
tance, has remained unclear until recently and in many cases, has
led to incorrect interprepation of Griffiths' results [5].

In addition to the basic deficiency noted here, there are
several Inaccuracles in the calculations 1n the theoretical sec-
tions of Reference [3]. Soon after the publication of this work,
Smekal [6] published a detalled commentary on it which also con-
talned a very interesting general discussion of the problem of
brittle fracture and corrected the aforementioned inaccuracies. The
later work of Wolf [7] gave a clearer and simpler account of Grif-
fiths' results and also carried out analogous calculations for

somewhat different (but also homogeneous) stressed states. Reference




[7] also dealt with the connection between Griffiths' theory of
fracture and theories of gtrength which had been proposed pre-
viously.

The report by L.V. Obreimov [8) in connection with his ex-
periments on the cleavage of mica, investigates the tearing away
of a thin chip from a body by a splitting wedge slipplng along its
surface and touching the chip at one point. Using the approximate
methods of the theory of thin beams, and referring to the analo-
gous work of Griffiths on the energy approach, I.V. Obreimov formu-
lated an expression which related the shape parameters of the crack
to the surface tension. Reference [8] was later supplemented by
many researchers [9-12].

The determination of the rate of llberatlion of elastic energy
OW/0l for tensile-stress fields more complex than the homogeneous
field or for other crack configurations encountered considerable
mathematical difflculties. Research by Westergaard [13], Sneddon
[14, 15], Snedden and Elliot [16], and Williams [17) ascertained
the distribution of stresses and strains in the vicinity of shear-
ing-fracture surfaces. In additlion to the classical works by Musk-
helishvili [2, 18, 19], the research of Westergaard and Snedden
constituted a mathematical basis for subsequent work on the theory
of cracks. However, no equilibrium conditions for new particular
cases, not to mention any general case of loading, were derived
in these studies.

The works of Sack [20], Willmore [21], and Bowle [22] gave
the equilibrium conditions f{or certaln new particular cases of
loading and crack location. The direct application of the energy
method in these works required surmounting considerable difficulties

in calculation. Because the equilibrium states in the problems con-
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sidered in References [20-22] were unstable and unique, the equilib-
rium conditions for them colncide with the conditions for total
fracture of the body.

An important step for the theory of cracks was the work done
by Irwin [23] and Orowan [24)] in which the concept of quasibrittle
T'racture was developed. Irwin and Orowan drew attention to the
fact that a number of materiais which showed high plasiticity in
standard tensile tests fractured according to a "quasibrittle" mech-
anism when cracks were formed. This meant that the developing plas-
tic deformation was concentrated in a very narrow layer in the
vicinity of the surface of the cracks. As Irwin and Orowan showed,
i pesstiibilke Rtionus em G Blsil Stheory ol bRittitile) Braetiure bin
these cases, replacing the surface tension by the effective surface-
energy density. In addition to the specific work of fracturing
internal bonds (surface tension) this quantity includes the specific
work expended on plastic deformation In the layer of the crack near
the surface, which occasionally exceeds the surface tenslion by
severall orders!.

The introduction of quasibrittle fracture considerably broadened
the area of application of the theory of brittle fracture, and with-
out doubt served for a while as one of the baslc reasons for the
recent revival of interest in this problem. Irwin, Orowan, and
other authors published a number of papers [23-32] devoted to the
development ¢f a generalized theory of brittle fracture, research
on the limits of 1ts applicability, and analysis of experimental
data from the viewpoint of thls theory. It is necessary to mention
the article by Bueckner [33], in which a very general energy analy-
cis of brittle and quasibrittle fracture was given on the basis of
the theoretical system of Griffiths, Irwin, and Orowan.
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In all the enumerated works, there remained unexplained the
problem of the structure of a crack in the vicinity of its contour.
In a very interesting study [34] devoted to physicochemical analy-
sls of the deformation process, P.A. Rebinder for the first time
expressed the idea of the wedge-shaped form of the crack ends and
the necessity for a corresponding improvement of Griffiths! theory.
In analyzing crack shapes, Elliot [35], Mott [36], and Ya.I. Frankel!
[5] proceeded from the notion of a crack of infinite length between
two unbroken blocks of the material being fractured, ceparated by
the normal interatomic distance before the crack is formed.

In Reference [35], the blocks were regarded as semi-infinite.
Proceeding from the classical solution to the problem of elasticity
theory for rectilinear [1] and discoid [20] cracks of size 2c in a
uniform fracture Stress field P, [35] gives calculations Tor the
distribution o!f normal stresses oy and the transverse shears v
of points on planes lying at a distance of one half the normal inter-
atomic distance from the crack surfaces. The function oy (2v),
which contains p and c¢ as parameters, was identified with the ex-
pressioinn for the molecular cohesive forces as a function of dis-
tance; integration of this function gave the surface stress, which
is thus related to p and f. The author identif'ied the relation
obtained with the fracture condition; this condltion naturally
differed from that of Griffiths. The distribution found for the
transverse shears was identified with the form of the crack.

This approach was unsatisfactory for the followlng reasons.
The formal use of the apparatus of classical elasticlty theory in
the determination of stress and strain near the margin of a crack
in work [35] 1s not Justifiable, since, in using this apparatus,

all distances — even those which are assumed to be small — must be
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large 1n comparison with the Interatomic dlstances. In addition,
it 1s necessary t o conslder that the cohesive forces act not only
within a body but also on sections of the surface of the crack. As
wlll be shown 1in detall below, conslideration of this clrcumstance
glves a pointed shape to the ends of the crack rather than a rounded
shape, with no infinite concentration of stresses at the ends of
the crack. Thus, the dilstributions of stresses and shears near the
edge of the crack surface differ substantially from the correspond-
ing distributlions obtalned 1ln accordance with the solutions pro-
posed by Inglis [1]) and Sack [20], in which the surface of the
crack was assumed to be free of stress. Let us note that the drop
observed in the curve oy (2v) with Increasing Vv is considered in
work [35] as occurring very slowly, far more slowly than the natural
rate of drop in the intensity of the cohesive forces.

Ya.I. Frankel'! [5] dealt with the problem of a crack of in-
finite length which passes longitudinally along a thin band. The
use of the approximate theory of thin beams, which is useless for
investigation of the form of a crack near its ends, did not allow
him to obtain adequate results. We may note in passing that the i
critique of Griffiths!' theory contained in this work by Ya.I.
Frankel' likewise cannot be consildered correct to any substantial
degree. Ya.I. Frankel' questions Griffliths' statement that equililb-
rium 1s unstable in the case of a rectilinear crack in a uniform L
tensile-stress fleld as consldered by the latter, relating this
Instability to the incorrect assumption on the part of Griffiths
as to the form of the ends ot the crack. Thls was wrong: the struc-
ture assumed for the crack at its ends has no bearing on the
stabllity or instability of the crack equilibrium. As will be
shown below, crack Instablility in a homogeneous fleld also takes
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place on considering the smooth union of the cracks at thelir ends;
1t corresponds fully to the essence of the matter. Ya.I. Frankel's
conclusion that, in addition to an unstable state, a stable equilib-
rium state also exists in this case was brought about by his in-
correct substitution of another stressed state for the homogeneous
stressed state.*

The work by A.R. Rzhanitsyn [37] made an attempt to solve the
problem of a circular crack in a body subject to a uniform tensile
stress with consideration of molecular cohesive forces distributed
along the surfaces of the crack and a smooth union of the crack at
its edge. Unfortunately, the use of inadequate methods based on the
averaging of stresses and strains made it impossible for the author
to obtaln the correct edquilibrium conditilons for the crack.

The idea first introduced by S.A. Khristianovich [38] is of
basic importance for understanding the structure of cracks in the
vicinity of the ends. In connectlion with the theory of the so-called
hydraulic fracture of an oll-bearing geological stratum, S.A.
Khristianovich dealt with an 1solated crack in an infinite body
compressed at infinity by a constant hydrostatic stress; the crack
was supported by the uniformly distributed pressure of a fluid
enclosed within the crack. The problem was studied in a quasistatic
formulation. In its solution, S.A. Khristianovich was balked by the
indeterminate length of the crack. However, he drew attention to
the following circumstance. If we assume that the liquid fills the
crack completely, the fracture stress at the end of the crack is
always infinitely large, whatever the size of the crack. But if we

ssume that the liquid does not fill the crack completely, so that
there is a free section of the surface of the crack which 1s not
wetted by the 1liquid, the fracture stresses at the ends of the crack
- 20 -




will be finlte at one exceptional value of the crack length. For
this crack length (and only for this length) it was found that the
opposing faces of the crack unite smoothly at its ends. S.A.
Khristianovich advanced the hypothesis of finlte stress, or, what
Is the same thing, smooth uniting of the opposing faces of fhe
crack at lts ends, as a baslc condltion determining the size of

the crack. Use of thls hypothesls has made it possible to solve

a number of problems In Lhe formation and growth of cracks in rocks
[38-43]. However, nonec of these works consldered the molecular co-
heslve forces directly. In dealing with cracks in rock masses, 1t
1s qulte permissible to neglect the coheslve forces, as was shown
by the evaluatlons, since the pressure of the surrounding rock mass
is manifected here much more strongly than the molecular cohesive
force, especlally If we consider the naturally broken-up nature of
the rocks. Under other conditions (in particular, in many cases
where laboratory models of rock masslifs are used), the coheslve
forces play an important role and their consideration ls of sub-
stantial importance for analysls of equilibrium conditions and the
development of cracks.

In connection with this research, we should note the very
interesting earlier work of Westergaard [44] (see also [13]). This
work, on the basis of an analogy with the contact problem noted by
the author, affirms the absence of stress concentratlon at the end
of a crack ln a concrete-like brittle material. Reference [44]
also glves formulas which correctly describe the stresses and strains
in the vicinity of the ends of the equillbrium cracks formed in
brittle fracture in the absence of cohesive forces. However, Wester-
gaard did not relate the flnlite-stress condition to the determina-
tion of the length of the crack, which he assumed to be glven.
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The studies by Irwin [45, 46] (see also [47, 48, 49, 33]) es-
tablished an important formula which related the rate of elastic
energy liberation to the coefficlient of stress intensity in the
vicinity of the ends of the crack In the problem of the classical
elasticlity theory. The rate of elastic-energy liberation and the
fracture conditions for several new cases of loading and crack posi-
tion were determined on the basis of this formula [47, 50, 32, 51,
52].

Beginning with Griffiths, the majority of theoretical research
has dealt with problems of one type, in which the equilibrium state
in which the intensity of the cohesive forces at the edge of the
craft 1s maximal is unstable and the condition necessary for the
development of a crack to begln was ldentical with the condition
necessary for complete fracture to begin. Consequently, some works
identified the condition for initiation of crack development with
the condltion of rapid crack propogation and fracture for all cracks.
Generally speaklng, this is not so; actually, cracks can be stable,
so that the start of the crack development is not at all necessarily
associated with fracture of the body. We must not treat this matter
as though stable cracks were a rarity not encountered in practlce
and difficult to generate experimentally. As the experimental research
carried out by various authors, beginning with I.V. Obreimov [8],
has shown, 1n many cases the development of cracks proceeds stably
during considerable portions of the fracture process. Thus, Wells
[30] obtalned cracks in steel plates which were stable over a cer-
tain tensile-stress range to Lhe combined action of external ten-
gile stresses and internal stresses set up by welded seams. Roesler
[53] and Benbow [54] investigated stable conical cracks in glass
and quartz. Benbow and Roesler [9] obtained stable cracks by in-
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serting wedges in strips of organic glass. Recently, Romualdi and
Sanders [52] obtained cracks that were stable within definite stress
ranges by elongating a plate reinforced by riveted-on stiffening
ribs, References to other rescarch in which stable cracks were ob-
tained and studled can be found in the monograph by B.A. Drozdov-
skily and Ya.B. Fridman [55]. All these works definitely confirm the
feasibility of applying the concept of brittle and quasibrittle
fracture to stable cracks.

Conslderation of stable cracks greatly broadens problem formu-
lation in the theory of equilibrium cracks. Actually, only deter-
mination of the load at which the crack begins to widen 1s of in-
terest for unstable cracks, since the process of crack development
before this stress 1iIs reached becomes dynamic. For stable cracks,
there also arises the problem of 1nvestigating the quaslstétlc
development of cracks with varying loads.

In connection with the foregolng consideratlions, References
[56-61] clarify and supplement formulation of problems in the theory
of equilibrium cracks formed in brittle fracture. These works pro-
posed a new approach to the problems of crack theory based on the
general presentation of the problem of elastic equllibrium in a
body containing cracks as formulated in [40]. The material which
follows 1s based on this approach, so that we shall not dwell on
its characteristics here. A number of new problems of the theory of
cracks have been formulated and solved on the basis of the proposed

approach.

IITI. Structure of Ends of Egquilibrium Crack in a Brittle Body

1. Stresses and stralns in the vicinity of the end of an arbi-

trary normal-shearing-fracture surface. As was shown earlier, it

is possible to construct a formal sclution to the differentlal equa-
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tlons of elasticlty theory which satlsfles the boundary conditilons
corresponding to the load applied to the body by arbitrary assign-
ment of the shearing-fracture surface. This section is a study of
the behavior of solutions of the elasticlity-theory equations in the
vicinlity of the edge of a shearing-fracture surface. For simplicity
of dlscussion, we shall 1limit ourselves here to normal-shearing-
fracture surfaces which are sections of a surface bounded by closed
contours.

Let us take a neighborhood in the vicinity of an arbitrary point
0 on the boundary of such a surface whose characteristic dimension
is small in comparison with the radius of curvature of the boundary
at point 0. The deformation in this region can be assumed two-dimen-
slonal and to correspond to an infinite rectilinear slit in an
infinite body being acted upon by a certain system of symmetrical
loads (Fig. 6; the plane of deformatlion is the plane normal to the
contour of the fracture surface at polnt 0, and the 1line of the
slit 1s the intersection of this plane with the fracture surface).
Loads can be applied to the surfaces of the slit and within the body;
loads applied to the surfaces of the slit may be regarded as normal
without loss of generality in subsequent analysls. Let us consider
this configuration in greater detail.

The field of stresses and shears can be presented as the sum
of two fields (Fig. 6), the first of which corresponds to a con-
tinuous body acted upon by a stress appllied from within the body,
while the second corresponds to a body contalning a slit and acted
upon by symmetrical loads applled only to the surfaces of the slit.
The shape of the deformed surface of the slit is determined by the
second stressed state, since the normal shears at the site of the
slit in the first streéssed state are, according to symmetry, zero.¥
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Analysis of the first stressed state is carried out by the usual
methods of elasticlty theory and is of no basic interest; we will
consider this stressed state to be known. Let us assume that the

line of the slit corresponds to the positive x-semlaxlis; the normal

e, B

stresses g(x) applied to the surface of the slit in the second
stressed state are equal to the difference between the stresses
applied to the surface of the slit in the resultant field G(x) and
the stresses at the slit p(x) which correspond to the first stressed
state.

Using Muskhelishvili's method [18] for analysis of the second
stressed state, we have relationships determining the stresses and

shears in the form

2x® 4 g, = 4 Re b (2) (31)

Gy'S) — i;_w\'-‘) D (2) L Q(2) + (8 — ) W' (z) (3.2)
S (@ e e @) = ng (2) — 0 (5)—(z—z)m (z)

n=3—4hv (3.3)

Hexe z = x # iy, cX(Q), oy(2) and oxy(Q) are the components

of the stress tensor for the second stressed state; u(2) and v(2)
are the shear components along the x and y axes corresponding to
the second stressed state; w = E/2(1 + v) is the shear modulus,

E is Young's modulus, and Vv 1ls Poilsson's ratlon. The analytical
functions @, ®w, &, and Q are expressed by the formulas
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At the slit (x > O, y = 0) and 1ts extension (x < 0, y = 0),

the expressions

S g = 2Re® (2), 50 =0, v = =) 100 (3.6)
are satlsfied.

From this and from the known formulas for the limlting values
of a Cauchy integral at the ends of the contour [19], an expression
1s obtained for the normal tensile stresses in the vicinity of the
end of the slit on its extension:

>

oy = — b\ £OL g 0) 2 0(1/5) (217
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where 89 1s the short distance from the point being considered to
the end of the slit. Similarly, in order to determine the normal
displacement for points on the slit surfaces 1in the vicinity of its

end, we obtailn

A1 — ~3) /‘_')o;,'(l)l/[ , T
ST An I 5.'%_1.“"'7‘0\32") (3,8)

()

where Sy is the distance from tﬁe point on the slit surface being
considered to its end, while the plus and minus signs correspond to
the upper and lower faces of the slit.

The research which has been conducted has completely clarified
the distribution of normal tensile stresses and normal shears in
the vicinity of the boundary of an arbitrary normal fracture sur-

face. Specifically, the formulas

3y = = G(0) - O(Vs,), v %—“{:1%£15~%0@?) (3.9)

follow directly from Expressions (3.7) and (3.8). Here, oy is the

tensile stress at a point on the body lying at & short distance 51
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from the boundary of the fracture surface and on a plane contiguous
to the contour of the fracture surtace passed at polnt O0; N is the
"coefficient of stress intenslty", whose value depends on the loads
acting, the conflguratlion of the body and lts fracture surface, and
the coordinates of the point 0 on the contour being considered;
G(0) is the magnitude of the normal stress applled to the fracture
surface at the polnt on the contour of thls surface being con-
sidered (Fig. 6); 5o is the short dlstance between the point on

the fracture surface and i1ts contour. Generally speaking, there are
three possibilities, depending on the sign of N.

If N> O, an inflnite tenslile stress acts at polnt O on the
boundary of the fracture surface. The shape of the deformed fracture
surface and the distribution of the normal stresses cy In the vicinity
of point O have the form shown 1n Flg. 7a.

If N< 0, an infinite compressive stress acts at point O on
the boundary; the shape of the deformed fracture surface and the
distribution of stresses oy in the vicinity of point O have the
form shown in Fig. 7b. As may be seen, 1In this case the opposing
faces of the crack enter cne another and, as 1t were, merge; it 1is
obvious that this case 1is physically imposslble.

Flnally, if N = O, the stress acting in the vicinity of' the
boundary is limlted and as we approach point O, it tends toward the
normal stress applied to the surface at thls spot on the boundary,
so that there is a continuity of the stresses oy at the boundary
and a smooth unlon of the opposlng faces of the fracture surface at
its boundary (Fig. Tc).

Research on the dlistribution of stresses and strains in the
vicinity of the edge of a normal fracture surface was begun by
Westergaard [44, 13] and Sneddon [14, 15] and subsequently continued
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by the author [40], Willlams [17], and Irwin [45-47). Due to the
nature of the stressed states considered in works [14, 15] and

f45-47], results were obtained which had a bearing only on the

case N > O,

Plg. 7.

2. Stresses and strains 1n the vicinlty of the edge of an equilibrium
crack. The results obtained in the preceding section pertain to an
arbitrary normal slip-fracture surface. Let us prove that, for an
equilibrium crack, N = O at all points on its boundary.

Let us consider the possible state of an elastic system which
differs from the actual equilibrium state only by a certaln varla-
tion in the form of the contour of the crack iIn a small area around
an arbitrary point O on it (Fig. 8). The new contour ls a certaln
curve surrounding point O in the plane of the crack. This curve is
in contact with the previous boundary of the crack. This curve is
in contact with the previous boundary of the crack at points A and
D near O; at all other points, the contours of all cracks remain
unchanged. Because of the proximity of the points of contact A and
B to point O, the 1lnltial contour of the crack contour can be as-
sumed rectilinear on segment AB. According to the foregoing, the
distribution of normal shears for points on the new crack surface
and the distribution of tenslile stresses at these points before
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the formation of the new crack sur-

face have, to within small quantities,

the followlng form:

A — N
l——i-/(‘ V) V/‘_'/: Gu-"—'W—‘ (3.10)

Pies €. Here N 1is the coefficient of
stress Intensity at point O.
The energy liberated in the formatlon of the new crack surface,
which 1s equal to the work required to close this new surface is ob-
viously equal to

h
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where &S is the area of the projection of the new crack surface onto
its plane.

It follows from the equilibrium conditlions of the crack that
A should revert to zero, from which and (3.11) it follows that

N = 0.

Thus, a very important statement characterizing the structure
of the cracks in the vicinity of thelr contours is valid.

1. The tensile stresses at the boundary of the crack are finite.

2. The opposite banks of a crack unite smoothly at its boundary.

Thus it hac been shown that, in contrast to Griffiths' ideas,
the form of the crack in the vicinity of the edge 1s as that deplicted
in Fig. 4. Since the only forces which act upon the surface of the
crack in the vicinity of 1its boundary are cohesive forces, it follows
from Eq. (3.9) that the tenslile stress at Line boundary of the crack
equals the cohesive force intensity at the boundary.

In particular, 1f there are no cohesive forces, the tensile
stress at the boundary of the crack will equal O,
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The condition of finlte stress and smcuth union of the op-
posing faces at the ends of a crack was first suggested in hypo-
thetical form by S.A. Khristianovich [38] as the basic condition
which determines the position of the end of the crack. The proof
given above rof this condition follows basically from [60]. Formula
(3.11) for plane deformation was first indicated without relation to

finite stress and smooth unlion 1n
the work of Irwin [45,46] (see also
the survey by Irwin [47] and the
paper by Bueckner [33]). The earlier
work by Westergaard [44] affirmed the
absence of stress concentration at
Fig. 9. the end of the crack in a brittle
material of the concerete type, although the finite-stress condition
was not associated in this work with determlnation of the size of
the crack.

We are considering here cracks involved in normal fracture
solely for simpliclity of description. The entire foregoing discus-
sion and, in particular, the demonstration of the finlite magnitude
of the stresses at the end of a crack can be extended without any
substantial change to the general case in which the surfaces of
the crack undergo fracture and are cubject to tangentlal slip com-
ponents.,

3. Determination of the boundaries of equilibrium cracks. The
condition of finite stress and smooth union of a crack at 1its
boundary makes it possible, for a glven system of forces acting on
a body, to formulate the problem of the theory of equilibrium cracks.
This problem consists in the followling. For a glven arrangement of
initial cracks and a given system of forces actling on a body, it
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18 necessary to find the stress, def&%mation, and crack boundaries
in the elastic body under conslderation so as to satisfy the dif-
ferential equations of equllibrium and the boundary condltions and
to ensure finlite stresses and smooth union of the opposing faces
at the boundaries of the crack.

Let us analyze the solution of thls problem on an elementary
model of an isolated rectllinear crack 1n an infinite elastic solid
which 1s compressed at inflnity by a nondirectional stress q. The
crack 1s subject to the concentrated forces T, which are applied
at opposing points on its surface (Fig. 9).

We can use the method of N.I. Muskhelishvili [18] to obtain
a solution for the equllibrium equations which satisfy the boundary
conditions for an arbitrary crack length 21. In this case the stresses
and shears are expressed by Formulas (3.1)-(3.3), with

B (3.12)
L !

E - \: -

= b

As may be seen, the equilibrium equatlions and boundary condi-
tlions do not determine the length of the crack. The distrlibution of
stresses Jy over the extent of the crack and the normal shears v
for points on the surface of the crack in the vicinlity of i1ts end
18 giltven in the feorm

s =(& -4 \”/'ST'}“:‘O(” (3.13)
v r‘yzfi\%}"q)V$3-%0h;v
The finlte stresses and smooth union of the crack at its ends

are ensured simultaneously by the condition

- (3.14)

aq

which also determines the size of the crack for given stresses T

and q.

Let us now try to determine the length 21 of an isolated recti-
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linear crack in an infinite body under tension at infinity by a uni-
form stress PO in the direction perpendicular to the crack. If we
assume that the surface of the crack 1s free from stress, i1t 1s not
difficult to show that the tenslile stress over the length of the
crack 1n the vicinity of 1its end depends on the dlstance 5 gy Blae

following manner:

_mlV

&,
Ve

(BLuB)
From this it follows that, at any 1 oy at the end of the crack
will not be filnite and there will be no equilibrium cracks. Thils
paradoxical result 1ls explained by the fact that we have not taken
into conslderatlion the molecular cohesive forces acting 1n the
vicinity of the boundaries of the crack on its surfaces, and have
thus incompletely characterlzed the loads actling on the body.
Conslderation of coheslve forces and the final formulation of
the problem of the theory of equilibrium cracks formed in brittle
fracture are dealt with in the following Sectlion.
IV. Baslic Hypotheses and Generali Formulation of the Problem of
Equilibrium Cracks

1. Cohesive forces. Terminal and Interior regions. Baslc hypo-

theses. In order to construct an adequate theory of the cracks formed
in brittle fracture, it 1is necessary to supplement our model of the
brittle body by conslidering the molecular cohesive forces acting on
the surfaces of a crack in the vicinity of 1ts end. As we know,

the intensity of cohesive forces varies greatly as a function of
distance. Thus, for an 1deal crystal, the intensity f of the co-
hesive forces acting between two atomlc planes at a distance y from
one another equals O when y equals the normal interatomlc distance
b. When y increases to a magnitude of the order of one-and-one-

half times b, the Intensity f increases, reaching a very high maxi-
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mum value f = ETO/b ~ E/10, and then rapidly decreases with in-
creasing y (Pig. 10).
Here E is Young's modulus and
To is the surface tension, which is
related to f(y) by the expression

T, s S/(y)(/y (l,ll)

(1

The maximum intensity fm de-
Fig. 10. fines the theoretical strength, i.e.,

the strength which the solld would

have if it were an ldeal crystal.

The actual strength of a solid is generally several orders of
magnitude lower because of the presence of defects in the crystal
structure.

For an amorphous body, the relationship of the intensity of
cohesive forces to distance has the same qualitative character.

At the present time, the data which confirm the character of
the relationship between the intenslty of cohesive forces and dis-
tance stated above reduce to the following. It has long been known
that the strength of thin filaments considerably exceeds the strength
of large specimens produced from the same material [62, 63]. Re-
cent experiments have brought to light the exceptionally high strength
of thread-like crystals of certaln metals; this strength approxi-
mated the theoretical values [63]. We may assume that this phenome-
non is assoclated with a comparatively small number of structural
defects In thin filaments and whisker crystals. Further, numerous
direct measurements have recently been conducted on the intensity
of molecular coheslive forces in glass and quartz [64-66]. Special

mention should be made of the highly elegant method of the types of
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measurement based on the use of mlcro-
valances employing feedback, which
were proposed and ysed by B.V. Derya-
gin and I.I. Abrikosova [64, 65],
However, this direct measurement is
for determination of the distance y,
which is very large in comparison
Igatea s by
with the normal interatomic distance,
and thus determines only the end of the descending arm of the curve
f(y). Ye.M. Lifshits [64] developed a macroscoplc theory for the
cohesive forces at such distances; this theory has been well con-
firmed by the results of the measurements mentioned above. At dis-
tances of the order of several normal interatomic distances, the
function f{y) is inaccessible at the present time to any rigorous
quantitative theory or to direct experimental determination. An
account of attempts at mathematical evaluation of the function f(y)
for such distances and the theoretical strength can be found in
[67, 63, 68].
The distance between the opposing faces of a crack varies from
magnitudes of the order of interatomic distances in the vicinity
of the crack contour to occasionally rather high values remote from
the boundary. Consequently, it is natural to divide the surface of

the crack into two parts (Fig. 11). In the first part, the interior

region of the crack, the opposing faces of the crack are far apart,

so that thelr interaction 1s negligibly small and the surface of
the crack can be assumed to be free of stresses caused by the inter-
actlion of the opposing faces. In the second section, which adjoins

the contour of the crack and is referred to as the terminal region

of the crack, the opposing faces of the crack draw near one another,
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5o that the action of molecular cohesive forces on this section of
the surface 1is of considerable intensity.

The boundary between the terminal and interior regions of the
crack surface 1s, of course, to a certain extent arbitrary. For
very small cracks, the interior region of the crack surface may
not exist at all.

Since the distribution of cohesive forces along the surface of
the terminal region of the crack is not known beforehand, a sub-
stantial part of the loads applied to the body is nof known either.
Consequently, it is impossible to solve the problem of cracks
directly in the form in which 1t is stated in Section III. The
following is possible 1in principle for solving the problem of cracks.
The distance between the opposing crack faces at each point on its
surface 1s determined as a function of the unknown distribution of
coheslve forces along the surface. Assuming an assigned relation-
ship £(y) expressing the intensity of cohesive forces as a function
of distance, we may find from it an expression determining the dis-
tributlion of cohesive forces along the surface of the crack.

This approach to the problem of cracks cannot be carried out
in practice. First of all, the function f(y) 1s not known to a suf-
ficient extent for any real material. Even if this function were
known, the problem would reduce to a very complex nonlinear inte-
gral equation whose effective solutlion presents great difficulty
even In the simplest cases.¥

Attempts have been made to assign a definite form to the dis-
tribution of cohesive torces along the surflfaces of the crack, but
these attempts cannot be considered sulficiently substantiated.

For rather large cracks, investigation of which i1s of basic
interest, the difficulty associated with the lack of information
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on the distribution of cohesive forces along thelr surfaces can be
avoided by not making any concrete hypotheses about this distribu-
tion. More precisely, the general propertles considered above for
cohesive forces as a function of distance make it possible to formu-
late two basic hypotheses which substantially simplify further
analysls and make it possible in the final analysis to elliminate

the coheslve forces completely from conslderatlion of the loads
acting on the body in determining the contours of the cracks.

First hypothesls. The width d of the terminal region of the
crack 1s small in comparison with the size of the entlre crack.

The possibility of adopting this first hypothesis is a result
of the rapid decrease 1in cohesive forces when the distance between
the opposing faces of the crack is 1lncreased.

It is understood that there are microcracks to which this hypo-
thesis 1is inapplicable. However, since the width d of the terminal
reglon is very small, the first hypothesis is correct for very small
cracks and 1s known to be correct for all real macrocracks. All
the same, the width d 1s assumed to be sufficlently great in com-
parison with microscopic dimensions (for example, in comparison
with the lattlice constant of a crystalline body) that the metheds
of continuum mechanics can be used for distances of the order of d.

Second hypothesis. The form of the normal section of the sur-
face of the crack in the terminal region (and, consequently, the
local distribution of cohesive forces along the surface of the crack)
does not depend on the loads actlng on the crack and is always the
same for a glven material under given conditions (temperature, com-
position and pressure of the surrounding atmosphere, etc.). (By
normal section, we mean here a section cut by a plane normal to the
contour of the crack.)
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According to the second hypothesis, when a crack widens, the
terminal region in the vicinity of a glven polnt shifts progres-
slvely, as 1t were, to another place but the shape of 1its normal
Section remains unchanged.

The second hypothesls 1s applicable only for those polnts on
the contour of the crack where the maximum possible intensity of
coheslve forces 1s reached, so that any increase, no matter how
small, in the load applied to the body at this point causes the
crack to widen.

Equllibrium cracks whose contours have at least one such point
are naturally called mobile-equlilibrium cracks 1n contrast to sta-
tionary-equlllbrium cracks, which do not possess this property and,

consequently, do not widen on an Infiniteslimally small increase in

load.

Thus, the second hypothesls and all conclusions derived from
it are applicable to reversible cracks, as well as to the lrrevers-
ible equlilibrium cracks which are formed in primary fracture
of a brittle body while the stress 1is lncreasing. They are applicable
to irreversible cracks formed by a decrease In the load on equllib-
rium cracks that exlisted under some large load, and to artificilal
notches which do not widen subsequent to thelr formation.

The possibility of adopting this second hypothesls 1s associated
with the fact that the maximum intensity of cohesive forces is
very large and exceeds by several orders the stresses which would
arise in a solid body without cracks which 1s subject to the same
load. It 1s therefore possible to neglect changes 1in stress occurring
In the terminal region as a result of a change in load and, con-
sequently, the corresponding changes in the form of the normal sec-
tions of the terminal region.
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The hypotheses formulated are a synthesis of the results of
a qualitative analysis of the phenomena of brittle fracture carried
out by a number of Investigators, beglnnling with Griffiths. They
are the only hypotheses dealing with cohesive forces and form the
basis for the theory given below. They are formulated in explicit
ferm' in [56, 57).

2. The coefficlent of coheslon. It 1is assumed that the body
belng consldered 1s linearly-elastic to the point of failure, so
that the fleld of the elastic elements 1n the body containing the
cracks can be represented as the sum of two flelds; the field cal-
culated without considering cohesive forces and a field correspond-
ing to the action of the cohesive forces alone. The quantity N
which occurs 1n formula (3.15) and, Q.E.D., equals zero can there-
fore be represented in the form N = NO + Nm, where the coefficient
olf 'sitresis Intensiitty NO corresponds to the loads acting on the body
and the same crack configuration but without considering the co-
hesive forces, while the coefflicient of stress Ilntensity Nm corre-~
sponds to the same crack configurations and the cohesive forces
taken alone.

By virtue of the first hypothesis, the width d of the terminal
region In which the coheslve forces act 1s small in comparison with
the dimensions of the cracks as a whole and, in particular, in com-
parison with the radius of curvature of the crack contour at the
point under consideration. Consequently, it 1s possible In deter-
mining the values of Nm’ to assume that the field corresponds to
the configuration of an infinite body with a semiinfinite slit, as
considered in Section III, Paragraph 1, to whose surface symmetri-
cal normal stresses are applied. From this and from (3.7) it follows

that
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Here G(t) is the distribution of cohesive forces differing
from zero only in the terminal region 0 < t < d.

By virtue of this second hypothesis, the distribution of co-
hesive forces and the width d of the terminal reglon at those polnts
on the contour of the crack where the intensity of coheslive forces
is at a maximum are independent of the load applied, so that the
integral on the right-hand side of Eq. (4.2) is a constant char-
acteristic of the glven material under given conditions. This con-
stant is-designated K

1l
- ¢ C"‘l’
i S (4.3)

and is called the modulus of cohesion, since this quantity char-
acterlzes the crack-development resistance of the material due to
the cohesive forces. As will be shown later, the quantity K is the
only characterictie of the coheslve forces which takes part in
formulation of the problem of cracks.

The dimensions of the modulus of cohesion are

INL = [F][L]=" = (M [L]=*s )= (4.4)

Here [F] represents the dimensions of force, [L] length, [M]
mass, and [T] time. Constants with similar dimensional formulas
are encountered in the contact problem of elasticity theory [71,
72, 73). It 1s not coincidental that a strong correlation exists
between contact problems and problems in the theory of cracks gene-
rated in brittle fracture, as was apparently first noted in works
by Westergaard [44, 13].

3. Boundary conditlons at outline of equilibrium crack. For
points on the boundary of an equilibrium crack at which the maxi-

mum intensity of cohesive forces is reached, sc that the second

hypothesls is applicable, Formula (4.2) is represented in the form
= 3J =
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From thls, and since N = O, we obtain
No=—-K (4.6)

It 1s also possible to formulate the boundary condition at
points on the boundary of an equilibrium crack at which the inten-
sity of coheslve forces 1s at a maximum in the followlng fashion.
As we approach these polnts, the normal tensile stress oy at points
in the body lying in the plane of the crack, as calculated wilth-

out consldering the cohesive forces, tends to infinity in accor-

dance with the expression

5, = :—'1",—;-;‘0(1) (4.7)

where s 1s a short distance from the contour point being considered.

Satisfaction of (4.6) for at least one point on the contour
will be the condition under which the crack reaches a state of
mobile equilibrium.

It should be speclally emphasized that generally speaking, a
crack's reaching a state of mobile equilibrium should not be asso-
ciated with the beginning of its rapld unstable development and,
even less with complete fallure of tne body. A mobile-equilibrium
crack can be either stable or unstable. Only in the case of unstable
mobile equilibrium will Eq. (4.6) be the condition for the beginning
of rapid crack development. However, even in this case, complete
fallure of the body 1s not obligatory: the crack may shift from an
unstable equillbrium to another, stable state. Numerous examples
1llustratling various possibilities will be conslidered ln the next
section.

If the crack 1s irreversible and 1f there are points on its
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boundary where the intenslty of cohesive forces 1is less than the
maximum possible value¥*, the second hypothesis 1s inapplicable at
such points. The cohesive forces acting in the terminal region of
the crack surface in the vicinity of such points are smaller than
the cohesive forces acting in the terminal reglon in the vicinlty
of points of the type considered above. Consequently, it follows

from (4.2) that — N, < K/m and, since Ny = -N_, that for such points

A5<f§ (4.8)
With increasing load, the coheslve forces In the terminal
region lncrease, ensuring finite stress and a smooth union at the
boundary of the crack. However, the crack will not widen at this
point on the boundary until the cohesive forces reach thelr maximum
intensity, so that the second hypothesis becomes applicable and
Condition (4.6) is satisfied.
In determining the form of the
boundarles of equilibrium cracks,
Conditions (4.6) and (4.8) make it
possible to eliminate the cohesive
Fig. 12. 1) G. forces altogether from considera-
tilon of the loads acting on the body
and to limit them to the resultant integral characteristic, the
modulus of cohesion. Special evaluations have shown [57, 58] that
the effect of molecular cohesive forces on the stress and shear
flelds 1s essentlal only in the vicinity of the terminal region of
a crack having a slze of the order of the width d of the terminail
region. Thus, the coheslve forces determine the structure of the
crack in the vicinlty of 1ts ends and, only through thelr integral

characteristlec K, the form of the boundaries of the crack.
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4, Baslc problems of the theory of equilibrium cracks. In its
most general form, the basic problem of the theory of egulllibrium
cracks may be stated 1n the following fashion. We are glven a cer-
taln sysvem of Initlal cracks and a process for loading the body,
l.e., a system of loads acting on the body and depending on a single
monotonically increasing parameter A. For the initial state, the
value of A can be assumed to be zero. It 1s necessary to determlne
the form of the surface of the crack as well as to find the dis-
tribution of stresses and shears in the body whlch corresponds to
A > 0. It is assumed that the load varies quite slowly so that
dynamlic effects need not be consldered.

When the body, the load, and the inlitial cracks are symmetri-
cal, thus making it posslble for a system of plane cracks to develop,
and the tensile stress increasec monotonically with increasing A,
the configuration of the cracks in the body is determined solely
by the current load, and not by the cumulative effects of previous
loads, as in the general case. Here, the problem of the theory of
equllibrium cracks Is formulated in the following fashion (we shall
call this Problem A). In a body bounded by a surface %, the boun-
darles of an initial system of surface cracks GO are assigned (Fig.
12; the plane of the drawing is the plane of the cracks). It is
necessary to find the field of the elastic elements and the boun-
daries G of the system of surface which incurs the boundary GO
(which may partially coincide with it) corresponding to the given
load, 1.e., the given value of A.

Mathematically, the problem formulated reduces to the follow-
ing. It 1s necessary to construct a solution for the differential
equlilibrium equations of elastlcity theory in a region bounded by
plane slits with the contours G and by the boundary ¥ of the body,
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with boundary conditions corresponding to the given load. ln thls
case, the boundaries G should be defined so that Conditon (4.6) is

satisfied at polnts on these boundaries not lying on G while

0’
Eq. (4.8) will be fulfilled for points of G lying on Gy -

If the cracks are reversible or 1f the lcads applied are quite
large, so that the boundaries G do not coinclde with GO at even one
point, the form of the 1lInitlial boundaries 1s of no significance. It
is therefore possible, without assigning the initial cracks, to set
up the problem of determining the boundaries G of a glven configura-
tion of equilibrium cracks directly in such a way that Condition
(4.6) is satisfiled at each point of G. Here it 1s assumed that the
initial cracks are such that they ensure the formation of the given
crack configuration on an increase in load. In this form, the prob-
lem iIs called problem B.

It might be found that no solution exists for any of the prob-
lems posed here, Physically, however, this circumstance has totally
different interpretations for problems A and B. If there is no
solution to problem A, this means that the load applied exceeds
the fracture stress, so that fallure of the body intervenes when
1t 15 applied. The limiting value of the parameter A, below which
a solution exists for problem A, corresponds to the fallure stress.
The determination of the failure stress for a glven original crack
configuration and a given system of loads is an important problem
of the theory of cracks. The nonexistence of a solution to problem
B means that whatever the original cracks within the glven con-
figuration, they do not increase in sizé under the action of the
given load, indicating that the load applied is too small. In such
cases, we may provlisionally say that mobile-equilibrium cracks are

not formed at the given load.
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5. The energy method of deriving the boundary condition at the
contour of an equilibrium crack. Until now, the molecular coheslive
forces have been considered as external forces applled to the sur-
face of the body. This was neccessary in order that we might study
the structure of the crack in the vicinity of 1ts erds. If we wlish
only to obtain the boundary condition, we can use another approach,
considering the coheslive forces as forces within the system. On the
basis of thls approach, which occurred to Griffiths (3, 4], we can
show the relationship between the modulus of cohesion and the other
characteristics of the material.

As before, let us assume that there is a certain configuration
of equilibrium cracks in a brittle body. As in Section III, Para-
graph 2, we will turn to a possible state of the elastic system
which differs from the actual state only by a change in the boundary
of the crack in the vicinity of a certain point 0 (Fig. 8). How-
ever, in a departure from Section III, Paragraph 2, we assume that
the characteristic dimension of the new region of the crack sur-
face is large 1n comparison to the width d of the terminal region,
although 1t is small as compared with the size of the entire crack;
according to the first hypothesls presented in Section IV, Para-
graph 1, such an assumption is permissible, In this hypothesis,
the cohesive forces can be considered simply as forces of surface
tension. In order to overcome these forces, some work is expended
in increasing the area of the crack. The effect of the cohesive
forces on the fleld of elastic stresses and strains can be disre-
garded, since it 1s substantial only in the vicinity of the end of
a crack, which has a size on the order of the width of the terminal
reglion.

The work 6A expended In the transition from the actual state

2




to the possible state 1s equal to the difference between the cor-
responding surface-energy increment 6U and the elastic energy OW
liberated:

dad = OU — IV (4.9)

In order for the actual state of the elastic system to be an

equilibrium state 1t is necessary that A revert to zero, so that
U = 8 (4.10)

In quite the same way as in Section III, Paragraph 2, we ob-

taln an expression for OW:

o Z(h—ﬁgaNf&V (4.11)

Here No 1s the coefficient of stress intenslty at the point
0, calculated without consideration of the cohesive forces. Formula
(4.11) was established by Irwin [45-47] in somewhat different form.

If the form of the terminal region of a crack 1in the vicinity
of a glven point on 1ts contour corresponds to the maximum inten-
sity of cohesive forces, according to what has preceded, the ter-
minal region will move when a new surface 1is formed by the crack
and will not be deformed, so that the work opposing the cohesive
forces in the formation of a unit of new surface area 1is constant

and equals the surface tension T Consequently, 06U = 2Toés (the

0
2 1s made necessary by the formation of two crack surfaces 1in frac-

ture). Hence, from (4.10) and (4.11) we obtain
Yy, o (4.12)
Comparing (4.12) and (4.6), we obtain an expression which re-
lates the modulus of cohesion K determined Independently in accor-
dance with (4.3) to the surface tension T, and the elastic con-
stants E and v of the material

A* .'!/”/": (4 .13)
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6. Experlmental conflrmations of the theory of brittle frac-
ture. Quasibrittle fracture. Beginning with Griffiths [3, 4], various
investigators attempted to verify experimentally the theory of
brittle fracture. We do not propose to make any detailed analysis
of all these works here, but will devote ourselves onl - to a i'ew
of the most characteristic, referring the reader to specialized
papers for detalls and discussions of the numerous other studies
[62, 55, T4-78].

In Griffiths' work [3], the following experiments are described
and their results given. Cracks of varlous lengths 21 were formed
on spherical glass flasks and cylindrical tubes whose diameters D
were sufficiently large so that a speclal test demonstrated the
absence of any effect caused by the diameter of fthe vessel on the
results of the experiments. The tubes and flasks were then annealed
in order to relieve the internal stresses formed during the genera-
tion of the cracks and then were loaded internally by hydraulic
pressuReNuniEiil Sheyitiatiedy, Mhet iftasiliure N sinrests Pg corresponding
to each crack length 21 was measured in the vessels.

In accordance with the theory presented above, it was found
that the failure stress Pg at which a given crack became an unstable
mobile-equilibrium crack depended only on the length of the crack
21 and the modulus of coheslon K, so that dimensional analysis
[79] showed that Py = akK 1l, where a 1s a nondimensional constant.
Consequently, for a given material, Py szféhould be constant (in
complete conformity with (2.1)).

Griffiths' experiments (see Table) thoroughly confirmed that
this value was a eonstant and thus confirmed the theoretieal system
advanced above.

The experiments of Roesler [53] and Benbow [54] in which stable
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TABLE
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(S 1.49 | S64 247 [)e) 0.59 678 240
() domd |l 623 205 0.32 0.71 S0 232
0.54 1.60 482 25 0,38 0.74 326 ok
0.89 200 | 366 A U, 23 0.61 (155} 243
! 0.26 .62 674 243
0.30 0.61 616 28

1) Spherical retorts; 2) cylindrical tubes; 3) inches; 4) lbs/ine.

conlcal cracks were formed and which are notable for their elegance,
are of special interest for confyrming the theory of brittle frac-
ture. Figure 13 shows the system by which these experlments were
performed; a photograph of conical cracks In fused quartz taken
from the article by Benbow [54] is given 1n Fig. 14. The cracks
were generated by pressing a cylindrical steel punch with a flat

end into specimens of glass [53] and fused quartz [54]. In accor-
dance with what has been presented above, the diameter s of the

base of the conical crack depended only on the dlameter dO of the

Fig. 13. Figs 18,

base of the punch, the pressure P on the punch, the modulus of
cohesion K, and the Poissons' ratio v. Since the corresponding
problem of elasticity theory 1s naturally formulated so that Young's
modulus 1s eliminated, 1t 1s not necessary to include Young's modu-

lus among the determining parameters. Dimensional analysis gilves

.v;;(»;;-),'(p [ﬁl‘:'l'),\] (4:14)
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Here, ¢ 1s some nondimensional function of its own arguments.

Experiments carried out with punches of three diameters on
eleven glass samples [53] thoroughly verified the existence of the
universal relationship (4.14). It follows from (4.14) that for
large P, when the effect of the first argument of the funcﬁion V]

becomes negligibly small, "self-modeling" arises and the following
equathiton sy slathiisiiieds

s = (-Z .”‘H (+) (4.15)

Figure 15 shows a graph taken from the article by Benbow [54],
showing s as a function of P according to the aforementioned ex-
periments with fused quartz carried out under conditions correspond-
ing to the self-modeling regime. As may be seen, the eXxperiments
being considered convincingly confirm Eq. (4.15) and thereby the
system presented above.

The experiments described were carried out on materials which
can be considered to be totally brittle. This is expeclally true of
fused quartz. Benbow [54] cites some facts indicating that the
mechanism of crack formation in fused quartz 1s cioser to pure
brittle fracture than is this mechanism in glaés: cracks in glass
grow In size for a long time under constant load, while cracks in
fused quartz rapidly increase in size during the same time and
then remailn constant; after the load 1s relieved, the cracks in
the glass remain clearly visible, while those In quartz are unnotice-
able, etec.

However, the significance of the theory of brittle fracture
was found to go far beyond the limits of its applicabillity to the
comparatively rare totally brittle material. Experimental studies
have shown that when cracks are formed, some materials which seem

to be completely plastic In ordlnary tests fail in such a way that
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plastic deformation, while 1t does occur, is centered in a thin
layer in the viclnity of the surface of the crack.

Thus, Fehlbeck and Orowan [28)] conducted experiments on the
failure of low-carbon steel plates w.th applied cracks under con-
ditions corresponding to Griffiths' system of uniform elongation.
The results of the experiments agreed well to Griffiths' formula
but the magnltude of the surface-energy denslty determined from
these experiments proved to be approximately three orders of magni-
tude greater than the surface tension of the material studied. It
exhiblted satisfactory correspondence with the speclfic work of
plastic deformatlon In the layers of the crack near the surface
as determined by independent measurements.

Basing thelr work on this and other analogous experimental
results, Irwin [23] and Orowan [24] introduced the concept of
quasibrittle fracture, making 1t possible to expand greatly the
limits of applicabllity of the theory of brittle fracture. Accord-
ing to this concept, the theory of brittle fracture was extended
to cases where plastic deformation is centered in a thin surface
layer of the crack. In thils case, the energy T expended 1n the
formation of a unit of crack surface 1is expressed as the sum of the
specliflic work involved 1n overcoming thc molecular cohesive forces
— the surface tensilon T0 — and the specific work T1 expended on
plastic deformation.

rorer, (.16)

The formal extenslon of the approach presented above to quasi-
brittle fracture was carried out in the following fashion (Fig.

16; the area of plastic deformation near the surface is cross-
hatched). We lmagine the entire plastic region to have been cut

out and the end of the crack to have been transferred to the end
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of the plastlc region. This can be done if we assume that the forces
acting from the plastic region to the elastic region are external

forces applled to the surface of the crack. After this, all the

iz . 15 Pl 16

preceding considerations involved iIn the assumption that the plas-
tic region is thin remain unchanged and, if we again use the hypo-
thesis of a stable terminal region of the crack surface (which

also includes the boundary between the elastic and plastic regions),
the modulus of cohesion is expressed in the following fashion:

d+4 d

= GV ES (5.17)

] — a2

Here G(t) 1s the distribution of normal stresses acting at
the boundary between the elastic and plastic regions.

When it 1s possible to disregard the contribution of the mole-
cular cohesive forces to the integral (4.17) in cumparison to the
contribution of the stresses acting in the region in front of the
actual end of the crack and having the orde: of magnitude of the

yield point Ons W€ obtain an estimate of the modulus of coheslon

1\'-_—_";/ :—i.i;:szf_)Go]/—d_; (4.18)

Let us emphasize that the yield point 9% in the vicinity of
the end of the cracs can differ from the yield polint obtained in
tensile-testing large specimens.
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The concept of quasibrittle fracture 1s similar to some ex-
tent to the concept of the "plastic particle" at the ends of a
groove with a zero radius of curvature which was introduced in
the classic monograph by Neuber [80].

We shall speak further of cracks formed iIn trittle fracture,
bearing in mind the possibility of extending the results obtalned
to the case of quaslbrittle fracture. It is understood that it is
necessary 1n this case to conslider the irrcversibility of cracks
formeéd in guasibrittie fracture as deflnite.

7. Cracks In thin plates. For thin plates where 1t is possible
to assume that a plane stressed state exists, all equations de-
rived for the case of plane deformation hold true if we replace E
by (l-Ve) and assume that the modulus of cohes.:on has some other
vaiue K;. Repeating the derivation of Formula (4.13) for a plane
stressed state, we obtain

K = alT (%550

Let us note that, as experiments have shown, the surface-
energy density T Iin the case of quasibrittle fracture increases
somewhat with a reduction in the thickness of the plates [48];
this 1s explained by the expansion of the region of plastic deforma-
tion near tne surface. The work by Frankland [8] makes an attempt
at approximate theoretical calculation of this phenomenon.

Of these two cases, having iIn mind the complete analogy of
the formal investigation of the plane stressed state and plane
deformation, we shall consider only plane deformation further.

V. Specific Problems of the Theory of Equilibrium Cracks

In this section we shall consider the solutions avallable at
the present time f'or various specific problems 1n the theory of
cracks. Individual examples will be of 1llustrative character and
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the majority of the problems cited will be of interest by themselves.

1. Isolated rectilinear cracks. In this paragraph and the
next, we shall study isolated mobille-equilibrium cracks over whose
entlre contour the maximum cohesive-force intensity i1s reached.

For these cracks, the problem reduces to determination of the crack
contours corresponding to the given load in such a way that Con-
dition (4.6) is satisfied on these contours, and is a particular
case of problem B formulated above. It is assumed that the initial
cracks permit formation of such cracks; the necessary requirements
imposed on the initlal cracks for reversible or irreversible cracks
are casily deduced from the solutions obtailned.

Let us conslider, under the conditions of plane deformation, an
isolated rectilinear mobile-equilibrium crack in an infinite body,
the crack extending along the x axls from x = a to x = b. Let p(x)
be the distribution of normal stresses arising at the site of the
crack in a continuous body undeF the same loads. This distribution
i1s determined by the gene}al methods of elasticlty theory and we
w1ll assume 1t to be given. It 1s possible to show, using the solu-
tion advanced by N.I. Muskhelishvili [2, 18] that the tensile stresses \
in the vicinity of the ends of the crack, calculated without con-

sidering the cohesive forces, go to Infinlty according to the rule

g, =N/Vs+...

where
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are the valwes of the coefficient of stress intensity at points a
and b respectively. Satisfying Condition (4.6) at these points, we
obtaln expressions which deterfmine the coordinates & &nd b of the

ends of the crack in the f{orm
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In particular, if the load applied is symmetrical relative
to the center of the crack, at which it 1s convenlent to locate
the coordinate orligin — a = b = 1 and Eqs. (5.2) reduce to a single

expression which determlines the half-length 1 of the crack:

!

K'puﬁ¢5‘: N (5.3)
3 Wi =% Vo

Let us emphasize that since p(x) 1s an assigned function,
(5.2) and (5.3) are terminal equations. These equations determine
the positions of the ends of an isolated rectilinear mobile-equilib-
rium crack at the load in question 1f this load makes 1t possible
TP Suleln & @rslel Wwol EFOLEIE

Masubuchi [82) has pointed out a method for calculating the
rate of elastic-energy liberation oW/Jl for an lsolated symmetrical
crack based on a trignometric representation which he proposed for
the stresses p(x) and shears v at points on the surface of the
crack.

5 ﬁ? , sin af (5.4)
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As Masubuchl showed,
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Equating this expression to 4T, where T is the surface energy
density, we can obtaln an expression which relates the stresses
applied to the slze of the crack, but in a form far more complex
Flaat (53

Let us analyze certaln examples. Let a crack be kept open by
a uniform tensile stress applied at Infinity. As we have already
noted, this problem was first considered by Griffiths [3, 4]. In
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this case, p(x) = Py and Eq. (5.3) yields

e 2 (5.6)
gt
Equation (5.6) ls represented by the broken line in Fig. 17.

As may be seen, the size of the mobile-equllibrium crack decreases
with increasing tenslle stress and
this indicates that the crack in
this case is an unstable mobille-
equlilibrium crack. Desplte this in-
stability, the dimension 1 as deter-
mined from Eq. (5.6) has physical
siignisilclancel M Tonhe mereNpRreckiser
if there was a crack with a length

Iaeras Bl
21, in a body to which a constant

=0
tensile stress Po is applied at infinity, this crack will not widen
when lo <1, (and closes in the case of reversible cracks), while
when lo > 1, it widens without limit. Thus, the dimension 1 plays
the role of a critical dimension (for a more detailed treatment of
this, see Section V, Paragraph 3).

It i1s obvious that in this case the instabllity of mobille
equilibrium corresponds fully to the essence of the matter and,
notwithstanding the opinion expressed by Ya.I. Frankel' {5], is
not due to Griffiths' incorrect representation of the geometry of
the crack ends.

If there 1s no stress at infinity and the crack is maintained
by applying a uniformly distributed pressure to portions of its
surface (0 < x £ 10)’ while the rest of the crack surface (lo < x
x < i) 1s free of stresses, the half-length 1 of the mobile-equilib-

rium crack is determined [58] from the expression:
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Equation (5.7) is represented in Fig. 17 by solid lines ob-
tained from one another by a transformation of similitude. It 1s
obvious that the opening of a crack, 1.e., the appearance of an
open section In 1t, 1s possible only if EO is no less than the cor-
responding size of a mobile-equilibrium crack kept open by a uni-
form tensile stress PO at infinity, as determined by Eq. (5.6).
Consequently, all solid lines in Flg. 17 begin at the broken line.

The limiting case of Eq. (5.7) 1s curious, corresponding to
Pq going to infinity while iO goes to zero, so that 2po_l_oE CONBE =
= P. This case corresponds to a crack kept open by concenfrated

forces applied to opposing points on its surface. The half-length

of the crack is determined here by the expression

1= (5.8)
We should note that (5.6) and (5.8) can be obtained correctly
to within a constant multiplier by recourse to dimensional analysis.
Actually, for example, the size of a crack kept open by concentrated
forces is determined only by the magnitude P of these forces and
by the resultant coheslve-force characteristic, the modulus of co-
hesion K. It is obvious that the modulus of elasticity and Poisson's
ratio are not included among the determining parameters, since the
corresponding problem of elasticity theory is naturally formulated
in terms of stresses so that these factors are not included among
the determining parameters. Considering the dimensions of P and K,
we gee that only one combination with the dimensions of length can
be formed from these quantities — the ratio P2/K2 — and that it is
impossible to construct any nondimenslonal combinatlons. Thus, by
virtue of the basic theorem of dimensional analysis [59]., the length
of a moblle-equilibrium crack should be proportional to P2/K2, while

the coefficlent of proportionality should be a unlversal constant
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in full conformity with Eq. (5.8).

Further, let the crack be maintained by two equal and opposilte
concentrated forces P whose points of appllication are at a distance
L along the common line of actlon of the forces; it is assumed
that the crack 1s perpendicular to the lline of action of the forces
and that it is symmetrical [58].

In GRS cas e ithemdiismrbbhutil enSefirensiliiieisirresises atithe

site of the crack in the solld has the form

. rL ot - s
]/(.l)-'-?n—(;:' l‘.:')'{l—\)"'.:(l-!-v) T‘_—L?] (5'9)

(the origin of the coordinates is located at the center of the
crack, at the point of intersection of the line of the crack and
the line of action of the forces). Applying Eq. (5.3), we obtaln
an expression which determines the size of the crack in the follow-
ing form:

P ’ LR\ l/_‘:‘

kVE=;KLT7;’ Ee@Ervl e|YVEl (5.10)

Figure 18 is a graph of P/K‘vrzras a function of the relative
length of the crack l/L for V = 0425, Asamaly bel iseen, hwhen e »: PO’
each value of P corresponds to two lengths of the moblle-equilibrium
crack. Here, when P 1s increcased, the shorter length decreases and
the greater length increases. The state of moblle equilibrium cor-
responding to the shorter length 1s unstable; the corresponding
branch of the curve of load as a function of length is represented
by the broken line in Fig. 18. The states of mobile equilibrium
corresponding to the greater length are stable; the corresponding
branch is represented by a solid line. The shorter length ll plays
the critical role for a given load P, so that initial cracks 1in a
body whose length is less than 2;1 do not widen under the action
of an applied force of magnitude P (close in the case of reversible

cracks), while those of greatcr length widen untll the crack reaches
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the second (stable) equilibrium size¥*, When P < Py, Eq. (15,20

has no solution, 1.e., no solution to the problem belng considered
exists. This means that whatever the length of the original crack,
1t does not widen under the given load to form a moblle-equilibrium
graeck, 'The critical vailhe PO of the forces corresponds to the dimen-
slon ;O of the moblle-equilibrium crack and is not zero.

The work of Romualdi and Sanders [52] dealt wilth the interest-
ing problem of the effect of riveted stiffening ribs on crack pro-
pagation., This problem 1is schematized by the authors in the follow-
ing fashion (Fig. 19). An infinite plate 1s tensioned by a uniform

SiHREs]S Pg in a direction perpendicular to the crack. The action of

Fig. 18. Fig. 19.

the rivets and the stiffening ribs 1s represented by two symmetri-
cally distributed pairs of opposing concentrated forces with magni-
tudes equai to P and may be assumed to be given (in order to simplify
the problem somewhat).

Substituting the corresponding stress distribution in Eq.
(5.3) and computing*¥* the elementary, although somewhat unwieldy,
integrals, we obtain the relation between the applied load and the

half-length 1 of the equilibrium crack:




pVL VT p = I—v . 12(1 + vwt ,
g A ;/'1 Yo 1 V—]TU"_-:" =N I NV A 110
3 AV +2 (AL B=0VA=LF2
20 @EB—A—=d) oy (N BAEAEE—A—4) ], VI
N =2 o A A Sy J‘,ﬂ/f (5.11)
Jom ., l=, B=yi+Prl, A=VE_4F

The results of the calculation are shown graphlcally in Fig.
20 for v = 0.25, P/K MFET= 0.2, and several values of the param-
eiver yO/L. As may be seen, when there are no stiffening ribs, mobile-
equilibrium cracks are unstable. The effect of the stiffening ribs
1s manifested first of all in an increase in the size of the mobile-
equilibrium crack at the given load and, what 1s especially impor-
tant, in the appearance of stable mobile-equilibrium states at
rather low values of yO/L, i.e., when the rivets are quite close
together. The appearance of stable mobile equilibrium states sub-
stantially alters the character of crack development (for greater
detall, see below).

The authors experimentally observed transitions of a crack
from unctable mobile-equilibrium states to stable states; thelr
experiments, which were carrled out on aluminum-alloy plates both
with and without stiffeners, showed a considerable increase in the
slzes of mobile-equilibrium cracks at constant Po due to the pre-
sence of the ribs. Reference [52)] also glves an experimental deter-
mination of the coefficlent of stresc Intensity at the ends of the
crack for several stable and unstable mobile-equilibrium states. In
the absence of stiffening ribs, the measurements of the coefficient
of stress intensity were carried out directly, on the basls of the
tensile-stress decline in the vieclinity of the ends of the crack
(at distances known to be larger than the size of the terminal
region of the crack). In the presence of stiffening ribs, the coef-
ficients of stress intensity were measured indirectly. Satisfactory
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agreement of the Intensity coefficients was obtalned in all cases
with the exception of two Instances wliere the intensity coefficients
were approximately 15% smaller. However, these two experiments,
which were carried out on the same specimen — in one case on a
stable and in the other on an unstable crack — gave closely similar
values for the coefficients of stress intensity. (The somewhat lower
value of the coefficient of intensity at the end of the stable

crack can be explained by the considerable dynamic effects noted

by the authors 1In the transition from this state to the unstable
state.) Consequently, it can be assumed that the discrepancy ob-
served was the result of some pecullarity of the partlicular speci-
men. Thus, these experiments are a direct confirmation of the general
system developed above,

This invesctigation can be extended directly to rectllinear
cracks in an anisotropic medium which lie in the planes of elas-
tic symmetry of the material. Wilmore [21] and Stroh [83] dealt
with the problem of a rectilinear crack in an orthotropic infinite
body subject to a uniform stress field. Reference [83] also extended
the results obtained in [16] for a rectilinear crack in an aniso-
tropic body acted upon by an arbitrary stress field, and also found
the coefficients of stress intensity at the ends of the crack for
this problem. Reference [84] presented a sc ution of the general
problem of a rectilinear mobille-equilibrium crack in an orthotropilc
body acted upon by an arbitrary stress fleld symmetrical about the
line of the crack.

2. Axially symmetrical plane cracks. Jt a discoid moblle-
equllibrium crack with a radius R is maintained 1n an infinlte body
acted upon by a certain axlally symmectrical load, the tenslle
stresses 1n the viecinlty of the crack outline as calculated without
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considering the cohesive forces, goes to infinity according to

the law

R
N r ! Crp(r)dr
Cy = —=— ) A T —————— p»_ c
Vs aVie e § Vig=r (5.12)

where p(r) 1is the distribution of tensile stresses at the site of
the crack in a continuous medlium acted upon by the same loads. Ac-
cording to the general Eq. (4.6), the equation which determines the

radius R of a moblle-equilibrium crack takes the form

i

VRl gus /(B (513
sl”#—rﬁ y

ol equation was estabiished in [56, 57); its derivation was
based on the use of a method of
solving axially-symmetrical prob-
lems 1n elasticity theory using the
Fourier-Hankel integral transforma-
tion, as developed 1n the work by
Smedden [ 14, 15]. In DartileulagE
if a moblle-equilibrium crack 1s
kept open by a uniform tensile
stress p, at infinity, p(r) = Po

Sl and the radius of the mobile-equilib-

rium crack 1s determined by the expression

I - (5.14)

Spns
This problem was first solved by Sack [20] by an energy method
completely analagous 1n principle to the corresponding plane problem
considered by Griffiths [3, 4].
If there 1s no tensile stress at infinity and the crack is
kept open by a uniformly distributed pressure Po along the part of

its surface O S e S Y while the rest of the crack surface r. <

0
L r< R #8 r'ere¢, the radlus of the moblle-cquilibrium crack 1is
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determined from the relationship

B e G V(3] (5.15)

In this case, as in the case of a plane crack,! the radius

rq of the curved part of the crack surface should not be less than

the critical radius determined from Eq. (5.14) for the pressure Py
In particular, if a discoid crack is kept open by equal and

opposed concentrated forces P applied to its surface, the radius

of' the mobile-equilibrium crack is determlined by the formula

It = )“ (5.16)

~ \Vak
In complete analogy to the plane cracks, Egs. (5.14) and
(5.16) can be obtained correct to within a constant nondimensional
multiplier by dimensional analysis.
If a discoid crack is kept open by equal and opposed forces P
whose points of application along the common line of action of the
forces differ from one another by a distance 2L, the radius R of

the mobile-equilibrium crack is determined from the equation

15”' AWEEY(1- Aéy\li-EE%mﬁi)“ (8 7
The solutions presented were given in [56]; the explanation
of the equations obtained is completely analogous to the correspond-
ing cases for rectilinear cracks.
3. Study of the development of isolated cracks with propor-
tional loading. Stability of isolated cracks. Under this heading
we shall consider the problem of the development of a given iso-
lated initial crack wunder proportional loading — a partlcular case
of problem A. A complete study is to be made for the case of sym-
metrical loads and initial cracks and simultaneously for recti-
linear and discoid cracks. Let us consider an example of the prob-

lem of development of a nonsymmetrical initial crack which will
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cast light upon the procedure for solving this problem.

With proportional loading, the tcnsile stresses at the crack
site 1n a continuous medium under a given load are proportional to
the loading parameter A, so that p(x) = Af(x) and p(r) = Af(r) in
the cases of rectilinear and discoid cracks, respectively. Intro-
ducing the nondimensional variable §, which equals x/1 and r/R,
respectively, for these cases, we may reduce Egs. (5.3) and (5.12)

to the form

: -]1/:{;-'— = ¢ (c) (5e08)

X
where ¢(c) is determined by the following equations in the respec-

tive cases:

1

¢ (c) - ‘:,f;S ‘L, <1i/_—1 ()= ’/C\/p(l_;;/i—l (5.19)
and ¢ denotes either the half-length 1 of the crack or the radius

R of the crack. Thus, the dependence of crack length on the pro-
portional-loading parameter A 1s determined completely by the length
of the initial crack and the function ¢(c) corresponding to the

load distribution in question.

We can obtain definite results for the behavior of the func-
tion @(c) with the most general assumptions. We shall not consider
cases where the crack is kept open by concentrated forces applied
to its surface, but assume that the crack is kept open by loads of
any type — e.g., by concentrated forces applied from within the
body and perhaps by distributed loads applied to the surface of the
crack. In this case, the functions p(x), p(r), and consequently,

f(ct) are definitely bounded. For small ¢ we obtain from (5.19)

the expressions

)

: z , !
I (C)_.|/\lJ)Vr R ¥ic- amooc (5'20)
respectively.




Let us assume that the tensile loads applied to the body on

each side of the crack are bounded and, more precisely, equal to

AP. We then have the epxressions
S (%) dg =W L,

Al

\ Aot = _-/—:'.;t- ,

(']

o

\ v\ P
\ /(&) dg = 5

(5.21)
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From these and from (5.19), we obtain asymptotic representa-

tions with ¢ = » for the functions ¢(c):

@Bt 5 .

unc
G0) =T~ + ...

(5.22)

Thus, under the assumptlions which we have made, ¢(c) tends to

infinity when ¢ = 0 and ¢ = ». By virtue of the bounding of f(:£),

the integrals in Expressions (5.19) do not tend to infinity for

any ¢, and thus p(c) has no increacing segments and, consequently,

has at least one positlive minimum and at least one increasing and

one decreasing segment. If the forces applied to the body on each

side of the crack are unbounded, the function ¢(c) has no increas-

ing segments and, consequently, no minima. This 1s true, 1In particu-

lar, in the case of a uniform tensile stress field where p = Xpo

and

o) =

¢ (c) =

Tpo VE

(5-23)

1
N Po V-c—

respectively, for rectilinear and axlally symmetrical cracks.

By definition, an equllibrium crack 1s stable if no rather

small change in 1ts contour leads to the creation of forces which

tend to remove the body still further from its disturbed equllibrium

state.

It 1s obvious that stationary-equilibrium cracks are always

stable. In order for mobile-equilibrium cracks to be stable, it 1s

necessary that their size increase with increasing loading param-

eter A. Actually, we assume that the corresponding dimension of the
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mobile-equilibrium crack ¢ lncreases when the load increases. If

we Increase the length of the crack while leaving the load un-
changed (A = const), the force pulling the crack apart will be
larger than the equlllbrium force. Consequently, equilibrium will
be disturbed and the action of the excessive force on the crack
willl tend to widen 1t. On the other hand, 1f the size of the crack
1s somewhat greater than its equilibrium value, the equilibrium is
displaced in the other direction and the crack, if 1t is reversible¥*,
tends to close. If, on the other hand, the equilibrium dimension

¢ of the crack decreases with increasing parameter A when the crack
1s near a glven equllibrium state, it 1is obvious that a small change
in this dimension at constant load will give rise to forces which
create a further deviation from the equilibrium state. The corre-
sponding equilibrium state will be unstable. Thus, the equilibrium

state of a crack is stable If 1t satisfies the following condition

for a gliven ¢ and A:

de

a- >0 (5.24)

Differentiating (5.18) with respect to A,

[
de Wi

& =EE (5.85)

From this and (5.24) we obtain the condition for stability
for a moblle equilibrium state in the form

4 () >0 (5.26)

Thus, only those states of moblile equllibrium which correspond
to rising segments of the curve of ¢(c) are stable.

We now have cverything necessary for complete study of the
development ¢ an 1isolated symmetrical crack under proportional
loading. Let our system of loads applied to the body correspond to
the function ¢(c) shown in the graphs in Fig. 21.
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Let us first consider the case where @(c) —~® as ¢ = (Fig.
21a). In particular, this case occurs when the loads applied to
both sides of the crack are bounded. Let the size of the initilal
crack ¢y correspond to the unstable branch of ¢(c). Then, as the
parameter A lncreases, the length of the crack remains constant
until 2 reaches a value at which the initilal crack of size ¢y be-
comes a mobile-equilibrium crack. Since mobile equlilibrium is un-
stable, the crack then beglns to wilden under constant load until
the next stable equilibrium state is reached¥*. With a further in-
crease in A, the size of the crack increases continuously until a
load 1s reached which corresponds to the maximum of ¢(c), again
changes jumpwise on transition to another stable branch, and then
Increases contilnuously with increasing A. The path of the point
representing the variation of the crack is shown in Fig. 2la and
designated by the numeral 1.

Now let the dimension Ch of the initlal crack correspond to
the stable branch of (c). Then the dimenslon of the crack remains
unchanged until a load is reached at which the crack becomes a
mobile-equillibrium crack, after which 1t 1ncreases continuously.
The path of the representative point is shown in Fig. 2la and keyed
there by the numeral 2.

As may be seen, the body does not fall at any value of the
parameter A in the case under consideration. If X is less than
its critical value, which corresponds to the lowest of the minima
of ¢(c), 1t will not widen under the actlon of this load, however
large the initial crack. The dimension corresponding to this criti-
cal value of A for a moblle-equilibrium crack 1is finite.

Among other things, it follows from what has been sald that
if a crack 1s kept open by forces applied from within the body
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and perhaps by distributed loads applied to the surface of the
crack, and if the forces applied to each side of the crack are
bounded, there exist a critical value for the parameter A, and
for all values of X greater than the critical vaitue at least one

stable and one unstable mobile equilibrium state.

ISl SN2

Let us turn to the case where ¢(c) = 0 as ¢ = » (Fig. 21b).
If the size cq of the 1nlitial crack corresponds to a stable branch
of ¢(c), the crack will not widen until a load 1s reached at which
the initial crack becomes a mobille-equilibrium crack. The crack
then increases continuously with increasing A until a value of the
parameter A is reached which corresponds to a maximum. If this maxi-
mum 1s exceeded in the slightest, there is no longer a solution to
the problem — the body fails. The path of the representative point
is shown in Fig. 21, where 1t is keyed by the numeral 1. If the
dimension of an initial crack Ch corresponds to the unstable right
branch of ¢(c), the initial crack does not increase in size with
increasing parameter A until a value of A is reached at which the
initial crack becomes a mobile-equilibrium crack. If this value of
A 1s exceeded even slightly, the body falls. If the dimension of
an initial crack c3 corresponds to the unstable left branch of the
curve of @(c), the crack widens for c3 < ¢g in the same fashion as
was noted for case 2; when 3 > cq the crack develops 1in a manner
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analogous to case 1, Fig. 2la until a maximum is reached, whereupon
failure of the body occurs.

For other forms of the curve ¢@(c), the investigation can be
carrlied out easily by combining the cases considered. Knowledge of
the function ¢(c) makes 1t possible to describe exhaustively the
development of an isolated symmetrical crack in an Infinite body
subject to proportlonal loading. For reversible cracks, it is possible
to trace the change in the size of the crack, even with a nonmono-
tonic change in load, by using the curve of ¢(c). It i1s curious to
note that in this case, the size of the crack decreases stepwise
when the load decreases, generally speaking on transition through
other critical equilibrium states, rather tnhan with an increase in
load.

Very recently, L.M. Kachanov [B84a] conducted a study which
generalized the preceding consliderations for cases in which the
modulus of cohesion 1s taken into account as a function of time.

This study is of basic importance in connection with the problems
of so-called "long-term strength."
The study made in this section is based on [59].
Let us now consider for one
simple case the solution to the
problem of the development of a
nonsymmetrical initial crack. Let
there be in an infinite unloaded
Pig. 22. body a rectilinear initial crack
whose ends have the coordinates x = -ag and x = bO (to be more
specific, let us assume that b0 & ao), and let equal and opposing
concentrated forces P be applied to opposite points on the surface
of the crack (points which may be assumed to correspond to x = NP
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The magnltude of the force P serves as a loading parameter, Ac-
cording to (5.1), the coefficlents of tensile-stress Intensity NO

for x = -a and x = b are equal respectively to

N.= .—._ﬁ,__ /T i\ i ]/-Z (5-27)

R I/I-’T“ a ' T g l/b--}- a b
When P < Pl’ where
.Il" by -~ ag) ba

K* ag ( Sk 28)

both coefficients Na and Nb are less than K/, so that the crack
does not develop either on the right or on the left.

When P = Pl’ IheNcoe®ibiichilen Nb becomes equal to the quantity
K/7m, the crack becomes a mobile-equilibrium crack, and its end b

begins to move to the right, progressing in accordance with the

magnitude of the force applied in accordance with the expression

72 bl (5.29)
KT

y

In this case, while P < P2, where

LY = 20, (5.30)
the coefficients Na < K/m and the left end of the crack does not
move.

When P = P2, o = -2y, S0 that the crack becomes a symmetrical
moblle-equilibrium crack, and when P > P2, its development continues
according to (5.8).

The development of an initial crack with a change in force is
shown 1n the graph in Flg. 22,

4. Cracks emerging at the surface of a body. If cracks emerge
at the surface of a body, 1t becomes difficult to obtain effective
analytical solutions. This 1s due to the facts that the correspond-

ing region cannot be represented on a half-plane by rational func-

tions and that Muskhellishvili's method does not make it possible
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to obtaln an effective solution in finite form; it is thus neces-

sary to resort to numerical solutions.

Fig. 23. s 2,

At precent, a number of numerical solutlons have been obtained
ffor the problem of cracks emerging at the boundary of a body; in
all cases for which calculations were made, the mobile-equilibrium
states were unstable,

Bowie [22]) dealt with the problem of a system of k symmetri-
cally distributed cracks of 1dentical length which have emerged
at the free surface of a round cutout in an infinite body (Fig. 23).
RheNbody Hs under ensieon falt SnmilkimiiEy yaal itenshivlic isbRess Py ap-
plied on all sides. Bowie used Muskhellishvili's method to calculate
the stresses and strains. Here, in order to obtain a solution in
effective form, the author used an approximate polynominal repre-
sentation of an analytical function which reflected the exterior
of the circle and the slits running into it onto the exterior of a
unit clrcle. In order to determline the dimenslions of the mobile-
equilibrium cracks, Bowie used Griffiths' energy method directly,
calculating the rate of liberation of elastlic energy. Numerical cal-
culations were made in this work for one crack and for two dlamet-
rically cpposed cracks; here it proved necessary, ln order to insure
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suffliclent accuracy of calculations, to retaln about thirty terms
in the polynominal representation of ihe reflecting function. The
The results of Bowie's calculations for the cases k=1 and k = 2
are shown In Flg. 24, where the broken line represents the corre-
sponding cracks in an inflnite body. It follows from these cal-
culations that when L/R > 1, the fracture stress for two cracks
wlth a clrcular cavity is very close to the fracture stress for a
crack of length 2(L + R), so that the cavity itself has virtually
no influence. Further, when the length o1 the crack is small, it is
obvious that the conditions of meohile equilibrium are defined by
the fracture stresses directly on the surface of the circle. As
we know, in the case of uniaxial tension the greatest fracture
stress at the edge of the cavity is 3po, but 2po in the case of
omnldirectional tension. It follows from this that the ratio of
equilibrium loads in tnese cases should approximate 2/3, and this
is also confirmed by Bowie'!s calculations.

The problem of a rectilinear crack emerging at the rectilinear
free boundary of a half-space (Fig. 25) was considered independently
and by different methods by Wigglesworth [85] and Irwin [51].

Wigglesworth [85] studied the case of arbitrary distribution
of the normal and tangential stresses along the banks of a crack.
With a symmetrical stress distribution, he reduced the problem to
an integral equation fcr the complex dislocation w(x) = u(x) + iv(x)
of polnts on the surface of the crack.

; :
\ L, tyao () dt w — - (1—5/;' YN p(x)de (Sasi

0 "

Here L(x, t) 1s a certain singular integral operator and
p{x) = o{x) + 1iT(x); o(x) is the distribution of the normal stresses;

T(x) is the distribution of the tangential stresses. Equation (5.31)
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1s solved in [85] by the method of integral transformations. De-
talled calculations are made for cases where the surfaces of' the
crack and the boundary are free from stresses and tenslle stresses
Py arc applied parallel to the boundary of the half-gspace at in-
finity.

For stresses 1n the viclinity of the end of the crack, the
author obtalned the following equation in thils particular case:

Sy Gy = 1.5806 7/‘%- Po st -(P-
i S 2)

. ey Al g
Sy — Sy 4 205y, = — 0.793 ;/—-s-posm @exp I

On the continuation of the crack (¢ = 7)), we find

Sv=3,=0193p, 1/ L ... oy =0 (5.33)
From this and from (4.6), the expression for the length of

a mobile-equilibrium crack is written iIn the form

. SN T (Bu34)

T (0.TY3)E pf o

Irwin [51] studied only the following particular case. He re-
presented the unknown solution as the sum of three fields. The
first field corresponded fo Cthe cngekl (=1 < x < 1 y = 0) dnvan
Infinite body subject to constant tenslile stresses Po at infinity;
the second [leld corresponded to the same crack under normal stresses
Q(x) applied to its surface symmetrically with respect to the x
and y axes; the third fleld corresponded to the half-space x > O
without a crack, at whose boundary x = O the normal-stress distribu-
tion P(y) was applied symmetrically with respect to the x-axls,
Satlisfying the boundary condltlons at the free boundary and the

surface of the crack, Irwin obtalned a system of integral equations

for B(y) amd Q(x)3
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which he solved by the method of successive approximations. The
first approximation gives an expression for the length il of a

mobile-equilibrium crack:

2K

V= oo ogre = 1469 57 (5.36)
whilch, as may be seen, differs negliglibly from the more exact
relationship (5.31).

Buckner [50]) dealt with the
problem of a single rectilinear
crack emerging at the boundary of
a circular cavity 1n an infinite
body. There was no stress applied
at Infinity or at the edge of the
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cavlity, and there was no tangential
stress applied to the surface of the crack, but normal stresses
were applied symmetrically and varled according to an arbitrarily
assigned law: p(x). Like Wigglesworth [85] (Bueckner's work was
done independently), Bueckner proceeded from a slngular lntegral
equation for transverse displacement of points on the surface of
the crack. He constructed a single-parameter family of particular
soluticns to thls equation corresponding to certain special dis-
tributions pn(x). In the general case, he suggested that p(x) be

represented iIn the form of a linear combination ot pn(x):

W

// (:) >:, a“,,“ (() (5 o 37)
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The coefflclents a were determined by the method of least squares
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or by collocation. The coefficient of stress intensity NO aEEine
end of the crack was represented by the coefficlent a,

If the length of the crack
was much smaller than the radlus
of the round cavity, we obtain at
the 1imit the particular case of a
ractllinear boundary considered

Pig. 26. above. In this particular case,
It follows from Buechner's calcula-

tions that when P = p., = const, the expression for the length of

0
a mobile-equllibrium crack takes the form

2N

s LE s

~'0139g} (5-38)
which 1s in good agreement with (5.34) and (5.36).

In [36], Buechner also dealt with the problem of a crack emerg-
ing at the surface of an infinitely long strip of finite width with
an arbitrary load symmetrical with respect to the line of the crack
(Fig. 25b). He showed that it is possible to replace the integral
equation obtained in this case by an equation with a degenerate
nucleus. Buechner's numerical solution for the particular case
where the load is formed by couples with moments M applied to both
sides of the crack at infinlity gives the lecngth of the mobile-equilib-
rium crack as a function of load, as represented by the curve 1n
Fig. 26.

As we have already noted, moblle-equilibrium cracks are un-
stable in all cases considered in this section. Thus, when the
loads are increased, the initial crack does not develor until it
becomes a mobile-equilibrium crack, after which the body fails.,
Thus, in these problems, the load at which an initial crack becomes

a mobile-equilibrium crack corresponds to the failure load, and this
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generally speaking, does not occur.

In the work by Winne and Wundt [32], some of the solutions
presented in this sectlon were used for calculation of the fallure
points of rotating notched disks and notched beams subjected to
bending. The experiments conducted by Winne and Wundt, which were
evaluated on the baslis of these calculations, showed close agree-
ment between the values of the surface-energy density T (or the
modulus of cohesion K, which reduces to the same thing) determined
from the angular velocity at which failure of the rotating notched
disks occurred and that determlned from the loads at which the
notched beams failed when bent. This confirms that the quantities
T and K are characteristics of the material and are independent
o GhledtyeNoilisihresised) siFeb ek

5. Cracks in the vicinity of the boundaries of the body. Crack
systems. The development of cracks in bounded bodies has a number
of characteristic features. Difficulties of a mathematical nature
make it impossible to conduct as exhaustive a study here as we
did in the case of 1isclated cracks. However, the qualitative fea-
tures and certain quantitative characteristics of this phenomenon
can be completely investigated in the simplest problems that lend
themselves to analytical solutions. Let us turn our attention first
of all to the problem of a rectilinear crack in a strip of finite
width (Fig. 27a). The crack is assumed to be symmetrical with re-
spect to the centerline of the strip and the direction of 1ts pro-
pagation is normal to the free boundary. The load which keeps the
crack open is assumed to be symmetricalL about the line of the crack
and the centerline of the strip.

In solving the problem, we use the method of successive ap-
proximations developed by D.I. Sherman [86] and S.G. Mikhlin [87].
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As a first approximation, we take the solution of the problem of

elastlcity theory dealling with the exterlior of a periodic system

of si1its (Fig. 27b). Again denoting the distribution of fracture
stresses which would obtaln at
the site of the cracks in a con-

tinuous body under the same load

4]

by p(x), we obtaln an equation
determining the half-length 1 of
the moblle-equllibrium crack in

Fig. 27. the form

et
\ oS . e —
t\ pla) Y/ wrdi = K "/_,;", L=singts 1/1-—-511122 (5.39)
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In the particular case shown 1n Fig. 27, where the crack 1s
kept open by equal and opposed concentrated forces P, whose points
of application are located 2s apart aitong thelr common line of

action, (5.39) takes the form

I : ]‘H’\:ﬁ' —l,sin_(n'/'-L)
E VY& Facis|l —va-( -\')-:_(E:__Tl“"hcj (5'40)

s a2t = L)ym

where a = ch o/m, ¢ = m"s/2L. In particular, when s = O and the
concentrated forces are applied to the surface of the crack, (5.40)

can be represented in the following fashion:
R 2 o ar
K /,_"1/-:1— $11 —; (5.4 )
The dimension of a mobile-equlllbrium crack, expressed as a

function of load for a uniform tensile stress equal to P/2L at

infinity has the form
L__Y Lagdt (5.48)

The relationship (5.40) 1s shown in Fig. 28 for various values

of o. As usual, the solld lines represent the stable segments and
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the dotted lines the unstable segments. As may be seen, when

g2 S 0.5, the curves have no stable segments, so that when

the distance between the points of application of the forces ex-
ceeds 2L/ = 0.6l I,, moblle-equilibrium cracks are always unstable.
The study of the development of an i1solated crack under proportional
loading carried out in Sectlon V, Paragraph 3 is completely analo-
gous. The graph in Fig. 28 makes it possible to characterize com-
pletely the development of any symmetrical initial crack with in-
creasing load.

The study which has been made
was based on [58, 88]. The solutlon
of the problem of elasticlty theory
for s = 0 was obtained by Irwin
[54]. The solutlion of the problem of
a periodic system of cracks under
a uniform load at Infinity was
given by Westergaard [13], and
Independently by Koliter [89].

In using the flrst approxima-

Flg. 28. tion, only the tangential stresses
vanish on the lines of symmetry (represented in Fig. 27 by broken
lines), which correspond to the edge of the strip, while the normal
stresses differ from zero. In order to obtain the second approxima-
tion, the first approximatlion is added to the solution of the prob-
lem for a contlinuous strip at whose boundaries normal stresses
are assligned with distribution such as to compensate the normal
stresses obtained at the boundary in the first approximation. In
this case, the boundary condition at the surface of the crack is
no longer satisfied. To obtain the third approximation, the second
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approximation 1ls added to the solution of the problem for the ex-
terior of a periodic system of slits whose surface has an assigned
normal-stress distributlion equal to the dlfference between the
assigned distribution and that obtained from the second approxi-
mation, and sco forth,

Special evaluations [88) have shown that in the problem ln
point, consideration of the second and subsequent approximatilons
for stable mobile-equilibrium states reduces to correctlons of the
order of 2.5-3% to the equations which interest us, so that we
may limit ourselves to the first approximation.

In addition to the problems presented above dealing with the
periodic system of cracks and the system of radial cracks emerging
at the boundary of a round cavity, several other problems ol crack
systems related to rectllinear cracks located along a single
straight line have been treated. The mathematical methods developed
by N.I. Muskhelishvili {90, 18], D.I. Sherman [91], and Westergaard
(13]) make it possible to reduce the problem of the development of
any system of cracks of this type to computation of quadratures.
We chall concern ourselves here with the simplest example of the
development of a system of two colllnear rectilinear cracks of the
same length in an infinite body under tension at Infinity by uni-
form stresses p (Fig. 29). This problem was considered by Wilmore
[21] and in the work of Winne and Wundt [32] (the authors of [32]
refer to a particular report by Irwin). Wilmore's solution has in-
accuracles In the initial presentation of the solution and these
affected the final formulas. According to the solulion given in
[32], the dimensions of the cracks remain unchanged when p < Py

where

I & N WiET a) @
/fm_ [ S-Retipa o= o (5.43)
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When p = Py the cracks reach
an unstable moblle-equllibrium
state, and the linner ends of the
crackxs then joln, forming a crack
of length 2b. Further development

Filg. 29,
of the crack depends on whether

the expresslon in braces 1s greater than or less than unity. If it
1s less than unity, which occurs when o < 0.085, the dimension ob-
tained after the inner ends of the crack join wlll be less than the
dimension of the moblle-equillbrium crack corresponding toc the load
Py - In this case, the crack will remain unchanged until a lcad
Py = 4/2K/ﬁ 4/171s reached and the body will then fail. If the
expression in braces 1s greater than unity, complete failure of
the body takes place at once when a load P 18 reached. Assuming
b-a = 21 and going to the limlt in (5.43) with b = «, we obtain
(5.6), as might be expected.

Reference [88] deals with the case where two identical cracks
are kept open by concentrated forces applied to thelr surfaces. A
complete study of the general case of symmetrical loading for a
system of two cracks can be carried out in a manner completely
analogous to the foregoing by using the expressions for the coef-
ficients of stress Intensity at the ends of the eracks x = a and
e =1

. Ve 4
= Ve \p 0 ) n
T . 3 (5.44)

i K2 3 [y
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As may be seen from the examples wnich we have considered,
collinear cracks are "weakened" by one another and reduce one

another's stability. Ya.B. Zel'dovich drew attention to the fact
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that in the case of a "checkerboard" distribution of cracks (Fig.

30), the converse effect occurred. As calculations have shown, mobile-
equllibrium cracks can be stable even In the case of uniform normal
loads on the surface of the cracks when they have a definite posi-

tion relative to one another.

Faligr 30k Rileyy Sl

We shall dwell briefly on the so-called "scale effect" in the
brittle fracture of bounded bodles. Let us consider geometrically
similar bodies (it is assumed that the macroscopic cracks present
in these bodies are also geometrically similar) differing only in
thelr characteristic dimensions d and their characteristic scales
of applied fracture loads S. The quantlity S = SO’ which corresponds
to fallure of the body, depends, assuming that fracture 1is brittle,
only on the characteristic dimension d of the body and the modulus
of cohesion K. A dimensional characterization of S can be con-
structed uniquely from the quantitites K and d, and it 1s 1lmpossible
to construct any nondimensional combination. Simple relationships
therefore hold for the magnitude of the {'racture load:

Ok Kel's, S, = Kol So e sshid= (5.45)
for the respectlve cases where S has the dimensions of force, force
distributed along a line (as, for example, concentrated forces in
plane deformation), and the dimensions of stress. The quantities
€ are constant for a glven geometrical configuration of the body.

At the present time, there is a great deal of experimental data on
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the fallure of geometrically simiiar bodles which make 1t possible
to ascertaln the limits of applicability of the theory of brittle
fracture. In this connection, similar information can he found in
the article by Wundt [92], and some new results are given in the

work by Yusuff [93].

6. Cracks in rocks. For theoretical geology, considerable in-
terest 1s presented by research on the development of cracks in rock
massifs. Cracks can be formed in these masses by various factors of
tectonic character, as well as 1in consequence of a number of arti-
ficial disturbances (mining, hydraulic splitting of strata, etec.).

A number of problems in the theory of cracks have been considered
in conjunction with the theory of the hydraullc splitting of petroleum-
bearing strata. The vertical-crack problem consists in the followlng,
A crack in an infinite space compressed at infinity by a hydrostatic
pressure is kept open by a viscous fluid pumped into the crack (Fig.
31). The basic feature of the problem is the fact that the fluid does
not fi1ll the crack completely: there 1s always a free section of the
crack ahead of the wetted region. The fluld pressure p, in the wetted
region of the crack can be assumed constant in first agproximation,
since a sharp tapering of the crack occurs at the end of the wetted
region and nearly the entire flulid-pressure gradient 1s lost at the
end of the wetted region. The problem derives 1ts name from the fact
that the crack described in the problem under conslderation is located
in a vertical plane, while q 1s the lateral pressure of the rock. In
comparison with the effects of the lateral rock pressure and the
fluld pressure, those of the cohesive forces can be neglected, as has
been shown by the evaluations which have been made.* Equation (5.3),
which determines the dimensions of the crack, takes the form

=g = o1 (YT
QLTS {; ;O ) (5.46)

—q (h<e< D)

From thls we obtain

/nznﬁnﬁx‘"' (S i)

The expression for the maximum half-width Yo of the crack

takes the form

(5.48)

o V%) nals Ty
Ty = Jn\'lg!lpn
As the calculations show, with the values of lo/l near unity
that are usually encountered the aperture of the crack remains
virtually constant over the entire extent of the wetted reglon of
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of the crack; In the free section, the crack narrows rapidly. The
vertical-crack problem was first formulated and solved In the work
by Yu.P, Zheltov and S.A. Khristlanovich [38].

The horizontal-crack problem [40] takes the following form. A

horizontal discold crack 1s formed in a heavy half-space at a cer-
tailn depth H, agaln by pumping a viscous fluld; the surface of

the crack is again divided into wetted (0 < r < RO) and free (RO <
<r< R) parts; the fluld pressure P in the wetted part can be
assumed constant. As in the preceding case, the cohesive forces
are neglected. On the assumption that the depth of the crack H

is sufficiently large, the boundary condition at the boundary cf

the half-space 1is disregarded. The finite-stress condition at the

boundary of the crack glves in this case

p—=il R

=g V- (5.49)
where v is the speclific gravity of the rock. For the volume of

fluid pumped, we obtain the expression

e ANV PR e N s 2 1
Vel ) MO | — e (5:59)
AgE ey, z f= RU/R approximates unity, so that we can use

the asymptotic form of (5.50)

o AL “‘_”’_”,'_ V2T —a){l + VIl —2) —3{1 —s)} (BREL)

~

The maximum half-width of the crack is determined by the for-

mula

K (1 — v¥) .x{/.’.,__ TG (/l'.) ) (5 . 52)

i al; s
Thus, knowing the depth at which the crack occurs, the fluid
pressure, and the specific gravity of the rock being split, we can
find RO/R from (5.49); from this and (5.51), knowing the total

volume of pumped fluld V, we can obtain the radius R of fthe crack;
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then the determinatlion of the remaining crack parameters presents
no difflculty.

Reference {40, 41] also dealt with problems of horizontal
cracks in a radilally-variable pressure fleld created by the over-
lying rock. In this case, complete wetting of the crack surface
can occur under certaln conditions, l.e., thls surface may have
no free segment.

Yu.P. Zheltov {43} Indicated an approximate method of solving
the horizontal-crack problem in a vertical-pressure field which
varles along the radius. Comparlson of the results of calculations
obtalned by this method with exact solutlons for certain cases has
shown completely satlsfactory agreement.

Using the method of successive approximations, Yu.A. Ustinov
[94] evaluated the influence of the free boundary in the horizon-
tal-crack problem. It was found that if the depth is greater than
twice the radius of the crack, the influence of the free boundary
is negligibly small.

The problem of a crack formed by wedging a heavy space with
a horizontal wedge of constant thickness is considered in [39] in
conjunction with the problem of roof settling in mining stopes.

Yu.P. Zheltov [42] generalized the solution of the vertical-
crack problem to the case where the rock being split is permeable
and the pumplng fluid is filtering through the rock.

VI. Wedging. Dynamic Problems of the Theory of Cracks.

1. Wedging an infinite body. By wedging, we mean the forma-
tion of a crack in a solld body by the insertion of a rigld wedge
into it. The most characteristic property of the wedging of a brittle
body 1is the fact that the surface of the wedge 1is never in complete

contact with the body: there is always a free segment at the front
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of the wedge and an open crack is formed ahead of it, meeting at
at some dlistance from the foremost point of the wedge (Flg. 32).
The problem of wedglng an in-
finite body with a stationary wedge
[39, 58, 95] 1s, to all appearances,
the simplest formulation of this
type of problem; it can be effec-
tively and exactly solved by the
methods of elasticity theory and
permits us to draw qualitative Iin-
Pig. 32. ferences as to wedglng under more
complex conditions.

Thus, let a unlform isotroplc brittle body be wedged by a thin,
symmetric, absolutely hard semiflnite wedge having a thickness 2h
at infinity (Fig. 32). An open crack is formed in front of the
wedge and unites smoothly at a certaln polnt O; the position of
point O relative to the foremost polnt of the wedge ¢ is unknown
beforehand and must be determined during solution of the problem,
If the wedge has a rounded point (Fig. 32a), the position of the
points B and B' at whlch the wedge makes contact with the surface
of the crack are unknown beforehand and must also be determlined
during solution of the problem. If, on the other hand, the wedge
has a truncated point (Fig. 32b) as, for example, In the case of
a wedge of uniform thickness, the positlon of the points at which
the wedge makes contact with the surface of the crack are fully
determined and correspond Lo the corners at the front of the wedge.
However, it is obvlous that the stresses at the poi?ts of con-
tact are inflnite ln this case. Let us assume at fifst that the
frictional forces at the contact surface between the wedge and the
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body beling wedged equals zero,

On the exterlior of the crack, the field of elastic stresses
and strains satisfles the ordinary equations of static elasticity
theory. Because of the assumption made earller that the wedge 1s
thin, we can carry the boundary conditions along the entlre surface
of the crack to the slit ZBOB'A'. Without considering the cohesive
forces, the boundary conditiluns are represented in the form

S 0 Fy == U Ozl y=20) (6.1)
v=djx—1), Say=0 (e << w oo, y=0)

Hexe oy and oxy are the components of the stress tensor; ll
and 32 are the distances from the point at which the crack joins
to the tip of the wedge and to the points of contact between the
surface of the crack and the wedge, respectively; f(t) 1is a func-
tion which determines the equation of the surface of the wedge in
a system of coordinates which has its origin at the tip of the
wedge, 1i.e., the function which determines the shape of the wedge;
the plus and minus signs correspond to the upper and lower faces
off ‘the ®IHE .

As may be secen, the problem of wedging 1s a kind of combina-
tion of the contact problem of elasticity theory [18, 72, 73] and
the problem of crack theory.

The position of the points of contact between the surface of
the crack and the wedge when the wedge has a rounded front edge and
the poslition of the points at which the crack closes relative to
the tip of the wedge are determined from the following two condi-
tions.

lst. The stresses at the points of contact between the surface

of the crack and the wedge must be finite. For the contact problem,

an analogous condition was first proposed in the form of a hypothesis
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by N.I. Muskhilishvili [96, 18] and A.V. Bitsadze [97); 1t is proven
80 T80

2nd. The stresses at the end of the crack are finite, or,
what 1s the same thing, smooth union of the opposing faces of the
crack occurs at its end. Since the intensity of cohesive forces at
the end of the crack is at maximal the stresses in the vicinlty
of the end of the crack, calculated without consideration of the
cohesive forces, should go to infinity according to (4.8).

The problem of wedging is a mixed problem of elasticity
theory. To solve 1t, it is convenient to consider the singular
integral equation for the compressive forces at the sides of the
wedge belng driven in: o, = -d(x). When ¢(x) is known, determina-
tion of the field of elastic elements obviously leads to the solu-
tion of the first boundary problem of elasticity theory for the
region surrounding a semifinite rectilinear slit, and this can be
carried out by Muskhelishvili's method ([18], §95). This solution
yields an expression for the transverse displacements at the point

of contact between the wedge and the surface of the crack:

s [ | 5k
—— S(Dwﬁchlus;
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de (6.2)
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where { = «/X, where the root takes both positive and negative
values, giving the shears of the upper and lower faces of the notch,
respectively. The second condition in (6.1) yields the basic inte-

gral equation for this problem:
\ @) cin |
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which, as may be shown, is equivalent to the singular integral
equation obtained from (6.3) by differentliating it with respect

to C:

| el A ) (6.4)




and to the condition
M (7‘) = -—-.ﬂ,_— 1 -
mi—wz T 0™ for x =, (6.5)

where h = f(«). Using the methods of solving singular integral
equations developed in the monograph by N.I. Muskhellshvili [19],

the solution to equation (6.4) can be obtained in the form

Oy = -t [y £ _co/'(l_l)]/m
e nVr(r—m['l '-'(l~\"),g zl-;( )‘“]' ($<0)

Here A 1s an as yet Indeterminate constant. The integral in
(6.6) is known to exlst because of the finite f(o) = h and goes

to zero when x — », and from this and (6.5) we obtain a value for

the constant A

S Ih (6.7)

2(1—wv3)

For flnite stresses at the points of departure x = i2 in the
case of a wedge wlth a rounded end, 1t 1s necessary and sufficlent
that the expression in brackets in (6.6) go tc zerc when x = 1,.
This ylelds the first of the equations for determining ll and l2:

h=\ju—1)V —L—a (6.8)

Further, from thls solution we obtaln the followlng expres-

sion for the tensile stresses along the extension of the slit:

(8]

(6.9)

o e g b\ LU= V=T
20 (1 == 2 (=) (=) iy \ t—z Jl

From this and from (4.0)we obtain

./z-u_w__gﬁ;jﬁl—}ﬁ (6.10)

=\ =Y 5 ;
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The relationships (6.8) and (6.10) are terminal equations
which determine the unknown constants ll and lg which enter into
the solution.

= 86 =




In the particular case where the thickness of the wedge 1s uni-
form, £(t) = h, Condition (6.8), which no longer holds true, is re-
placed by the relationship 1, = 1,, while (6.10) gives the follow-

ing expression for the length of the open crack in front of the

wedge which 1s being driven in:

AT
h=b= g (‘6 vl )

Other particular wedge shapes are also considered in [95]:
a wedge with a small curvature at its tip and a wedge with a power-
law curvature. Study of the first of these examples has shown that
a small curvature has a small effect on the length of the open
crack in front of the wedge. Reference [95] also studled the case

where dry-friction forces act on the faces of the wedge.

Fig. 33. Fig. 34.

Reference [84] studied wedging of an anisotropic body by a
semiinfinite hard wedge.

I.A. Marcuson [98] considered the problem of wedging of an
infinite body by a wedge of finite length 2b (Fig. 33). In the
case of constant wedge thickness 2h, the crack length 21 as a func-
tion of the wedge length 2b takes the form, all other conditlions
the same, shown in Fig. 34 (lo is. Ghie lengbh off the epen crack for
an infinite wedge, as glven by (6.11)).

Reference [95] also investigated the effect of a uniform com-

pressive or tensile stress applied at Intinity on the lengtn of rthe
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open crack formed by wedging a body with a wedge of firlte length,
The relationship (6.11) can be used for experimental determina-
tion of the coefflclient of cohesion K. In order to accomplish this,
a wedge made of a material substantlially harder than the material
being tested is driven into the latter and the length L of the open
crack thus formed is measured. The modulus of cohesion can then bhe

determined by the formula

. ihif
B T 13 (6.12)

The wedge should be sufficliently long so that the boundary of
the plate will have no inf'luence; actually, the wedge should be

driven in until the dlistance between the end of the wedge and the

IP3LERgs 155 Fig. 36.

end of the crack is not changed by further motion of the wedge. The
plate should be wide and thick enough so that its stressed state
can be assumed to correspond to plane deformation. In addition, in
order to ensure that the crack is rectilinear, it is necessary to
compress the specimen in the direction of crack propagation, as is
recommended in the work by Benbow and Roesler [9]. (It can be shown
that in this case, (6.11) and (6.12) remain unchanged.)

2. Wedglng & £Stzip. In 1ts rlgerceus -Lommuliaitiion,  Phessecliukian
of the problem of wedging bounded bodie- venry difsRirehilst s RieRe
are only a few approximate solutions based on the use of the approxi-

mations of the simple theory of beams.
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The first such solution was obtained by I. V. Obreimov [3];
this work was the very first study in which wedging was consldered.
In conjunction with the experiments which he conducted on the cleav-
age of mlca, I.V. Obreimov dealt with the case where the strip beling
removed 1s thin and in contact with the wedging body at only one
point (Flg. 35). In order to establlish a connectlon between the
surface tension of the mica and the shape parameters of the crack,
I.V. Obreimov applied the methods ‘of the strength of materials to
thils problem, regarding the chip as a thin beam. The theoretical
part of the work by I.V. Obreimov was not free of errors; V.D.
Kuznetsov [99] subsequently refined the calculations of thls work
in his book, as did M.S. Metsik [10] and N.N. Davidenkov [12] in
thelr reports. M.S. Metsik also brought more precision to the ex-
perimental method of [8]. The use of the approximations of the
theory of thin beams was justified in certain cases for determining
the length of a crack. However, these approximations could not be
admitted when describing the shape of a crack surface in the im-
medlate vicinity of its end, even when the distribution of coheslive
forces in the terminal region was explicitly included in the examina-
tion, as was done by Ya.I. Frankel [5]. This was due to the fact
that the length of the terminal reglon cannot be considered great
In comparison with the thickness of the chip, so that the chip
cannot be regarded as a thin beam In the region where coheslve
forces act.

To illustrate the approximate approach based on the methods
of the simple theory of beams, let us dwell in more detail on the
work of Benbow and Roesler [9]. We should note that this work ex-
plains most clearly the possibilities and limits of applicability
of this approach.
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The work deals with a problem formulated in the followlng form
(Fig. 36). A strip of finite width b 1s wedged symmetrically, so
that the crack opens up along the centerline of the strip. A com-
pressive force Q/2 is applied to the cut end of the strip 1in order
to ensure rectilinear crack propogation; the wedging rorce P creates
a crack of length 1 and initial width h.

Obtaining an expression for the elastic energy from dimensional
considerations, the authors write the equilibrium-condition @it 61016

crack in the form

“wm

= 9() (6.13)

so that, for a given material, the magnitude of hg/i should be
uniquely determined by the quantity b/l. The experiments described
in [9], which were carried out on specimens of two different plas-
tics, conclusively demonstrated the existence of such a single-
valued relationship.

For small values of b/l, i.e., for long cracks, it is possible
to obtain an asymptotic form of the relationship (6.13) by con-
sidering both halves of the strip being wedged as thin beams em-
bedded in a section corresponding to the end of the crack. In this
case, the expression for the elastic energy of the strip takes the

form

U (h, 1) = 222 (6.14)

Here B = EI, the rlgldity of the beam, I = nb>/96, and n 1is
the transverse thickness of the beam. The surface energy of tne
crack 1s obviously egual to 2Tnl. In a moblle-equilibrium state,
the variations in surface energy corresponding to small variations
6l in the length of the crack equal the corresponding variations in
the elastic energy of the strip, from which we obtain

- 90 -




’) ”m ESK
0T O g L. AN

ol T=WE (€315)

Comparing the second formula in (6.15) with (6.13), we can find

the asymptotic expression for ¢(b/i) for b/l — 0

b=t (Ly (6.16)

From (6.15) we obtaln the expresslon for the length of the

crack in the form

L= (2 ) = (e (6.17)

As may be seen the length of the crack in thls case ls pro-
portional only to Q[?: whereas the length of the crack (c¢f. (6.11))
is proportional to h2 in wedging of an Infinite body with a semi-
infinite wedge.

The relationship (6.15) was used by Benbow and Roesler to
determine the surface energy denslty in the plastics studied. We
should note the great cere exercised in the experimental study
carried out in this work and the scrupulous appraisal of sources
of posslble error and thelr magnitudes.

In a recent survey by Gilman [11] we can find a detailed sum-
mary and bibliography of experimental studies of wedging.

3. Dynamic problems of the theory of cracks. Recently, prob-
lems of the dynamlcs of cracks have attracted considerable attention.
A detailed treatment of these problems falls outside the scope of
this survey and we shall thus 1limit ourselves here to a brief sum-
mary of the basic results achlieved in theoretical researen on the

dynamics of cracks.

The work by Mott [306] deals with the widenling p
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isolated rectlllinear crack in an infinite body under the action of
a uniform field* of tenslile stresses Py On the basis of dimensional
analysis, Mott obtalned an expression for the kinetlec energy of
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of the body:
b= IplVEpt ) B (6.18)

Here p 1s the density of the body, 1 is the half-length of
the crack, V is the rate of expansion of the crack,'and k is a
dimensionless multiplier which Mott considered to be constant and
left indeterminate. Complementing the static energy equation (2.1)
with the derivative of the kinetic energy thus determined with re-
spect to the length 1 of the crack, and assuming that the remaining
terms in (2.1) retain the same form as in the static problem of
Griffiths, Mott found the rate of crack expansion:

Il___r.'l('l — N Y

=) =) (6.19)
where 1, 1s the critical half-length of the crack as determined
by (5.6). Thus, as the crack propagates, the rate of its expansion

increases, tending to a limit

Vv r.’(”—\':)ﬂ.’ Yl Y A

0 = | —— —

5= {6,280
so that the limiting velocity, according to Mott, represcnts a
definite fraction of the velocity of longitudinal-wave propagation.
In this discussion, the use of the static expression for the
decrease in the elastic energy W remains ungrounded. In addition,
the quantity k in (6.18) and (6.19), generally speaking, need not
be conctant: it may depend on l/ Ly V/ol, and other nondimensional
comblinations.

In an exact formulation of the dynamic theory of elasticity,
Yoffe [100] studied the problem of a rectilinear crack of constant
length moving with a constant velocity in an infinite body under
tension at infinity by a uniform stress. Despite some artificiality
in the formulation of the problem, an important result of quite

general signiflicance was obtained from this work. Precisely, it
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was found that If the veloclty of crack propagatlion becomes greater
than a certaln crltical velocity, the direction of crack propaga-
tion ceases to be the direction of maximum fracture stress and the
crack begins to deflect. The magnltude of the crltical veloclty

V1 is approximately 0.4 cl, where cq is the veloclity of longlitudinal
wave propagation in the given material (the ratlo Vl/cl JEl SRILTEE IR
independent of the Poisslon's ratlo v of the material).

Roberts and Wells [10l1) made an attempt to evaluate the con-
stant k which remained lndeterminate in Mott's work. Uslng the
value found for this constant, they obtained a limiting crack-pro-
pagation velocity which approximated that found by Yoffe. However,
thelr evaluation, which was based on a solutlon to the static prob-
lem of elasticity theory, is too coarse. Since the rectilinear
propagation of a crack was assumed to be definitely ensured in
[101], the close agreement of the critical velocity found by Yoffe
[100] with the limitlng velocity found In [101], must be regarded
as accidental.

If the rectilinearity of crack propagation ls ensured in some
manner (for example, by powerful compression of the body in the
direction of crack propagation or by anlsotropy of the material),
the maximum velocity of crack propagation corresponds to the velo-
city of propagation of Raylelgh surface waves in the material under
consideration and 1s approximately 0.6 cq-

The flrst to affirm that the limlting velocity of crack propa-
gation corresponds to the Raylelgh value was Stroh [102]. The heuris-
tlc proof given In this work réduces to ghe following. Neting cor-
rectly that the limiting velocity of crack propagation does not
depend on the surface energy of the body, Stroh assumed a zero sur-

face energy. Proceeding from this on the basis of energy considera-
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tlons, Stroh came to the conclusion that the tensile stresses near
the end of the crack were zero on its extension, so that crack pro-
pagation 1s a disturbance moving along a surface free of stress and
capable of propagating only at the Rayleigh velocity. Actually, it
1s possible to conclude from Stroh's discussion only that the ten-
sile stress at the very contour of the crack equals zero. However,
the equallty of crack-propagation velocity to the Rayleigh velocity
does not follow from this fact, as shown by the following simple
example. Let us take a body compressed at infinity by a hydrostatic
compressive stress and wedged by a semiinfinite wedge (Fig. 32)
moving at an infinitesimally small velocity. The cohesive forces
and consequently, the surface energy are assumed to be zero. Be-
cause of the Infinitesimally small veloclty of the wedge, the dynamic
effects are nonessential, so that, in accordance with Section III,
Paragraph 2, we may assert that the tensile stress at the end of
the crack equals zero. At the same time, the crack-propagation velo-
clty equals the velocity of the wedge, i.e., 1s also infinitesimally
small,

By a chain of reasoning based on analysis of exact solutions
to the equations of the dynamic theory of elasticity, the conclusion
as to the equallty of the limiting velocity of crack propagation to
the Rayleigh veloclity was obtained Ilndependently and simultaneously
by several authors. Craggs [103] dealt with the steady-state propa-
gation of a semiinfinite rectllinear crack to the part to whose sur-
Tace adjoining the edge symmetrically dlstributed normal and tan-
gential stresses were applied. The report by An Dang Ding [104] was
concerned with a nonstationary field of stresses and strains in an
infinite body with a semilnfinite crack along whose surface normal
symmetrical concentrated forces begin to move at constant velocity,
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from the edge inward, at the inltlal point in time. Reference [95]
deals with wedgling of an infinite, lisotroplic brittle body by a semi-
Infinite hard wedge of arbitrary shape moving with constant velo-
city. In [84], an analogous problem is studied for an anlsotroplc
body. Baker [105) dealt with a nonstationary distribution of stresses
and stralins in a solld contalning a semiinfinite crack to whose sur-
face a constant normal stress ls applied at tne initial moment,
whereupon the crack begins to propagate with constant velocity.

In the entlire dlversity of problems considered in these studiles,
the following general result, which served a3 the baslis for tre
Tformulatlon of the concluslions glven above, was obtalned: as the
characteristic veloclty inherent to the problem approaches the
Raylelgh veloclty, a peculilar resonance phenomenon intervenes. Let
us note that the appearance of reasonance on the approach to the
Raylelgh veloclity 1s not speclfic to the problem of cracks: lnvesti-
gation of the problem of a punch moving along the boundary of a
half-space, which was considered by L.A. Galin [72] and Radok [106],
has disclosed [95] that the same resonance phenomena arise as the
punch velocity approaches the Raylelgh velocity. Apparently, the
limiting character of the Raylelgh veloclity 1s most dlirectly demon-
strated in the problem of wedging. It 1s obvious that the maximum
posslble crack propagation veloclity can be achieved when the body
is wedged by a moving wedge. Analysls of this problem has shown [95]
that, with increasing wedge velocity, the length of the open crack
in front of the wedge decrcases, goling to zero on the approach to
the Raylelgh velocity. Thus, when the wedge moves with a velocity
exceeding the Raylelgh veloclty, no open crack is formed 1n front
of it; from thils 1t follows that the maximum veloclity with which
a crack can propagate equals the Raylelgh veloclty.
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Broberg [107, 108] dealt with the problem of a uniformly ex-
panding crack of finite length in an infinite'body subject to a uni-
form tensile-stress field. The solution obtalined by Broberg is an
asymptotic representation of the solution to the problem dealt with
by Mott [36] and Roberts and Wells [101] for large time values. How-
ever, in contrast to References [36, 101], Broberg's solution was
obtained on the basis of the exact methods of dynamic elasticity
theory. Independently of [102-104, 57, 95, 105] and in complete
agreement with the results presented in these works, Broberg found
that the velocity of crack expansion in his problem equalled the
limiting velocity of crack propagation for the problem considered
in [36, 101] and corresponded to the Rayleigh velocity.

Let us note the works by Bilby and Bullough [109], McClintock
and Suknatme [110], which dealt with uniformly moving cracks of
finite and infinite length to whose surface symmetrical tangential
stresses parallel to the edge of the crack were applied. In this
problem, so-called "antiplane deformation" occurred instead of plane
deformation when only one dislocation component, that parallel to
the edge of the crack, differed from zero. Investigations of such
cracks lead to solution of one wave equation (the LaPlace equation
for equilibrium cracks). Cracks formed under conditions of anti-
plane deformation are of considerable interest as the simplest model
for which an effective solution is possible for many problems in-
soluble for cracks formed under conditions of plane deformaticn be-
cauce of the great mathematical difficulties involved.

An analysis of the dynamics of crack propagation based on the
approximation of the simple theory of beams was made by Gilman [11]
Suda T tE ] 111 .
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[Footnotes]

*Sh.A. Sergaziyev made a very good comparison between
cracks which satisfy this assumption and the popular
"molniya" [1lightning; zilpper] fasteners.

¥*A completely analogous situation arises when the body moves
along a rough horizontal surface under the action of a
horizontal force. The body begins to move only after the
force exceeds the maximum force of friction possible for
the body and surface in question.

*These general formulatlions of the problem are useful, de-
spite the fact that their general solution in effective
form is far beyond the capabilities of contemporary mathe-
matics. The existence of general presentations of the prob-
lem helps to clarify the importance of specific concrete
solutions and of the difficulties arising in the develop-
ment of the theory.

*In addition to these basic defects, [5] contains the errors
in caleulation noted in [37].

In its most general form, this convenient method of re-
ducing the locad to a load dilstributed over the fracture
surface was originated by Bueckner [33].

*In the work by M.Ya. Leonov and V.V. Panasyuk [69, T70],
the function f(y) was approximated by a broken line and
this approximation was used as a basis for formulation of
a linear Integral equation for the normal displacements
of points on the surface of the crack. This integral equa-
tion was then 561ved approximately, wlth a rather unfor-
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tunate cholce of the approximate representation of the
solution, so that the shape of the crack at ilts end proved
to be wedge-shaped with a finlte end angle. Actually, as
was shown above, the terminal angle is necessarily zero.
Another shortcoming of these studies was the appllicatlon
of results obtained by methcds of the mechanics of con-
tinuous media to cracks whose length was of the order of
several interatomic distances.

For example, points on the contours of nonwldening notches
or points on the contours of cracks produced on a decrease
in load from cracks that existed under large loads.

*Let us note that, actually, because of the dynamic effects
involved in the expancion of the initial notch, the crack can
"Jump" somewhat on passage through the stable equilibrium
state. For more detail on this, see below.

*¥¥The integrals were computedand the numerical calculations
made for the curve 1in Fig. 20 by V.Z. Parton and Ye.A.
Mor:ozova.

*¥*Tf the crack 1s irreversible, the increase in its size
produces no reverse closure, but further crack growth
does not occur either. In this case, equilibrium is reached
through a decrease in the cohesive forces acting in the
terminal region of the crack.

¥Because of the dynamlic effects which arise 1n this transi-
tion, the crack may expand untlil it reaches a size whicn

* somewhat exceeds the size of the stable mobile-equilibrium
crack corresponding to the load in question (apparently,
Just this phenomenon occurred In the experiments described

in [52]). In this case, a further increase in load pro=
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duces no chunge in the length of the crack until the in-
stant wheri i1t becomes a moblle-equilibrlium crack, where-
upon 1t continues to expand. It 1s natural that the purely
static theory under conslderation cannot describe these
dynamic effects; the corresponding segments of the graph
in Flg. 2la are represénted by the broken line and keyed
LTS

80 *The conditlon for negligibly small coheslve forces will
be K/q V(ihin laboratory simulation. 1. Generally speak-
ing, it will not be satlisfied in laboratory simulation.

91 *¥In contrast to [36], we shall conslder here plane deforma-

tion and not the plane stressed state.
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