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INW.'0-1OICTION

This is the first detailed report on Contract AF 33(6!6)-6952.

This cortr.'ct is ;.xt of a continuing effort in the broad study of

complex system problemns. Accordingly. It was theught that an encyclopaedic

presentation of all results obtained to date was not particularly desirable;

instead we have concentrated on: givingi a-careful account of the conceptual

and mathematical foundations of the research problems involved. It is hoped,

.therefore, that the report will serve as an introduction to papers on modern

system theory which are now appearing in the literature with increasi•Tg fre-

quency.

The report consists of tvo main parts.

Chapters 1-6 give the technical and mathematical background of our pre-

sent approach to system theory, with particular !ttenLion to the adapt-ve pro-

blem. This part is primarily concerned with a clear exposition of the funda-

mental ideas, with nunerous illustrative examples. No attempt has been made to

state all mathematical facts with absolute prec!sion, and in partictilar most

proofs are oamtted. kkrth-r details, which are often very Involved and technici3L,

may be found in the references.

Chapters 7-11 are concerned with the motivatinn and description of cligi-

tal computer techniques used for automa'ic synthesis of optimal systems. These

methods are a fairly radical departure from current engineering practices in

the systems field. They are, therefore, explained in considerable detail. It

is expected that this material will eventually bc incorpcrated into a "handbook"

of instructions for the everyday usage of the automatic ontimization progyre•

which we are now developing. Besides a complete deocription of the subroutines,

a number of check programns and solutions are ,Ivcrn which should facilitate use

of the program by others.

Manuscript released by author 31 March 1961 as an ASD Technical. Report



It is difficult to give a fair description of the oJ..,_YUtagea rvý V e] I ,ce

shortcaings of the methods used in this repo•rt or of the original cont r.-ih-

tionu which are i.olvOd. Two skin axpect, should he nmphrsatd, hd, -

(1) A ccmprehensive analytical theory and method of IInedir syotejn optim:u.7:t-

ton has been %,ý'rr!oped (with partial suppo2t of th-in contract) and ii 'urzt:.n v

nearing cmplEction. The most important featurea of thle method ar:

(a) It is new and quite different from conventilonv.. mflet_

(b) It 's applicable to linear syi3tems of any degrsee of c'tipicx[ty:

in other words, no modifications are needed to treat mult-hvn,,

or multi-output systems.

(c) It is applicable in principle without any modi-rciation (but

possibly at great cost of ccuautation) to linear system*u, vlLJ

varying coefficients.

(d) It provides a unified treatment of control anr Fterln,_ p'b-

ctduiti~lonrs of the two, etc.

(e) It provides a canorical block di.igrar for the opti-m&. oystemx

which can serve as the starting point of enginee;-Ing desigr.

(f) It is well suited to high-speed digital comiputation.

The last property of the new method of analyzls (cconet miner, called the
"state-ttransition" method) gives rise to the second importaant cont,:.butLon

the report:

(P) A cthm vesvsterm of nEri2lccnpm_-titoe-~ being lo~'

to Implement the theory. The comy-ter prgrams ";:Jl h, '•ztoxated"' to a very

Ilarge extent and eventualily I-t is hopcd that they w•LL Ue

without detailed theoretical training. Speclfically, the t'oilc:Wr. h,, ; , -,

accomplished an far:

-2-



(a) Matrix cibr uutines have been developt>ti which :-epresrnt a ntr'

approach to the usual computational problems of transielit

response. stability, etc.

(b) These suburmtines are quite simple from the nathem'sticea point

of view and allow good control of nunerical errors.

(c) thi method of cocqiations is "eigenvalue- free"; in othe•r words,

it does uc• entail the solution of algebraic equations of high

degree which is characteristic of conventional techni&>iiŽ , a

result, our methods can be ekcenid much more easily to .

scale systems than the conventional ones.

For ease of croGo..referenclng with the other vohiunes of th.t rcport --.w. i-h

axe to be issued later - each chapter is written in as oe1T-cor:,j An1(J t Va, R;,

possible. qV.atione andv figu.rges are numbered cep-trately within each cht.ter,

References 3.re made by author and year of pubi.ic.L'.i.on•; chab.v cot81n,

own list of references, even when this entailn some duplication; dupica.• re-

ferences oec-irring in different captcers are dcesignated in a f.ons.istent Fashi.to.

Since ?-÷.l-Is of the msathematical arguments used in this report are not. y"•t

readily available, a recent paper by R. E, Kalman "Reiv Pfthods rr1 Potuutn ',.½

Linear System Theory" is included as an Appendix. This peper contarr3n a we.vy

extensive discussion of the theoretical aspects of the optiial filtering problem.



Chapter 1.

CONCELTUAL BACKGROUND

1. Introduction.

The fundamental mathematical problem in the design of a control oyiotem is the

specification of the control law.

We are given a kac,'l system to be controlled, called the control obicct.

Examples: (i) an airplane, (1i) a satellite, (iii) a chemical plant. I1forrnation

aboit the physical behavior of the control object is conveyed by iý:eans of certain

physical reasurements z(t). These measurements may be (i) altitude, Mach nuutber,

pitch angle, etc., of an airplane; (ii) dintance oa a catelLite trom the moon.;

(iii) ectPosition of a chemical formed in a reactor. The behavior of* the dynamical

ioystem may be affected by changing certain physiical paraneters u(t), called con-

trol variables. Control may be exerted through (i) atieron deflection or enr¶ne

thottle in an airplane; (ii) jets or flywheels insade a satellite; (iii) heat o5"

catalysts influencing the rate of a chemical r~actnrn. The control law is a pre-

scription for determining the instantaneous values of the control varlable u(t)

on the basis of present and past measurements of z(t). The conftroe liw may a lso

d'pend on certain other parameters specifying the dcasired behavior of the dynamik-a-i

system under control.

The problem of determining a control law can be erfdly stater in conceptual

terms, but the precise mathematical formulation is not a simple matter. Caret'ui-

assumptions -mst be made concee ning the mathematical model which lit to rcpresont

the eontrol object, and one must specify in what oene the control law is to be mo-

timal. Without a clearly defined model and a clear.y underatood criterion of optl-

rality, sophisticated mathematical tec)-.niqves arc uwai!.lle. A or, perhaps even 0.(-uk

mental. In simple cao-*;. tri-_l-and-error experimentation will lead to a System de-

sign which will be intuitively satisfactory and probably nearly optimaL. In (tOliplCX

-- - -- -- ------------------------------------------ - -- --- - -- - -- -- ---------
In more convezticrnal terqio, z(t) io called the 2 t. and u(t) to the Input.

This usage is rstber ambigiu-us and will be avoided in the seque3
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cases, this procedure becomes ireff i-rent and scmetimes itpo±sible. One must rely

on mathematical reasoninig, and this require. greate: precl..sio-'o of problem fo:rula.-

tton. In the physical sciences, the dAngers caused by sloppy apl~icaticn of mathe-

iatics can be cheeied by physical intuition. In the control syvtemts field - which

deals with man-made objects rather than observations of Nature - physice,1 intuition

is not always a reliable guide.

Many assumptions must be made to derive rationally a particular control

law. Critique, of mssunptions is especially important when one starts to explore the

concept of an adaptive contiol system. Such a system is characterized by the Rcti&1

or desired independence of its control law from overly specific assumptions on thie
nature of the control object. To put it crudely, a control system is adaptive if it

can perform well (perhaps after a short start-'p period) without detailed prior

knowledge of the dynamics of the control object. An tutaptive systm Tminut be, there-

fore, capable of some form of leartiing.

Ideally, an adaptive controller should do just nr, good a jot in contrcdi1ik.

supersonr.o airplane as in controlling a nylon factory, without betn:g tpcif.c'Ia i aIy

designed for either job. The gap between such desiderata and the present sftate of

technology is very great indeed. This has led uw (and other research workers rn ý

control systems field) to re-expmine the bases of present knowledge In •i: attept 11c
see why the adaptive control problem seems so exquisitely difficuit. A1, d, of cerzm

there is also a very real need for a better theory in order to wvaluano ar'"

possible - understand and generalize numerous intuitive prcpoc•Alt; now b ýýty man.: f--i"

practlcal adaptive systems.

In the initial phase of rebearch on adaptive systems wc have aLvouined that Thc

equations of motion of the control object are known., ayld have been cc zened prlmnar-

ily with the rigoroun mathematicil fornulation and effective numerical oolution ot*

the control problem.

The most interesting problemn in adaptive! control arise when th,:* ,-[-fln)tion I[
relaxed; extensive pr-paratlon is nect-I,,ry, however, hbEfore we can reach that .

In essence, it. Is necessary to put conventional control theory in s cleare-r and mnorx-

precise form -- a process which will be seen to yield important renust'.:t and

new problems even in conventional control theory.

2. Mathematical Models for yna:MIcal Systems.

PFundamental in the mathemrat.l cal description of a dynamical isystem i tho O oncept

of state. This Is sJmply a convenient way of' expre2sling what. might be ioosely cO&1ed



the Principle of Causality. '_Yr clarity, we formalize this idea as follows.

MFflITIC7 OF 9TATE. The state of a dynamical nystem is a minJmal set of nrwn-

bers which, specificd at a&y given time, suffice to determine completely the- future

evolution of the system, provided, the future forces acting on the system are known.

Wo are accustomed to represent phyiical dynamical systems by means of a system

of n differential equations of the first order. The atate of the system tos then n

(finitb-dime!nional) vector. The . rnial niuziters corstitut. .r4g the state vector are

the n initial condition% needed to miu ,,•_l spetcify the aoLut:ion of the differen-

tial equations. An example of this sort is pc-ovided by particle mechanics: a tlyktem

of N particles free to move in 3-dimeneioral opace has a state vcctx of 6N com-

ponents, made up of the 3N position and 3N velocity coordinates. in some cases,

even the dimension of the state vector may be infinite, as in partial differential

equations. In other cases, the number of states may be finite, as in models for di-

gital ccmputers.

By the equations of motion of a d)namical system we mean a rule which specifies

how'the state of the system at a given time Is transformed into other statci 1.1, ite

future. We shall also refer to this process as state transition. Usuat ly the equa-

tions of motion are given in the small; that is to ns.y, by differential equattIonza;

which specify the infinitesimal state transition corresponding to the infinIte-imal

change t -9 t + dt in the time. By integrating these differential cquautiows we ob-

tain the equations of motion in the larg; that is to say, we can rIxeif'y the state

transitions corresponding to arbitrary changes to -+ tI in the tfbne.

As is common practice, we shall usuaJ.ly assume that the equations of motion a.re

lineax differential equations. Without some form of linearity, explicit metheinatical

treatment of the equations of motion is ,ieldom possible. We emphssi, however, that

the conceptual framework presented he.re remains valid also in the nonlinetur cane. I rl
fae t, "-t th^ pr Oz t  ...jrZul t .... f t-hc ;;••!_ .........

linear to the nonlinear is quite natural - which is not the case with other methods

A sufficiently general mathematical model for linear dynamical systems it -pro-

vided by the vector equations:

(2.1) dx/dt = F(t)x + C,(t)u(t) + T(t)w(t),

6



(2.2) y(t) H(t)x(t),

(2.3) z(t) - u(t) + v~t),

where

x is an n-vector, the state of the system;

y is a p-vector, the output of the system;

z is a p-vector, th•- observed output of the system;

u is an m-vector, the control of the cystem;

v is a pk-vector, representihg thc noise in the measurement oi' y;

w is a q-vector, the random disturbances acting on the system;

We assume that F, G,, H, J, which are arbitrary rectangular matriceB, depennd con-

tinuously on t.

In a purely schematic way, these definitions may be visualized with the aid of

Figure. 1.

The set of equations (2.1-3) includes most of the situations commonly encountered

in engineering practice (see nunerous examples of this in the ceqlel). A similar aet

of equations may be obtained also in the zampled-data case. Certain coaplicntIois man y

arise, however, if continuous and pulsed elements occur in the naum aystem. The setting

up of equations then requires rather complicated "bookkeeping", for the details of

wh:Lch the reader may consult [Kalman and Bertram, 19593.

It will always be assumed that v(t) and w(t) are gauomian white-noicc pro-

cesses, i.e., their valur, occurring at different instants of time are independent gaussian

random vectors. This can be done with -virtually no luss of generality. W. canr reprf.-

eent them general gussiai, random process as the output of a linear (pcossibly I•nInitze-

dimensioral) dymmical system excited by white noise. (This is thb .^-e +I,-

Loeve-Karhunen irepresentation theorem [Loeve, 19611.) It is physically reasonable to

approximate the resultina dynamical svsetm with a finite-dimensional one. (.his means

that the power spectra of v and v are a3sumed to be rational. ) The state rsi iables

associated in this way with the random processes v(t) and w(t) can be combi~ned with

the state variables of the system to bo controlled. In other words, all prcblems in

which theT = 'ptiona of" lincarity nd ga-ussiaazxuisg hold can be r•.duced -- with a change

of varlable.s -- to the standard forn!' (2.1-5).



3. Adaptive &ystems; Learnitng 8tates.

So far the concept of an adaptivo system has been discussed in rather vague

tervs. Certainly, there is no definition at present of an adaptive system which

meets with general acceptance. We are, therefore., oblige( to introduce ourr own;

seaewhat special. definition. This is done as s, matter of convenience; we do not

wish to claim that ours is the only reasonable point of view with regard to "adapt-

ation".

D-fITION OF AN ADAPTIVE CONTML SYSTIEM. A control syrtem is lu~ptive if it

is capable of changing its control law as a result of measured changes of the con-

trol obj6et and its environment and in zuch a way as to operate at all times in an

optimal or nearly optimal fashion.

A system with a fixed control law may operate quite adequately Ln a changing,

environment. Such a system may be more properly called insensitive or Invariant.,

rather than adaptive. The word "adaptive" usually carries the connotation of an or-

ganism being able to take advantage of a new situation. Hencc we do not regard a

system as adaptive unless it ig aldo optimal in some sense.

The operation of any adaptive control s-atem will depend on two groups of dataL:

(i) measured (or estimated) values of the state variables of the control object, which

are used to determix.e the instantaneous values of the control variables; (ii) measured

(or estimated) numbers defining the equations of the control objec-6 and its environ-

ment, which are used to determine the control low, The first group of numbers de!-

cribes the momentary behavior of the control object; the second group refers to "struc-

tural" characteristics. For instance, the position, velocity, and angular momentum

of a rigid body belong to the first group of data; the mass, moment of Inertia, OL.r.

irternal constitution of the body belong to the second group.

A strict distinction between these two concepts is not always possible, of course.

In specific caoev this is unlikely to lead to confusion, however, stnce we tre accuv-

tome4 to identifying the second group - str-actural characteristics - with those prc:-

perties of &n object which are unchangeable or change slowly in time relative to

the first group.

We shall call the first group of data the dvnamic state, and Introduce a npecial

term for the second groap of datn.



DEFINITION OF IKARNI1G STATE. This is the "state of knowledge" - epressed in

mathematical form - concerr~ing all equationn, statistical d•ta, performance indicen,
etc., which are. utilized in arriving at the function specifying the control lev.

In other words, the learring state is a set of nambers representing all the

quantitative information vhiah an engineer •ould use it raticnallJy Irrl ving. at an

optimal control law. ?or instance, in case of the model (2.1-3), the learning state

is the collection of mnmbers making up the matrices F, G., 1; J, statist~ce.J infor-
mation conctering the randcm processes v(t) and w(t), as wel", an tlhe, a-,ithematica-l

specification of the performance index which is to be minimitzed or xlrdzei by op-..

timal control.

As time parses, the "state of knowledge"'if likely to deteriorate. unleess fir-

ther information becames available from physical measurements. In an adaptive sys-
temr, these measurements are utilized to update the "state of knowledge". Te .ay in

which the measurements of the structural characteristics are utilized determines thc

transition law of the learning states.

In short, there are two types of dynamic pro.eeses taking, place In an adapti-vt9

control system: (i) the state variables of the control object u-c. estimated frcn

measurements and corresponding control action is taken in accordance with the control

law existi-S at a given moment; (ii) the structural characterlstici of tbe control

object and its environment are monitored by another measurem:nt prot:er:s, a..A corres-

ponding adjustments are made in the optimal control law from time tu time.

The concept of the learning state introduced here is clearly ev'ident also In

[Bellman and Kalaba, 1959]. A schematic pictire of an adaptive system is shown in

Figure 2. We shall return loter to the discussion of this ,'figur,.

4. Examples of Adaptation.

The following examples give what we feel it a reanonable interpretation of' the

notions of "structural character stl-.s" and "Iea-rning states".

Consider the problem of manipulating the control surfacers :, an airplane or

missile Lo prodxuce lateral acceleration. The action of the control system will be

influenced in the main by the following tyvT 3 of' effects:

(A) Random atmospheric disturbances of various sorts.

(B) Loss of bydraulic fluid; aging of .racu un tubes; effects of' t(enper&t,-•c,

moisturc, radiation. etc. on clectronic components.



(C) Dec -t.raing air density at higher altitudes which (i) decreases the

effectiveness of the control surfaces; (1i) decreases erodynamtc drag;

(iii) changes the statistica1 properties of windgusts; etc.

The classical theory of a control. system [Trtxal, 1955; Newton, et KI., 1957]
cormiders the problem of random distW~bances as part of ort*ima. linear dnsŽn¶. W!-

have emphasIxed this point by including random effects in the model (2.1-3). Thum

orly (B) and (C) are to be regarded " "structural changexn".

One of the main x.ems'os for the use of feedback is to counteract chc c.ngI. c'

type (B). Internal feedback is used to render control equipment largely inscnitijve

to changes in the charactertstics of electronic and other comcponents. According

to •o-- v- , emphasized in Section 3, this is 'not adaptation.

Changes of type (C) are usually the most drastic; they affect the v'iry nature

of the control object. In other words, changes of type (C) are not slow change:,,; In •che

environment but dubstituting an entirely new environment.

5. Secific Forow of the Learning State.

The process of acquiring information about Lne structural Oharaterlsntcs of

the control object and its environment may take ntumerous foirm depending on the

nature of the control problem. We mention briefly som;e of the problems which hav,-

been discussed in the literature [Aseltine, et al.., 19518; Levin, 19581.

A large class of adaptive esytems is concerned with learning the equations of
motion of the control object. In some cases, this learnIng proceot may be quite-

simple in principle.

For instance, we might be able to exprens the lift and drag, cc-eftfcicntx. of an

airplane in terms of the mass, Mch number, ard altitude, These three quant&tlen to-

gether wori-!1 entftute the learning state; if they can be directly moamire-d. ¶.ht-

problem of adaptation would reduce to calculating• !if'!. and drag+ by pre~u•, gflt'fi

formulFe and uti].izing the number nc obtained to modify the control. law. 'T'his ty)j,

of adaptation can be only moderately effective since It loI( of the open-. oop t ypý';

no effort is made to revise the original formulas giving lift and d(-1g i tcAm:; of

the measured quantitien. More effective (cloned.. lop) adaptation could b, r)l.,t•nd

by fitting a model of the equations of motion of tie airplane to tii pxhýy L.cnian.nt!

ties measured during flight. If the data procef•sing can be donc ftL enou,•I~h, :;-c*h

a mode l would obviate dependence on prlor aerodyvTamlcn da0,,,f !I.n nia! 7t IrIT, I f!

opt-imal control law tunder a wide variety or flight. conditioru,.
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Another example showing the need for a more sophisticated learning process is
the following. The bending modes of a ballis3tic missile change with the expenditure

of fuel.. If 'there is an accurate measurerent of the loss of mass, one c-u.Jd. 1.n

principle, compt.te the ahirt in bending modes. In practice, measuring the loss of

mass with sufficient accuracy would be very difficult, and one would rather ntt,•.

to measure the i nstantaneous bending modes. The latter are to b-- regarded then as

constituting the learning state.

D1fl'erent problems of adaptation arise when the problem 1.-1 ,,t .ým'!n the

equations of motion of the control object, but to estimate the random charactýriyLc1
of the command rignals which the control syste;n is to follow. (Thi" is sometimes

called "input adaptation".) The problem might be, for instance, to Cetimate the co'r-

relation functions which are neetied for the design of an optimal Wiener filter. The

predictability of a random process depends on being able to repreOcrlt it by a 'ynani-

cal model, so that scme "equation of motion" of the random prc.rsc wouin constlitutc

the learning state. Thus this problem is quite similar to the -recedinkg one, thu&rtuh

there may be many variations in the details.

Finally, let us mention the so-called performance-criter.ioy, senutnt:, or extre-rmrn,

adaptive systems. Some overall performance index is measured experimentally and one

attempts to find a control law (by trial and error) which optimizes this performance

index. The learning states are nere parsexeters describing the control D-w, and thet
learning process consists of the trial-and-error adjuctmerit of these parameters:.

Of course. the division of an adaptive controller into the two sets of statcz

is quite arbitrary. It is dIfficu)t to conceive of a physical experim_-rt whI woui.d
always distingtiish between the two types of states. The division is made as n Mn',tter

of ccnvenienee in attempting to give a workable definition of adaptation, and Is

stro•gly motivated by scientific tradition. Ve ace used to representing nhyo.ycal dy.ea-

mical systems with linear or quasi-linear models.

A single represen.ation is not likely to fit accurately many situations at the

same time. We must have t~erefore a capability of changing the parameters of the re..

'n, i.e., the equations of motion. A particular learning state corresponds

to a particula. equation of motion; the transition in the learning states corresponds

to changing estimates of the instantaneous equations of motion of t'ae control object.

If the learning states can be changed raýpidly and accurately, the adaptive controller
will be able to he•ndle nonlinear control objects: the learning states will repreeent
thi best i-stantaneous linear approxriation to the nonlinrar system.

Ii
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Chapter 2.

THE NOISM-FME RTIATOIR •RROM4

1.. Aosiimptimoi% and F-i't-iion.
or v~ctor-uatrix notatio, see [rKlmam-Bert-sm 19601 or the Append(ic.

It will, be assumed that a sufficiently a curmte -. zl of the dkyumaical system

to be controlled is provided by the linear equations discussed in Chapter 2, Section

2. In sd&ttion, it will be assumed thrc.ghout hhis chapter that noise effects are

absent; in other vordis, v(t) wad w(t) are identically iero. Thus we sh-1 be

concerned with the vector equaticns

(1.1) dx/dt F(t)x + G(t)u(t),

(1.2) y(t) - H(t)x(t).

It is convenient to vimutlize this nystew by uranz of a tcctor block dJj-Li

shown in Figure IA. This diagram 4s to be interpreted ji'nt a• r-n ordinary block din-

gram, with two differences: (i) the fat lines used to denoyte the rilgxa. flow ni"rve

as a reminder that we a-re dealing with vector rather than uc&-e.r variables; (0)

the boxes denote linewr tranuformations on the signals rather thtm mulitplication

by acalars.

In concrete terms the block diagram in Figtu-e IA in to be interpreted as follyvs.

"The box 1/n reprenenris a s't of n integrator3. The ciitput of the J-tl; i1 .c....

tor is fed back with the coefficient fij (t) to the "n•zat of thb L -th integrator.

The ,-th control variable uI(t) is fed forward with coafficir-nt g j(t) to the

inp&t or the i-th Integrator. Firiually. the i-th output yi(t) is a lineex cov&-

bination of the outpxts of cll the integrators, where fhe autput of the J-th integra-

tor appears with coefficient b ij(t). Soe Mgurv, 1lB

W'e shLull animume rLat Y(t), G(t)o H(t.), an~d ukt) ae pioc~wir contl=auous



functions of time. Then given a fixed control u(t), (1.I) will havve a urdque

solution. Aside from the time, this solution vill depend also or (.) the initial

statc xo; (ii) the initial time to; (11) the control u(t). It ýn often conven-

ient to exhibit this dependenco explicitly; we shall therefore write e. solution of

(1.1) in the form

qu(t; x0, to).

This ,iotation implies that

(1. ) u(to; Xo .ý to im XO Y

and

dcpu(t; x(.,, to)

(1.4) d F(tu (t; X0 , t 0 ) + G(t)u(t).

The ýaat equation is the definition of the solutiou of a d-tffemr.nal equA.tlor. The

equCTlity needs to hold almost everywhere with respect to t; 'More prfe-k!t.;y, (1.-1)

may fail. at points of discontinuity of F•t), G(t), or u(t).

Instett1 of the cumbersome term "solution", we shall usually speak of u(t;X ot )

as the motion of (1.1) pausing through the point x at the tire t under the in..

fluence of some fixed control u(t).

It is well known in the theory of differential equations [Coddhisnton and evinro.n.

1955; Kalman and Dertram, 1960] that the motions of (1.1) can be erprt•cued exp.11c!-tib

by means of' the formula

(1.5) x(t) apu(t; x., 4o) - D(t, t)X° + t u(t, L,
t

0

which Is valid for any x; t, t G (and not merely for t k t).

The matrix O(t, t 0 ) occurring in (1.5) 18 the tranriti.on matrix ok (.i) and

is uniquely determined by the following roairements [Kaebnan and Bertram, "90W 1.

(1.6) O(t, t) - I - unit matrix for ell t,

',6



and

(1.7) dft, tc0)/dt F t)*(t, to) for all t and t0.

From these properties and the uniqueness of" solutions of (i.i) one can show at onn,,.

that

(1.8) *-l(t, tj - 0(to, t) for all t, to;

tz9 (t 3, t 2 )(t V tl) -(t.,ý t,) for all t J, t 2), t3

CONVENTION. During the sequel ve shall frequently omit explicit mention of

arguments (such as time) if they are obviously implied by the context.

2. gQ-dratic Performance Indices.

We nuw define the r Iator problem. Given that (1.1) -i at some srbitrary sitate X

at time t, we x. to select a control u(t) which drivee the output of (1.1) to

_tero.

In general1 there will he many control. functions which accomplish this. To
assign a nume.rical --alue to a particular control, we consider the fullowing functton

of the controlle- ion, ucumlly called a prfoormance index:

(2.1) 2V(x, t, T; u) - 11u(Ty x, t)1l•

T+ fT[H(¶)•,:(T x, t)Il,, +

where we use the special notation

2. jx,12 = n.
(2.2 i ,,x112

for a quadratic form in x whone coefficients constitute the s3yiwrctrLc nonn.',iitlve

17



definite matrix Q. The scala~r ilxlI can be regarded.ma the generalized euclidean

distance frce the origin. ;n (2.1) Q(¶) nd R(t) are positive dfiente ad continuous i

I* The term, fl(T" x" t)02 in (2.1) is the cost tf the .eviation of the.fin&l

state of the dyunfical seytem from the origin, measured with the aid. of the distance

functon IXtI2 . The terms IIR(.¶)cP,(¶r; x.. t)[j2 and jlu(¶)ý1I2) n(~)r-1r,-

present cuets per unit time of the deviation of the output of the dyrntatcal system

froc the origin and the cest of the control action u(¶) respectively.

The terainal time T in (2.1) may be finite or infinite. In the latter case

spe,ýIs. precautiona o-xe reeessary, as the integral (•.i) must be defined, by a limIt-

ing process. letting T -. co.

This formulation of the regulator problem can be readily generalized. to include

the servomechanism problcm. In that case we are given a certain deeired otput

yd(T) which the system (1.1) ij to follow as faithfully as possible. To 'nclude

this requirxe nt in the definttion of V, we simply replace the first term tn the

intagrend of (2.1.) by

-l (r H(,)qPuYr; x, t)112(

Further discussion of this problem will be postponed till a later chapter.

Eridently ihe per1ormance index V in (2.1) is a quadratic function of the In-

itial state x for any fixed u(-). The reason for this ass-unption is t'ht it leads

to a linear control law.

Finally, it should be noted that the problem becomes mea tndleqi•l -if the cost of

the control pcower IlU(¶) is not included in the integrand ii (2i ), for then

V can be made arbitrarily small by using control variables of Increanin-gly large

amplitude•.

5. Statement of the Noise-Free p0timal Regulator Problem.

•ven that the mot:., of [12) passe_. " ugh the point x at time~ t, find a

control u°(t) whi.ch minimizes the performance index V. The minitrum valu- of V

will depend only on x, t, and T and can be denoted by

(3.1) V°(x, t., T) - M n V(x, t, T; u)
U

18



A rigorous treatment of this problem may be found in [(Kalan, 1961 A-B]. We

shall now sketch the main features of this theory, omitting most proofs.

".he optimal regulator problem is a spe•-ýl ceze of a general problem in tbeorehi-

cal physics or the calculus of the variations: that of ±n1imtizng the action, wbich

is the in~tegral of the lTgrar.-inaD. In the prc.-nt cane,

V(t, ,T) -vX, T, T)

'a the action and

(3.2) L(x, u, t) rj UlIRt)xI2(t) + i1u(t) i(t)]

is the aAESSian.

It can be shown fu-ther [Kalman, 1961 A-B] that V0  satisfies the hamilton-

Jacobi partial dlt'ferential equation:

(3.•)+ PC ÷•X, v°j

where V0  is the gradient of V with respect to x; setting
x

(3.4) p - v°x

the hamiltonian 'us defined by

(Y. P, t) - min (L(x, u, t) + p'F[1t)x + G(t)u]*
U

(3.6) 2tkx, p, t) = ,Ht)xiiQ(t) + 2,'F(t)x - jja'(t)pI12 l

q ~ ~ ~R(t) -;R

in accordance with modern usage, a&jectives and nouns formed from -names of mathemati-

cians who died before 190() are not capitalized.

The prime denotes the transpose Of a matrix or of a (column) ..

19



The minimization involved in (3.5) is1 known as Pontr__Min' emini •-nct]

(Pontrn, -1n0,57;' KaWlAan) 1961 B]. This principle yields at once the optimn.l ,-on-

trol law as a function of p, and t:

(3.7) uO(t) W -R' 1 (t)G'(t)p

Hence specification of the optimal control law reduces to finding p av a function

of x and tj in other worde, to the solutlon of the hamil.ton-jacobl partial differ-

ential equation (5.3).

Fornmla (3.7) is valid provided R(t) is a nonsingular matrix. More gencrally,

an optimal control law exists if the right-hand side of (3.15) has a miniimni th re-

spect to u - for which the nonsingulsrity of R is a sufficient, though not

necessary, condition. These mathematical facts have an instructive physical interpre-

tation, as was pointed out at the end of SectionL 2.

4. Solution of the Hamilton-Jacobi E.uation.

Equation (3.3) may be solved by assuming that

(4.1) V °(x., t, T) - 1lx112 )

There is no loss of generality in assuming that P is symmetric. Since

(4.2) v°(x, T, ') 2 SII ,

wakIng use of the symmetry it follown th%..t

(14.) P(T) = S.

From (3-.4) and (4.1) we have,

(4.4) P(t)x.

eubstituting (4.1) into (3.3) gives

20



Ix, +A IX + XwPFX-7xtPWR GvPx 0.

This must hold identically for all x; hence (noting that the symmetrical pert of

PF is IP + PF)) (4.5) simplifies to

(4.6) - F'P + PF - IPR'IG'p + HtQH,

which is the so-called matrix riccati equation. Hence we have arrived at the follow-

!,s result:-

(4.7) A solution of the hamilton-jacobi partial differfontial equation corres-

ponding to the lagragr ian (5.2) and the hamiltonian (3.3) is given by the quadratlc

form (4.1), with time-vsrl iin _ficfents governed by the matrix riccati equation

L.6. This solution must eatisfy the boundary condition ±2). 'I'he riccati .

tion Is to be solved BAC7KWARDS in time, starting with P(T) " S.

It follows from (3.7) and (4.4) that

(4.8) u°(t) --

which 8hows that the optimal control law i8 llnear. Hence

(4.9) The optimal controller to a linear feedback ,otem In which (Oll. o1ate

variables of the systern must b, known at all times to effect control.

The matrix

(4.10) K(t) R -1 (t)G,(t)P<t)

will be called the .ptimel gai Figure 2 shows the vector matrix block digrwun ot,

the optimal control system.

The restriction that all state variab. cs be kncwn at all times will be removed

in a later chapter

21



•. Az~ ~ti~n of the Theory in a 8imle Case.

In order to give the reader a feeling fox- the details of 'the theory,-we shall

give a complete discussion of the firet-order case. The model of thb control object

is taOsn Ma

dx1
dt 12, 911

Y, hll1l

This means that the matrices defining (1.1) are given by

C.- [glil],
H- [hill];

all these matrices are- assumied to be constant) and gll O, h~ll 0. See Fig. 3A.

The performance index in defined by

0 2 2,,r dstl())/ •1••(5.2)2v°(x , tllx (T 4• , tu ( )]

an therefore

all these matrices are also assumed to be constant. Moreover., qll > 0, rll > 0,

k l0.

The riccati equation (4.6) is now

22



2 2
22i h11 q11

= - 2f lipli r 11 + hllil •

Since this is a first-order nonlinear differentisl equation, it is easy to dis-

cuss its behavior in qualitative ter-. Equatlon '" -'

p11  and which are the roots of the tuad~ratic resulting from setting

dpll/dt = 0:

2 1l _ P. +Jf2 + 21 2 > O,

"11 1i

2 Pll 2  2 2 q ii <r f - I + glh

We then find that (see Figure 4)

- 0 f 11> 11 or

d >0 11 Pll < l

which shew~s "that llis a stable an& Il s an unstable equilibriuam prY nt of

as t oo

The meaning of letting t -4 -oo in (5.3%) ish• •, .. *. ' the co.talncy

of f~l, qll, rl 1 , 1l, the optimal performance index (5.2) is independent of the

origin of time:

(Remember that dt < 0 in thi~case ard hence the irequalities are just opposite ot

of the usual case where dt > 0).
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V 0(x1  t., T) V vc(x, 0., T -t).

Hence t -+ -oo is eqaivalent to T -+ oo.

Then the limiting solutions of the vari!trc#_ a~ustI on as t- oo c, rreopcnd

to infinite terminal time T.

Sic plO - 0. 11 0, it .in clear that e%- y tvhe equilibrium sitate i
i_-ofilnte-ret. We sha~ll CM..l p., the steady-state 6iltioi.: of' the ricc~at- e uua-

tion (5.i.?otc that p, sidpnetofa ogW . 0. Tne correri-

ponding steady- state optimal gain is

(5.e)k 9 11~ =f -2 + 112 1
g11  r 1 1  911 + / 11 r

the equations of motion of the optimal controller are

0-5) -x 1- fk)

dt 11.-111 j

as shown in Figure 3B.

Recall now that g 2 h 2 q > 0. Then r~-~ 1 1 < C)and Wfe nee t'h1t?. i r
11 11. 11 1 - .1 i

i.e., whether the uncontrolled system was stable or unstable. Thlft S~ nTIM tri-Via-1

beocause the mere fact that a system is optimal does not imply that it is als~o

stable!

Not only is the optimal system stable, but anry degree of 8tabl lity ca~n be

accomplished by suitable choice of the ratio q1/ l
If > >ri (r.1), tieing ~'.)we can write, approx~imatcoiy

2l



hil 11  _1

IRgardirA

ah ot Tyv~'nuiov ~Nrticlai. we~ :ih' ! te derivative along motions ofr (5.1) is tht

integra.nd In (5.2):

--(q h 2  + r ~2 )x 2

Using again the a~pproximation q,1/rll I I (rf,l), it fo11oyws that

Hence

Frcmn the theory o'f Lyapunov [Kfi1man-Bertran, .1960, P.. ~386 it follawc that tn ¶rlc' e

constfrnt!of any dynamn-c s~ystem (linemi, or nonli~near) ils; Uounded by

'r 2 ma 2q~xl

*That is, -TV < V. Regarding V ac a rueasure &'f the digtanct. of the state from; thr,

orlirtni, thit3 leadsE to 1.ho r~ o~tlrtc V(it) < ýý tiq V(O) of the trrwnlUent mr;Opofl3,->



Letting p qll/rll, we can s iuriEe these results am:

(p.6) 2g 1 1 h 1 1 4 'r11InX= :lll 4 "0

-ience the time constant of the optimal system can be made arbitrarily smal-l by let-

ting p be large, but this le- always acccmpished by increasing the gain a and

hence the amuplitude of tbi' control eignal u(t).

The question now arises as for what values of T-t (5.5) can be regarded as

havinr practically reached its steady-state value. In other words, on what depends

the time conntant of 0.53)?
Let

8pll Pll - P11

and t'-c ider the Lyapunxov function

v(pli) = i n)

Hence

2 2

ýw -. (2f' gP1 1, 1 h2 ý#(spl) t=p1  dt -?rP -i--.- + h 4.••,i
dtl "1 rllA

~(2r 1 -LP 9~

2 P 2 q11

(g •L_ + h - )2V.
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Hence the maximum time constant of the riccati equation is

2 11 -1-P
2 1 q 1 -1 2[

Evidently the more stable is the optimal control system, the "faster" dces the aolu-

Uon of the kiceati equation approach its limiting value.

To summarize, we have fou~nd that:

(I.) if pll(T) 4 0, all solutions of the riccati equation tend to P11 SA

t -+-o00

(ii) P1 is the solution of the optimal reguJato- proh1n m when T oo;

2 2
(iii) if gil-lqll >O, the optimal system is alwsys stable;

(iv) by making the ratio qi/rl, large, any desired. degree of stabIlity can

be obtained;

(v) the time constant of the riecati equation is directly related to tue time-

constant of the optimal filter.

The main aim of the theory of the optimal regulator problem is to extend the re-

sults to systems of higher order and to systems with time-varying coefficients. This

rcquires fairly complex matrix analysis, and -',ill be discussed later. I.r further

details, conailt (Kalman, 1961 A-C].

6. Existence of Solutions of the Opt.imal IRegulator Problem.

The main result, here is expressed by the folloving •Aheoremv which is proved in

[Kalman, 1961 A].
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(6.1) Tb. noise-free optimal regulator problem has a solution for every finite

T - t if the matrix R(T) ard th. jMtri Q(T) ar•.iLtive definite f Or l T in

the interval (t, T), vhi!e S is nonnegstive definite.

In order to understand this result, a simple counter-example will be considered

in detail. Define a performance index by

O T 2 2
(v 2) X (S -x 1x(T): + f ly (r) - U,](T) d-j

u 11 t

-while

(6.3) dlt

dt cvl(t)+ u 1 (t) (a = real).

In other words,

,,iF. G•) -(1), qll =, 1ýh l. r , 11 -1

The corresponding equaticn has a eolution

2V (Xl, t, T) = pll(t)x2,

%-he re

and(T) all

dp ,1(t) 2

dt (t) 1 11(t).

Integrating (6.14) by sepa.ation of variables, we get, Getting ) = 0,
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P11 tan- (T-) if C? < 1,

1-t a41

-s-tat 4
P114Lx 9 -a1 (T-t) i ?>l

ta~in 4P- T-1

( (t) 1 +T-t if ( T - it

p1 1 (t) T-t

t 1 -(T-t) if a - + 1.

From (6.5) it can be observed that if, > - 1 the solution p1 1 (t) has a

finite escape time and the maximization prcblem is WANINLE8B for T - t > t C

where

(6.6) 
t tan- 1 -

For a 4 - 1 a solution exists in the steady state, that is, T -. + oo if

l 1 O. However, if S 1 0 and is a sufficiently large positive number, even

when a 9 - 1 then! is no steady-state solution. This phenomenon is shown clearly

by the state-space (1-dimenoiunal) plot of ihe differential equation (6.4i). See

Figure 5, where the aryows indicate the direction of motion ac t --- oo. Indeed fi
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a >- > a 4+ C- 1, then no stead state solution exists. These cases illustrate

the problems ilich one my encounter by neglecting existence questions.

The classical apprcach via the euler equations would not roveal the fact that

the optimization problem become meaning!ccs Zor large T - t; thm culzr eqa-Aonn

in the present case alvays have a unique solution.

7. Existence of te 801 (Ion of the Steidy-State Ottiml Regulator Pblcm.

The optimal regulator problem makes sense in the steady-state (T = a;) on.y

if the limit

(7.1) V(x, t, oo; u) irm V(x, t, T; u)
T -0oo

exists and ja finite for some control function u)T) defined for r c(t, oo).

In order to investigate this situation, we introduce a new concept:

JIF•.INITION OF CO?4PLE" CO'IOELLABILITY. A system (1.1) is said, to be completely

controllable if at any initial time t any initial state x can be taken to U he

origin in a finite length of time by the application of a suitable control fwnction.

The abstract definition of complete controllability to equivalent to the 1'ollov-

ing concrete condition (for proof, see [Kalman, Ito, Narendra, 19621):

(7.2%) iMOREM. Asystýem ('.1) is comoletely controllable if and o__ly if thW
'itrl'

(7-3) W(t, T) 0( et, xG.••-•"". _,,'÷-"

t

*_s positive definite for some T > t.



T he W has the following interpretationit The minimimn energy rLecrdir.d

to transfer the s8ate x at time t to the ori.In at time T its

,Tjju(,r 112
t u(.)d wI(tT)t

The computation of the matrix W is most easily performed by observirw that it,

too, is governed by the riccati equation. To see this- we note two fact.. ( Tf

a matrlx P is governed by a riccati equation, then its inverse PF- (if UL exists)

is also governed by a riccati equation. (U) By the remea'k In the pre"at,,tLLn', para-

graph, 11,112 " is the performance index for a special optimization probiemz
w l(t., T)

take x at time t to the origin at time T, minimizing along the motion the con-

trol energy.

Differentiating (7-3) with respect to t, using (1.7-9), we find

(7.4) dW/dt - F(t)W + WF'(t) G(t)R- (t)G'(t)

which is a special case of the riccati equation (4.6). Tn practical ceascs, W I1r

usually computed by menws of this equation rather than by numerival integration of

(7.3).
If the system (I.i) is constant (or stationar•y) that in to say, if F, and

G are constants, then complete controllability can be checked more simply (for proof.,

see MKalman, Ho, Narendra, 196112):

(7.5) THEORII4. For a constant syst•_•i(,L) a necessary and sufficient condtlti•n

for cmplete controlleability is

(7.6) rank [G, MG, ... , FA-iG1 = n.

The condition of complete controllability is not n-'---v for tbp existence of
the limit (7-1). Buxt if a system is not completely controll.,!.(,, its state vari-ables

can be decomposed ir;o two grznupsi, one of which Is coppletely unaffectcd bly control.

See Figure 6,. If the part of the Pystem which is not coupled to u Ia aymptot Jcally

stable, then the limit (7.1) existii} brut if this pwrt is unstable, the limlt will not

exist.



It can be shown tha. if a. .inea coistarit ayotem is described by a transfer

function, then it is &IlvyS ceipletely controllable. This is due to the fact that

in vriting down the tranofer fimetion terms which account for lack of cot.lete con-

tr...... l, cancel out of the =uerator and denominator.

Because a single-±nput/single-output control object described by a transfer

function is al-W7e completely controllable, the importance of controllability w-o.s

unnoticed for a long time in the literaturo of control engineerig In simple cases,

lack of controllability is easily detected and eliminated by physical considerations.

On the other handj in colicated cases when the eeual .or.F n4 m)tion are written in

the normal form (1.1) and there are several inputs Bnrd on-.-puts, controllability is

not obvi ous and efficient mathematical means imust be Cevised to test this property

of the system. This is the price cne has to pay for a more general theory.

If we do not have complete controllability, the limit (7.1) will not exist in

general. This ie easily seen by the following example

dx../dt f f 1 x'1 +.(t

dyldt x-P

dx,/dt _ -,

yl - l

S= [1] ,

R - [:1),

83 [ 1 .
0

Then V will alvoj contain the term

llx(T)11I, [x,,(t) coo T + x3(t) sin TI2

which cannot be affected by ul(t) and clearly does not have a limit as T -. ,o.

The most important consequence of ccmplete controllabili.,y is the following:



(7.7) TEORMO . If a system (I11) is constant, coawIetely controllable, ••d

S o, then the limit (7.1) sly-U exist.

By complete oontrollability, V0 (x, t, T) my be bounded from ta independent

of T. The t?..orem then followvs immediately since V°(x, t, T) is nondecreaslng as

T -+ oo and a bounded, monotonie sequence alway6 converges. It is an open qumation at

present whether this theorem holds also when 8 / 0 (becatwe then V°(c, t, T) is not

necess&rily monotone increasing T.)

Slight further arguments prove also

(7.8) THEOREM. Let P(t; 0, T) be a solution of the riccat., equation correslond-

in P(T; O, T) 0. Then

(7.9) P*- lia PFt; 0, T)
T -4 oo

always exists, and P* is an equilibrium state of the riccati eqmLtion, i.e.,

dP/dt= 0 when P =P*.

See (xlman, 1961A].

We note also that, whenever the limit (7.1) exists, the following is true:

(7.10) min ( lim V(x, t, T; u)) = lir [min V(x, t, T; u)]
u T -+ oo T - oo u

lim V°(x. t, T).
T -o00

The left-hand side is the definition of optimal control for infinite terminal time

T v oo. The right-hand side shows that the min and lia operations may be interchanged;

in other words, optimal control when T - oo can be obtained as the limit of optimal

controls as T - oo.

The proof of (7.10) is almost imrtriiate, appealing to the definition of opt.txma-

lity.

Finally, let ",, observe that while complete nontrollability g'jorantees the exist-

ence of the limit (7.9) when S 0 0, it may happen that for other values of S there

will be a different limit.
'The equilibrium states of the riccati equation are obtained by setting dP/dt 0.

We show that it is possible to have under complete controllability more than one
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equ•librium state. Cctiolaer the Vostem

:11-X,] + uly,

Yi M -NJ + x '"

Here

F G: [1 _0 ]y0 1 j0 "1

Py (7.•), the system is clearly completely controllable.

Wb let

lil R] .- [1 01

Then the riccati equation is

_dlldt_ PU_ 2 _ 2 + 1,

(7.12) .d,/dt - 2p2 - p1(P• + P22) + 1,

-d /dt -p 2 _ 2 +1.-P22d 4 ..........•.- P12• " 22

It can be proved [Kalman, 296-1C, .ftsmple 14.201 that on settfng the left-hand

uickes in'7.12) equal to zero, the resuliting set of quadratic eqwmtions has precioeiy

tvo nonnegative definite solutiors:

and



iz

T " ".. .. .Fl 4-43 1 +%/3
+ -[ +d

is nonuangular, while l (2)

8. Uniqueness of the Solution of the Ste -State Regulator Problem.

To prove that the stei:; . •t&te control law is unique, i.e., indeperdent of 8,

we need a new concept, which may' e regarded as the dual of controllabi) iMy.

DEFINITION OF COMPI• OBSERMABILITY. The system (1.12) is sald to be Sompetely

observable if it is possible to determine the exact value of x(t) given the valu-s

of y(t) in a finite interval (t., to) preceding to.

The analog of Theorem (7.2) is proved in [Kalman, 1961C, Lenua (15-.7)] a:d may

be stated as follows:

(8.1) MOM. A system (1.1-2) is coMletely obr-rvable if and oIjy if the

Mtrix

T
(8.2) M(to, T) -f 0'(t, T)H'(t)Q(t)H(t)O(t, T)dt

0 to

ins poxiive derinite for some T > to.

The analog of Theorem (T-5) is:

(8.3) TUOREM. For a constant system (1.1-2) a necessaxr ad sufficient condi-.

tion for coMlete observabi1ity is

rank [H', FI'H',..., nn-,] n

According to this criterion the system (7.11) i not' completely obaervable. Thus

the example at the end of Section 7 shows that in the absence of complete obenrma-

bility we cannot expect in general to bave a unique optimal aontrol law in the steady-

state.
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The main result of this chapter may be stated as follows:

{8I)TEC;RF1 Consider a constant system (ýi.1-2)1 i.e., F', G, H, Q., R are

conteant Itriees. Assume that the systrem is cow5letely controllable and complete2

observable. Then:

(i) The solution of the riccati equation starting at any nonnegatIne definite
matrix 8 convermss exponenti&Uly to a uni • positive definite matrlx P as
t -+ -00 (2~r T -+00).

(ii) ag optimal control law for T = 6o iA constant and the optiwlov regulator is

asIg totically stable.

This theorem can be generalized in a natural and straightforward way also to

nonconstant (time-varying) systems. The precise statement of the results is more com-

plicated. )'or theac statements and the proofs the reader is referred to [Kalmen,

196A s and 1961C].

The fact that under conditions of complete controllability and complete observ-

ability the optimal system is stable is not a triviality since the formulation of

the optimization problem in Section 2 did not include this requirement. Nor does

stability of the optimal system follow in general. For instance, if we take the

matrix :(2) of Section 7, we find the corresponding infinitesimal transition

matrix of the steady-state optimal system is

1 -43 -1 - 4-221o1 13 3. - 4.3

whose eigenslues are

L . " - -2.

Thus the optimal system for T . oo is unstable if ve choose

S 3 6(2).
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Bat the deeper significance of Tbeorem (8.4) iies in the result that every

solution of the riccati eqýation otarting at a nonnegative definite in'iial va1i,%

converges to fj moreover, convergence is exponential. This means that the riecati

equation provides a feasible computation procedure for obtaining the optiml syetem

which is not likely to be atfected by roundoff errrs. Note that, accord n4 to the

thecrem, one could have obtained F by setti:g the left-hand side of (4.6) equal

to zero and solving the resaulting set of simultaneous quadratic aLgebraic equaticns

in the elements of P. This procedure can indeed be carried out ir. simpl-, cases

[Klman, 19610C Sect, 1i)] but when the order of the system becomes larger than 2,

the approach via the riccati equation is likely to be appreciably more efficieknt.

9. Some Important Inequalities.

From the point of view of practical numerical computation it is of course by

no means enough to know that the solution of the riccati equa+.ion converger expon-

entia.lly, one must have also an estimate of the speed of convergence.

This aspect of the theory is not yet in a definitive form. We shall confine

.ourselves therefore to the statement of the major results %o date. Proofs may be

found in [Kalmnr., 1961A and 1961C].

If A, B are symmetric matrices, let us use the notation A > B [A -: B1 to

signify the fact that A - B is positive [nonnegative] definite.

We assume (1.1-2) is const~ant, completely controlUPble Rfnd completely obser-

vable.

The desired inequalities are then as follows:

(91 0 < P(t) S W-' I(to, t) + 14(t, t),

(9.2) P- 1 (t) S M'1 (to0 t) + W(to, t), t > t

xml (M 2 (to, t))

(9.3) P(t) - P(t ) m M 0 t)

4 tr M2 (to, t)tr W(t 0 , t)

where Xmin(A) denotes the smallest cioe•,va;e o' u symmetric matrix A.

These inequalities are useful in guiding the choice of numerical values of Q

and R.
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Chapter 3,

A TPIRD.-ODT7.4 0PTINAL REGUTATOR PROK Bn

1. Introduction.

We shall discu-s -In this chapter the noise-free optimal regulator probiem in

a suecial case when the control objiact in e-r tho thim! order (n A 3). On thc + cU

hand, this example is simple enough to be treatable in part by analytic methods* on

the other hand, the example is complicated enough to illustrate various problems en-

countered In numerical computation.

2. Definition of Control Object; Transition Matrix.

The defining matrices in equation (1.1) of Chapter 2 are taken as

(2.1) F -00 00 1 and G F 0
0 -1 o0 oJ

The matrix H uill reamain undefined for the moment.

The (conventional) block diagram of the control object is shvcn in Figure 1.

Not W that the element values of 1 mnd C may be read off by Inepectlon from the

f igure.

We now compute the transition matrix corresponding to F :tven by (2.1). For

simuplicity we write l(t) - O(t. 0). By (1.7), of Chapter 2 0,(t) satisfies the

rel.ations

(2-2) LIO(t)/dt - FO(t), 0(0) 1.

Taking laplace transforms on both sides, we have, just as in the scalar case,
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" (2.3) (.1 •' ?)#(s) a•

One can eoap*te *(s) by solving (2.3). This is quite Pcm•licat-ed, hwever,

A @10ler met]A I.s 'zhIs:
We observe thLt by (2.2) y(s) i. the transrer Ncbion fro1n tnf irsvut to

the J-tb integrator to the outrat of the i-th integttor in Figure 'L Utilizing

ikeon's loop rule [Mohon) 1916], we can easily ctIculate these trmnsfer functions

aidl obtaiD

a2+1 -1008 300

0(s) 1 -1100 sa 8

-+" 1o0,oo 1) 10 -a 2 + 10,000

which checkn with (2.3), Taking the inverse laplace transform of each element of

A(Iowe irinaly got

1 + (c2-_()coo ,t 1.00 w sin at 100(1-cos ,..t)

-100 M sin ost C OE;st sin nt

L100(I-co & a*) - W sin at 10 + Co n ,•t

2
where * 10.001.

3. Controllability.

We can use Theorem . of Chapt'- P to check whether the system (2.1.) is comt-

pletely controllable. The answer is in the affirmative. for the matrix

[o, FU, ?0 o 1-oo ]
0  0 -100
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This result iS merely qualitative. To get a quantitative auewer as to hcw

eftfectively control can be apliea. we muet camm'te the ccrtrollab litylt-- . ...at^ W

given by (7.3) of Chapter 2, and find its inverse (which always exiats by co•pletc

controllability) to see how much energy is needed to take the various states to zero.

We could compute W by direct integration. since the inteomndE in (7.3) of

Chapter 2 would involve only simple trigonometric funetions. Dut thisi task is

eyceedingly tedlous. Calculating cr-tdely, we see thit if T - t is several times

larger tktn the period (2y/a 6 x 10-°2) of t(t), then the amount of en.rg,

required to take the states

[..1]L ' r2 ox .[ 0 o e , , x
to wro is about 5 x 103 times smaller than the energy required to take

x3 0

to zero.

In pr-tice, the matrix W is obtained by ccoputing the solution of the differ-
ential equation (7.4) of Chapter 2 by means of the mthods discussed in Chapter Xl..

Taking R - [i, we get the matrix

w(o, 1) , 0.0126 5.0201 0. x 10-•

[-0.0503 0.0000 0.00:15J

whose inverse is

0.0005,- 0.0000 0.OI01a
yWl(O, i) m 0.0000 0.00O 0.0000 x o.04

0.0101 0.0000 1.0001
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The numerical results thus confirm the earlier qualitative concluaions.

4. First Attempt at Design.

We assume that the prlmary objective of control i1 to assure that xi is

asnllat all times. Therefore we set

H- R 0 01.

It is a good idea to check immediately whether, with tb.s choice of H the system is
ccmletely observableP, Tn view of The-orem (8.3) of Chapter 2, complete obstrva

bility is equivalent to

1 0 10,000'

det[RI', MI-yt a dt 0 -100 0 /o.
.0 0 loci

Hence H given by (4.I) assures 6onplete observability.
Guided by the anailysis of Section 5. Chapter 2, we now wish to choose the ratio

Q/R large in order to assure an adequate degree of stability (in the present case
both Q and. R are 1 x 1 matrices, i.e., scalars). Suppoee we let V/P - 10 4

Moreover_ in view of the method for computing the. riccati equatiou explained in

ChapLer ]i, it is best to take Q - R-1 10 2.

In view of the discussion of Section 4 of Chapter 2, the steady-utate value
of P can be obtained by setting dP/dt - 0 in -.he riccati equation (4.6). More-
over, this solution is always unique. We observe that if P - I, then dP/dt = 0.

Hence P- I is the steady-state solution of the riccati equation. Therefore,

= ('l ,P - 10 2G- (100 0 01

is the "opt:.mW. gain. The infinitesimal transitian matrix of the closed-loop optimal

system Is$



-100 + 100 0

(.2) F e G F- l 10200't -I0 0 + 1

L- 0 J

The eigenvalues of this matrix are given by

il - .01000
(-3))

"I tt2,3 - 49.9950 - i 86.6054,

which ihows that the optaul closed loop system is very poorly damped.

The exp3snation for the poor dwmping is the followings The criterion of optimal-

ity requires only that x, be quickly reduced to a small value. This doeri indeed

happen, since the first row of the optimal closed-loop transition matrix is given by

41 l(t) - lO-4e-'Olt + 1 . 1 54e-49.995t sin (86.6o0t + .5

()- 2 -4_Olt I 49.995~t4
qý12(t l-e'f + L.1I54e-h"95 sin (86.605t + 10-4)

13(t) - 102 e-'Olt - .011O5e"9.995t sin (86.605t + 1.0o47).

This shows the effect of unit initial conditions in xl, x2 , x3  on x (t).
5 1%

O. the other hand, the criterion of optimality does not require_ good control

over x Since (see the discussion of controllability) x% iu v_ weakly coupled

to x1, the good transient response of xI does not bring about a slrilarlYy goC;4,

transient response in x . Another way of saying the same thing i• that the control

energy is used more effectively in reducing xI than in reducing x because x5
2 ~

does not enter directly In the error criterion 1I.X14 and the amount of energy re-'

quired to quickly take x3 to zero is enormous.

It should be noted that, in accordance with the general theorem (8.4) in Chapter

2, the cloned-loop optimal system is asymptotically stable.
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xatij't=4 by tp- first met of rmsult., we now let

0 ." 0 1 -

aiM

(5.2-) Q - ,- - (1i0 2].
0 100

In otber words, we veighterrors in z3 and x, equally.

The ob•ervability matrix corresponding to (5.1) rtnd (5.2) wme obtained by comnPAt-

irg the solution of the riccati equation (4.6) of Chapter 2 with R-1 0. We found

4..97IV o.oI6 0.0502'

M(O, 1) - 0.0126 5.0204 -0.0001 x 10,

0.0502 -0.0001 9.9-r95

and

r2.0090 -0.0050 -0.01011
(5.3) 1(o, 1) -0.o0050 1.9919 0.0000 10 o-

L-O.0oo 0.0000 1.0001 J

The steady-staLte -alue of P was obtained from machine calculationB 53

0.0101 -0.0001 0.0099
-0.0001 0,0101 -0.0100 X io2.

L0.0099 -0.0100 1.009oo

This gave an optimal steady-state gain matrix
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(5.1) -- [.0099 -0.0099 0.9899) X 1o2

and an infiniteuimal transition matrix of the closed-loop optimal system

A-.09 1.0099 -0.9&99 4Q

1 60-0 - 1.00 0 0.01 X 10

L 0 -0.0 1..

The ige luea (p.6) are

C• ½I ,,, -9999,
(5 .7)

Si9.9950 t 86.60,4.

which shows that we have improTe4 the damizg by a factor of about 100 by Iivins I5

equal weight with x, in the error criterion. Definmd by H and Q, the Aew

error criterion bA& forced the system to &-istribute the control e.trgy b.etter b4-

tween X and Y,. Thic improveseet has not been made, hovewer,, without a conBldor..

able increase in required control evnrgys even though the firs3t compornedt of thzn

K matrix rewmins essertially the sam. Note C1oo that P is 100 times larger in

this case than in the previoum section.

Fimally, observe that control over x uA x2 is virtually unchanged, and

the coplex eigenvalues of P0 have r iz d the saw.

6. Third pesi '.

Another design was invrestigatedo setting

(6.1) 0, 0 0

Irror in x3  are weighted five times more than arrors in xI. We# %&rin have cc-

plete observability.



The observability matrix wa& found to be

0.984 0.0o3 o0.052 I
(6.2) :401 ) - 13 0.'023 -0.0o0 x 1o2

L"0.0452 -0.0001 4.999]

Notice that the terms in the third row and thirl column (i.e., terms a~sociated with

Y3 ame much JLargr than in (5.2).

The ateedy-state value of P vas obtained froM machine CBlcu- i nd it .was

observed that P converged more qric!kly than it did under the conuttionb of Section

(6.3) -0.0002 0.0102 -0.0228 x 10

0.0223 -0.0228 2.2862

We see that all term associated with Y are (approx±~tely) v5 timea 1l&rgr

than in (s.•).
Toe optimal steady-state gain matrix vau founi to be

(6.h) .- [1.o223 -0.0225 2.2259] x 10o

The infinitesimal transition matrix of the clcnied-!oop optimal ys-tem was foumd

to be:

-.,o023 1.022c -2.2259

(6.5) o - f. K -1.0000 0. 0.010o x 0 2.

0. -0.0100 0. 1J

The eigenvalues of (6.5) matrix are

(6.6) { 1 "- 2.2355,

.,- - 49.9949 t i 86.6199.

Thka following are s ote-m'-rthmy aTs.t& of this example
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(A) T elements k2 and in (6.4) are larger by a factorof 15

then corresponding elements of (5.5). This is due to the change in ,

(B) Despite this change, k12 is now atill only .02 times kll which hMT

remained unchanged, In other words, there is essenti.ally no o1xnie in the control

over x and. x2 . Hence tle complex pair of eigenvaiuee in (6.6) remains about

tho saw an (5s7)

(C) The ubiquitous factor of v is to be expected from the scalar anaiydin

in Chapter 2; see equation.s (5.6) and (-7).

7. Fourth Design.

Finally, we took

100 0 0

0 0 500

Again we have complete observability with

J1.5025 -0.0013 0.05521
(7.2) M(0, 1) -0-001 1-4977 102.

001 1J 19'( -0.0000 X 10

0.0552 -0.0000 h.992

The riccati equation converged to a ateady--etate ofale .r" P more slowly tfnl

-n the third design (Sect. 6), indicating that the largett eigenvalue of the closed

loop system is somewhat closer to zero.

Thc steady-state gain matrix

2(7.3) K -[1.5826 -0.7523 2.2203] x 10.
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The infinitesimal transition matrix of the closed loop optimal system vas

1.5826 1.7523 -2.20M3
(074 ,o - . o02 1.00 0 0.0100 X lo2

0 -0.0100 0

T sgeiwnalues of this matrix (7.4) arxz

I w -1.2910

X 2,5 w -78.48B3o t 1 211z.,-952

The size of the real eigenvalue accords with the gualitativr prediction made

from the rate of .convergence of th.o riccati equation.

Quwlitatively the shifts in the eigenvalueb could be predicted on the basii of

mOrt control energy being put into the x1 - x 2  loop at the expense of x control.

Quiantitatively the picture is considerably more complicated thsm it wue in the one

dimensimial system mnalyzed. in Chapter 2. For instance, it would appear heuristi-

cally Inviting to assume that x1  and x2 are so tightly coupled that

Filo 0 o o
H'QH = 0 200 0

0 0500

Is the s•me ak3
•{, - o o 1I

H'1QJA a 0 0 01

L 0 0 500

and such an asmumption is possible to maintain about the observability matrix where

a factor of three appears in the x - x2 terma. %ut this point of view iB too

naive to account for the changes in P and I.



A careful analv-sic of the meaer of applying the inmqualivt±es of" Chapter 2 is

required in order to obtain information about Q and R in terms of parameters

more familiar to the engineer, such as timiw constants and frequencies.

8. Ree ences.

S. J. MAsm (i956) "'Feedback theory -- further properties of signal flow

graphs". Proc. IF, E.i 4 , 92
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OMMAL MMOLM •T22On

M, Motivotion of Assumtions.

Another problem of optimization of ImportAnc•t for the stuay of adapti" systems

is that of statistical estimation theory or g-erilized Wiener filtering. In this

problem it is usually assumed that one observes a signal in the presence or additive

Polse and one desires to find a "best estimate" of the signal by linear operations

on the observations.

In relation to control theory, the assumptions are stated in a sooetbkt differ-

eat (but by and large equivalent) form. We assume that the state x of the control

object cannot be observed directly. We can, however, measure some linear combinations

of the state variables. These measurements are denoted by the vector y. The meaaure-

dents are not made with perfect accuracy, so that actually we observe a vector z

which is the sum of y and a vector v representing measurement errors or noise.

In addition, it is also assu ed that the control object is subject to certain random

disturbances w acting on it.

In accordance with the discussion in 3ect. 2, Chapter ", these assumptions, com-

bined with linearity, yield the equations

(1.1) dx/dt - F(t) x + G(t)v(t)

(1.2) z(t) = y(t% + v'(t) - "t'x't) + v(t)

where w(t) and v(t) are random processes (see below). in the first equation, '•

omit a term involving u(t) since we are not concerned here w'ath the control problem.

This term will reappear again in Chapter 5.

Alternately, one ',an interpret these equationn in the foliowinng •r•n: We are

given a random process x(t) arnd a related random process z(t). Values of z(t)

are observed over a certain interval of time. On the basis of these observations,

we wish to estimate the value of x(t,), where t, in some arbitrarily -hosen

instant of time. It can be shown that if x(t) is a markovian and gaussian random
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proces., it can ..p b -represontd by a achemse uch as (1.1-2). See [Kalman,

19&C, Sect. 7].
We =me the furtbher assuzqtion that v(t) a w(t) are 'mussian vnite-noise

p independent of each other. They are specified mathematically by their
c•-uen-ce itrices

-.R,(t)''(r) - Tl (t)v (T)] .(t)b(t -T),

""0t)v,() - it t)W (T)] - V(t)b(t - r).

'r w(t)v'(,r) - 0 f or all, to 'r,

(z(t) -Z(t). 0 orall t,

*here E *presents the mathematical expectation, 5(t - T) is the Dirac delta func-

tion., 0, A are positive definite matrixes. The case of nonwhite noibe can be re-

duced to this formultminti by a cbange of variableE

.We shall often refer to (1.1-2) as the model of the signal process. The matrix

block diagram for the model is seen in Fig. 1.

A eich more detailed discussion of the subject of this chapter may be found in
[Xblm,, 1961C ].

2. Statement of the Filtering Problem.

The filteriv3 problem can be stated as follows: Determine a linear operator on
the set of obwervations (z(,r)IE [t t]) whose vau3 c(t It) at time t1 b0 A

the properties:

(i) E(ll); X~tl),

n
(ii) Eli (t.,j~l E £b F51' minimum (B g" Z,*½J'e rdefinieýB i .J wl ij i J matrix).

Above we used the abbreviation

(2.1) x(tl~t) -X(tl) - (tlit)

for the error in the estimate x(tlIt). The observations of z sta.it at time t
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(Vhich is taken as fixed), and end at time t (which is taken as a running para-

mter).

TMM ^(tl!t) is to be unb isef, minimum variance estimator of x(t); tha+t is,

1(t It) minimizes the averaW value of the squar*Ln of the error. One of the interes-
ting properties of the estintor 11(t1 t) is that the best estimator of the scalar

quantity

n
(2.2) S'x(t) £ai±)

irnl

t'urs out to be

a':(tI It).

3. Solution of Filterjn Problem.

-By a rather involved argument gi'vrn in detail in [Kalman-ucy 1961: Ka1•ai 1961c

it cani be shown that A(t t) is the output of a dynsnical system similar to (1.1)

Abose input consists of the observations z(t):

)(tt) . )(tt) + x(t)[z(t) - H(t)-(ttt)).

The dynamical system (3.1) can be physically realized by a feedback system as shhown

in Fig. 2.

It •n be shown that K(t), the 1pin of t"e optimal filter, ic dctcrrnirmd by

the covariance matrix of the errors of the optimal filter. In iract, if

E•(tt)•tlt =E(t)

then

().2) K(t) - E(t)R'(t)i'lIt)

Further, it can be shovn rRwmC-DWuy, 1961; KaIcn 1961C I that y,(t) is deter-
'irotod as the solution of the following riatrix riocati equation:

dt_



where

E (to) -xt~'( )

To avoid confusion between (3.3) end the matrix riccsti equations of Chapter 2,

we shall usuaiy refir to t3• 5) he arriance eemtkm.

Notice that this equation is "olved forward in time. By solving (0.3) and then

using (3.2) the optimal tilter (3.1) completely apecified

4. Duality Relations.

It should be noted that the solutions to the regulator problem and the filtering

problea are quite similar: in each case the problem reduces to the solution of a
matrix riccati equation. Actually mtuch more is true. To every filtering problvm

there corresponds a "dual" control problem so that the samw riccati cquatico' prcviden
the aneter to both problems. The "duality relations" may b1 ,itat,±d explicitly as

follows:

Fitei Control

i(t) Pft)

F< > F'

G <-> a'

H <--> G1'

t <-> T

S<--> Q

This shows in particular that the conditions of complete (ontrollability and com-

plete observability are duals of one another. A compiettly control llbl.e. dynt.idr, sys-
tem of a control problem is the dual of a comp] -". observable dynamical yoytýrz of

a filtering problem. Hence the existence and uniqueness theo~rms in Chapter 2 nre

valid also for the filtering problem, vi-th the conditions dualized and the con jx-
sions now pertaining to the optimal filter rather th|an the optima]. control system.
Each codunter-exae le of Chapter P would serve, after it is dualized, as a ccwuter-4x~mplc

fur a filtering theorem.
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5. imple ofa P1lterina ftoblem.

Th* foLlowing .sp•a9•l. cans of f 11tering problem will be considored in i4oetai
to il.lutrate the application of the gencral theory.

hle signal process x1  is given by the d..fferential equation

dx 1 ld't" " f,3, - w+

the observed signal is

(52 z1 72 X1 + v1.

In accordance with (I.5), it will be assumed thatl

l ( = ql(t - T)

.(5.,) Ev1 (t)vic) r 5(t + T)

•x() - : a % U
1. 0 l a

or

F [f 1l], G ti], H- [1, ip • [r 1l]

Specializing (.3.i) to this case, the equation of motion of the optimal fi'.ter is

dý.1L (t It) Oi(,
(5.4 at i:•](t It) + -[zi(t) " /X,(-tit')!

T"he block diagram of the optimal filter in shown Ii Via-. "i.

The solution of (3.3) in this case can be found by separation oI' rxiables and

integrating. The end result is
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The solution of the steady-state filtering problem (to - oo), the conven-

tiomal Wiener problem, exists since the model is completely controllable end com-

pletely observable. The solution of the Wiener problem is given by

t -+ oo r00'l--- f 1 1 + +;
= +jjý 2 -fl.

This is a well-known result of the conventional theory.
Notice that the optimal filter is stable regardless of whether the signal pro-

cese was stable or not.

If f3l < <-q11 then the time constant of the optimum filter is at most
r. 

-

( s, which shows that the less noise power in relation to signal power the faster

the filtering loop. Hence the time constant of the optimal filter depends directly

on the signal to noise ratio- Since the filtering problem is the dual of the control

problem, all of the extensive diecussion in Chapter 2 is relevant also to the filter-

ing problem.

6. References.

R. E. KALMAN (1961C) "New methods and results in linear filtering and predic-

tion theory", Proc. Symp. on Engineering Applications of Probability aid

Random Functions, Purdue Unti±orsity, Nov. 1960; to bee published by 4iley.

Ii. X. KAIMAN and R. 8. F3QY (3961) "New Results in Linear Filterin, -io Pre-

diction Theory", J. Basic Engr. (Trans. AS). (Q_) (to appear).



LA-

LAL

64



I.-

N 0

-I

6.'.,



p.l - I a. --i fin ni IM i I aI m •,I i -IWIl IDIIl m

I I

I I

-------------_

I I
I I

I I

I-A

I I
I L• V

" I -- I

vo o

II

L A-

I66

I --

° ' I '
t" I I I

Sa 0

..N .. U

- "-,



Chmarter 6.

THE ADATT!M CCOTROL PROBLEM

1. Orientatinm.

It is nov quite clear how Fig. 2 of Chapter 1 is to be Wnterp " We assulum

that the equations of motion are given in form introduced in Chapter 1. We solre_

the filtering problem first, yielding the bo-x marked "state estimiator". Then, as

discussed in the preceding chapter, we form the "optimal controller" by operatIng

on 1(t). This will be a linear operation, represented by the matrix F,2(t).

Ansume now that we have a means of measuring the values of the matrices,

F, G, H, 4, R. The estimates of thece parometern vill form the 1karning ot.itca.

fte other parawmtos of the problem, namely S, Q, R specifying the quadratic per-

formance index are usually given exactly.

With theme estimates, we coptate the solutions or thc two rolevnnt riccikti

equations of the filter and regulator problem, clo, lng thh "idaptive" lop.

Of course, no claim can be made at this tie.w that such a procedure is optimal.

It is probebly not. Nit the combined problem of instantanteotsly best control and 1>elt

estimtion of the structural parameters is too difficult at present to be seriously

studied.

2. iLd2!l MN~tat&.on.

the val'*s of 7. G, H, J, •, T by observing the system output z(t). Ttnea ua.c

design a controller on the bcais of the theory oL Cbnapter 5. The combimion of thcd

Mneral controller and this ideal le-ruing vd.el !•LJ be. c.14nln ad ,t ptiv,;

yatem. Obvioumi•y, it will3 haTe the best ;erformance •. .• .2i t;--.. .-i. --

of the theory of the general control probl= presented in CMapter i, thL perrorti•-•

of the ideal ada-ptive system in a given environment camn b determIned -v'TottLy -- this

is Just the general time varying control problem.

The concept of an ideal adaptt,!' system, has two mjor praetlosal uses:
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The performance index is now defined to b,- the average value of V, denoted by EV.

The average is taken with respect to the probability dlistribution of w.

The general control problem is then the followings F a trol uft) suah

that EV is minimized.

In Chapter 2, the optimal u(t) depended only on the initial state. Here this

is no longer true., because the effect of w, cannot be predicted at the beginning of

the control proeeoa. As additiomal values of. the state are mriurcd, mor r f information

is obtained and this information must somehow be utilized in cacputing the optimal

u(t).

To define the problem precisely, we must therefore also add the folloving:

Control must be based on the actually observed values of z(t) in the intervt.

(t, t ).

3. Solution of the General Control Problem.

In this section we shall give the form of the general iolutlon; detaill 1ill be

om1tted, since the theory is not yet complete.

LThe best estimator 1(t It) of x(t) is orthogonal to tbe error of e"-'iw.t.ito.

x(t It), hence

( .)Xllx(t, 1,2 = gllx (tlt) + X ( It •11

"" " '"Qit) x2 t Et)XQ(t I) 12

It can be bown ttX(t~t) and tat -(tlt) satisfy the dif'ernntiJt equ.tiort

(3.2)t .( UtIt)x + Kl(t)[Htit jt) v(t)] -, G(t)u(tt

anh

('•'•)(Lt~t - Y (t)x(tlt) -, K1 (t)[H(t).x(tjt). + 'w(t)] + w(t)

On the basis az equationi •.l )it follov• that



iv E(II~~/T~x~t , ,2i + f H~T )~ ~ U V I

(3-4) NT -.9 E(11" (T,3,tpV)Ii -V41kf;x If

qU S t

where is the motion of (3.2) and f ,iut motion of (.) 'From the form or (.-4

we see that the problem splits into two partra:

(A.) Estimxate x(t) by filtering theory.

(B) Cointrol the syntem defined by (13.21 accor-dirg tot. noise-free reguln4 .or

theory.

This "decoupl:Lng'" of the problem into the two pairts previously dinivineed inP due,

to the lineatrity Pund the fact that the ra~ndomx forcing term in (3.2) ie ai white-noiue

process with zero mean. W..nce such #k procceso li completely' iwpre4itctable, tt cesnnti

be taken into account in comrputing the optimnl control laiw. In other wordia.. the solu-

tion of the reguilator problem when the stafte can be &c~ nd IntnMeczyrCZcured

is the saome with or with-ut. a wh~ite-nolse type of rci-c~it term.

The canonical form of the optimal control synntnrn In the gcncrEO_ casuI:s isoi

ir Fig. '., which is self -explanratory. K.1 I:, used vo denott tile o-otim,_l fce,ý_-dbck

gains ohta.ened from the riccati equationi of t~ht control pro)ble"..

Pj.Engneerjng Implications of Lbe Form of' t~he 8olutloi-t.

Au, In the filtering pMoblem, the rior tfLie "Llo urbane- no-r~ q "o the wM

power A given an estimate uf the recip~rocml. tlame oonsi~nl, of thbw" fi,,, i r

If' the disturbance power is sjir.tLU in comparitton to tbtý noiCjr-i- a cw1-%

tively low G~ain in the filtering loop. Howk-ver, ý. -vy bc ro!garxid ti itaro~ ae

oure of how w-_31 the dyrermlc model ie known, ý bei,.nu large for t~h,ýc CLr. uhcri Uth

mndel dyanmicc are not known well. In practi~ce us~i.l01y Q anh'nttoread,, Lý

fytir~ly l1Lrge An comps~risci ".o R.

As in the noiue-free re.gulator problem, tho time curiitanL, of the c,)ntro.1. looy'

can be approvc hnateiy iv~retrt Ifld by tt& cholct of Rq'l.

Argiuiento .31mlr ar to those in Cha~pter 2 give eq~uival1ent tinw. conMniI~mtr' f'Or fli

rioca~ti equationc (1.6) annd (17) aind ioruvid~e verifiabl~e eUITL1iit(on~t1 aoi to WAVt.e,1 i~ý two"

gaina K and K_. can be rupJicedi by conuLtuitu.at
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Cbart-er 6.

TEADAPTIV CCNTROL PROBLEM

1~. Orientation.

It is nov quite clear how Pig. 2 of Chapter 1 is to be lnrp-*':A.. We asBump

that the equations of motion are given in form introduced in Chapter 1. We solvt-

the filtering problem first, yieldinig the box marked "state estimator". Th~en. as

discussed in the preceding chapter, we form the "optimal controller" by operating

on 1(t). This will be a linear operation, representiod by the matrix K()
Assume now that ve have a meano of measuring the values of' the mtrices,

7, 0, Ho 4, A. The estimates of thec~e parnmetaer vill form the 3e arning states3.

9the other paraziLtmrs of the problem,, namely S, t4, R specifying the qut.adratic per-

formance index axe usually givren exactly.

With these estimates, we compute the solutions of the two relevaint ricceati

equations of the filter and rogulator problem, closing the "adaptive" lcxnp.

Of course, nc claim can be made at this timw that such a procedure Is optinal.

It is probably not. but the combined problem of instantanttously best control and best.

esti.%tion of the structural parameters is too difficult etL presert tc., be a:erioutCly

studied.

2. 4a on

the ualw~ of 7, G,, Ho J., 4ý, F( by observin~g the systeia output zdt). Then one Crira.id

design a controller con the bcsis of the theory of~ Chaptow 5. The combir.ation of thA

general contro).ler and this idei~l learning tnudel 'vti11 bt: call.ed an r~'C duptJX~n

RYateni. Obviou,~lr, it willJ have the best ;erformance *.*2 :-.

of the theory of the generaJ. control probl:= presented in Chapter 5,, thc- perfortm.uce

of the ideal ad~aptive systemz in a givtn en'rironm~nt cam Ibe d~etcrmixnd e-vkotJy -- this

is just the genxera~l time varyimg control problem.

The conaept of~ an ideal adaptiT" systen has tvo ma.jor practiloa.1 uses:
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(I) The evaluation of various allege.a "adaptive" ,e'signs, the determina-

tion of whether an adaptive controller is really needed, aid whether

even an ideal adaptive controllee can do the sdb,,

(2) The acttal design of adaptive control!ers.

These two uses will be explored in the acxt sections.

3. Evaluation of Adative Desins.

To check a given adaptive ystem dsign. -w preonribe the evolution of the can-

trol object in time by spc-ifyi*ng F(t), 0(t), H(t), 4(t), r-na P,(t). 'We then

co;ute the optimal ccwtrol system beeed on the knowledge of these parameters. This
gives us the performance of the optimal adaptive system. For l-nrge learning times,

a vell-designed &dAptive- system should approach this idcal.

We can a&so obtain a lover bound on the performmnce of wx adsapIi-e system. We

take Bomn "a-rqge" value of 7(t), G(t),. H(t), 4(t) and §(t), and de"Igtn ai

control Pystem with a constant control law based on these parameters. If a control

system is truly Maptive, it must perform better than one whose conttrol law in bansed

on the "avTerWe" equations of motieIo. Of course, therm i.u no gmararitee that any

•Iesign with c constant control :law vil! be stable inder the v-arioui3 conditioms wh.i.ch

may be encountered; if so, this is a seure indication th':t x adnn.!ptivv system in ca. Lcd

for.

i.Desiw Of Ad-a-Pte 8teRý.

An adaptift filter could be envisroned &a fol-low. Tyuke estiares F, G, H,

R of F, G, H, Q, R supplied by the learning process. Substitute the eut!-

mates in the riccati equation, and use the solution of this equation to set the gatno

of the optimal filter. See Fig. 1, where the adaptive adjustments are indicated by

dashed lines. This is, of course, largely an "open loop" process; it could be Liu-

proved by measuring the performanee of the fi ltar wnd thbn freding thin .nf,'w•',tat.

back to the learning process.

Tf one vould try ýu extend thki• eoheme to the control problem ,tie':flti,<; v:nuld

arise Aince the control £eedback gal-s arc obtatned by solving Lh. -iccati equ•.t

]bckwazda in time. Therefore in the control problem the -nino process must tuopl,

predictio is of 7, G, H at least as far into the future an several timn -'o"ttante
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of the r-coati fr.-Ikticui of the Qantl problem. oths is ow of the reasuca V it

is imortant to underatad quantitatively the d,,,maical beha-rior of the ricceti

equation,

lTIs approach separates the art of the design of Uie learning process from the

science of optimi control.

5. N le of an -witve Filter.

hiis exale wijI. be wptlained anz in a superficial 'vay since it it quite in-

volved. The interested reader can consul.t [iucy, 1959].

.-- model of the sigal process is ti.On as

dxl,/dt - x2,

while the obrved signal is

(5.2) Z1  X1 + v V

In other Words,

(y.•) r=,• l o

"r 0 01 1 1 0

01,

Note that this syRtem its completely observable and completcly controllable. TIn

case the optimal filter is described by the equations

7,



t/t. - 12 + k,

/t= k,1 (z1 - xj)

where

(!!6) = r k21 " il P = "

The6 scalrs k 2 1 an c satisfy the aquations

Skll/dt - 2k + 2,

(5.7) & 2 1/dt - c - kllk 2 1,

cldt k 2
SU -k 2 1 ,

which follow immediately from tht variance equmtions In Chapter 4.

Now suppose that ill and r are the only unknown parameters. Iten it

follows from (5.7) that if jl/ilcould be estimated then-(5.7) couldA be solved.

to Pet the gains in (ý,5) and hence achieve adaptive behavior.

The variable e zl(t) - : 1 (tit) = x 1(tlt) + v(t) ic -&iri-nois.., :I,"., has

flat ipectrur when the ayst•-• ( !.A) . optiwl. When (5.5) i• not optimial c (vth

X being the eW-1ite of wlairfl), aries ex in Fig. 2. One can compute the amma

vne.nr thi sepAtui-a f r. from 0 to w by passing c through a lov-pass filter
and then rectifying it. Likewiise, the area under the spectrum of c from to

2m0 is i om.uted by meams of passing c through a band-.•*s filter atnd then rectify-

ing it. Therefore a convenient learning process is provided by the nonli.near

differential equation

herde/dt - k,6z f Q 1

tihere
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';'L.p" . result of passing 4 through a low-pan fitter and recti~ing;

IEI p ~ wresult. of passing. 6 through a bond-yass filter and. rectifyingj

The final adaptive system shown in Pig. 3 is described by the equations (5.5),
(5.7T), (5.8).

This system can be mada more sophisticated by detorm4ninsn the acmatants a, ,

and. k so as to provide the vw!ezt stability margins, azt T sing c thrzOui SA

exact copy of the filter loop.

In [Bucy; 1939] a rather deteiled system is described, and results of computer

simulation are given vhich substantiate the theoretical analysia.

6. 1aferences.

R. S. M= 4.1959) "Adaptive Finite-Time Filtering", Johns Hopkins University

Applied Pbysics Laboratory, 2nternal Memorandum HRd -6MN .
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Chapter 7.

GUIDING PINCIPLES OF NUMERICAL COMPUTATION

One of the Important objectives of this project is to develop e• Me.thod

for dealing with complex control systems. Since emphasis -.ms not on the analysis

but on the optimal bynthesis of these systems, analog computatI on wau out of the

question. From the beginning ve were striving to obtain efficient inethod-1 of digi-

T.ai computations. As a matter of fact, the methodo presented in this report would

be rather awkward to apply without the use of a digital computer. This is the prtcu

that must be paid to obtain methods which are applicable regardlens of complexity of

the problem. Only by a com',ination of imaginative computer utiJA-xtion end aidvanc',d
mathematical techniques can engineering problcms of complex system design Iv effec-

t~ively attacked.

Uuided. by this philosophy of approAch, we developed a general coenputational

framework for problems in systems theory. The followIng specific objectIvesi have

been accomplished.

(A) All co ttione should tak' place in the tire domin. Thins mm necetsi-

tated by the naturts of the underlying mathematical theory.

(B) The onmputations sh.-uld be "eigenvalueless". That Is to say, no inversion

of laplace transforms, solution of high-order algebraic equationJ, etc. chould be

eeC.,irec. Mhe methods we are urng work cat.ly for l'-th order syst--mD (Vw.cb I

the mxiu'um size .or which they hav. beer. desIgned) and can surely be extended to at

least 30-th order systema without the need for basically different numerical Tn.thoda,

Theue approaches run into serious numerical difficulties vhen tLne order of the sys-

tem exceeds perhaps 10; the difficulties become- Drobably fatal when tho order exceeds

50.



(C) The specifications of the system should be given in matrix form. This

is necesasry for ease of proramming and desirable in order that tne progtiws have

maximum flexibility.

(D) Mýled-drta syste shouldh be Rossible to tnsat vitho-t speciO1 t echbnige.

This is really a by-.produe' of the mathematical theory. Mch of the elaborate cngi-

neering theory on sampled-data systems can be dispensed with. Tho name progimms can

e used. The principles of solution of secific proble. in the continuous ird

sanpled-data cases differ only in minor details.

(N) The results should be displed in a neat form. We have adopted otanditrd

formati for printing matrices. Zvery effcrt bna been madeh to prenent renults of com-

putations in a clean. ukvable, atd cowplAete form. We are ner'rtnng the rt.e where the

endresult of a specific system optimization problem is a "book" proem b!y ttie

ccqpater, which describes the problem, exlb.its the answers, provides pz"cial checks

in the course of the cu=utation1 etc.

The principal prgm fxo the nmerical point of view iu a atubroutine for the_

ccmutation of the exponential of a matrix. Thin in the central part of trfnmient

cinpitatiovo. One can also use this subroutine to solvx effilelently eorn2 probl.-m;

which at first sight reap,_'r only elementary. mothodz.

Consider, for instance, the linear matrix equation

(i)Y Pp + PF - - q

where Q and F are givw corstant n x n matrices and one vantn to rind a .-

mtric , n X -a matrix P sAisfyiDg the equation. Tuis probi.eu occcurs in the scnond

method of Lyayunor, in constructing a lympunov funct! ont for a lineaxr Fysatem vli _n-

stant e4ffiients. Of curse (i) ir just a set of n(n + ],)/2 eqTations in the

n(n + 1)/2 unknown elements PlI ".', Pl; p2 2 , ... ' p,; I'" P of the oyno,-:trie

Vtrix l. Hence tCe problen can be solved using a standard matrik inversiou. naub-

routine.

There are two difficulties with this method. First, if n - 10, then

`'/2 - • " li-ve: .'quations - 'L_ 1iza cax.=nt be ";-.0 d L, .

iMawrineuJ techin•qus. Second, the data we* not arrDngd in such a vw-• thet the matril

defi1im the u(n. + l)/2 linoar .quationo in the element, of P can be rcad off by

inspection. As t matter of fact, exceedingly terUoem bookkeaping Is ne .ded to bbtmiln

this matrix since it has ()2 - 0215 elents.
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Cbe can ccoate P by a ditferent mthode homver. It is well k)rWwn that if

F in a stable mtrix,, then

0

and this •eusio'h can b- readily -vwJ~ltted by uzirL the riccati-eq,-tionu_-n

(which, in tu-, is bamed almost entirely oni the erponontial aubruatine). in f-,•t,

consider

P(t) -f ~(tq(td
t

Differentiating with respect to t, we see that 1(t) ofttisfien the eJffcrnt.-1&

equation

(2) ' p + P + Q

which is a special case of the riccati equation. if all eige.values of F hvw rg-

tive real parts, then as t -+- oo, -.+ O. If '= 0, then (2) r;duc<s to (1).

The solutions of dtfferential e.rquation (2) can be computed rapidly and acc•urute.y

by means of the riccati-equatior subroutime which i.n, in effect: a special iteration

pro(cedure.

Thus we see that by reducing a tririal afoebritc probleu (I) to ai nontrivial

na srtic one (2), a grevat deal can be gainf d from the point oF vic-w of.' cfi: y

and ease of numeric&l computation.

The foilo:. 1 itour chapters contain a wuc1 .pti-on or' Lti main ,L•,.t *.. wich

were developed to dat:-. lfnch ruhrcutil Contrin e 30We ntrb:t.' tc nucrc&±I

analysis. To aid the eventual users fairl.y detailed explfnationn mr• given concern-

I.ng the origin of the oubrout!,ne the methods of' e--t.•t e, anti •ime~ric. checks.



Chapter 8.

ME MCPONKW'LTAL, SM40.UTIME

TIhe mraix exonontial may be defined with the aid ,f th, avery-were ecot:-

vergent pover series

00 F
(1.e) e• F - E

i-O

To show the convergence of the power eerler, note that

0i=O0

SIF
which shows that the matrix series for e converges ".. ev2r the asainr nstrle for
JAI converges; the latter serina is wall-known to converge uniformly for :,L, tI|I

in arty bounded interval [T, U]. This function iu of inLerest In this report primi'ri1y

beceuse it is the troni3ition matrLx of the vector differentiai equAtion

(i.-) dx/dt - Fx (F = constant).

In other words, we can shov that

(I. A) 0(t., t - exm[(t - t )F].

Accorc.1-nit to Sec't. 1. 2h-tviter 2, we~ havwe to verilyr two prvoe±'tite ol1 (41( -).VK~

.i-n. orez tu p~rove (I. 5). First, if t t

It chould be noted trat cxp(A + B)t (exp At) (exp Bt) xnleo A ad.i B
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t(t, t) % exp O'F - X,

which is trivial; second, we must bhofr that -,xp(t - -t )i natieifen the dilrfercn-

tiul equation (1.3). By the definition of the deivative,

(t + h -t')F (t 0 t)F

d(exp[t - t )F])/dt = 1 em -e

h h+ 0

5'::- tF ard hF cowmute,

(t to h)F (t -to)F b,
e e

Hence

(t -t)F hF (t- to
de 0 /dt lir h e

h 0

By(1.1),

(t - to)F

=F - e

which was to be proved. Note that this proof fails In gcnrwl if F / conatuni.

This may be demonstrattd also by teruwise differentiation, (as Ve h&y-± P!rAd-

shown) because the series(l.1) converges uxiiforamly on avery interyal 10, t].

Some other facts which may be proved about e are (uce iCoddin.t•on and

Levincon, 19551

(1.1t) lleA .• (n - 1) + eAI where n tx th- order nf the mtrix,

A+B +ll B
(1.5) - C* e i md only if A iErx1 B ccr~om-wte.

J-j(16)e • J- cFJ.

(1.7) Determinant e , e

The last theorem shows that e F is always nonningulnr, -- lre,"r, the columAO

of eC are n linearly 1xdependent solutions of (1.2). Thus any molutior• ki (1?2)

can be obtained by m linear combination of the columu vectors oI -tr
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For comuting , the sum of at most the first thirty-six terms of its defining

series (1.i) is used. Thus we compute

tY - tF
(2.1) L e

i=0 "

The sum (2.1) .a actually coMqute1 as follows. Let T be the ith term of the exp9n-

sion: T, I, T1 = T t. etc. The sum is accumulated and i+1 is obtained from

b. multiplication by

!+l"

The following motivates why -hirty-six terms are used in (2.1), and gives a con-

dition imder which the result can be expec-ted to be accurate.

In the IM4 709 =nd 70)90 a little more than eight significant digits are carried

when operating in the single-precision, floating point mode. This imposes limitationo

an the accuracy of the program. Consider a simple cosine series. We know that fox

any walue of the argument the absolute value of the f*rnction ic one or less. Ye' if

the argumnt were 20, the term Yn is so large that the addition to it of n n•tmb-•
201

of the order of 1 inm Agnitude does not effect it. 'iMat is, I1f any t ..'m of a zcrleii

exceeds 10 , w8 know that no answer of the order of I or less in mh~xnitude will in

general be correct. Thus if we want an answer that Is correct to fou-. dc...l. ,"rv-cz,

no component of the sum maqy exceed 10 . Th- largeat term of the e Qcrles ieT

where J is the smallest Integer such that < 1; thirefo T.
t.J

S [ it], the greatest integer less than t. For oux purponem.i -- , should ,alw•tyv

be less thi n 201hh , "4Ah t..•pl that t ahould be le~eu than 3-0; ell

Without attempting to discuss the prob)em more rigorouely, it wns dccit~d t'.ýL. kf

PF. 1tI < 10, then the "nsers could be de:ended upon to -our r.'c-imal , p,.kco.

FurL.ur, 5•,A 10 ±. , it is <vid3 t that iio more than thirty+ ix t... -3
t•

need be carried. On tha other hand., if 5. lo greater han 10-5 thoui0.• c-

greater than 10 and the validity of the answer is open to question euayay. V) -
.rortima~tely, there ic no error return if such a condition occurs. Errof retorii

occurs when mne of the Ti is greater than 10 (machine ovrrflow); computation
of (2.1) stops when a term T J s less than 10-40 (underflow).



3. Checks.

(A) atA va computeil for the 15 x 15 nilpotent matrix

r (w0e1C.014 is the l-dimensional

0,1 zero column vector and 1 14is

L 0 10 the 14 x 14 matrix)

for t - .1, 1., 5., and 10. For all thes' 'mlues of t, this checked to six signi-

ficaaL figuree ana approximately th.-rte-en do'•l piaces,

(B) Choosing at "rkadem" a 15 x 1 uatrix F such tiat IIFi- 9. and
tA

t = 0.10989016, e)tA a)d (((e 22)22) were computed and the results printed to

tA

eight significant figures. It was relt, that (((e 2 )2)2_)2) was probably quitc (lose

to the exact value of c tA Comparison showed the two results to be the sae tc

aboout aix decimal places, with the smaller elements losing accuracy, being, correct

to only four or five sinificant digits.

For the matrices involved in this check see Figurey 1.

(C) The exponential was computed for the 7 X 7 diagonn• •m tri-

diag(-10, -4, -1, O, 1, 4, 10) with t m 1. The result is in Fig. 2.

Because this matrix is diagonal, the scalar analysis used in Sect. 2 applied

exactly and the answers accord with this very well. In the submatrlx (-10) where

we were not only at the limit of the acceptable range of application but were taking

differ-encea, we barely mnnaged to have accuracy in four decimal pl]ces. In fq.ct If

the answer had been printed in the four-place rounded format which we u-e, roixnding

would have produced the wrong answBer. Howevei. where dif'ferenceu were not b1x-n•

tLaken, an in the submatrix (10), the answer is correct to seven siUTiflcant fgures,

which again we expect. The sram results are true, with dtcreetuing zificorcc-2

the (u-natricee (4) and (-4) and. (1) and (-1).

In general however, the accuracy seems adequate for our purposes.

4. ReBferences.

E. A. CODDINGTON and N. LEVINSON (2,955) "Theory of ordinary differential equa-

tions, (book) ",McGraw-Hill, 1955.
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Chapter 9

THE INTE GRAL EPOENTIAL SUBROIJU..

1. Theory.

The concrete definition of the integral exponentiai

t

(1.1) ;eTFdr

can be obtained by integrating ferm-by-term the series defining the r& tx expou-

ential:

t 00 f ti + I
f e& dT-w-Th
O i=o

If F,, exists, this may be written as

" ~~F-1 (e• - I).

Notice, however, that the t.-txI (1.1) does nvt i'pend. i'or Itis cxlst-nck. U5'.9

the existence of F.

In Chapter 8 it was stated that the sol-ton of e. rce syfptm

d~t

may be expreosed as

(t - t )F X

Often, however, we are interested in ,. controlled system, uhich in tVice .Inear, ccnntwtt-

coefficient came may bee written as:

(1.2) £ -X 4- G u~t) (F, G con't~nt).
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Te solution to (1.2) for x(O) - 0 may be written as

t (
.(_, '-o u(r)dT.

0

To obtain a complete system of solutions when u is constant, replace the vector

u by the identity matrix. Then

r(t) -f e
0

Making the substitution 'T1 t - T, the integral asou rs the simpler fox-Rk:

r(t) rte'F T ,•

This is the matrix which the subroutine ".Integral LKcponential" computes.

2. Proram Algorithm.

The terms T of the defining mrutrix arc obtained as they arc for the maL-ri-
€I

exponential

T T tF
1+1

huw•.ver, T ' tI, not 1.

The a,'guments concerning perluialb].e range ot t given in Chapt'Žr 8. , .

are applicable here nlso.

A) "he integral exponential was corn ute,& for t X. "• x L3 nilpotent rna-ta.Lx

0 01'.[

(where 0 is thre ]h-d1 Iwnsional zero column vecLor and ' T- it, the 1h .
titv rmt.Ytix) rfnv t - 'I, v- !0. For al vRIucO or t, thi"v chec'ed to

six ,-ni•ficant fip-arc; and approux[itU(r.A.y thirteten doc i•al places,
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B) The •ntexmrl expoantiAl vas computed for t6 7 x 7 watri

di*4(-10, -4p -I, Op 1, 4, 1U0)

with t - 1. The result is seen in Fig. 1.
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Ch~pte.r 2.0

TE TRANSIENT PROGRAM

1. .••

The Transient Program is designed to give •a time history of the state vector

y of the system:

k =Fx +Gu
(I.)u = Jr(t) - $(.

y - Hx.

ThIs problem, as explained in the first Sections of' Chapters 8 and 9 has the

solution:

(12 _ tt) t- - G) (t).

(1.2) x(t + t) = e X(t) + f e GJr
t

0

Under the as.umption that r is a constant vector, the solution (1.2) may

be written stepwise as follows:

T •F
x(t + T) ST(F- GK)X~t T f (e + GK) dGJr

ý Ut 0) +fo

whcre T is the saupling period.
This enables usPccati Progr, to obtain a step-wise sna~pling

of the anaiytic solut, on of +.he problem, Rfter computing the exponential and

integrpJ. exponential of T(F - GK) Only once.

2. Rogr A!joriL.

The equationa vhlcb. have been mec jniztU d ar, the followvir:

X(t + T) - *x(t) + Mu

u Nr -E

y - IX.
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lhere the matrices 4, r, J, A, E are inpirts, as well as T, x(t), N, the

maximum number of steps, and another sampling period m - Tkp k an integer, the

use of vhich v-all ba explained below.

iL-put might be, for instance to solee t.€e aystem (I.1)

e - e(F - OX).

r e- (F -
0

A - J, E - 0.

It is apparent that if r is a constant and the inputs are as they appear above,

then u = Jr, a constant vector, and the equation for u is superfluous in the

stepwise procedure.

To accommodate the case when r is a piecewise constant (sampled) function of

time, the second, T, sampling period has be-!n provided. Every k steps of length

T in the computation of x, the value of r ij use to compute a new value of u.

If r is a constant this offers a saving in machine time since choice of a k

greater than N will prevent reference to the second equatio:.i except at the begin-

ning of the run. In this way, it is easy to find the response of f s"anTpid-lata

system between sampling points. As in the Riccati Program, observe that this is not

s stepwise integration procedure; the on]y errors are round-off in the computer and

whatever is involved in assumiig r to be sufficiently well approximated by a step

function.

Another feature of the progeam is that not the state variables but t:-.n..r Com-

binations thereof, are printed. In several problerzs -,ich bv.• b.en.............

e.g., one concertn•g i-.-llite or'intation, the state variables could n•ot bc ,br:m•.

but oniý. linear co¢•bjnýtiona of the state variab.eo. To t- able to coipare.• Inchinc.

results with experiment&l data, the Transient Program has an additlon.al input mrtrix

H and the vector of ob,.rvablea y = Ux is printed.

At every interval T the complete output ift printed. This consists of tho ti.•..,

two components of the r vector, seven components of y, end. three c~ponon(eL of, ý'.

The problem is terminated by exceeding the maximum number of stLeps N. flvu• of

progrium~wd space limitations N mut lx. leoes thav 200.

90'



Chapter 11

TM KAMIRX RICCATI "DWAT~wil

A system of 2n 3limrr d5.fferential equations is said to be hamiltonian (or

oagnoral) if it can be written in the form:

±N(1.1) ti ;iiidt " i-d~ip.dt =~ - . i = 1. . .-. ; n.

vhare I , the- hamiltonian, is a hcmogeneous qu•dratic polynomial mi tlhý Y, zul

Pi with coefficients which are function- of time.

The most general such function may be written as

(1.2) 2Y - [X,. y1H ,

where H is a symmetric matrix. H can be ezartitioncd as

Cq 1 -

wbore A and ri are symmetric, C is arbitrn.ry; the nogative .,"tgn biforc, 1 iiu

purc"j flr U- later convenience. A-l- th-,'e =-.trices may I'e fhict.oris if M,.

Substituting (1.2-;) into (1I.), we get

z X

This equation possesses an inmportant kind of symmetry which w"., can nt-.1 1*

follows:
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(i. ) TBEOR124. A an order system

L:].z [:1
L.-.

ic hamliton•_n if and ornl2 if

Z J,'J

where

t-o -1i

I K
Proof. Only if: Thin foUowH from the ftct that the 2n order zyrtar (i. h)

above -- which was derived from the most gencroa, ponbible larn.ltetii•in "wction

-- satisfies the conditicr.

If: Cosider

z=L-A D

where A, B, C, D are arbitrary. Then

F-E cii
JA•J - 1 B

I)$ -BI D El

,JV' - I-B?
1 -A - 'At F -A D

I n x n .identity matrlxI and 0 11 x n teiro matrix.
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and A = A', B = B', &A~ D V C. T~ft these ame just the cond~itions -. stinfipd

by the matrix Z in -.(l~.I4) above., and. 1L is appareint thatt the form of' Z determrnir ,e

that the systemi is hawiltonian.

(1. 6) CORmlLAR. If x is- an eiganyalue of Z so is -X .

Proof. Zxr X x imr~ies JZ'MC X). x rd, since J = ýJ, ~has'

e1  (t, P t) 12%F o (t, 0 ) -o 2 v,

1[02.o 81to t) "22(t, t)~-L01t t )- 1(t, to)

Proof. if 0(t, to) is the tranaition matrix ofi k - Z~x, tbf-r, mes i a it je~1

known, the tranhition matri~x of ~'Zly is (t t)) No ir that J, -''

By Theorew (1.)

Z'-JVl - -1-7½j Iv~

.t~& y x h~ 3 -lJy = .jvf J7Jx & tc T-

Gt~, ..flo0-ri'ne by Tho~rft (I-*)). Heme

or

In id-e'ticm1 Vith (1.8). Q. . D.
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We shall now explain the connectim betrgen the riecati equation an± thc

bamiltonian system (i.4). Consider the n by n matrix P(t) defined by:

(1.9) P(t) - [e2 1 (t, to) + e2(t, to)P(to)][e11(t, to) + e12(t, to)P(to)V-

over an interval of time where

[elt(t, .+e(t, to)p(to)] Ls nonsingular.

We now determine the differential eq-atioa oatrsfied by P(t). Writing out in

detail the relation A Z we get

Ui = C@11 + B21-'

0!2 - (l12 - B"22'

•21 ' AOiI - C'I21'

22 1 -ASI2 -I('822.

Let us write Po P(t0), and temporarily drop aU arguments. Different-at-

ing both sides of

(1..0)P~11 +12-Po) ="21 + "22Po

wilh respect to t and using the preceding relations, we get

P(q 11+ E12Po) + P[an - %21 4 12 - B22)P01

"- - LI -C (A"2 - C'822 )"

Rearranging and using (1.9) and (i.I0), we get the matrix ricidafl tloii

(3.1) - P= - PBP + C'} IP Fk -. A.

i0J.



choomlng P(t 0 ) to be ey trio riamtees that P is symmetric and then

P(t) is alw~s syimstric. Altbough formula (1.9) does noft seem to be symetric, it

Sas can be verified using relations (1.8).

]$ the special case rher the rieccati equation is linear (B - 0):

But 12(t, to) - 0 because 0(t., to) - I, therefore @12 0• . 'Men

p(t) -to2) + 02 2 (t, to)P(toi ( ).
-1

but from equation (1.8) we iee that 0-, = -% o .nd

(1.12) ,, P(t) =[e 2 1 (t, to) + o2 2 (t, to)P(to) 122(t, to) If B O.

Thus w have prove4:

(1.13) THEMOR. The solution of the riccati equRationji.i) inLwhb exvLr~e~e
in tegma of the transition matrix of the hamiltonian system (1. 2&) Lf 13 0, thc •olu-

tion - l exists and is jVen bX (1.12). rf B $ 0, the solutio•' iIu en by

(1.9), in an interval of tim here (e(t, t) + 0 ft, t )Pio Inon&.inglAr

The last condition rules out the so-called "conjugato points" of thc calculuý

n- -•mriationa. An example vtwere a conjugate point does occur was &vyen in Sect. '1

of Chapter 2.

In case of the riccati equation (4.6) of Chapter 2, the matrix Z haz the

form

(1.14) Z F -- ]C

In the case of the riccati equation (3.3) of Chapt.•r 4, the miatri x Z haa the fornn
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2. ora hO4t.

The tr ...sition matrix of (l.4) can be computed easily only when Z in a con-

stmnt matrix. in thka case,

(2.1) e(t, to) 0 exp[(t - t 0 )Z].

The prog=m first computes (2.1) and then P(t), by substitut.ung the four sub-

matrices of 8 into (1.9) or (1.2). In this way one obtains a step-wise solution

of the riccati equation without any trumcation errors, subject only to roimntoff

errors In computing A by means of the exponential subrou•i-'_ of ChA-ptor 8.

At each step P(t) is symmetrized before proceeding to the ucexlt tutep by

-replacing it by

2

Symmetrization is absolutely esisential because otherwise uncontrol]-ble roundoff

errors may accumulate in the antisymxwtric part of P(t).

The input to the program consists of the matrices A, B, C (C arhitrary,

A, B symmetric), a symmetric matrix *(t 0 )) a sampling period T at which in-

tervalq the matrix P will be computed, a convergence criterion number c, Ft

maximum number of intervals N, and varioua prirtiýng codes.

Me "sampling period" T m t - t for the riccati equation may be -rbitrrr-,

uurject only to the restriction tru.t

I-IIzH' < 10,

vhich I.F necessary for fhe enr'.erz-nce of the exponential, subroutine (-see Ci•_pter P)

Since only the ratio of Q to R mattern in (1.1Ii) or (1.15), one shoulJ. stste

these quantities so that GR-I' G1 and H'QH are approximamely of the sawre order of

wagnitule -- this will keep H1AH small.



This problem is terminated in one of two 'ways. Either the Mhximum number

of steps is exceeded or the convergence criterion to Ratisfied.

The convergence criterion is that

nllpil(t + T)-pii(t) j/ n Pli(t + T)

I* less tban d, an input number.

When P(t) is computed, K(t) - R'G'P(t)i or K'(t) m P(t)GRIf can be also

co4i.&a and printed, if desired.

Prtnt controls enable the custompr to print K(t) and/or P(t) ,it every -t•p,

every fifth step, only at the final step, or never.

As stated above, the Riccati Program muut be pirvided with the Mitrices A, B,

and C. If the customer does not care to pre-com~pute these, the Entreance t.o hiceatl

Routinema be used with inputs G, H, Q, and R-. This program ;1ii. comput,Ž
-1,,, -1

A=H'QU, B a OR G, and R G'.

5. Checks.

A) The Program was run with

[06 ::

where 06 s-x,dimensional zer• column vector and 1T6 6 x 6 mdc~nttty ,-i[vrx.

0 7 Q= 7 7zero matrix

R - [0.6c(51

T(O- 0.6075 1,

T - -0.2.



This was iterated fbr ten steps and the result Compared wrIth a h -ompu.t.dtj

result expressed exactly in four-place decimals. The Riccati printout appears in

Fig. 1. 7he hand computed result in:

F0.2025 0.-4050 0.I4050 0.2700 0.1350 0.0%,0 o.0o80-

0.I00 1.411.5 s .8W 0.5130 0.1980

0.4050 2.0250 3.8475 4.1850 3.1050 1.7280 0.7650o1

0.2700 1.7550 4. 1850 5.8275 5.-450 3.7170 L.9680
P10 0.1550 0.0800 5.1050 5.4140 •.6375 5.841-0 3.87Y3

0.0540 0.5130 1.7280 2.7170 5.81410 (.83]9 7, oi71

0.0180 0.1980 0.7o50 1.9680 5.8730 5.9178 6-8,'25

2) The Program was run with

Fot 0

L -1 u6 06

g R- 7 7>" zero matrix

Q =2.0250

P(O) 2.0250 17

~.-0.2

,his was itnrated for ten steps and the resilt compared w. 1th a b.id-cc'nputed

rcuuIA. which was expressed exactly in four place decimals. 'The 1lccat printo.Lt

,ipp'_aru In Fig. 2. T'De hand-computod remuIlt iv"

10ý



2., -17•, :.. v•",, --., 0.2790 X,00 0.0OlO

-1.9758 Z669 -1.9710 1.2870 -0.6 "480 0.2430 --,3. O'K0

1.2990 '4;.9710 2.2725 1.9350 1. 21'50 -0.5400 0.39550

-o.6'T20 1.2870 -1. 9 350 2.1825 -1.7550 .T ""(X
.• •D1 0

0. 2-9 w .0 6* 11.2i50 -1.75T0 1.8225 -1.2150 0.4050

-0.090o 0.2430 -o.5 o 54k 0,9 -1.2150 1.0125 0 .* 12)

0.0180 -4).0540 O. 1300 -0Y. 2700 0. 4050 -0.40750 0. 2025

i06
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1. i~ntocion. There-is no doubt that Wiener's theory of stat•itical

prediction and filtering is one of the great contriLutioas tc exeineering

science. Yet the theory has found few practical applications so far. This Is

probably due to the difficulty of masuring the statistical characteristics ox

randoa promesle, which is the starting point of the theory.

Bat even if me is Will, to accept physicariy motivatoed awsumptiom in

place of goerio.hztal atatistical data, there remains a major Troblem: cmpc-

tation of the optimal filter. Current textbooks (1-3] contain seveml nthods

for doing this. These meth~3s yield anmlyticeal answers orly for a few trivial

acadedinc exaples, and they are rather poorly suited for mon*_vrical ccLitetiones.

Most of these procedures terminate with the ingulse response of the ottimal

filter 3  This is not t cc=lete soluti=n of the •be~h) ~e4 since there is

in gener.a no simple method for synthe04zing a filter with a prescribed impulse

response. Another shorteoming of the conventional approach is that the treatmeni

of time-variable problems is very akvawxd.

This laper is concerned with overcoming difficulties of the second type

ntioned above. The raquired statistical data are aseum•d to be given as part

of the probltw statwwnte Noreoverj these data are g-ien in such a form that

coputatimn of the optimal filter is highly sinplified, with a singxl equation

coftring all cases.

The WSnewr problem is reduced to the classical hamiltonian formalism of

the calculus of variations; many loog-standing difficulties of the theory are

resolved or greatly clarified. The solution consists in the specification of

the differential equation of the optimal filter.

The reader should be warned right ay Vat the Viewr prob. au s inot

really one in itatistics. It belongs to the realm of pure probability th;oryj it

is aLdllc In a=- -fsm to Lite law of_ 3AisA rwzber., zbe contr•!lijit tOei

etc. Wientr's aW-•oach, as ours, requires thAt the pro'babilitic atA-rctu=;a of

the random processes be known exactly. Therefore confidence li*its. itatistitica3l

decision rules, etc. do not enter the picture.

Wiener assumes stationarity and deocribes the randon process by its pmer

spectral density or cvmariance fA tion. In thir paper, we assume Rlihtly nore:



the i'ndom process is to be m~rkmwien; in other vords, it cem be thio1t

of as beig generted by a linear 1a!mical syptem (of tinjtet. many degrees

of freedom) exoited by ,ite noise. 2ixis in very nearly the only case where

explicit solutiona of the Wiener problem bawo been found in the past. Very

rou~ily, VWiner's point of view is to admit the possibility of denumerab?4

infinite depes of freedca - this in inportant in some cases. But, in

enginviring "probieu, our asenwpticn is frequenty F re natual.

Tn A% tsee, the difference between the C ebAtnl point of view ind

ours bece•e irporte--nt only if one 'wants to form an estimate of the pownr

spectral density of a random process on the basis of actual maisurements.

We sha-l not be concerned with this question here and will atudy the Viener

problem solely from the standpoint of probability theory.

The'exposition given here s- .rizes the contributbLonr or two earlier

paperb R-5], aithougL wny detail 'will be different. There are also k*

nvmber of theorms and ex~ples 'which appear now for the first time.

, The intent of the paper is primarily expositor7., and we uha.U not hzci--

tate to oxit certain Matheatacal technicalities connected with the rigorous

definition of continuous random processsa. EX-rything else wl-U be xtatý-d

in precise u-themtical terms; the reader wishing to fill im the minving

details should have no diicfulty in muking contact with the puze --thntical

literaturo.
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2,. Ln~e of go_1gtr. We begin writh a ourvey of the ini topiers or

the paper, leaving t÷ea 4efinitions intentionally somoibat Yague for the

soent. We give hers also an account of the esneral philosopkq of approa.h

taken in this paper. M-s reader might read through this section lightly at

first, returning to it after a detallnd study of the succeeding material.

8tarred sections and exinples mey be omitted without interrupting the logioal

sequanoe of ezpositi0n.

A random Proc©es is a family of functions x(Ir, M) dependting o t.-o

argsnts: (i) the time T, which is a real number; and (ii) a random event,

which is denoted abstractly by the symbol t. If w - w is a fixed ±_pom

event, then x(•, o) is some function pf time, usually called the up

function. If T - To is a fixed instant of time, then x(r 0 , W) is a rando'm

va,.B ieblC, which in frequently ".-citten simply as .(er 0. instead of letting r
be a real number, we can take T to be an integer; in this cane we call the

famijy of functions x(r, 0) a Mpdom seguence. A random process or sequ6nce

can also be regmrded as a 1-parameter family of random variables.

A random process or sequence is described mathematically by specifying (i)

"a collection ("ensemble") of sample functions (x(-, w)) and (ii) the probabl-

lities of the random events w. In general, there are nondenuzwrabbly, mny

random events and therefore the probability of a ei • ':' be sat Pqual

to 0. One gets around this diLficulty by defining the probability of sets of

events. A rigorous deftnition of aundoom process is c% • .... problebij riee

Doob [6,Chapter 1] and Loeve [7, Chapter 91.

Suppose that we have observed values of x(', f-)) correspon.Ung to some

interval of time, say to S " S t, where t denotes the starting point of

observations and t refers to the preeent instant of time. lot Ft be the

set of a.'I samole functions which agree with the observations mado durnng the

intcrv&] t -, V t, TMt 0 be the set of all u)'s such that --wapling
0t

functions corresponding to them belong to the set F. By dividing the pro-

bablilty of any subset of r t itself, we obtain the cond itionil probability

of the occurrence of sample functions for values T 4 t. We can nfm state

"the:

PREDICTION PROBLM. Given the actually observed values of a random

procman o-ver some interval of time, find the conditicnl. probabilities of

all future values of the random rocess.

i!5



•1ue the predictin pftble consists in cc.1c lAting conditional proba-

bilities -- often of &-vrj' "cowl:oated t'vpn.,

2Me filtering problm is very siumlar: instead of odbserving x([, W).
we obs a rainda proee05 z(t, o') related to x(t w), I.e., the pro-

ftbilities of sets of events m and m' are dependent cyn one another. For

exampl., x WT be a, ignsa amd z the signal plus noise. Stated formally%

F Ui PRONM. = Given ,ho actgl.y observed values of a random

pRocess over saw interval of ti. find the conditional probabilities of all

valves of another, related. r•.ndom rocess.

OQce the acoditional probabilities %re knovn, one can of course answer

in principle any problem concerning the probable future evolution of the Pro-

cess: the condLtional probabilities incorporate all the information inherent

in the observed values of the random process. The adjective "optimal" as used

in pr-d.ictim and filterizg theory refers to the fact that all information

contained in the observed data I., taken into account.

At present, there is but one class of problems in which the prediction

or filtering problem can be effectively solved: both x and z must be

gauss-earkov processes. In this case the solution is quite aimple in principle.

Zia conditional probabilit) distribution of a gaussian process is completely

described by its mean values ad covariances. If in addition the process Is

also =rkovianj, then it suffices to know the means and rovariance;; .:

instant of tim.

7he solution is as follows. We must compute the condItinlcal me.rns and

the conditional covariances. The conditional means wifl delernd on the observed

values of the z process. They .are computed by putting the observed vJliws

through the so-c•lled otptiu•al filter. The conditi(-al covELriances are Inde-

pendent of the observed values. Therefore they can be computed sepxrately,

ever before any obsirations have been mde. Mowltdge oe tihe conditional

variauces at time T = t os necessary to compute the conditio&al mzana at

time T -t The equation for the conditios.)l mean In linear, tihe titicuna

for the covarIancev is nonlines-.

We digress momuntarily to emphasize so= consequences of ihe wAxrkovIJ.
e.d gaussian assumptions.

Any romdow process my be regarded as markovian with a suitable defini-

tion of the ! of the process. For instance, the state may be taken as

the observed past history of the process. The important thing ia to find the

"gma Lleht" at-ate space for which the markovian property holds. We .al3a.l
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a~som here that the state of the process can be descrilaed by, a voet-or -withi

firkiteay *Mfny coqpwftnts; in other irordis) the stae~t spra(e is finito -dinweinal~J,

This aau~e1Jtion is hbighly-desirable because it leads to dIfferential. equations

of finite order vhlah oan be tritated by standard mnthods. V- COUA. fCr t'ýe

sake of greater generaIMW., operate in a "l~arger" *(i.e.., infinite.'dizansicoial)

state space., but the mathonmtical subtleties -inich ariso, do not ac-,m to bamve

pbysical significmnce. And, after all, _hyoiceal sWsteuu mni be (&z& often must

'be) approxduated. by differential eqUattionsL of finite order.

.LZi Ls- M4 for #A%,ALW- SwWJ.zls azsuWh~M.4J6= cal a.. S.4 - io

Wzice the strict prediction. or filtering problems cannot be solved in go~ertl.,

it is riatmal, to take a look at vwake~r versions of the saw probleum. Yor in-

stwnee, let us consider the:

LIAE FIThWRKh PWBWLM YiM an estiuate x(t 1 ) of x whi)cgh Is

It tu~rns c'mt that the solution of this problxm is id~entical with tbn

solution of the (strict) gaussian filtering probleim: the aptirw.. gaussizn

fitris a linear filter bilich udniuizes the meani-aqiure error.

M3e proof of this dual Interpretatic-n of the coptiiJ.1 filter I~s the

follcWing. If we seek the best lim actuate,, ther. only ihe fIrst and ~cm

order aments (i.e.., the meazzi and cova~riances) of the z -orocess need to be
known. Given any rwidocu process with prescribed means and. corverianeces., one

can find a unique Cmusslau process 'with the sme mana and covrarianeoe . (!I-ain

in trivial since a @Lvssian ranAIm process is uniquely deterrvdaied by its msxna

and covariance s.) Hence the solution of the iii~a&az filtering problem in tL'

gaussian case must be the same as in the geners*.1 cabe. Buxt in tho _gausuL'mn

case the solution of tha linear filterinx problems is siimItanectwly also the

solution of the strict filtering problem5 . This is, because In the jaussian,

cae iz &~ii~ir ero i in -=~d -14 the c Lizz. in .

have noted before) is comupute4 by weens of a lineax qperatim n i the z proc~cez.

Thbis and simlilar Observwtiana havn led. Doob [6, IYP-.71-7r81 tv intra&,ee *th-c
Aotion of "strict sense' Man "Vida BWUse" Prropertizsu. Theac concePtsC ato
Irated as follows: Suipos a renacuprocess bA~s a oer'&' n pr~erty V~ whicb cur'
be nepssed in torus of samm **A oovarisawas. &4pooe also that the vaiqivs
ga~usian process with the saw mensa mu coveriaces, has & ccirreopgading but
stronmr property '.. Ma ? is a Wat:1a p= U ad P in a . k
f-age MMW5t. IA woticu3*x, the filter vhieib i% opt'xa In tbe stricn. smete
in the saussian sase ban the widao-mwne property that it. is the o45~xal. j~jj
filterl without. my aasuuiptio of OV43sianne a:.



It is a matte+r of tks.e which of the two questions we pose; the answer

ia aiways th: came. If we demend a strict answer, we must also accept the

hi•l•y restrictive gausian assumptione If we look only for the best linear

filter, then 3mnovledge of the first and second moments or the random proeefq

suffices and. ncthing more- has to be assum&d about the nature of the probabi-

lity distribution. To put it differently, if we know only the first and

eecon& •monts of the random process, then we have only the first (linear)

appr.imaton to the dynamical model for the proceas. (kiowlcdge of only the

first mowents rould give the zero-th order approximation, i.e., a -Uodl il ch

is neither dynazie nor stochastic.) Virtually nothing 14 knomn at prevent

even about the second-order appromimation.

We now turn to a description of the mvthematicel results tection-by-section.

The concept of a gauss-markov sequence is introduced In Sect. 1. We u-3e

as the basic definiticn a linear dynamical system excited by a gaussian white-

noise sequence This in physically appealirg and avoids the unnecessary restric-

tion to stationarity.

The gauss-markov process is defined similarly in Sect. 6. This involven

an unpleasant technical difficulty because it iz not poscible to give a rigor-

oui definition of the gaussion vhite-noise process by elenm#rita.rv maans. We

give here only an intuitive definition in terms of an (improper) limit prarctss.
A rigoaos definition via generalized fu . is nowadays fairly stra•Ight..

forward, as may be seen from the literature, cited.

Sect. 7 is concerned with aho-.ing that the rcproentatitm c", t>ht gnuua-

markov sequence and gauss-warkov process given in Sect. 5 wid 6 can be deduced

by postulating merely the guassian and m-rkov!wn properti.n. Hence reprenent-

Ing such processes as the mo&ion of a linear dynamic&] system acted on by

white noise is not a loss of generality.

Sect. 8 introduces the muln topics of the paper by a xAgorous but cle.erin-

taLr, uicussion of a etandard prediction prbie-a. This provides an lntcroctIrn

comparison of old and new methods.

A precise statement of the filtering probicm vith which the papci' i

ccncereed app.eaxs in Sect. 9, together with a dlocuzsion of cam trij.titna&

problems,ali of wohich reduce to our fllterins problem by a suitable choice of

notaticr *r by minor supplementaxy assumptionn. Equatione •'d n ad (I ) d•iou•

the model of the random sequence and process.

Since the pret nt yroblem fortu3lation is unccnventionall its relatloni3

with Mre standord. formulations rre e-xplored In Sect. 10. Unfortuniately, the
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standard mean-oi-q e approach to filtaring rathor +*ndZ to obte-e. the

theoretical issues involved. The main point im that mean-sq u.are •.im

linear filtering is optimal also with respect to asW criteria other than

mean square.

Beat. U1 is the solution of the opti.ml filtaring problem mben h tie

in discrete. This is an improvememt over the pr•sentation in 1.4], achieved

"1by the use of the so-called pa-ulo-inverse of a matrix. We •mphasize strongly

that a finite nmber of parameters (the conditional man and the ccnditiona1

oovarience matrix) can be regarded as the "state" of the filteriag problam;

the resWuting simplicity of the solution is due solely to this fact. The

principal equations of the theory in the discret case a•e: (ld), the

op t iml filter and (rEId), the variance iequa'ion. In Sect. 12, tse give ti4o

eaxaplaes which illustrate in detail the mathematical and also the p-tical

sigificance of these equations.

In Sect. 13, we obtain the continuous analogs (IIC) mid (iiC) of the

optimal filter and of the. variance equation. Because of the difficulty in

giving a rigorous definition of rwidom differential equations when the oxcita-

tion is a white-noise process we do not give a rigorouz deriv"tion of thbese

results but apply the improper limit argument -- already used to define. Wh

white-noise process in Sect. 6 -- to deduce (II) aad (111ci fr,= (Lid) end

(IIId). Again, a rigorouq derivation rmquires the une of generalizeod fiuictuol-I

or other advanced tools. The same eqations (11c and (ii c) wure obtained

before in a different way [5]. Since the variance equation (III ) is nonlinear,

even the proof of the existence of its solutions Is nonrirvisl -- but easy.

Once this is establisheds vre ave that the varinnce equatitior can.be releted t,

a hamiltoniani system (IVC) of 2n first-order linear dlfferantial equatlot-nu

famijlar frow the calculus of vari!1 tonb or 1'rtc• t......t.i pl.

lrtter car) be solved more-or-less tcit!- t', 1,3 Im',ort-5.at beQ:xue one

thereby- avoide having to solve the variance +.Iatioxis bt,' numprlcal quAdra-

ture, which would be quite wvple5sa_nt became f tt h:C e .... var!n"le' i ... .d

This surprlsing and ynt naiursl. connection between the Wiener .'I. Wring tt'

the calculus of variations was first pointed out by &;.iman ai•w icy in [ :U -

This opens up na.ny promising possbillties of renearchb

Sect. 14 applies (Ic-.rV ) to a wide variety of prob].emii. h-rte explicit

atepe are eleientary but at tineo, particulairly in Examplec (11.20). : ry .!

intricate. Some of the:e problems are among t:he moot compior. e-ver rolvedl 1.
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Wleinr filtering theory. Additicral exumles are given in [5].

go wery great difficulties encojuterxed in the direct anti explicit solu-

tiou of filterlig pobis litl trIOly enforce a chang In point of view. fe-

signed to the ftat that weplicit aven can only bee cAined by numerical

oqNVAttiosWe wants to ba,, at least a good qualitative underatanding of

the filtering problem, particularly as far as the dynamical behavior of the

vmurlan*e e*aion is oncoerned. "' hiis "a -ndeed the chief task of filtering

theory -- in the opinion of the vriter.

In Beat. 1,5 the much siqier probler. .=! L-A'i.&aa Purca-

mater estimation is considered from this point of 'riew. We obtain an impor-

tent criterion -- o~lete obaervability -- for the existence of avch :n esti-

utor.

This in then used in Sect. 16 to prove the t pLortnt t-e or-er of

the paper, concerning the existence and uniqueness of limiting solutions of

the variance equation. Finally, we exhibit a canonical form for the liamiltn.nian

equations (tYc ) which can be regarded as a generalization of "i#enor' wel'-

known utV" od of spectral factorizati on- -* 4ol.oes in particidar that it

the steeAy-state solution of the Wiener problem is known, a conplete solution

of the sme problem with the observation ntk:,val. being f caini ca o b Etcuet1ed

using only elementary algebraic steps.

7hroughout Sects. 13-16 we avoid appealing to the duality relatl oi.s uich

exist between the optimal filtering and the optimal control problew [4-5,;

the proofas are giien by direct arguments whenever possible.

Appendix A presents some relevant facts concerning the pse.,o-in;erve

and generalized InverGe of a ratrix. Appendixr. Ti is a convenient evmmiry of

the properties of gmussian random Yoctcrs. A noteworthy feat'ire i. a new

foim-- ' ~ -wec4t-h "z'~ tvalid enift'! -utt-c-

vectoro involv-4 have -. _ sa"' +o-na --. atrl.
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3. 1ýtrflrrrsan cnwetmng A th-racteriatie fteature

of this paper to consistent adherence -to the "t ittm-domai " po~int of viev~. in
the 19,40' s and ea~riy 1950' 0 most of thhe engincer.Lng litern~tixre in prediction

and filtering theory vac written :rxo-m th- t'Ifrquency-.&cmiin1 ' point of ievr.

This was in harwony with the fashions of syetem enal~ysina then prevaiing.n, and

can be explained by the fact. that most stochaotic proiblema in engineering utt

that tix-, arose in the f~~4Of cCOuMMicetiona Mhere thVM ~~y-i~~n

4escripion of syistems is quite natural. Hawmver, the freuency-4.owmir imethod
as ..t now :-ta.szia n-t we11 Mai-tMd for thz' zthaky of nonlinear systems or even l.inear
systems vilth tim -varying pareameters. Progreso in the latter fields ias re -

awikenod interest in "timedlaemin" umthods.

Onie of tha first effective sol.AAicnn off a time -'yx.riable- filItering- problem
vas giwv-n about 1956 or 1957 by Shinbrot [8]. Althou~h his results can now be

obtained more easily by other methods (see Beet. F'l),*3Mnbr-ot' Is 'ork ccatri,-
buted stibstantially to a better understanding of the ti~men-mvriable f-iltering

problem.

Czicurrently or perbaps slightly earlier Pugachav beg=i a systematie.

ptudy of tim -4nuain zetlwds., culmninating In hits excell-ent textbooik [91,, now
in second 6eiiitizi, w-ch isU s cI hL iU -inm ouztside them 8or et Union.

More recently, in a mci-jog of ..uportaknt -,apers, Parizen [10-121 has laid

the fo.undaticne of a een rali theory of statistical estimaations by ecordlinate-free

uoho*tWat is., Independently of the particla hd~bert-snace repDrosentat icn

of the ruan&= process.

Very crudely speaking., our aJppi ob to the most effective but &alo tWh

=1 bz wo.Parrzen' s wor~k occupies the other extreme; Pug-chew
is in the middla. Parzon's end. Pugachey's at.-rting azsmsi4.,i=n lie cloner -W

expenrimetea fta., but ttw c*.lcuiations 'which tbey m~ibt 1perl'rm ioo Sgýt --- li cit

sansimr ame more inwolmd. lUltimtel.y, ooe 8vrrTjhi'5m% Of 'ths thlwfe TWt-2! I G

likely to ffrolv'e.

The other characteristic featuret of this paper is the iniU-cct

predictioni amd fi3tering in Wimwily tb* dttxuiu&tion ot caaditionaa. di4vtri-.

'biticms and only seceinx'i2.y 'the ermputation at certaiLu f10%ovi~omis ai th

ecaditicaml dintrib~imous. Thix poIxrt of view in now: it !As been forcstlsity

lbrmrt forth Ir. the vork of WIZnwtexiberg L1R] B IT.3, -thin- 1 th l'a ;.

end most oCzrvenient vay, of xtw3%ring Vre&ietion and. f ilterlng of &miznR
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pr•esoj _iflre3Y, this will be the stGrting point for Axtut• ari.,Las in non-

linear prediction and filtering theory.

This exposition vas prepared with the partial support of the U. S. Air

Force under Contiects AF 49(638)-382 and A' 33(616)-6952. The 'Writer is in-

dobube to hi_- colleaues, particularly R,. . Bucy, for nr.rovr stimatbig

conversations.
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4.~ 0 and m%%A1~i3ri3 We ifahli euploy ini th., aiAn

the notationsu szi terainoloay ot 8mal I-' *O. o34foe letters la,

v~p denote vectors with ooordiinatas u.. 'v, no..tle.±

&mzin and Gremek eapitals S,~ ,.. , r dotote -ti-z-a' i-'o= a'-

menta ane vritton as cj 0*9; 7y. Mwi mni'c Mutrill is I.. Smal Oreek

letter's usuall.y denote (wurtants. Tba tim is denoted by t, top t.,, or

¶;j thaibe umy be arbitrary real numbers (c atinuous-~titi) or axbitrexy

integers (discrete-i ) ?be letters . ,.. q axe reserved for

integers.

2ie traeaipcse of a matrix in danotod by the prime. Tha inner prodnct

of x and y is denoted by ~c~and the-tensor product by ~'i~iich In

3uot a matrixc viti', elawnts x:y 3 . !T-h no% 'r (XIX_ T-f A is f

symmtric, nonneg~tive definite umtrix ve use the abbreviation lIx III for

them qusdratic forek x'I WMa. quantities Yi.U be alvuTs r-.al, never

com.plex.

0ý Te symbol X( )denotes the expctaticin opemtor (or enzemble aver~ae).

We -ehall retain the curly bruckets for great~er cl~arity 4-n f se'wermd. eyawbol,4

X awt used in the aazme foriwif. -+Ir w' ifrrte cova~rielace MatriceD GS

and

A contrn.mwu-'tiim linear dqnamjcala. ýi~i~ in thlti paixor :Ul w=,n thi!

d~xjdt - F(t)ji + (tu),(.j,

.Y(t) = Wt)xý(t), (4.2)

~.nd . dl rotc.tiu~ ~incar ~ y~ttrn Will I~ the ayotf~ri of cl~reez

cqiat ioni.



+ )- + t )a(t) +r-(t + 'LO tU), %/4-3
(4.4)

Ma both oases, ve call the n-yeetor x the ia•totk f UWj syst&le" th-.2

u-icor ml(t) in the input or cont-rol" Aincticn,, san the p-.ve-ctor v

the output. When the input is an uncontrol/ab, say re,-Aom, quzntity,

wereplace u(t) by y~t). Ppj 0 up e nr nx n, n xm,

p x n. mtrices. if all thea matrioes are constant, then the r, is

said to be 22nastap (or stgjtiqg!); if u(t) - 9t ther. the rn1te= is

free.

7h general solution of (4~.1) is Y-'I kniovn t~o be [15

t
t- (t, to)x + f t(t, ')G(r)u( )&R (lj)

0 to0

with arbitrary x, t, to . Thi formula is valid if, for Iiet-.ncc, u(t) I1

a continuous function, in which case the function x( b) defined by (I.5)

has the folloving properties:

(i) it satisfies t~he initial conditicn: x(t_) 0

(ii) it is differentiable and satisfies every-rhere the dtffera.ct!•al

equation (Ii.1)1

(iii) it is vniqucly determined by the choice of x, "

!to =Tku'itrx 1,(4t,-, occurring in. (4.5) Is callei th'- tra.neiticil Matr'ix

of (•4.); it Ls characterized by the properties

_(to, t0 ) -0 for all t 0 , (4.6)

(thuis foullow :from (i);

-(t 2 , tjl(t 1 , t) •(t2, to) for a.l2 to,, tv t 2  (4.7)

* (this .follove from (4 -5%) and .:A. t) Y
in addition,Aaatisfiee its omn differcntial c-',.ticn
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dj(t, to)/dt - F(t)!_(t, to) (4. )

(this follows by setting u(t) 0 and then differentiating (.-)). .r.

(47) it is claiAr that _ is never singular.

It can be shown that properties (4.6-4.8) umi-t:l-lytdherne-thw

transition matrix of the differential enyation (4.1).

Lien F is constant, the transition matrix depends only on thU6 'Iffer-

ence t - t and can be explicitly defi&ied as the exponential of the
0

matrix F:

00!€(t, to- exp E [F~t, -!4 ]/.'.9)

0 1i-0 0

When F is not constant, there is no simple way to compute _ explicitly.

Turning now to the definition of a discrete-time linear dcynamicai

system, it i. not necessary to assame that O(t + 1, t) iv nonsingular-

But it is vjrtually no restriction at all to a.dd thio aooimptlon; then One

can define by induction 0(t, to) so that r--lationa (4.6-7) are unrtiifled

for all Integers t, to-

It is efsy to rmedoe (4. 1) to (4.3)- AA far ns the transition matrix

is concerned, we simply coasider it for integer values of time. only. We-

must aseume, however, that u(t) is piecevise conota,;t, tha-t in

i;t u(k) when, k S t < k + 1, vhere k -. .1ntcgor.

Then the inteorml In (4.5) can be co•.puted explicitly and wr rind

t+l
_ 2, t• - f _ + 1.,

t

The converse In not true. as may be seen -ti once by efiedc-.rng

v,( I ) X x(t), ( j

since the number - 1 deem not haves a ren logarithm. in other words, it

is impossible to "imbed" (4.11) in a contirrioun-ttme dyinamtcal cy.tem with

a real one-dimennional state space.



A linear dynaric-0.1 System is said t..j be stab3e if

1l#0t, to)I 11 :6c for al-I t it 0 . (4.12)

it is an c.tical3.y stable if,ý ini additicn3,

t -400

linally, the syntem is uniformly asywtoticafLý w,-.able JS

Ilt(t., to)I 11 -t 0  for a.U t kt,,, 'vbore tX, (S>0. kh;4

These dafinitionpi r03_low by spe-ie!Iijing thbe mor Oenexal def~initics for

&rbitrary (posaibly ncnL-iner) dyrmic:;.l oyatemp ri i4 1. For ao~rn

Erte(4-3-4i) in equ!-Yv&3ýirt fo: -all2iepyvLuea of F have neýtlve rea.l

pakts.
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Z. e gausem-kov sequenoe,. Thia S equaece of random vectors

;_(t), x(t + 1), ... generated by tbe recursion r-.atior

-(t + 1) - t(t + 1, t)K(t) + r 1 , t)_,t), (5.)

where w(t 0 ), !_(t0 + i), ... te a sequence of t,_aesie~n random vectors, any

two of which taken at &ifferet t. 4.%^M a? A.",pendent. By maussianness, the

last property is equivalent to the vaniahing of the cross-v"riance matrix:

ThOugh not logically necessary, for the ptxrposes of this p r it vill be

assmod 'that the sequence v has zero mean:

E(w_(t)) - Q for all t. (5.3)

Then, by gaussiBa-ness, it follows also that the sequerlce w Ls- un.tq'lel.y

determined by its auto-covariance matrix:

cov[W(t)] - q(t). (s.4)

It should be noticed that this definition is not complete xntil tine ini-

tial state -(to) of the dynamical system '5.1) i" npeclfied. It io natural

to assume, that x(to) is a random variable, in fact, a 6aussintu random

variable, with zero mean and arbitrary variance, iiudipendent of V_ •LInce

linear combinations of gaussian random variablen arc .nnlan, It fLt Iiv

that x(t 0 ), x( + 1), p ... isaneLe,, of gauqnal ,dmom . . -.

zero meanf.

By repented application of (5.1), ) can %write:

x~t. @-tl't;)x(to ÷ . Ij ý(ti' t)r(t' t _ )W(Lt 1) °- "

Since the w(t) occureing at different ti=m -c•, " ,r pei- .t f" o

that, for t 1 > t,

12



)s .. , ~Zn(%) nlt .(5.6)

In other voide, the conditional probability distribution of x(tl) given x(t o

ahd preceding observed 'alu~s of the state variable in identical with the

protability distribution of &(tl) given the last .obervaticn x(t o). Rela-

tion (5.6) in uanuL1y mafled the (Cetrict) Wjrkov Rr212!erty.
We have now Justified the use of the , ective,9 "•S•a" and "mirkov" wlth

the sequsne g*eneraed by (5.1).

By analogy with the c on usage in random processes, " mmay c.lU w a

(Assian) *±bs -no4~tISvfnc*_ Thus a eusmro randm siacnc~e ia

discrete-tine linear qy•auaLcal syst•e excited:k by aussian white, ncina.

7 e sequence (ý.1) serves as an idealized linear model for random pro-

cesses observed in nature. In general, the state x(t) of (5.1) is an abstract

entity, not amenable to direct physical mansurement. To make the model more

re.1ictic, we add the assumption: all observables l(t) ar~e Rn linear fmnc-

tions of x(t). Thus we adjoin to (5.1) the equation

&Wt - tWx(t)/ - v-%t) - x(t) + VtW(.

where v(t) is a vhite-noise sequence, specified by

.covE(t1 f vtt) - t2-

E(X(t)] for all t.,

Cv[(t)] -!!(t).

Ad.ng -- (t) to 1 (t) - H(t)x(t) is inLended to refloct the fact that

physical measur=e nto of bobnrvabloz carn never be iaie viilh infInite pr~cljin..

We shall reserve s detailed motivattion and critique of thlu ausum-ption , .. t

later.

Evidently, z given by (5.1') is a random sequence which i1 related to

(more precisely,, correlated with) thCe sequence X. Not Ox0111 Ok3 Z *(t) Ci,-

penrd on x(t). but thnre may 1be a correlation between w(t) and v(t):
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We shall adopt (5.1-l') as the s v fom of the gauos-markav sequence.

Any gutesian white-noise sequence can be put into this for&, az we shall pez-n-

in Sect. 7.

2 system (5.1-1') is shown schematically in Fig. 1. This io u conven-

tional block diagram, except for the ifact that the rectangular blocks denote

matrices (not acslars); the signals are vectors. To differentiate Fig. 1

from scalar block diagram., the signal flow is depicted by fat arrow.
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6. Th. npugs-MmM Procebs. Intuitively, this concept 1l3 most red11
understood at the .imitJIng case of a gauus-markov sequence, when the distane

between suceessive values of time tends to sero. We have .lrecady noted In

Sect. 4 that -- if the forcing function is piecewise constant -- any linear

differential equation =.y be converted into a linear difference equation in

such a way that at integer values of time the solutions of tbe differential

equation agree with the solutions of the difference equation. This procedure

vill now be used in the reverse order.

Let us replace (5. 1-) formally by the systam

_t) 1(t)(t) + G v(). (6.1')

The block dinaqrm of this system is shown in Fig. 2; the. box 11/t sym-

bolizea intngrancm ir-th respect to time.

The terms v and w n (6.1-v') should be limit.ng cases of the gus-

sian white-noise sequences denoted by the same symbo]xA in Sect. 5. The

Probler, tn wake this notion precise.

First we define the random processes v arwx w in such a way that at

integer values of time the random processes x and z Cenerated by (6.1-i')

agree with the random sequences x and z generated by (5.1-i').

To accomplish this, the sample functions are to be piecewise constant

ever intervals of length 1. We set

X -t !(k) and v_(t) - y(k) (6.2)

wbere

k integr anwd < k + I

thio right-hbnd sides of (6.2) are to be the gausoie•u lhite-noise sequenses
denoted by the s letters in Sect, 5. See Fig 3.



%a soluztion 4 the difterential equation (6.1) cn rep•d .i.. to

thens saMple fwctions constitute the a-Mle functions of a rendom process

,z. fte p•obabilities or th.e semple fcnetions can be regadly calculated

sbies the driving torms in (6.1) are pusian. In this wy the random process

x is rigorously defined, and so is the random proen- t sg n r.. " 6-.r ' ).

If Vhu difference equation (5.1) is dorived fro the differential eqimtior

(6.1), these rmndc processe. vill c e at integer valuen of tiAt with the

rwoa *n zzn er•em by (,.-i I').

The vathewtioml structure of the rawdo processes jwt defined Ic no

more coapli(ated than the structure of the corresponding random sequence;

ve have mere.ly Introduced a ccntinuous ti~n paraneter.

Now ve cow to a delicate •t•ter, the definition of the (uzian vhitz

noise process. We shall not attempt to give a rigorous definition ('hich

would require advanced analytical tools) hut hope that the following discus-

sion will lend soe intuitive meaning to this important concept.

TA vr-W and v q) be the gaussian random processes defiwd above,

but. now we assu that the intervals over which the sample functions

are conset.t wre of length q-1 (where q is a positive JnteMr). we let

q -4 oa. While this happens, we must m•ltiply the covexiance uatrices by q%
in order to preserve the phyrical characteristic-, of these processes, This

can be msen easily as follows. ILt

f IO (q) (t)dt (6.3)

0

thiz la a ill-defined random variAble for all q. The mean of x

is zero because the w of -_(q) is zero; V coute
1

0-
!l=$ (q),,.)

-trace J f 1f S W(tWq T(¶)at di
C 0 h

The *lzi,t terprossion c4.n be ex-plicit27 evali.Ater from the def:Lnitio-n of tht

vpro~iesa* the resu~lt is
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If t in omstant, this enpression to.-as to zero an q Mm other words,

if L in• ept oamstAnt as q -# 90, then the effect of white noise in the
• tffereatial equation

6*/dt - (q) (t)

vould eventwu3y reduce to zero -- this is Physically absurd. hence to kap

vIr IU 2 -.cumet. a& q -_ o0, we mut multplpy the covarianco mtrtcgn of

by(q q. This Mens tht the,9V 2Lt of the random atepra
In the .swele functions of W an 4()incregi as I. on the othe-r

hand, the S of the rvzdm steps tend to 0 since they change as

Guided by these obanrwations, ve defain the Puetlz 4.te-,,*nois p2rocen
v az v as the formal limit of _W aA jq) " q -_#o. tnce they

am gaussian, v 'IaL w are specl-fied by

v_(') - Q, E[_v(t)) - 0 for all t; (6.)

5- (t - ¶)4(t), Z(!(t)!'(T)) - b(t - T)S(t) for aL. t, T (6.5)

bt- r)q(t)' for all t; v,(6)

Nbere 5 ia the Dirac delta function.

The precedig discussion shows also that the values of the saZm3le functtIone

o1 V and v arm to be reorded as delta fuictions of vwishin&L$ somll &ts.

Mathbm~calJl]y xskifgv this defiaition is of coUrso sheer nonsense sine,

b(t) is not a vell-dafl.ed P tIon; it is even more absurd to speak of sazle

7e term "Nh.Lýa " is due to the fact that these processes, like ordinax
lightay be thought of as containing waves of every frequency with eqxwl pro-
bebility. when values of v(t) occurrlxz at dIfereit tim a& not inu-

dent, this is no lnmr true and then one sometime salks of "colored" neien.
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functions whose " ues" axe delta functions of zero area. Stilly the idea

of.ivite noise is a very useful one. ovw ja i hUits to "De reconcileol with uie's

avo pOints 6holA be emphasized bere. Firmt, in the uas.l applications

one nme-r detal- vitli the covariance matrices (&. A-) directly, but only In

eonoimction vithh the computtion of integrms. For instance, cinsider .the

gauissan rean8m process x generated by (6.3A), vith X(t) =

50

Sine*4 KXWt) - Q its Cocvari.ance matrix in

*7( r)

t

* ItI (, (T)o,(T,)!,(t,)d)
Sto

t

x ftoa jtoj,(Lv,_ -•)j1(tj) )d'•)_'t ,)( ').
.ioni with respect to r, and using (6.4o):

t t
-ft d- ft d'r'*(t, ¶~i~TQ('~(,r)

0 0

Utiliszing properties or the 5 function, ve final]ly obtArin

tcc et) (t, r)G_(r)•(r)G'(T)s_'(t, K•)r (6.-7)
to1

Mis drrivtic• , ef this result in purely forumil. because the zrrwww Procese

x h*A not even 'been define4. Since the samle un•ctlons of v erA v

are zathmatioalty meani~ngless., so is also tbae &i~Thr-otical equation (6. iA).

But we Sol ua-w obtained (6,Ti) rigorously 'oy the follv!wt riaorour

procedure. 7 integra• (6. ) certain.4 exists ia ralataon to Via tE ox

V•qz; ita limit q - oo also exists, ad ve can repan1 this JiAIt n -•



cc-variance matrix of som ratidof process X, not yet completely def ined.

Carrying this method farther, we emn define a random process by specifying

the Talues of its integrals (UJinear f_._nctiona' -) =d not assigning any

ubning to its sanple functions. This idea wa developed by Wiener in the

1920's and still con'titutes <me or the main tools of the rigorous theory

of random processes.
The second point is this. The subterfuge of dAm1ing only -!th in 7 -

of a random process is not realy satisfactory becauirnL no meaning ie utt•n•.ac

to the differential equation -6.1) itself.. In recent y asrs a new apprcach

bas evolved viich In relatively free of dificulties of this. cort. nie

vhite-noise process is regarded as a Meralized random _process which is

the random counterpart of the concept of a ga~ersli . d function (or lstributic.)•)

invented by Soboley and L. Schwartz. This technique in used successfully

by the buasian school led by I. m. Gel'lfand [16, iT],

As mentimed in the Introduction, as far as -the present apeR r is concenrei
we resmzd the difficulties surrounding the rigorous definition of random
processes as purely tecbnliealj we shal not hesitate theref!- to take limite

formally, interchange the expected value operation and integratiras with rt-

pect to tim,0 etc. (The reader will vo;ice that the "in.dmisasible s feps" are

used only to deriv" integrals of the type (6.7) - these resu-lts could br

rigorously Justified by Wiener's tecbJnique.) We shall devnote a rutum paper

to such pr1blems, using the Gel'fand theory.

The definition of a rardcm pro-ese by mean of a linear dynamical system

excited by vhite noise 4.s eaWaizad in the eangincring literature particul-

ar-.Y Bede ad afianon [3Bl] a•dt Zadh and ig•,%int [19]. Not only is this
assuntion physically pleasiug but it leag to a clear and convenient mathe-

matIcal frtievork.

Weii~thtno!s" ojWnmtts ca a ati rseppic ifvel. c -sOpic no& R
is clearly pusian, because of the zapjositLja f Iy a.l riwzdom ef•.•cta
and it is 'w1te, U*Vaus the 4 .asics of alcraoopic pbsnomesa are -*er- ruAt
mn the tlms -OCs. of ttAe uieriosooapl ohecryra. Aareoiablm Ayza~v. cz' 4,11;rw-

09 %beet only on a MagOLpic r~AMAe "An are rapretMAte ýby (6.1).-



7. AziOatic definition of the jas-marlov sequence an recess

The definitions given in the previous sections may seem to be highly arbit-

ary: guided by pbvsicil intuition, we postulate a "mechanise" is eamly a

natural representation of the process; we can derive this representation by

taking the gaussian and markovian vroperties as fundamental axioms. in other

words, from a logical point of view there is no loss in generality in starting

with o(..-i') or as the basic definition.

AX1O?4ATIC DVINITiO(. We say that a l-parazmeter family of random vectore
Ix(t) (t . Inteer) I : u ta-maerkov adnuece if It ia the following proper-

ties:

(I) the sequence is gaussian; that is to say, for any fied In~cgcrs

t, T the random vectors xzt), I(T) have a joint gaussian distribution
with mean M(t), 1tr) and cross-covariance matrix Z(t, e).

(II) the sequence is markovian, in other words, ibr any integer tI > t

the strict marklcian property (5.6) is satisfied.

Similarly, we say that the l-paraeter family of randow vectors x(t)
(T =! real number) ia a gauss-markov press if the precedin propeties

hold with t, v being real numbers, and if Y(t, t) is nonsiiuiglar vhtlvt

1_(t, v) is a continuously differentiable fmnction of t, T. (&nd of defini-

tion.)

First we shall study random sequences. We assume for the mckw.-:nt, that

k(t) E O- We let t > T be integers and write

€ ( : ) = ~ t ) $_ ( t , • ( 7 . i.%

By (B. 11), w) .xt+ 1) -E(x(t + -1) J(t)I) is a gausoalar rflncaor vector

with zero mean which 1z ''•'- r"' ,d+' Iyence csun writ.

S+ + + .(t)

which ts identical .ith (5.1), except that r - I.



Moreover, v in (r.2) is a mi te-!•-oise sequence. For

Ext + fl)I(t), X~t•l).Ex(t + 1)P w_(t -l]

by definition, x(t -3) and w(t -1) are indeperhent of each other, so that

ft + +)t1(t - I) + E4x(t + 1) iw(t - 1)]

- (t + 1, t - 364(t -)+ EL( ,t)x('t.Ix :(t - I))

4 E(wMt)ix_•t - I));

"Dy (7.2) the middle term in the preceding equation is just 0(t + 1, -.. wkt -) y).

Hence,

SE(x_(t + 1) 11ýt)j j_(t -1i)] - (t + 11 t)xS(t) + E[y(t) 1w(t - i))

By the markovian property, this is also equal to

W t+ 1)Ix(t))

which implies that

E~x(t) Ix_(t - I.)) o

proving that w(t) and w(t - I) (being gaussian) are mut.u&ly indepenienit.

[!(t + 12 t 1 ) 1 (t + I, t'l - .-ý(t 1

no that the independenoe of w(t) and x(t - 1) iilli follow If we provwe the

id-entity
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1(t t )1(t.. t!) = t ttim•e-e-. t, < t- < t- (7.1
Y' 2 - 3; -1y

In fact, let X(tl) be arbitrsry and consider

'•(t 3 , t1 )x(tl) = Eix(t)Ix(tl)]

by an elementary property of coaditional' expeetaot;Vc [, po )5],

- EZ~xt3)x_(),X_(tl}_t),

uqing the markav property,

EIE~x_(t,) jx_(t 2 ) i] jx(t));

using gaussianness, We calculate the conditional expecat.ion by (B.6) and.
"V-rite by (7.1),

I E{@(tt, t2)X(t2 !Xft'

=0_(z3, t 2)INte tl)*_(ty)

which proves (7.2) since x(tl) wmc ai-bitrary.

Extending these arguments •y induction, it follows easily that

cOT[_(t), x(T)]- 0 iI t ,
(7,•

covtw(t), vif)] - if t -.

, (7.-;t) ahow thk•. x.= recursion relation uJ.2) U'lines a
gauss-markov sequence, which has zero asean and 'the prescribed covarianc, m&IL tix
:_(t, T) (provided we let x(t0) be a ausian random vector with
coy x_(t) - •(t 0 , to)).
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Ow covael _ee matrix of .w is nonnegative definite but may be oingu•lr.

For convenience, we factor it into thv• form r r,' arA then (7.2) beccm

where ! is nov deflned as an m-vector Aite-noise sequence vith zero mean
r twit TW'Ieance.

Now %m ea rnmove the zero mean assumption by considering x(t) - (t)

x(t + 1) *_(; + l, t)x(t) + r(t + 1, t)!_(t) + _(t),

where the deterministic component d(t) iL defined as

Now let z be a gausslan random sequence which i; causally related to

ý(t), that is to say, the conditional distribution of z(t) given x(t)

ia'identical with the conditional distribution of z(t) given x(t), z(t - I).

z ~ ~(t - 2), z~........Define

X~) (t) -(t) _t)

ProMc-4ing as before_, it can be prtmj that v io a gaunsi-in White-noise

seqirnce (possibly correlated with w(t)).

"-We have now prowed that (5.1-1l) in a representatiun of the absLractly

deftr~.d gaussian sequeliese x W-:0 F,. !aii* z 1-- ýtu-ntnia isa1.8 lý

PXid~e from t he unimportant axbitrarlnoss in defintng K an b also v.

Me derkmatiom of the reprmesntation (6.1) proceeds Rimilarly. Ther"

-Air--W P-Ints *wý h requixe 'f~'',howver.

Since &(t, t) is asauine to b* nsinguar, it foVLovu from (7.1)

that

!(t, t) - for all t.
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If E(t, r) is cctitinuously differentiable in t for all T, then

I F'(t L .t- ] Tr~ ) = o j_ t, - iirh•" I1 £(t,~

is defined. Therefore by (7.3) 1(t, o) satisfies the differential equation

dt/dt - :%t)j for all t k T

Dy ('-7), * will then satisfy (7.5) ir all r-a] number t

On the other hand, any scalar of the form

apat -) - -)

satisfies (7.3); but if T is not dirferentiable, we cannot regard it as

the solution of a differential equation., so that the representation (6.1)

canMot exist.

if the gauss-markov process is stationary, i.e., 2(t, "i) depends only

on t - , then it suffices to assume that L is cantinuoiu- in t at

t 6 T 10 [20 p. t6] •o assure that 0(t, T) is the tra.nsa tion amtrix Of

a differential equation, and thus to prove the representation (6.1).

Similar results were obtained a long time a-go by Doob [211 knd Wanwg

and Uhlenbeck [2-]2 but the present derivation is simpler.

Tneidentally. reither Doob nor 4ang and Uhlenbeok make EIy ftstMipt1oin;

about continuity of E. Without sum such aLstuuption their result,, =-e in-
correct. For instance' assuming stationarity a(t, t) I, ond considering
the scalar case, (7.3) reduces to a - t J) -a(t 3 - t.2 )a(t 2 '-t 1 ). Morleovc~r,

Uiince a -,s a corre.i•uton coefficient, jai a 1. CLaU a its an ,ven Vu".ncti';

of it6 argument. Doob [221 asserts that the on±•y nonvezro function o(t) 6atidvy-
ing these conditions is a(t) = exp[- aIt 11, where a L:- a nonrcgutive cunrt&rd.
BDt this is false, for one can consLruct -- using the axiom of choice -- fnc-

.ions which satisfy these requirements but are everyvhcro discontinuous Loo that
they carmiot be represented by an exponential.



CM. Pr.44otIon pobuIe. %fore exubebring an the detailed and

wa1voidably7 colex fftuLy of prediction and filtering in the general case,

it V4Ul be he!fuI tu pause for a minute, and solve a sirple problew. Consider

a gauss-markov process genoratd by

-x/d - 0%

Zl(t) ;; yl(t)--xl,'

The ordinary block diagram of the system iz shown in Fig. 4A. Note that the

output of the system can be observed without any corrupting noise.

The matrices F g, G can be read off by inspection from Fig. 4A. They

are:

3, 
H_- (8,n)

0 -az

We wish to estimate the value of x, (t + 9), •tcre 9 > 0, having

observed all past outputs zI(t) of the system up to time t. 'Ibis proble)Im

is identical with one stated (in different language) in (15, p. 406%. We sbhtll

solve this problem here a.fter very few preliminaries and in a very much slmpler

w-ay than in [ 3], where the £oPntio, uzing older methods, appears after 1W4)

pagee of preparatie.n.

By 1lin'arty, the quantity x 1 (t + @) depends on two thbig: (.) the

state x(t) e•nd (ii) the excitatton wl(-C) in the intervul ft, t + -0.

Since v is a wbite-noise process, its future values cinnot be estiimted in

&ny way fr=m past observations; or, iaiom precisely, the beat estimmte i0

simply t.e mean, which in this case is zero. Rxpressing thin in writing, we

have:
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EX( ft + T 9 t) - (t + ý, t)ol(*.)dI- 1(t ), 6 • t)

t1+ ECK_ f 1(t + G., T)q. X_(T)dlT () g t)

Nov ve Otleu•ate the transitic matrix of (8.1). This is easily done

by noting that pia(tT) m response observed at the i-th integrator in

+(• a) M4(:r"f -. - AA.)intespi-:a at time~~ t. Teresult is.

e it - r)

t-eC( --)

Mhat is the cciditimal expectation of :(t), gi.--n a.I the oh-ervations

"zl (- ) up to time t? Clearly, x1(t) is known exactJ& because the obeerrw-

tiono are not corrupted b7 noise. On the other hAnd, by (8.1),

x2 (t.) - dx.l(t)/du + =x1 (t) ; dzi(t),/dt + OMI~t) .. i

But, the white noise process v 1  passes throu0J. two "mootling" opermatim

as shown in JUi. 4. hus r2 is "smoother" than vI (x2 ie thc uo-c led

Ozmstein-Uh'enbeck process [21]),oa•d x is amoother thaon x,• , .. ý

the xI process has a deriratiivv., - + x2P which is a w-lI-defInmd zmxlcmi

process. Rtmce w my eyaluate the rijit-hand aide of (8.5). Thus ft

I cm.,(t) + dr1 .(t)/dt
L2
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E(x1(t + 9)•_(T), T i t)

• (t + 01t) e e [(l + c)zj•t) + O9dt(t)/dt]

This agrees with (3, p. 108, eq. 73]. The optizlm predi.v," is shown

Ir. Fig. 4B. The z I 7 denotes &{ffereuItiation with respect to tit&-.

A most interssting feature of this rosult is that, it is independent of

the variance of w1 . Using the concept of Aiite noise one can almost cem-

pletly dispense with the mscbinery of probability -!iory to get the answer.

Another important point is the fact that the optimal prediction in-

volves the operation of differvrtiation. This operation is not ,•alizaLle

in practice: mathematicaly, beQause differentiation is tu, unbounded operdtor;

and physically, because the idia1 differentiator has infinite bandwith. We

shall se later that this unpleasant feature of ortira! prediction in a

consequence of the auseption that the output of the system (8.1) can be

observed y If we introduce white noise in the observat' 7._ts, zith no

matter how little energy per unit time, the difficulty disappears. We buve

therefore two choices in formulating a prediction or filterimg problem iL,.

continuous time:

(i) either we assume that the observations on the rsudom process can
be rmde with infinite accuracy -- then we miat wppraxcmte the ideal pre-

dictor which is not physically realizable;

(II) or ve afaunw, tat the oAservatioiýu are contasmited wiLh uhike

noise - then the optImal prodl.etcr I al.w.yt3 rcm.I!. .

We Rhali. a*Qaya eboow" th-e se-conrt nnemm
t ionf wti in.tr~2? A±

from the pbye•-c2. .oL• nf ,ie.

It is clear that this difficulty does not KrI.t" in discrete-ttin• byiti•A

end therefore the queation of "&etber or not the observetionr are eAX.ct is

imaterial.
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9, fttLsf and Emoihe of thf in ý ý'jv _-ole. ehv

arr-1ved at the u~dn pirt of the material. For aaae of reference me reist~ta

theesceence o~f the discuasbion in Sects. 2p 5-7 fts foflowM:

T(t)+ aý O~t + 1,t) +(t) +rt+1,-~~~

z~t) ~t~x+ T(t),

where vw~ 3Sa w tcn~9e .

whe e r s , v vae and Iilearc pictydrn bt'rf1cn'

ro pj _, 
t 0,'z

E(!(t.t(1) *)(t) Efw(t )ww(t) f- f-0. n1 t '

(fin these expressionls t, 'r axea inegr r . reaTýl. nuttr; '5(t -7~

the kronecker d..lta reao heDr del~ta function.)

No 2PPsCte !LM-Ctuftl 1Vftfo If OýtsI nC

c~baorveci Iii th(. int~-Ov. t .b 'T J t.-

Wbat is the conditiona~l proba~biliý ditrAŽbutiOal of Xtý

We zshall refer to (T2) ". the model of t~he 52u5e roeeEs. 7t!1 r

tc-r7nIrolo,-, to~ mrottyatcd. by acc~amication the~ory: one rmy, rcgo- I~t~e



as the I i the -,•1 0 is the e•vaM (message plus noise);

w is the rWOn *b X it a rad variable.

It vill be convtnience to use i nov on ceriaij pscie2 nottiofl.

Let

V It) - sX W(h) Ii(t o), ... ,() )

be + obo c ±itiomna maen of x(t1 ) given b-'rvred values of z() for

t G T < t. Similarly, let

X(tt) - t)

be tho "'orrr" betwoen tv. actual value of x(tl) and its conditional. expec.-

enot, by (B.11). that 4(t.It) and ^'(t it) are independent

rmndom vzriAblee. Finally, let the conditional ccmvriance matrix of

t(tt)t) be

¶The quantities '(tjIt)j, v(t1It), etc. arm d&;.ned simiilarly.
a~ue* "I~nnas t - lnob of te fi.3tering problem~ 'ecuival~nnt

Very many di ifferent problems are included in the matrix equatiac ('i1

or (d).

(9.) EXAMPLE: L-•mical systems ppl.ject to re.ndom disturbmbcea and

me_._surent noise. Consider a physical dynamical system (an airplane, *pacz

vehicl•, or chemical plant). A~smne the system is lneax. -tah'e of the

ayitci c-aot be obaer-,wd di.-octly bý:t cr.y thivugh the output v(t•), vch

can be measured only in the presence of adAJtive gausuian noise v. In adil-

t~on, the oyetanm is subject to random dietiwbances (atmoopheric turbulerze,

Meteorites, ahemtcal izpuritiea) in the form of the useian whAlte-roiee pro-

cess w. The equationo of motion of the system are evidently (5.1) and (&A),
provide4 we add a deterministic forcing term u(t) to (5.1) s.d (6.1) to

account for control variables (rudder, control jets., catalyqtp). In order to

control the system, it is necessary to know the state variabjeo. They can te

"rleonstrUcted" Iby Mania of an optimal filter. 02e variance of v and _'

can often be specified (within an order of magnitiAe) by physical cowilderatlons.
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(9.2) EXMOPIU. It is tot necessary to assume in the preceding example

that the aeasurement noise or the random disturbances are white. One can

alvays represent correlation by adding wre state variab)es. For instanco,

the instrommnts vhich masure Z(t) y have dynamics of their cown and the

noise may enter at the output as wel as the input of the istrwumnts. Se

Example (I14.52) for a problem of this sort.. After the additio=al dynamical

effects have been taken into acount, the describing equations can :.Wvye b

reduced s•in to the standard form, perhaps after some redefinition of -ri-

(9.3) MPLZE &tjimtion o• ae . hiii ias & mry com probIeA

In stooiAti.ce t23., ChApters 32-3k-'. Suppoaa we are giver a fL'-.ui2.y of~ f~actiont

£ l1 .. m andJ j , 1.., n.- We can was-lat-e mn randomiv~c

n

in the presence of gaussian vbite noise v i(ir). The problem is to form thw

"best possible eistimate" • of 0 based on observations of ji(T) in m

interzval (to, t].

1e caT, easily redwuee the problem to the context of IT ) or (TI as

follows. Let v - 0. Ve can then reag" G as the unknow state xIt) of

Yor (1 01 )o~ provided that we iAn xepreaent the functionsT~ &
n

.() . h h, ('0)4A.(T; t) (.)

vbere qk(r, t) are eleenats of a transition imtrix, f c , (9.Of) ie-

poses a restricticm on tbo admissible functions TjrbuaiL miiie* W-Y CntIntU;~tt

funct io cam be ppuitdby solutions~ of iid-anry d I-fft~.veti^!

this is not a jerioa limiAtion in practice.

Intwitively, t-ils probe ci roe IsW.Lixed as gensrallme cur"v f•,ting.

We haw a expaz r ntal curms mre veented k7y blurw of 1.he mA vara

q~) fess ezPsr1zitAl cut -i' to be fitted sivjI ciaoovo3y by Ltifoar
cachinations of Gwuvt•h Cur", ,F , the fwdiily

iq a iGitkw-noise prws, fte SeBt. 15,.

(9.6) MZAWMiC': g AV*Y 0ry ~tWr

ccemmricatin system, might be the foflovixM. A Mg it a aa~4c~



of the eom process y defined over s= in al. Sy r,- t--
trmo~ttad. masepwo y is. cocteainatted by noise Y before it __c-,t --

!i rit+ ...........

receiver. M6 oathmiC.Imc problem in receiver dsign is the followIng.

Givn the otserved values of (0) om the interval (to,0 ti, Wbat Ir the

bea t etismte of that sa.le function of the y procese which b ct-.l•y

rccurmeL? In other words. flnd

K' t)for %1l r in [t~ t-,

This problem in quite difficult because itt.mijht involve ei=JtneouQLy both

prediction •nd •oothing; no adequate solution exists as yet iU) the fromework

of' this pmper.

It should1 be noted that this is also an estimation problem. Unlike

Exaple (9.3) where the urJmoui parmaeter van a (finit-dlimensiona) vector,

here the unknown pexvamter is a more complex matheutics1. object -- a re-3.±-

4alued function.

The formulation of the fi..ering prob!_m given here is di~ferent ftc

the conventional forwu-lationin the engineering literature [1-31. nile two

Points of vieW can r. -"i4 reconciled as was meatitned brief]3y In Sect . 2

and as is discused. in more detail in the rex, section.
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No ttr for.4~iana of thA filterizaz xoblmu. Coomwtious betvww

our vers ionz of the filtering probl~u vad other points of view appren&d aexia
in 8sct, 2, To aid the rea2ar in cert*.ia appUleations of the theory., me

simuiari here now wU-ii~ioi*-m facta

Often the filterizig prob~e in fo~arite4 as follova. Find an _ita~o

r~tj)of x(tl)p based, on obaerm~tions of a('r), to A T I t, w.hich

rftiuiaes tbe ex-,e~tae I~o

I(E(L(ý(t) a *ftl))~ jtT,- to 0 S ;t(03.

The loss function L in defined an fol~osw. Lot p(?x) be a reel-vlalu~

nrnaegat ye., con-vexx !%unction of x:

p(ý+( )Y pj + (1- X)p(Z), where 0 IiX 1 .

Then L is a real-vuluad function of x such thit4

L(2) - 0,

I4Lc) 4L(x1 )O a w-hen ;zP2 0. (10. 2)

Fvid-cnt1.y p(x) m~azur-er the distance of x fromn the origin., ~itln It

ift nondecreaeing with this distmaice, Obe!rye. that UA nv-ýoE4 rftl~f

Thei solution of the preceding problem in~ ccntatn.d In the theorem"

(10.3) Ip I be az n-d§i~nuionoal ra~ndoan yector with uzan LA Lnq

dias44ribution tunction AX

(B) P in unirodal (i.c., accive fort 1 1,...

>..E(L(ý in ~W tilmiized. by setting _ ý t

For the proof, see hiiermins [ 24 1

.Theo- preceding c~onditiona are obvloun],y ttiatdiaed b~y mi gmaprjivn di-Aitru~-

ticn. Hence (10.1) iso r.-n='-ze,*. by taking for x*(t 1  tbvx- conciitimitiL
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'ubose caICUMAiOc is at P*.-t Of the filtering problem., as stated in sect, ?

A apecial 1ose ifunction it; L(l) 'a!iII, vb~ere P in nornnegntive

defnit i~ LMr; (l~ it.L tru'! V'ithOut~ An'y ass-utwipton on tht, ".i~tri-

butiai function:

+('j* +

-cOnat. + 2L&?Pxr* + x H

m~it~ ~+ const.7

VbicisCiL obviously MInimized utgmin b)r x ?E it should hr, notecd ttvkt tý,4.j~

rfsoult Aoa* not. detp.nd in Mny WY an . Tm partic-alar., "tuppose P aa.

Then1 the best estimate of aix in &t~

Inthe U1terst'"' one 3fT-,,0 Xea!L" map Judgments to the efteat tha,

on~ly iqiia~red l0se functions can be treateii., Thio io incorroet or At ~~~

lmidSA84iflg- The peceding discus~sion oho"s that the cond.I.iorut1 mr-ar, tuppj-;i:

the minimam expected lon" for awy lose functions. Thus the ]oz~ fuxnctijon

pQlays 0' secondary role. ()f CoUrqe iLf the cond-ttionft]1 dJ tC+ribut4.oAn i kno"WI,

t-he best- egitiumt x-* 2= be conpUtod for an -Love function.

FkatnJll~r. im may wLdah to rind the boat astimate x* which isaiIoa

function of' the data E(T)p t 0 t. tWe hvre Peen tbt.t f~or a roznb"

1046 fuet~ion the best eatimate xt !-In the ~nic~c ~ *vyLt-

I(r.tht ca~lc'Oation of thie estimAte involves~ un]y tho e, eu.n i& d aijc-~

j'J Ciigwisinum n -nrocesas. Thus (48 Ve haLVe Pointed fout ftlr',fvy ½ 1 :t ?

x* ~ x-( 1t I.tt) in clearly thie bDeet linear eatiunte for the c~iust,' 1.

mru-d~ot proceuseu wi~th the cre usi"-woe-yd covariance u~str-L.,ei3 fst tihez uflt,#if

proccue. for mbich x(t~jt) was computcd.



We have now proved;

(10.14) Iis a linear eatimite z~tk i.g qpt~yal for c'ne Los functtim

Of 142251r , It Io optimal for P_13 sah loan functims.

Henea the line~r minim=~ awan r~q7,iIK~e ef, c tt=ai. for a.ll loss

functions (10.2).
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11. olui~nOAP the f iltering 2robl=r for randam SegueazEAý * Accorlainw
to the proble statement in set. 0., we are to comiq~te the conditionn'l &iutri-

bution1ý ofgti,~ vem observationa z ('r) in the intervula t r 'a- t. By

gaussiaanDes-3, this is of Cozree equaivalent to Camputing conditional rneaz and

m-areiame mat rices.

It riUa be convenient to work Ini terms of 'ýkt +lijt) end (t+ l1t).

Inrt We showr how to reduce 4U= proble!- to. th tzz

quanutities.

Let t., it t + 2. By reipeated use of -the. der-!,i itJn (i of" a

rwa~dm saqua'ce,, we obtain the expreasion

_X(t) t(t1, t + 1)3(t + I)+ E ( 1  +21¶+1,rv')

vlý,ch is valid for a.31 t1 I t + 2. Takitng coxidiltioxal~ expc'ttaLion' of bŽoth

aides with rempect to %(t_0)1 .. we obtain the relaintcx

4~ t 1 ,t) _(1 , j )( lit) when t1 ;r t + 1.

using the foact that w(t + 1); v(t. + 2). . ha~ve zcr i and ar.3 IiA-Ži.i

eiit Cf Z(t0) .,. it) w se la

2xt + lit) by inn of*= ~ ition uatrbx Of the' ý ( 1)

gtLet t~ t. Taking condit1noiu'tl eaqpectatiouns osi both isidie of w

it in easy to see that !!(t) is inA47endent of X(t) zý(t - 1 ), 1.;~n:

F~w~t] O~It fa-11wa b~y (B.6) that w(t~t) A.(t)uý(O, ~~-- K

oiiuulsr., (1..2) can be solv*Z for ;r(t it). D, r~tbe,-vrds s

vx(t~t) ax 1"I. iV~tion of X(t + 11t) nn4 j(týý
It #(t +lpt) issnuati rcdr ieti ev~twr U

41ttIt) 1-ustsAd of x(t + lit) as tbo. basic qu~antity - thfis raqulred. fc

ticms wvare wey btt the ;.-exul~ant foiask.1s wv Jl~gs sim~ke.



If t< tj 'de cannot a,-press x( -1 solaly in terw., of X^I -.

nd. F~(t). A- a vatter of fact,, A2(t1It) vili be in general a linear cambina.

tion of (t + lit), 'Tt) ... (t. + lit), ;.(t9 otitly thi I
oeld&n required in practiee. The deetai1s exe messy) and ve omit them.

2he cocwjytation of ~( 1 It) is similar. Since the euxpli4cit xrin

for 1(tl1 t) Vill, not be needed. in the *equal., the details are o.ain omittedJ.

The reminder of this section in concerned prima~rily vith cciaputing

1t+ 11t) Lnd ;(t + l1t) in an explicit form.
We ~Llect + It) by iniUU~tOU. Suppotsing tlnt A(t It

is kiovu. ft canditionoi. ei~we~tktux4'! (Ie I with respect to

(t 0 ., ... (t) W be deccapoeed into tvao W.x-tr:

(&) the 00 ation Me~ctation giv~n.- w(t) 0 P z,(t - 1) and

(2) the ermd~timxa-t expectAticm given

i(tit - 1) - SWt - R(t)x(t~t - :1) - u(tra(tIt - i) + v(t).

gauss ian
Ukes two sets of fAvndcu variables axe ixlepemdenty hence the accndtitcaml. Tcp~--

4tations MY be conw-Atd sepvrvtmte1 '50 0.m a~g rn-mqi-tlnl&cx-ýt

tions on bo~th sidez el (d vith respect to z(t), R(t -1), . yleldia.

it+ lit) . 1(t + 1, t)A(tjt 1) + t(t + 1, t)A(tlt

Vwa havea aireaft that k(titt 1) - 0.

I~e eahipwtA tbs conaltional txrectaticm in 01 q v i+% tie aid of
ftores (2.6). For t*his purse, we need. tv covwariance v~zr:5ct'u. '1KIe fl.'-41

of theme iz

COVIl(t It - I)) -covT[(t)Y t It - ) + ir(t I;

~ 'r(t) andi xzt) are UIn~~pand~nt.,
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Th otber Nmtri-x 1.., by (I d),t

# q((t + it t);i(t i - L)AIt +(tjt +-' tgt

Lp*( I) Itt -f -1 Ma~ + itt 1 )~ n(tit - 1)) (1147)

Combiningi.~~) we obtain the aquatic~rt. of the fl-I2!~t~erz

utiere

Of couarse, the initial state x^(t 1.- ) o.t.-W ( =a)gt zPacifica
0 0d

also. We~it in -ýo be tskrn as z~ero., since inltimLly tber.. are no obserk-aticMw3

and the iTen ofxt is z~o

Pnýe gec==ra block aisgran of the f'ilter in Eib-o'n In Vig. '5.. It is a

feedback -,70tem built exoimd the raoael of the xvmoT ~ (1 0,o *1, h' errýý

aiga. ý(tjt - 1i) ia feti forn.",n into the uvAei. jY.th zin AC(t>.

Is sUeb that the biput to the model ia -the co1di.4ccal e~qctvi'Mce u,,r

i.t 1) giv~en the obsaryvd diffe~rence r.(t) ^!ý(t It J." On(ke parL of tiiAa

ec0ziPitiomla expectatlcx is cbxe to eatimting -z(t +* :0j t -1), and tbe' otbgor

part is due~ to estiwmting Lr(v).
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218 vaiLue Of a(t + l it) is k.1ofti~ai &iate4L after time t, bI ;M it

is not needed for coo~atzing the next astlute until time t + 1. This ties

AaJlay =ken it possible to m'rfors tihe o.mputatlows In1ica~ted by (37. d)*

Mie mgnitude of X(t) is Indcative of 'tho @munwt of informa-t-icia
contipe in th 8,m* =%-4I+- I 21=O the e.ate X(t + 1). ~iia P. Operty

of X(t) ann~ be wd*d precise bec~use the quabtity o~~fo *i

of Mworkon can be wtplicitly aaelau~t*4 for puss iau rw~iA= pxCe*&"s [25).

one oam than savo 26] thiat ift) is to be deteruiwdne in sucli a way ast

iuiiaiao the inforwation conveyed by I(j - f)az ~ )

W6 ooorleta the Mo3uaic, of the filter1ing problem by derrivng ^-rm a-

aimn relation for the ewi,,C] eovarianee natrix j(t It - I'., *,
the only rsmw.iniug umknovu in (UXd). Thio can tv- obtaled ".7~ ie~it

Seoren (is, 113), remembering that

cov[:('t + lit -1)] - co'r~t(t + 1, t)j(tlt - 1) + rt+ 1, t)w(t)'b,

2mm, by (11%

We shel I c 1 (nzd ) th

SeversJ:atrxets of this eq-,-tim amg noI'twwmW.

lt"6t: the eq~tation does not lteol'v' thbe dbservatJiw adt~s is a

speciLal property of the uiltivar)Izt @p*wivaKItr~t~

covarisne-3 tvtriLx dcAoa not 4.pemd vci tbr; Yx;.u~w ar 1ý co tJ$a-Z

Bizntft, the W~ius of the optinwt filter a= r@ ~ e t7YUmS ibe valax eaPýt±m

thj.1. m s that the xtrw~trxzt cf tkb. 0t2mil filer Ito 6e0"t T&L--a-

can bo deter.nime indzprndantlyý of the rm=&4m data 1(t.).

ftccxi, equatimBL ("d - 3:d- Xyd) teawthar (-~"lte3 6eterm1= tbt

candition&al distribution of the readion miqiuece for all t a t, giv



)p.., *p(t). In other wr4e, the quantities - 1) an x(tjt -)

appearing in (411 - hnd) My be r6P tded as th* # of the filterJil

problem: the conditional distributions ami be specified by a finite o=ber of

par=ters. Thic happy state of affairs is due to the gaussian and m•rovisn

asa ptions. There arv no other cases Imowi at preient ibhre the acgu;itnVAl
distributions can be ape-fie'_ w_+• 4 n ble aimlieitv, thiA is preyisely

where the basic ditfficulties of the nonlinear prediction and filterin4_ problewm

lie.

ird,, the ve:-t eaticr, s just another form ef the cclbrd

Wiener-Kopf equation (1-31. (See [51 for a detailed discussion of tho vector

form of the Wiener-Ropf equation in th- cbntinuoue kAie.) This equat:'• stites

that ý(tit - 1) and X(tit - i)^ runcorrelated (orthogonAl) r'andom vriables;
A

in other words, the var!ances of x and x add. The variance equatton is

Just one of many ways of expressing the saw tuing. The variance equntion

for random procennee can be derived directly from the Wienor-Hopf eqtion

as was done in (3]. The variance equation is also closely related to the

calculus of variations, ai will be 11scussed further in Sect. 1.

Fourth, the solution of the variance cquation is not determined until

the in!timl stafýe (toIt - 1) is given. This should be •-"ardeld as prt

of the problem statement, since obviously 1_(t 0 It 0 - 1) - _(to) 0 cov[_(t 0 )].

To avoid any possible misunderstandir43, let uL mention how E(t Ito - 1) in

determined in the coventi-nal Wiener theory. There It is asswed that the
random sequence is ctationary, in other words, 0(t + I., t). !!(t + 1, t),

qi, (t), R((t), q(t) are consntonts; moreover 0 ini a stable watrix.

Then

t-K1

x(t) r. _(t, .• + i)r(• + i, ,, , (1.8)
I--00

to a well-defined rancom vector with zero mean whose cov*.riance matrix S io

in-ie--endent of t and can be readily calculated. Thus 2(tj.t° - 1) = 8"
while not explicitly given, the vablue of L(t t -" ia implied by the •

ti ons of the problem. Finally, if &(to) io nonnegative definite, then

t(. + - 11 t) in alo noinegative definite for all t k t . This in obvious
0since •_(t + lit) io a covariance matrix.
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(11.9) SIOWTIC OF H YLL~1DTMI PR~OMt F'OR RMMD? SXQUMESZ.

Under the ass mtions of Sect'. 9,, the solution cosstsof ccatins the
iice, •l Mao ea

conditionl expctaticns and cndtiona covarisces s of eqat ion
11d-1: - 3:Vd).

tlc cz-AMi-n12a 'm9S are qcjit4 _k the

is a feedbaek syStO with its input beia the observations m(t). R Leic-l

state Of tk filter is 1(to Ito - 1) -0

231@o ciditioniq varianoces I•re ol'xtioiys of the mtrri.-ilec ti2 '•t
anda•seucaae, x te.teobsetj z(t), Me oonditimi

0.t tAf pA ajrcevacjg~ art of th :
62L~tion-of the ilterin is jgiven in a riny.=d-ent formMI

if t 2; t; then AX~ + lit)* andi "(t 1l1t) contain all naeo~a~a iLnfor=a-

tion for c2put in& thbe codiktional2 probeabiliy ditiutions of tte future or

the random-sequence. x(t).

This result was first obtained by Kjrman [4] in 19N except for a

slightly less general problem statement and the unnecessearr wcmumpticox that

the lwerse of the covariance matrix o? z'(tjt - 1) exlsts. The latter diffl-

dulty is now eliminated by the use of the pseudo-inverse.

In the cc•--ntional WieAer problem we mosume that b, r R R, C

are constants; in addition, t it tuken as - oo. In this case the varicncaS~0
C-mtiorm ("d* shou.l have a constant nomegative defItite so!tr-in (equwil-

brium state) 9,, to uhich will correspond a constant gain and therefore

a constant optimal filter. In Sect. 16 k s-hall. discuss the condiiins wader

which E exists, is uniquand is the limit of every solution of the m~rimmse

equation (ITld) %hich etarts at i nonegative definite initial state, We

hasten to point ou.t alrea4 here that thia is alyays the cr-e if ve add the

lget remin.ing a5suition of the Viener theoryt the model is as 4totically

stable. Hence iider the coxvetional asaiupticuain tUm solutiom of the Wiener

problem rtducep to the deternination of the uniiie equilibrInm statee F of

(MI.d) xhich in pwe"Iy an algebraic probol involving the solutimn of s1in1i-

t~ec: ; ze-i aqyticols. M.ý cb. -e oarriew.. vau exylicitly onl~y 1In simple

cases and will be dsim:sod extensively in Sect. 12.

The ch3,af reminin task in filtb-nvg theory is the stu&y of the vvrx-

ance equatiom. •4m i d1M. cult beemuzze the eqution IA n(mjtfri. Te pro-
b3Am can be best appreciated from the study o da d examp4l•. f ,-hese

are given in Sect. 12. A summy of mhat is known abmt tba quelit•tit ltxha,!or

of tbe vaxiance eqation appers in Beco. I1-16.

152



12. _Ml OB 41aor19te .ri1ts?±6. In the tvo xswoles taouessed

he we " *IU for uiAP31city that 0(t) in identica,1- wAro. 5iAG will not

entail a great lose of generality. W shal write E(t) and aj (t) inatad

of j(tlt - 1) and o,(tlt - I) to save space.
te silpleat possible case is the folloingig

(12.1) IZAH6'L. Consider a conaet=nt, 1s ~rr ne. Satt 4- .;

constants y11 and hl1 equal to 1, we have:

X,+ 1.) 21 ~t

Xi - Xl(t) + Vl(t),.

The variance equation follows by inspection from (IIId):

(t + 1) _ 2 a + q(tA

a( + r

The equation of the optimal filter ig;.

(t)t -Arti

There are several cases of interest, depending on the valwLs of the
parame.ters •II ql!, and rll.

Case (B'_: rl - 0. 3quattiw (L5.1-. )Immdlately reduces to

al (t) - ql U -const. for t > to0  Therefore

1(t + uit)

In other words, the filter has no =wmory and the best estTmlte 1r the last

piece of data.

In al. other cases, the transient behavior of l i(t) will bc nwqe com-

pll.cated. To analyze it, lot sll stand for an cquilibrium poiunt of systerm

(12..5), defined by
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13.r3
;• ( ) + qn.

Of course the requiremnt ai a 0 must be satisfied alo.

We deflne deviations from.equilibrium by

( a•(t) - n1 1 "

SubF~titu'..,-r-L; this into M?')an using (12.5) g1ivea2

50l1(t + I) =~ ( 11•--)(!, rl )5l(t). (12.6)

a r. 11 011(t) + rlL

We are now ready to discuss the remaining cases.

gz Ili): r > 0, q o0 I'PllI 1 1. Equation (?,2.5) has ony one

solution, which is 'ii- 0. If all(t) - 50 1 1 (t) > 0, then the factrr on

the right-hand side of (12.6) is always positive and less than 1. Hence

66ff1t) decreases monotonically, mid all solutions of (12.3) converge to 0

if they start, at all(to) A 0. Negative value.. ;f l (t ) are of course

ruled out.

tase W! rll > 0, ql 0 , IWLIj > 1. Now (12.5) has two solutionc.:

=0 and 2 (. - l)r.ll Substitute the second value cf (I into

(l2.$C then the factor on the right-hand dide of (12.6) is less than one.

Thus IVl(t) + (I - 1)rli C decreases monotonically and every solution of

(32.3) with a l(t 0 ) > 0 converges to the second equilibrium roint, The ,'wnly

exceptizn is the colution 11(t) 7 ll(to) = G, which Is an unstable equil-.

brium point.

Case (ivt) rl > C1, qll > O. Now equaticon (32.5,) hao a Gizigle nolution

a., The first factor of (12.6) is leos than one ac a consequence of (12.5).

The- se.onrA factor i4 less thar, or -iual to -. I,0 1 1 (t) I decreases monotoni-

cally and all solutions converge to the unique equilibrium point a,".

What can be said about the stability of the optimal f.ilter? J:n CAse (1),

this question is vacuous. Otherwise the 1 x 2. transition matrix of the

,ptimal filter is*
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Su.(t + 11 t) .lr/[1()+ rl1].

in Case (ii), #11 tends to ciI as t -o oo; in Case (tii), #ii tends to

.u. In both cases, the optimsl filter is ann-yptotically stable unieas

1 *. In Case (iv), the optimal filter is always asymptotically stable,

liim I,(t + I., tfl ua j~
t -+400 + 0 +r~

(12.7) EXAMPLE. When the model (32.2) of the random sequence il nort-

constant, the discussion is similar but much legs elementary. The main point

is this: we must assume that the parameters Iqll(t + 1, t)j, q 1 j t) and

rll(t) describing the model are roughly of the same order of matii.udc at

"all instants of time; in other words, they cannot become arbitrarily lmrge

or arbitrarily small. A convenient condition assuring this is:

0 < al g Ijii(t+lt) I g I < 00,

0 < CL2 $ qll(t) ;k f32 < oo0(.)8

0 < a 3 S rii1(t), -s p< <0o.

We shall assume (12.8) for the sequel. What happens when these concitions

are not met rem,.ins aa open problen.

An immediate eonseqne.,ue of (.2•3) is that, even though ail(to) > 0

is arbitrary,

"•2 W +-.'' 3 2 .p r all t -

In other words, the solutions of the variance eqtytion are onifonrmly boumded.

Using the variance equation, one gets immediately the inequalIty



q)2<t-ýlot) r,., t) q (t) Cra(t + 1i
,ri t + _ r , • W. t.-•

By (12-9), the bract-ed. term is bounded by

x 2 1 X2 < I,

0 + ý2

ad therefore

q )jj~tllltr1*11() ++ r•(t 4oz I

Iterating thlig relation and again using (12.9), ve obtain

t-t 2(t)
•(t, to ) o I a IS-3 + 02 x Io

S (to) 
2

vhich proves that the optimal filter in -ifzrJl, Lsymntoticaa_ stable.

Now let a)(t) and (b)(t) be any two solutions of" the variance
equation. Let

S' , (b) (t)

1011(t) - ol -

be the difference between these two solutions. Then

'P110+l" t.) •i,(t) ;Pl (t+l: t)rll1(t)
i. ) .t*1 ( "r:- -'3, W, )~ ~)

" c4(t) + r((t) (t)

-,w(t + 1., t)* (b) (t'- + 1' t)5O 1(t)" 3•.0•)

and the prece4ing results shows that the Aifferie.e betwee_._iMy two solutions

of !th' Y zew eqaio ill. tend to zero iq WozLY with t. This imans tha~t



every solution of the variance eqtation will tend toward some paricular solu-

tion •.(t) oowatained in the region (12.9)1. Min solution is conveniently

defined by t-L!Lng its eo+4_ ti1Aint 0fli(to) w 0 and. '-hen letting to - "
Th uein e)so bbtaxsd o

2• f.tcn •;U(t) Amy be rgLerdd as the "maving" equilibrium state of

the variance equation.

We carried out the discussion in so much detail in order to indicate

the wethod of proof in the general case. Even though the variance equation

is nonhia�iar,�its trtnsal.t beha.vior can be st5imbied con,,,x. nt.ilv by mmarn_ of

foreUL. (12.10) and ite g.a-8tione. See Sect. 16.

b next examplo concerns a second-order model; this siigbt iiietease

of coalexity unkes the explicit discussion quite involved, even for the

steay-5tate -b'vior.

(12.i13, '. Consider the random sequence. x(t) generated in the

following fasbion:

x(t) - k(t) +m(t),

where

k(t + 1) k(t) + wl(t),

+ )m(t) + t)

n(t + 1) -n(t) + v (t);

wl(t), w2 (t) are gussian white-nolse sequences with zero mean. In other

words, x(t) is the sum of two random sequences: one with inderendent

gaussian random increments (fir&t differences), and one with ind,!pendernt

gaussian random second differences. Moreover, values of x(t) are mi•euxed'-

with an error v.(t) which is also a gaussian vhite-nolse sequence with zero
16

mean. Thus

z1t) X) + v(t)

It is easy to see that x= x and x2 ' n is a suitodxtx dofinition of the

state variables in this case. The matricbn in (d ) ar(-:

The limit him oll(t; 0, to) dLwya cx!tAs: see Sect. 16.
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_0j 1 - 0 1

The variance equations ame::

"+) 4 - .4 + r 2+

O ( +(t) 1(t) -( +(t) 1

032t*)- J( + lY2 (t/ a11(t)+ +y•=+

[1 2 (t) 12

(t + .) a (t) - %y( r- + q-
2220U 221

The optimal filter is given by

1) a ^ G1 1 (t) + 012(t)[7

•l(t + lit) X xzt(-:. ~tlt -1) - - X

1 1 2 Cr 1(t) + r1 1

,x(t + l:it), =% .2 (tit -1) + L [Xt - (tit -:)

+

The detailed analysis of th:,h #.xamp.e to so t,(tI•uS thal we sha17l ccO'!tdcr

cnly the steady-state bechavior. in other words, ve hjall wialyze the 'qui1-

brium states of the variance eqZ.atlon,, given by

(2•12 + (22 + rilJ) (; + r+ 11- (11 + Ui2)'

22 (%l 1.2 (a11 + '12)' 
1215

-2 (e •
(j + r 2) (12. •4)

and oubject to the condition that the ateady-atate vtariance matrix [rlj

be nonnegative definite, which will be ti'ue 11' and cnly if



- ~-.2),I P°2- 12 •O 1.6

Tb w.void (i--scu•sing e~aabyrome special caee, we a~ssurv oh- t q ]. 0h

r, are all c.i-v. Introucving the abbmiv, tio

S"q,/r >°0 1 - ./ >0;

- &1 1 /rl. j / 4 q?_r 1 ], f rIII - 1V.

eliminating • n •, relations (12.1J, 32.13, 12W2, 12.15, 12.ib) 1xb -

respectively

: - l,(12. fy)

r • T, "iU,- 1 + .r'6 y) (•.'

11 -(2 + a)¶j- \r4,+ 1- 0,(1.9

, 0 f1.2-
By (12.17) a~nd (12.220) A~ 1. This.$ (12.21), a~nd f3>0 L~1yt~hz-t

> 0 and > .Cmiig -i 1.1. ,),M-

With (-2.17), th.s yields

71 > 1o z.'o

Turning now to (12.19), we notice tMe syawtry of the co*fficio,'ut.

This untei tlt if Tj iP4 ro-ot than i/n la- al rlt- Xprx irm



root. Denoting by r!' k/11,, _ 121 1/1 the four roots of (12.19). ým

obtain the foliow'ing conditions:

(7;. + + +

(12. 24)
'•+ (n5 + I/A!) • (rl" + 1/rl) -( + a).

This is equiva-lqnt to a qvadratic eiqk.tLon mtn the .i-un; ), ,•..

%rtich has the sobltion:

WL + =/ I 3J 16 + 4cx + 13 12.

In view of (12.23) we must chooie the + sign; thc mnih algr vinl

t1-'u correspond to %2 + 1/12 in (12.24). 3olving (132.25) for v1 v gv,

,n," + 4 6 +4a + p + + , + 4a + /6+ 2 +I)" )

"'e root corresponding to the - sign in the reclprocol of the root corro--

pon•ing to the + sign. In view of (12,2A) we must choose the larger root,
so •tha

iT1 (+ 4 6 + 1 ~ + ha+2 - 16+l7 + (7-2.26)

is tie only. root of (12.19) wtich could leed to a p-jai-ve deA'ir ite rAtrix.

It remins now only to check whether (12.22) holds. by (12.Žt), ,

wL.5 ~ ha-ve

(... ... 2 - (2rg + 3 -,r'1 +4a + 6)OA2T

uhleh in agumpet•ve A•flni.e this *olution is aetually positive deflnit.1,
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11 6, g±n. (12.1T, 12.18, 120o.). It csn bo shown (set Bect. 16) that

aLl so3.UMM±S Of the- Mv4Aweae RMtjMSnO to__TiaAru tt

Although this problem appears to be quite elsn~tary_ th author is

not awmae of any detailed study of it in the liteortuxe. As a matte of fact.

in a recent note to the Soviet Aasamuy.ý A. I. A dno and A. L., Trhnti -tI 1

er n tLv "-sert (vithout proof) that the nolution of thIis problem is not

unliký q1 -' 9-22

!4
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13.Sp~t1~~ te t~ta±nEDroleR~r ~ZuProce uses. The r In

objisot of~ tb4. section is to establiuh mlzA-tim~s mnalopnis to (1I~ tud.

(iti~).A rigorous proof of this muit, be preceded by a rigoroali definiatimi.

6f the vhsite-wzc.~ ~etSi (I ). W **' mA do thie her" bftt w-ill

appou.i to tbe seld-r-A ami likuiting argmm1was resimad usedi in Sect. 6. A

differmit dearivationi (rigorowi except for the woe o'f delt-a ffirnctiorns in thz

de±nitir~n of the cov riemn#,e motrictes of uti~te.-noise processes) miw be 1rounmA

AA in Sect. 6, let q be a ':te aria 301%th,

tis the tra~nsition mtrix of a continum" -timze linea~r cdynunic&:l sy-ttem

and: r Is* given by (iof),. ve have

and R(t') in (hIII) ire to be rep-laced by

as q-con,

TVhe uyiabol o.(q) danoteu a. mtatrix which 1u~ zicru In ~~~.
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Substituting these expressions in (113:d), Ie obtialn:

.1 t

+ q~(t)0tq'(t + ONq1 )

Since (x&) t -a At I f a 90 iyut 2tA VP weinwtueb e Mt CUllr!Ct tOn

troduce a diacentixxldty in the t~erm (1 ] hile taking the limit q 00o.

The trouble is most easily avoide%3 'by asruixiing, --.L-e &nd for all th~it

LR(t) 1s positive d.eftnite for &I]L t.

ftaseibg to the J1,iait q - oo., we obttcin t.h)e v&riez-ce eque~t tn:

ded't -= tj + -- '(t) - [2M'(t) + G(t)C(t) 2R'(t) TET(t)-r +i (~

vlho"e solution Is the corvariance matrix n(t It).

The snar. limvitin~g process applied, to (':rd) yieliAs thae quationn~ of the

Seti~l filter in cont inucue ti%3:

/ (Ix

'M1ia solut~ion of the *;ov* dif avr~ti4 equation in ichc rp.at

x~it).

We have aIready noted In~ Seet. 8B thiat if R(t) I aingulax (i.e., so=

linear eowbinaticoi of compoobnts of X(t) can be oboarv.4exa ttl~y) thwmx tho
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optimal filter ma be an unbound1ed operator -- such as~ difftrrentiat ion -

"voi' cennt b relie by iwean of a linea-r drai_4c&I. t~y tex. H-ence cond1 -

tion (1~3,,) cannot. be readiily r~elaxed,. as is cl~ear from the epression for

the Ci tIMa1 &sin.

%he matrix block diagram of th~e op-timal filter is shevn in Fig. 6.

!%muarks concerning the !mitial conditions of (lIT III apl ttIU

modairicatsi,1 to (11, - ID.).

E~quation (t'Vd) genoralizee ~~.l to:

Hence ve have:

(13.2) SOLUTION OF TH¶E FIIMEHILI F BW4-- FOR RANITX)- PIWE0C?,A1X3. 'Oxid-r

~~t. (13.1); the --c1~tn
th cokdtiza ead conditional coaine i ezi iu

2ie cc"Icticina.. Tari~as (tj)are soluations of t~ha vriance %L1

%ir (itsd r lulste4 Independentl.y of thft oboe'~toe _(0.) h

9 9~p 1i4Jga MN~xftiee detevi±ne the &Lin LC(t) of the? _optjm!a fiflter. 31
=IitA1 sate I.t01) of the mriaace c, 3tion is given as pux of th*u

At_6olution of the filterl&Z Roble.1age.ni;toncip omci
!~f t. 41 t; thsd E( t ~ (tft) conta-A.- aei. ncceu!o.ýc. inforuf.ia~ot for

ýST - h 2cmi25litio bal billty dltrilutiaos of -the ftutrre of the rwindx;

This rasuait van fir~t published in [1

Althou~a Theoran (13.2) aupmrs; "o Vbc cowplet--y, &n&al~gvu6 'Lo~r

(11.9), there is on maj~or Ii.ft-r-ence: te 'sol'uti on' of t~v. problem in
Theoreu (15.2) in tied to obtaining a solution of the variirico equatlcnn (IM d,.



since (1i11) ease aries liCschitz condltion, it follow [14-151
that solJutions of (I c ) will exist for arbitrary K(t0jto) in sow sU

ntaral o tl Conltanz!i-f_ t" But it is not clear without turther lmwv-.

tigation that solutions exist for 01 t 1 t (Az a _tter of fa.ct, thi.0

=q not even be true for erbi'rwy i Itt0 o). ) Howner, we can resAdily show:

solution which exists for a#l t A t

This may be proved as follows. , Let F(t) be the cova•rance =mtrix of

x(t) defined by (Ic), if the covariance matrix of the initial "atate x(t)

-is Ez(to) = (to0 t 0 ). Utilizing the formulas of Sect. It and rec.lling that

E(x(t) 0., ve ha".

-cov[ý(t) ],

- t..t t )t~to_'o)

t t
+ E( od rf dr _(t

t
t -(tt)Cto)f (t'tt) + f _(t, )o(¶)•(¶)O'()•'(tr)Od. (i•4)

This mhovs that L(t) is bounded whenever t ; t. But the defii'Ac 1ý"

conditional covarlance matrix (see B.13) shown thitt

_(tIt) S E(t) for" all t A to; ()

in other words, it in !n-n a. rior that 3ohuti o' the r-L:•o *i•*Y•

must be bounded for any t A t . Substituting this fac, Into the otandard

exister-e proof of wlution; of nonlinear differential 4quatiorns [I)i proves

(13.)). It should be noted that the argmuent leailing to the inequality (13.5)

does not hold If E is not a corv-ariance matrix, in other words, if (t ) ic

indefinite.
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At first aight, it my aDe.ar that the Bolution of the nonlinear

differential equation (I=1) voald in general require n-r-uririec quadxature -- a

di&sa&reebie prosy~dct heoause of the n(n + ')/2 vmrlables 'involved (which are

the Ž~~+ elemnent~s of the rn X n sjam~tric imatrit r. (I I -~* S n o

a general nonlinear eifferential equationt It is a very special one, the

matrix rio•mtl equation, which is well -known from the calculus of variations.

We shall utilize this fact to dLerive an exact formA41t for the ao.ut.l on1 of

Consider the hamiltonian function ) defined by

24 - ~Jo(~I()- 2÷r(t~ •,*(twt(t)G'(t)xll 2 1 (13o6)

2 t)

and the associated canonie.l differentia. equations of Hamilton:

dxJdt - -F'(t)x_ + H_'(t)R N(t)_(t)k + H_'(t)f-l(t)C'(t)G'(t

dp/dt = G(t)Q(t)-'(t)x + F(t)p -G(t)c(t)R-l(t)H(t•.

Let J(t),' p(t) denote the unique pair of matrix so.utiontc of thic equation

corresponding to tae initial conditionis

X_(to) = I wad P(t) - ý(t_ t_). (t.7)

Then we have the identity

P(t) - E(tjt)x(t) for R.32 t Z (t5.8)

which uin be easily verified by eubatituting (1.,9) &r. (II) ad (11 .'!)n

We see then that X(t) satircfico the d_.1erenttal equatioi

d(t)/dt = [.-F(t) + H'(t)iCl(t)H(t)f(tjt) + H7 (t)i-l(tC' (t)O' L)]X(L) , (11..9)

which !B defined, for Fil t c t because of (15.3). (In fth-t, (i..i) ls thr,,
0

adloint of the differenti•al equation of the optimnl filter.) In view

SThe omp_.nento of the vector 5i 'r 6 j4/t)X i"



(i.9), it foliows that x_(t) is the transition matrix of (v) and

thus X(t) is never singular for t ; to. Hence (13.9) becoame3

Let as partition the transition matrix e of the 2n x 2n linear system

(13.7) into n x n blcw~ask

s(t, t0) - . (3.51.)

L1

Then fI3.1i) can be vritten explicitly as

ztlv) [Ql(t,t6) + Q2(t"to);(to0to)]E@l,(t,to) + 12(tto) ((1t.t)

Thus the solutions of•thevar Ap uation f2E t a t q= be reaod

exact~r U terms of th* trawsition wtrix of thin hamltopian system (13.7).

Ib. connection between the mrix riccati equation and the enar.iical

equations of the calculus of variutimn has been knom for a long time (81],
but it ws relatively m•noticed mntil rfacently r29]. To thI best of the

writer's knowledg., [!5] va the first instAnce in which the relation uf the

Wiener problem to the classical cbeubw of variations wa explicitly noted.
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14. Male of montinuota filterjng. The nmuaber of cases where it

is possible to obtain closed-form solutions of the filtering problem it

sUXurrisingly aeNL. We jresent below some typical Hazaplls of these cases-:

other exwlea of this sart are discussed in [5]. Being too aimple, +he

ef_ les to be discussed here ree of very United practilcl interest. But

they are useful in conveying insight into the behavior of the variance

equation and they serve a -a useful guide in obtaining general results,

such as those presented :Ui -ects. 15 and 16,

We vrite fik",ý t) and K(t) M E(tit) for Lhe zane of simpli-

city, anC assume Wgin that C(t) Q.

(i4.1) AMPl. wha '. ies obviously'the simplest filtering problem

appears in Fig. I.A. This is a constant, first-order system and va tee-t~d

in detail &lready by Wiener (30]. As wy be expected after 15 years of

progress in the field, the present treat-mt. Jo a good deal aizpler a

more general. The discussion Is very similar to that of Exzmple (•'2. 1).

The describing matrices ca= be read off by inspection frca Fig. 7k

[f= [], H [1], - .and - [r

we aisam of course that r 1 > 0. Then the variance equation in:

d 2
d3 u/dt = f- j - ol/r. i-, qj. (1A.2)

The optimal filter is sbaom in Fig. 7)B, where

2,Mlg C. me see i.-.;ýýt..ie of iAhcý --taonce

eiby ths roots of n, qi Vt':

(fU t + 1.1/rl)rl (4.
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Since n1 in a va'riac, it UJt be no•uegmtivej thba we concludei

(14i.4) ~.vruse~~u(14.2) baa a =a~ion eMMW.±briwj t.M

AgIj 0 jM 2fU31

In the Olassi2al fo=rltion of the Wiener probleau, tbe weom&V
process mu=t be statiC.f*ry. Tils requires 31 < 0. Moreoer, one aoms

of couom a&lso that q3. >0, since otherwise the mriance of the mesmW,"

process would t vmro in the stead state. thder these a •i th,•

steak-Ott" •, ,,f the optiml. filter in ivt•n 'by

Sf. + + q .1/rl', (l.5)

and the stewAy-state optiual filter in described by the equation

S" - " - ' + 6)/rn"

-1 U f -I q1. / l

In particular, (14.6) shows, that the optimal filter is eJlvays asyupto-
tiCally stable. These revu.Les e-r-G wi known [i-)].

In accordance with Amuark (114.4), these formulas continue to hold if

either f1V. a 0 or q l > 0. If on the other hand fa > 0 and ql 0,

then ther- nire twu po6E1QhD • e*ilibrium states and it is not obvious r-t

first which of these corresponds to the solut.ton of the filterin problem

with t - Oo., Inspection of the :Irst-orde• nc.,,Lunoar cf•t!i . , qUA-
0

tion (t14.2e) shOm that, of the tvt possiblr equilibrium atees

always unstable and all 2f,,r 3 is al7-ys stable at t -+ oo. ALL colu-

tions starting at -l(to) ccnverge to the second equilibrium state as

t -+ 00. !he optimal emin £LL corresponding to the "cond equi2!IbritAm state

is positive, and therefore the optimal filter es asywptoti.cally Htahle. Hence:



in the trivi.3 'Ons .(t o) q - o.
Note that stability does not depend on the uodel-ituelf being atable.

2he optiml~u filter always provid~an feedbac.1 armimd the model so &s to make

tbe closed~-loop system sAWNe.

In this exzuqle.ý it in easy to obtain an explicit solution~ of the

mPrianee equatim. We consiuder the associated bomiltonian system (I V

+ (1/(14.9)

dp 1/dt qjj~j + f LplP.

We &so~me that either fl, ,ý 0 or $j 0. The other case is rva.

Then < <0 and. the trsnsiticni matrix of (i4.9) is [.51:

cosh? 3-1 - - 4 sinh ~ -2 blfI

r _u 11 i 1
2(t + T, t) -I(31-. io)

ql, ei ? 1Tconhf ?1T+ 5 1' Binhl 4

4,plyir% forw'!Om (13.12), ve f ind, for t '1 0,

(q1/ns'h1l~-t)+ [cosh ?j~ttcr+fj/1Ljpsiflh i~tthl

If ai(t, q~ 0, then vdiL ietsLi tbLt~
have., sinlce O 0

lim.. r 11(t

tr ui4t 00+C = Oý(

~~0



t.-400

vhiich c~herks wi~th the previoug conclusionsu.

Althc'i,) the pre ceding &evelopmewts pr~ovide a tomap.e-te andl expl-icit

* picture, th~e resuljting fow2- & re quite comiplicated. and d~ifficult to

~mderstAnd inti~ti.Mve3y. Mo~re Iforoiatiorn can be g~irned by tz-ansc rtbDInp

(14.U1) AZMkVML We coruaider %ami3a tkbm Iryitem sh-Csmn it, Fig. TA-B,
out now f3.. qlpr,9 ase sW1 to be functions of time. Ana~ogouLAI.y

to (1.2.8, wre Imwpose the "oxniforjaityw condittionii:

If 11Mi* <00.

Applying these couditions to the varLaim-ecqiut ion (14e.2), ve conclude tbat

&U>0 if 0 u w -< Lap~ + 1.+ac

& <o0 if @> im9+ *2 +P

JReOe eVsry solution af the varlsaxio equ~ticsi start~ing at d-(t) a 0 max-

eymtue.Yy enter the region

o < F7 + CE <

Provided. C is .suitaJ.b Im.vA .1. lrw it w.4U mffice to resi-xIl.=t
attentiAM to So3.utimm oe thb. varI*w-.io aqustlon 41n ent~irely. in Uie% reglo~m

It iS 5~y 0557 to Show that
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d-et- [fll(t) -*~ )r.~)ý

is ,mjf orj3- aeyMtjtic&1 Abe

The Mab~t-cn ei (t) of the vWAwnice equatic' vil2 cIe the

(lI..)at so" tim ti t 0 It raffiose to consider the ~batvior cf the

optima filter aJXter t~im t 1, W introduce the Lvapunciv frxkrtiwn [14l.~

al-A y'cr~iP, that

1 21 A2 vin e t
1 V(X 1 t) S 1'hn -Z i

lin other vorft, V to MWM bowaded from above and belov. The deriva.-

tire Vof V along notions of the cyptiua3 filt-er ime givon -by

+ d t

- - AM -+ V

011-t) it-

viCb ha £.u tbat i Is xtritt~r aapvtiv vbaei t k t. uLurkz x. ,

72as preoves (14. i0), in viev of the well-tam theorema of I~~apunov

Wb 0fl SOW COW3A" t'ho qW:L~tatiLV6 &SMJIrin of thet Ya 4 anlre e~qu~41-1oe.

JA~t (t) aug (t) bir two such sol utIos of the vr-I~c eqiwt1OrA

I% is okisilj verifte4 ta~t if'
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f W

and. f(b (t) io defined. similar.

If ~ ~ ~ i &~t )ad ~(,r re the J. x 1 transition vatrices

of the optmul filter eorrerffiondImg to 0(a(t) en ~(b), th% r

Ua is Wmdiate-lY verified by di~fferentia~tiii and jfsing (14i-17). Hence th~e

distance- bem M solutimxs Of the variance equatic L c tr ~
(t a C tend* =iron&.1. t~o zro k± ax at

Squation (1ii.18) 'a the obviOus W44a109 Of eqiuation (12.10). As be-fore,-

we ean define

Gi cl(t;p 01 to)

a's the main~4g equilibri-um state0 of t~bo v&riva,,ce equation.

A Particularly 1tawtevý)t- featuxe nf L-etyepunov I m'1c. n(i..1)i

tW~.it- it proyides a qpcititative jw-.u~re of the fu~ctc Ifi.tnrt

"rteb'11-ty Of tb5 optiml. filter* This may b ac . ro brai4ektctd tiori

111 (i14.16) which contains the ~v~ratios



2ha first of these is Just the meusqs-to-noise ratio

of the error sianal I I(tt) of the optimal- filter. Bhe less noisy is the

er.o- ai__!P +t.M sore stable is' the optimal •l•lter. fte second ratio in
(14.19) is a eamnn of hew effective tbe optimal filter is in coxmter-

acting r ba rth• •uj i.itrc-uoe-. by thi -1te-noise process . Both ratios
can be related .recieIly to information-theoretical concepts, as is dibci.aed

GeLrje~dicr (P.C]e

It the gomplexity of the problet. is in:crtsed •just a little moere, the

discussion Qf even the steady-state properties of the variance eqvation

becomes quite involved. A gt-od illustration of this state of wfifoiru is tkt

(14.20) MWEPA-Z! '&0 Moel of the random process is as shown in

Fig. 6A. IT, consists of two constant first-order system* whose outputs

are observed separately in the presence of independent white nolej the

complications which arise are due to the fact that the ranclom inputs w,,

w`2 way be correlated -- this introduces an "interaction" between two
first-order problems.

The matrices corresponding to Fig. §A are

L 0
22 oI z JL 2 q-221 r

Sbice the meas'r-emcnt noise- ",a indapendent, we Mant set r12 0. The

optima. frilter is shown i. Fig. &S.

We Kovume- of course that

rl11 > 0O, r 22 > 0.(i.!

This problem was suggested by R. S. Bucy.
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V22
12

ILZi U 22J~.2
01 ý + :2)02 r r 1222.2

12 +q

We sh&LL inrretigste onl.y tLo probjemf o ax rea nqn&,ieJ- 4 If1

amgt±bwrim s~eta 6tbas (14I.22)?

To sIM3144'1' +Am 'g~io~ ect

91 ' n2 - '.i4.-2)

Letting the & ijbe equal to zero endi using these abbreviatiami, (14. 22)

redixwes to

(pl - r3.)2 + 2 1  
3A2~

(P2 2 _-r2) + 2~c~.( y

In aditio, e Ast be a nonmegatiye-definite imtrix so tbI~t

datEa] 0.1~

diet ~ p 2  (I.P9
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It vli) be ocnmni6ent to utilize an auxiliary relation vich is

obtained as follovs. Add (1)4.211) multiplied by p22 to (141.26) iMltIpiiod

by Plj% and then subtract (1.25) multiplIed by 2p". This gives

[pl 1 + p2- 2 (fl, + f 22 )]I(dt p) - wnp~22 - 24.L2pl2 + (ýk.Co)

which =. also be obtained by setting d (detZ)/dt equal to 0,

Mie d4soua•ion nov proceeds by consiedzeng nuwrz'us spec il casee.

a se. P12 0 0. By (14.25), this can happen only If 2 .-0 Ton

eq•a•ions (14.24) and (A4.26) 9r. decoupled and the problhm le reduced to

two bep•rate first-mrer problems ihich were discussed in detail in m~ample

11eiL. P12 O 0' M b (14iek.27-29) p1 >o 0 a P22 >n"

Zov we must consider sweral subases.:

Oase I!=0 P12 ý O, det p - 0. W (14.30), this' implies

gllp - 2 le1 + 02PU g j(14.31)

therefore

(jp P 4&2 n2 2

and

% P- 1) 2  k -(dete)Plp. 0 O,

.whch is potible if and only ir



andI (usingalso the faet Vat P.12ýO),v

S.- (1•. •

PU1 P22 0~22

Substituting (1'i.31) into (134.2II-26), we obtain

,'a. + ,2- 2f•., -

3.1 P22 fl.1- f2' 93/012

Pl3l + 022 12f 22 4-22PL,2

this sh-c.'v tbat dot p - 0 ounly if

1' - r12 (i4. >•)
Sf" 1 2. 2

Thus aul- three equations (1k.24-26) reduce to one-

Pu + p22 - 2f"1 - 412/012- !.

Tbaore are nowv a,-in -two vub6"ezo:

• - A_-Ii• .- p1 de, t p - 0, 0• . "•niv , .,>.. ; .

'L22 0. Thn (14.24-129) is now equivalent to

P., + P2 2  2f 1  > O

Written out exoic tIy, tht- w .



(14.37)

P22 13 fU 12' ,

and0 
P12 ' < f.U

Mibeve axe of cotwee =my matries~ viaich mtisf'y (i4, y3-) For inxtwance,

If r -r , qll q2 D- J u, anq f -f 10., the matriccz

I16 [i 8 61 [18 -61 [0 10]
[8 4J 2J -6  21 ];' 0  '

a Ll dh~P~e(etP*-rmin-nt. ed & vLI m.rr equilibrIum iitates of t he~ mAriance

egxiauton(P2.

~ ~ 0, d.~t 0, i:,,$a,. Tt~ l-BO~2

- ') i4
,ý Z3CY - -1. 1 ml in'r±At, i n~ Aid frc~t.



Since p., > 0 wid 0•n . hi.p implies

p + -22 rl - >ý2 0; (14.)

in view of P.2 O, this and (14.25) imp~lies

and iiO

miýL P1 2  -n 5$12'

Equation. (14~.211) and (111.26) m~y be solved by ruicaa:

bsetituting (14.1) in (14i-.25), v obtain a qiu4ratic equatio nts
2

P-qýThis equation has four roots; utiiUzIX (14.39), the number of roots

reduccs to t1wo:

iftere a 0 1, LAd0 --

122'.o ha'e. to v-rify of 0ý- •t 2 . i tf. ty .8Sa f± - ,

* , A :.L._ ...•. LL"?' dc••,o.(i•)



T"(4 o) al +÷a2 + acof > 0)

the equality -igm is ruled out h-r- d'e 4110 the .fact +-at P12 0 by

(i)&.40s).

mabw.t..tu.ting CA.he) into (4Ik.-) =d iet'tig 4, - +t 1, w get

COIc, + t.op

"=1"-f*2 +- G =1 a2 +COP

022  m -i2T-=2 t '9

We nov rave to check ihether pLl, p2 2 , A p12 defined by (l4.44)

and (14.l42) actw3.l4 satisfy (1h1.25). since (i14.4o) fixes the sign ofp2.

ve have to consider 9 cases corresponding to various sigas of c o' Ci, and

2 * s ean 1imdiately rule out noe of these caims by noting that (IA.2ý)

is equivalent to

,(' "' 1)01 + ('2 - i)C + %(' * £2 -o)p + 2

and rmember.'ng that a,_ > 0, (x2 > 0, P A 0.

If C0 1, then the only possibility is e £2 1 . Moreover, it

ins easy to verify that p i and p.2 given by (14.J44) a=- always positive

in this cAe.

If 40 - " ls ten :I and e2 =iy have ÷-e foll z values, vtth-

out violating any 2ova codition: (1k .); (.- i, 1), provided that

(Zju' a .d o> j and (l., -1)., provided that and :>

Now iv turn to the conditici dot p > 0. We vant to prove that

f w a - 1 Is the only case eitere this is true. ID other orda, w"

want to proav the inemuliti.m



r(1)[+ Cr- al÷ + - (--2 + - la2 + >u .E1 0J

"•" "• *- I ' ""'- -~ •' ' ..... a 'be a•-w<u positive *11 thew• inie-uali-

ties are 1.up1ied byr

a2~ +- 2 hs g 19

z+ er• - r( 0)lfzIl)(% + oo> a- ,
be obtain 'Pohtve JLU~n theseuiequal:

• ('o .t ÷oL0 zf~f•!] > !Ifzl(u + +• * !•1(c + p)

In piew of (i&. •)f the lefl-bane side is nc.negive. [ e> eis g ois-

cunsion shown that the right-hand side is also nommegatie. SWqaring both

sids we obtain after some ealculation the following equivalent relation:

5- r_2(det a) + - !I1I) > 0 (14.46)

e > 0 and p2 > 0, the inequality vill be satisfied it eitbhr

Hence we &istinguish between two subcas&C

cas_,-B.. P2 jo, > o, Ip>.. If -I 1 or dot 1 > o.
ftemn the only pouslb-i ity is o 1 C 2 .



O*U ~* p p~O det > 0j dot 0., and If1ll, 1

z• to M --1P tM considering all thre oases Oma see tat 5 0 "'

(iF~.aiimy imoeuo do*; o 60. Renae tzmia rAse CAnnot &rise.

f 22 > 1.

sad then dot g > 0p so t0at this amse i pessilble.

We now eolle•t all remlts, and state the in terms of the matrix-

If dot • > 0, then we must have Case I or Case IT-B-i because of

If deti&0m but p1 ý0 then pl, ýo by (14.25) and oiwzm.ot

have Ca•s r-i, Came h_-A-iu, or Case II-B-li. If fl U f22 > 0, then

both of the last tvo ea"es atld arise. For example, take f U = f2 = 2,

. q•_l 11 i, 2 - . , and q12 - 2. Ther. aI - 5, a2 = 8, -, 6., T(1) - !$,,

r(-l) - 1. Substituting into (4.38) respectively (14.44) &nd (14.42), we

rind the following two nonnegative definite equilibrium states of (.422):

L~ 2] vhn a -1, and I [21 2] whten C -1.

If det p - 0 and g -2 O, we have either Case I or Cane TI-A-i,

because Case.hI:- is ruiled out by (14. 40).

Collecting our findings wA3 recalling the results of iuAmr,, 1,e (4. i),

tha folloving pictura aucrge. concerning the equilibrium states of the

variance equation (4.-W).

"14.48) •0xa (A) If ae- q > 0, (14.22) has.i_,o~It~ye
&efirnit e*ulibrium state Z:
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12r r
+ +

-4rL r~ 1 f22 fU 222- 2

UmTXIL+ Li i ?L~22j

+ ~ fiI 2.

02Mr.,[f2 2 + r2 rllr 2 2

toeL - anr r.1 d '1 redw*to (1.4.)i q 2 0

(3) If dot 0 and q1 0,. there sar several konsibil!-tlea:

(1) if f3 - fz thee in a

uniqu~e equinbrium state stiv-i by (14.4 19)0 ,bich is namulipilAr.

(2) IEf 11 - f29 0,O theme 'sa &~ MAIM e' i state

~!5!~(i14-38). vhilzh is sUMIR~ .

(3) it 0 < f ~ thema tirem ai'a I!qriei~,3 tvo eggJhibxi

Pýta -e- qigular nd given by (14.38), %L& nM___and.____

(C) If '0,m e - q - 0, te te fO1.32vim~Epos~ilitic- arise:

(1) If th CTA.I =f >" n = L p th e cei
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I2) O<f, f22 then there aminf inkt4Ly wyu~bi

We have seen that a couplet* discussion of ewc. the steadm-state behavior

of the veri~tnc.- elup-&I . a exiý A Lnel-?.fv WM.d~em, .. ha. hab,, boon UMn.f?

First,, the results provide a check on the theorems of Beet. 16. Second-, the

various special cases vhich arise serve as a warning that strong, genera! re-

sults cpm bm oiizined only uader restrictive conditions; ve see tbh.t the

'potb•ses of the teorems of Beet. 16 cannot be easily relaxed.

With the information now available, one could actually vrite down

explicit forwoas for the solutionr of the %Tiiance equation. The ;it.-ýjz are

elementary but very'tedious and little insight would be gained. A norical
illestz-ation of the dyn=deal behavi.or of the varlance equations is provided
by the next e7aMle; a ease vhere the solutions of the varianc-i equations can

be ex ressed in closed form occurs in Exanple (1P.52).

The very complexity of the present-- rolatively e1lmentary -- ex_,l'

show that a detailed, analytic discussion of the variance equation is out

of the question for higher-order systems. We vast therefore try to clarify

the qu&3tire Properties of the variance equation by abstract mthods.

See Sect. 16. Once the qualitativ, behavior is vale understood, it 5s easy

to obtain nmwrical anowrs by machiire computation.

(14.50) WXAM. Consider a dynamical system in which the acceleratica

is uhite noise. This situation occurs frequently in guidance prob-lee (Bee

also the next 0le). We ,wxs th&t both the position and the nlocity

of the *ystom oan ba observedj these observations arm contasnatc•i ith

iadnpendait,03itive.. white noise. See Fig. 9A.

FrCM the figure, the de'ining mttrices nare

Fo • 1. 0h -1 -1
t o 0j G--OI -

SQPtIaMl f Iltr in shovn in Fig. The 7 ra~Ianee zqua&t.-4= amr:



"12~ 2612 -u22r 1 - hUval,&/r4gl2W2

ft / * 42/r -h 42 / 62O/ + 43.1

The optM1i m arn:

kll(t) -bc,()r,

k 2(t) -. O2t/l.

k 22(t) -* V2t/2.

k22(t) -u 02()r2

We have assumed of course that ri, > 0., r.2>O0.

If h,1 ý 0., then the varian~ce equations viii h&ve at leftat one e~quili-.

briium state; andI if furthermore qU> 0,, the equilibrium ta~te vilJ. be

imuiic'e. 'These fettis follov frra Theorex(16.18).

Intraducing th,.; *Wveeviationa

it it eeasy t-0 -.'-ify that the equilibrium state g iven by



2

U122 r 0 12-

r22 2 22Pm Jý
22 a+lp

is positive definite. If hbl 0, the variance equatien bas xio equilibr.ln

state, u:less q 0 also.

The solutions of the ;-s-iance equation were computed numerically for

*0 sets of values:

case A

hl-, 1, =0

qlL rl 1 6, r2 2 = 1;

01(0) - 1, 1O2(0) ' ý 2 (01 = 0.

Case B

b• = 1, h 2 r 2

q l i, rll ,• 16, r 22 .-

e 1.(O) - 1,•2(O) -- 022(o) .- D

The rcolutions of the variance Cquation are eshrn in 1ij. 10 and 1. and thn

corresponding opotimal gains in Figs. 12 uni p$ .. t.p cr•o e. c-f t...

optimal filtern appear in Figs. ]•-29.
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It is clear that the availability of a relatively accurate velocity

signal greatly reduces the error and speeds up 022" On the other bndl,'

is actually somewhat slowed down by the addition of the velocity signal.

This phenomenon can be exlained easily by looking in cetail at the Y-rianc'-
eutions,

(1•.52) KXAMP. We sbqll consider a dat^_-6moothLvng problem en-
countered In &•terWunLng the position and ;-elocity of z; v-c:oz. Thi

will provide a. convenient illustratton of the iAmiatonian tnchniglou Žrxr ,3 tin-

ing solutions of the variance equation. Moreoever, the e3a=ple shoup, h1,r to

obtain the moi3l ot the rmanoia proeeaii directly fom physieal consideratr •on.

The phyatc&l picture is as follows. The position of a s&tellite is
measured by means of a radio signal. It in• assumed that the measur-i'ent c-n-

tains additive noise which may be taken to be approximately Smossian snd ,bitb
relative to the bandwidth of the satellite motion. A second x-Maurement of

the satellite motion is available from an accelerometer. This reading ii, alf-)

subject to noise; but here the noise is due to drift and other 'very SlAo'Wi.y

varying effects, and my be considered to be a contitant random m~rlable during

tlhye inter.al of interest. The motion of the satellite is 3]nsemrized and assumed

to be one-dimensional, and subject to a constant, gauzoian random mccetlere•ioi.

The problem is to design an optir-.l filter '-di-ch prowit" ns tae best

running estimates of the position and velocity of the satoeiPte boxed on the

two ty.as of meazurremnt rnoiase and the variance of the aec.Aeratlon.

The preceding assumptions aia forimlized by settiig t a model for
the message process. .tot zI denote the radio sOgnal and aI the reeAlIng of

the accelerometer. Both sigals are sipoed to be kncv.wa exrit3,y. The eqtu.tion

tA motiorn (linarimpe? one-dimensionaj.i, wttb unit mast?) is

x - a(t) = acceleration v, conten = a

whoý is s a gausaia rsndoii variable with zero mean. The accele--Meter

mea4•,re a plus a constant 1pusian random Yshriable with zero i-c-n (tt-, bi4-e

error of the acoolerometer) b:

* Thi problem vn augSipted by a paper of E. L. Peterson [31]. Soe also
the writer's discussion of this paper [521.



aI -' + b.

Let Eft2 ra and b2 = rb aa def ine

F arp -r--•rb.

We introduce two now random variables which are orthogonal to !oach
other (and thus, by @&usi~nneus, inde-perv.r-t). The first of tbse is exactly

I-nown ard the seoond 'a to be stimat-,i'

I'l -a xa= m a-P- b.
rb r. rb

Then the equations of motion are:

*1 W x :1*2 - a -u +x3.

The model in now fully described and is shoiwn in Fig. O.A. By ir-

spection of FiS. 20.A we have:

0 1 01

0_0 J and Rn [10 01. (14.53)
0 00 0

The variance- eqat-ions axe

doll/dt - 21 -2

12

do~,,/dt -a

do5 At - d / 14.-4

dd.=//t - 2a °

13=21 U, azd xS are not indepezbnt, and for thii zmon r '5s .

th~ere muast 'be "arrrct4a.



The HNailtonian equationw (V,) areK 0 0 0 0 0;
.. 0 0 0 0 0 x2

X 0 -1 0 0 0 o x

0 0 0 0 0 0 P

D2 0 0 0 0 -1 0

LPL
Lo _ 0 _ L J

Tft trasition mitrix corresponding to these equations is easily found ufizg

(4.9). (The sixth power of the matrix on the rigJit-hand side of (14.55) it

zero so that (4.9) Is a finite sum.) The result is%

1 0 0 tr /2rl 3/.
"-t 1 0 -t 2!/2rll -t-ý/6rll -t"'t:r 11

(-O) t2/2- t3/6rll I /24rl t5/12Orl" (14.56W)

0 0 "0 1 t t212

0 0 0 0 1 t

0 0 0 0 0 1

We aessi that the initial value of z(O) is: a0) = 22(o) 0,

while , (0) 1"p i the effect 6;; W1; t.. biao in the reeding --f the e.cclerometeIr.

(Of courp-, all. off-d4iagozl termf of g(O) are zero.) subiattut.ng (14.'.5)

into (13.12), we find that the solution of the •varia-nce t.q, corrti n:

to theme uintimLl 4orditionz is:

S4/L4tt/2 t 2/p

t!'/20 ~ ~ + , / P



It is easlly verified by direct Pubstitution that this Is indeed a solution

of' the variance equation which satisfies the initial conditprv; stated above.

The optimal time-varying gains can now be obtained, at once from the

relAti)n k(1)t)(t)/2R( they are:

kL(t). t/dt ,,). k2l(t)- 22 t3/a4.°:°l`l ý/a~

where

a(t) - t 5/2o + r•!/.

The detailed block diagram of the optimal filter is shown in Fig. 20.1B.

It should be noted that the signal u1 enters the wessge process and the

model of the message process inside the filter at exactly the sam point. Thia

follows from the fact that U1  is a known constant, independent of the other

random variables.
The differential equatious of the p-iml filter can N, . o_ by in-

spection of the flare. They are:

ex1 'a t 4/4a 1- 0 iXl

[& /dt 52a 0 L J + L i +1

j/2a -t0' / 2 aJ 0

'kais differenbinl equation is difficult to solve. Considerablo slm~ li-

ficamton in ouoained by introducing a new set of state -ariablea:

• =xy z2x 1 -t'v 1 +.+w
A A

"ý2 2x, tX2 . X2 - tvI + '51*
A AV3 'X,2 tx 3Y x5 x Wl

Then by (l14.50)

I9o



dv1/dt F /4a' -t 1 'a -t/' 1  1 ft2,~ .f

d .v/dt m 0 0 1 + 0 + I
,d,/dtj L 0 0 -Ii

jie transition matrix eorrexpotri&ng it this eqvatiori in

0/a 5/2 - 5T ~/2) /a

~(v,) 0 1 t-1 (IA.60)

0 0

where

P~) T-/20 + r~/p r(t,T) =(t 4'.'r")/*8, 8(t..i) -(t
3 

-3. 6

Th'vs the transition matrix corresponding to (14~.59) is i,'o~d~ to be

(ý 18 2 2,

4(t r)b a-(-r-&r)t -ar + (tW2 /2)t

2J

M c inrpu1sac re.-pcmxse ef -the qoptfrm1 filter relating X2 to %1U 9'ven

by:

F~r t, T(t, ) ,, ( + ( + (v)e~~~(t~2) 2x .k)t¶k()+.~k('4i (.)r) (r t2vi~

2 t/0+ rn,/p)

The inrpwlse response relating A~ to a1  in
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rb

S (11) (t)* ( (tv )+*()(

- I + t

The e 1essiD for p 2 2 (t) and gift, -) agree with those gi-;-n by[313. Fiwe. h usn
gi(t'1 J, r t ;I .-2a)

Fb t5+20r 3.l/J)

Iven though the two iwu3Ae responseu gt aze not the some, either

answer is correct! this is dv.% to the fact that we need to consider only

constant signla &0 2he convolution integral fowAed with either (3.4.62)

or (l4.62a)gives the sarn answer when applied to a constant signal.

The comnent!io l treatuent of this problem (see ote.rson [31]. who

follows Shinbrot [8]) stops wvhen th. imulse respenwes relsting the Measure_-

Monts (z, 'and al) to the desired estimates (say, x) are obtained.

Tbis is not completely stisfactory because the iUulse rkspwn..-;8 M v

dtfficult to realise pbysica~ly. For instance, it my be easier to build

the filter in FiU. 20.:0 (vhore only the amino~ '-jt) are tirw-waxying) -U;r

"%N O ilesea the Imnilse reponses (14.61-62).

Mott also;, thwL it 11ou3y gr(t, 'r in desired, ft- can be Wizd b.- t.

l-.dimensional dymnhioaJ .4/s1 te*

dy,/dt a-(tl/4a.)W 1 +. (t 2 /2r)z

x 2 tv.

2~l



(14.•6) *.Amnx. Consiuer the third-order systom defined by the

01riceu[0"°0
P • o 0 1., and :1 tl 0 01.

0L fo o f33 •j"

The mndml comwists of two caseaded integrmtors, preceded by a aLe-g&-

elemnt with transfer function i/(s - tl)..

dd3/ a 1t - r.3 + a2 -

41 ,/dt ' "33.3 ' ,-23 (1.64)

d 2

do..dt 2

- 2faO3 + (.4/r + q,,"

Aumming r. > 0, it follows that the stea&4v-state Yabae of ;il
to given by the qmartic equation

2 2

E•!x I - f1/2

Th remin ing 13n bv nm esu s u4~'ruwind using (1-4. 6I4). ITf

thm, equatin (1i.65) haj a umiquv solution; tf f. > 0. then tberip seo two

solutiSoLs, one of which is ruled out, however, by the gmactiae mts require-

log



A detaild SMO,"1011 dGisCUMIsirmf this COtPIS V&41& be VWS%1iit6e
332steadý w met reu1r on the tbimooin to be stated In Beat. 16, for a. qualita.-
tire -jiwrt~n4Sji or the behavior of (1.. 64).

oni the basis of the exples" 4isacxs,4 in~ thi* mactlem, it ix cm!tkumd

that the behavilor of the ,,~inoe *q,%atioa am bo axcartm ijwl by elewentmryr

(thomA40 not aimple) slpbreic mew L w-uiver t-b madel of the aa prom-w*Fa

is at least of the second amder. BY Rza~1e (i4.653),ý this is no lcmnor poo-utble

vhen the sodalA is of or'der three, wi~Iwh tdm i~tzt.x of the iIt~ ~

tions to nilpotent as mim b ile .. ~) practie-&1 io14 Uot 'i

suali &34pbric ustho~ds are uoi.ass; one sbovlJd rebort to the dig&.tael crmwvtor

for rrmswricl azmsweweAd tc more eIadvaced. anal,4's,. for =dzrwt~Aiag tim

q&I~aitative behavior of the optimia syste4ma.



S5. n -a~vm~r1a -eunbiased esti•t This section in prrpara-
tion ftr the detailed theory of the variance equaticn; at the name tiiie, we

esta~b1Ah interesting connections betueen our methods an& the classicail theory

cd# ram~mter Gatimation [2%, Cbayters 32-5II]

We shal]. Sti only the Cese of continuout t1me. Miiz VulU aftpm-
oi~bly stimplify the formulas. The case of discrete time d~iffers onlky in

trivial details.

Consider a speciaJ case of the mol0c):

thtre -(T) is some fixed b'.t unknown otate, @(t, r) is th. "t-ransition

a•trlx correepceding to F(t), and v(t) io a gaussian wita-nofin proce~s

with cciv[X(t)] - ?(t). We assune that R(t) is nazeingular.

Given that z(t) has been observed in the interval to 0 t S T, ve

wish to obtain the "bect" estimate of the "parmeters" x(T). This problem

wais dibusaed alrAy in Examle (9.3). We may th-..k of (15.1) an represent-

Png noisy obueratione on a free dynemical system At time t it is decided

that the "best" estimate of the state is desired at time T.

LeOt us consider first the. probl=- of estimating the scalar quantity

r- p'x(T)' (52

ldiere • is an arbitrary but known vector. Let ' denote the ctimaxator o-'

It is clear that r will be in general. - random variable, since It

is to be a fumction of the observations z(t). To define the "b•tut" esLi-

mator, it is not sufficient to minimize the variance of r, for the trivial

estimator vhLic!- is comstant (nonrendom) has zero variance. One could require

that

7(l -. )

I OI



W.,Wr.rs-7-~ 17-W

A
be a wdnizmn. It is more OUBUMoYpsy ho~vrt. to re"4 'r4%SA +.ft

ZE714xT)) R 'x(T) -r

Paid t'hoi m~miaize (151.) su~bject to thiz cm. wr&!*ot-4 Th~r rit minlxj!=

8Sieh an estimator does not necaeamei3,y exist for the moe3 (2-5-1), &Z
ise topediately obv~Loii upon setting 4(t) identically equal to zero.

Eyv-ientyý, the emisteace of an mnbissm,4 oatimuxt in a cbhrmcterintic property

of the system (15.31.). This motlystes the following inport-et concept.

(15.3) tSINII A sysutem (,1)41"(or (I) isoi sdd t~o be eaa~lItl

db~g~k~eif for every to there exists a !r(t) such that fOr 11AY paM
0 4%

ster r 7 c t '1_5.2) -m cmacn struct am wib-azed nitiwmtor ir

vbLich is a,~timctlon of the oboe~rvtioiis L(t) in the inti.*rvr. to 0 t ;6TI'

t

t
0

-whore s (t N is me bitre-x-y (at IWLV% Piaceie ý**iw~

tion ef t~m

I41 m.y b. tba-u this prcyerty ho.Uz1 for a~ bm+ noyr ali otom

(L..A. yectar y Adlab t7' (1-5.2) 4tflim & V4aoer wr _~U

"* 4Hi,.*&r is called an obe - t tmm1a~ qt t!=t

is tbe 4l*-^ of the COMVApt 'Of 'wihis ~~ o±

=-' ditxi~*Be la =Lch fuirtbor lortall iu (96.. 551.

Fo the eROOt )PWPWOO, t"~ A BVJr of 000

viU be saffitieint:

1952



T

00

~I. i) f Wt7) in positive defiLnite, th-Mi

Will d~efine an unbiased estimator (15.6).

-(ii) suppose that Osyteu (i5. 1) is completely observable but th&.t

K Tr) in singular. Then tbore is a vector Qsuchi that

I~i~tT) - 0. Ien

is lientiC&lUY zeor in the interval [to., TI since it in ek caniinuous func-
tice of tim n since

T ql 1 (t)fl 2  dt -T

Vwlais 4t a2 t definie in" 'mbiainF~ esstiwutor of p'x(T). Thein

0 # T 52ttl, T 2

"*±Ch coatzadietz- t:-. !*potinsi tkkt p . Q E. D.

Several points should cA- nicto bore.

IT=n if theo VatrIx X is sig~. it supplies vftlxabl;ý Wf~omiation.
A ~ ~ ~~t- --fi-4c~ 0? -h -7=frý abc owt rwAol3y that r ic an obserirakle

~J.t onx O-AR to I [to,ý T ltM ozyi

1916



t- )(f, 4),t(t , T) o , (15.9)

bs ig i, Per of g (see on-.-Ioa A).

While ("-7) i3 of 0-ntral theoretiftl izyortm~ee, ft is not Oonyen-.

tent to apply in concret .eas boea.e in &-iftfeult to calculate. If
syM (O•.) M mtAnt CoOificientM, t foUlOVing pure1r s1b;&.--c

criterion la equivalftnI6 to (3-54):

This is proved in 1331, uuin~g (35.7).

DiffDrentiating the integral defining X with respect to T leada to

the diffrential equation

- - '(T)L_ - EwI) + HI'(T)L_' 1 (T)_(T). (15.1)

If 1 has an inverse, then this equation becos

_-+ 1 • _ __ ) - _f-2_,T)_C-(T)_(T)_-, (5.1)

which iaas--n OAAA% ~- tbeYe-I:aee ). TuJ.

analogous to. E. 'This in easily seen also by computing the covariance watrix

of the unbiased estizator 2 (T) desined by:

T
* ~i~)M k41(t0, T) f t'(tý, T)!'(t)A L(t)R(t)dt

t
0

%&Go .8). We find

Lf( T



wxcept in the constant Oe&j hwevsr, M will not be invertible in general

ar thrOefore s we Wt wua&Y deal with (15.11) rather tian tht '-race

equatio.

mie matrix •(to, T) is eall known in classical btatirtics. If
1!(t) is gamuuian, then M Is the 7132r inrori.ation m4trix [.j 4 ]. Tr

definition of tle latter. in as foUow_. Let fr( |J_(T)) b the c on~ i

probability uenslty fviuncticxma of tbo observations ',z.(t) in th-e interval
rtc, T], given A(T). (Irn the case of continuous time, this is a probabi-

lity density Toction of eryusX t+.- -he rgo--urs definitior of which

is soinvlat deloate. ) Min P!iaher infcrwftion mnirix ie defined, as

; CO 'f (,..x(T x(). )5
S/k

In the case of gaussion noise v(t) we have, purely formally,

f (tIz-(T)) = c " -u/.. expt- 1 H(t)_(t, T)x(T)t12  dt. (25.26)2 _

and one car, check easily that the tvo definitions of M coincide. Notice

that in the •uAuiazu case the Information mttrLx is independcnt of the

paremter x(T).

The moat important sipplicatfon of the Fisher information matrix As the

famno Cr=amr-Ri• or L fo(23tic_ inaLty [3, Sect. 32.-5 10, sect. 7 ].

If O(T) is any unbiased estimator of x(T), then the information inequality

isA

E (T) - xE(T) I :!(T) - x_(T) 'x (T)] ) k Miy

uhich is valid of course only if M is positive definite.

We haw just seen that for the estimator defined by (..I•) th4, equality

sign is aetually, attained. Assuming x(T) is not constant, it can be ShoEi

135,. §38 I that the aji a"151) arise if ad rA

if A K 'ane two riunatric matrices. we write A > B (A B] to exp-ree the
fact that A - • is positive definite (nonnegative •efinite].



the probabilitZ densitt Tunotion&L± ~(ýJx(T)) can~ be faretored'as

~~ b ~~~irb,,Aey rnto.

B3ýr ezna~nd&ig 121d UAA*t rmn, in (15.16). vt se; datiý tZ--,t this

e.onitdAinn is tr'ue Ln t.*e gaussian casse, in~ fee.t~then

)(ET)) -x(T), 2'(:E(T)) l II'T)112t T

Uhenever the probebi-lity density f'mationa~l f z mvi be fa~ctort~d au

one says that xiz a sufficient statistic. As is obvious from (15.19), in
A

tLhia ca" x contains all information iktch the data L(t) ( the obrc,,ayv,1I

-alues of Z(t)) conivey abo~ut the pexamter x(T). Th~is explaiins intultkreeiy

why the equality sign vould hold. in the informution inequal-ity.

Since the (otrict-senzae) iuinimal-varitnce unbis~sed eatirtor turns out

to be linesarA4 this extiktor conatitutca at tbo ~zw til= the solutioxi or

the (wide -souse) problem of f1indin the miniw.1'yariance Iiz~mr es~timator.

(3&n Elects. 2 and 10.) tfe n-- prove this fact by imthods indepand~er~t of tho

precediLng &1.g-ussion.

observable. lot v(ti 'be a vbits'-noise proeti (not ne"WýUzi~ au'*isin')

vith a nonsinp~lar covarianceo vatrix n(t).Teth imlirLno1oa

bQr. lif.-r p be ac unbias.e1 1iraur ent 1mtor of v,, 4iaf' 4 ~ 1wV
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t
0

'var p f ~'r(~~~t
t

0

f II 0(t) _- (r(t) - o(t)]H 2  dt

t Rt

*T T
f '(t)Lt(t)e 0 (t)d~t f ft'(t (t)t (t.,T)LIf'(t 0 ).t 2

t t.T~ dt -t ,T)
0 0 - OPT

Var pf Elo 0(t)12(t) + le~(t) _ 1:(t)iI2(tý ]dt i: __ar*

0

gince R(t) ion poneI.tive tiafinite forr aii to 0 t I T,, the equality Bign

Owlr Occur OniY if r(t) - R(t) w'Orebry'er in this interva~l, that iu, on:ly
A

if v I., D.

- tL.be n" 'ý th.d46.- ro ihom

rqi~the "=mVtA= t&c; Y- be a 1!ýtq-zwise prcpX-ws. In fact., if yv

Imae th)e nons ingular coOvZFaeiae Ustrix

cov4() () 4t~ )

thea letting.



0 ~0 t0

the mniml omsiaD the 3inistr of~ae eutymtc&L f reali'in Aive b

J!~~ !ii& of a

dj/d t - t

0 0

whcWefr t~oveuia the opi=l itern ofT rpy r Cry reelizeiin Ue t9-u~ thti-

noted thbat M (stto isT bolyth as of amdT±~ yo.iiti ~

Proof &s~IAnt !~ T) be *the trsoits n Wpea of the filteprec..l iL

- (tIT)~ 0 1(tpT) X(t) t)fr t<- I

~ehe0 0i~ 0

~e~tixboc &ars o hi ou~tc~ s ~z~L~ 201~~.~



mhix tolumu~ is olmrrly tt"a Lf t w T bcause thee the r'ieit-haniI side of

(.3)re~uces to the unit, mtriz. X(T, t), rep~r-re am a fimation of t
wi~n T r1meop Satis•fes the difft-rmtia1 equation

q

as is easily aei by differwktiatirN

V(•, t)A(N T) - I

an uing (4i.8).. Differentiating the riglt-hand side of (3,5.23) vith respect

to tj, using (.U)and the pseudo-inverse 1euu (A.4)., we verify eazi~y

that (1.5.214) holds. Thus . iAefined by (15.23) is indeed the t~ransitioni tatri-,,
of' (1[5.2).

(we see im•d•tely from (15.23) that

,%", t) -t ( 0 S t % t), (15.25)

where t1 im the largast vlue of time such that

Since a trsnsiticn matrim is never singular, this conetquence of (15.2-3)

is of eourse absurd. In fact, X(T, t) is given by (15.23) only for
tI <% t T; fUrther

lm Y(T,, t! + h)=0
n-0

and we simply dfine (T,t) to0 I ero for t t t )

In 'riew of (15.20), we have to prove only two things. Firstt, that

T
I(T) f I,(Tp t)gt)0(t)dt (15.2b)

t
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is an ianbiased estiiatoi' of () secontd, that the comvriance ma~trix of1

x is, M 1(t 0, T).

* it is easy to see that X(T) givren by (1.5.26) is unbiased if and only

if

T

t0

is the uit matrixx. T73ing rl) the jk'ecediri& ýate&grA1 bec-o

0

I YCT, t 0)1(t0 , T),F

&because of (52)

Nurtherj,

T
cef( - F (T. t~~~~)'~~ t, )dt.

t
0

B~y (1.5.22) and (15.23),, the integral is

) , rT * ( V, T I ~ ~ ~ ) 1 ( ) I I( ~ -t

t
0

The pseudo-inverse laum= (A. k) shows that the brackoht-:.d ceru to equal .)t

M(t0 T)O. Bence

CU7 [X(T)] - tI(t 0 ., T).

Mie proof of (i5. 21) in aoo~lta. (Rawrk &addd in gEoof: bapre ceding arau-

wnt sohms that actually I(t) defined by (15.22), is an mubiased estimator

of x(t) for alU t a > to ibare t, is the firct m1lu of t for which
1 0.
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(35. 9T) UIIMW TMe tioeu Just Proved sh,*w that the filtering eMd

WMbASed. esiutiotim proble- are govrnied by essentially the sae theory.

This Is a familiAr eftte of aS'-afrs lii the cw~lculims of Vpriationv. one b8s c

equ&UMoti the UtopA- meobi pe~rtioe11 dVIffarintieal eqimt:!OT covers a vide

72"i"etY Of -4*3s=,, the differences betmeen the v,rio%= type El of prob;t,=

bOiS9 Mr OieUeed. br the bda=ryr ecndi~t ona. The kiavlton,-jCObi pe.rt in.)

~±fe~e+I~Ocieatiomi Ix equiaIvwgnt to Our "eriu"O eq~atioen. fth bauzad=Tr

CO~i04 *In the fllt-erinU case in that. Z(t 0 it 0 ) ia noze ncnnegflmti-e d~e-

finite a;-trlx. In the urnbiamed extiuatiorx problUn, the .Lnitiegl cond'lition -'e
00~, IMc is the m a (t 0  ~(t 0 It 0) .

CarlAY, the mOlutims of the filter'ing end catiuat on problems will in

PMeral be different. We Oam Me. With reference to bmzp1o (1k. T)e F~e

1B MAr 19 that the optiul filter is wus=J~y not unbias~ed. lIn other words,
if th 6=1%2 (t) has & ==a ccwp3mt, this mran ~caqpxncrA will be re-

vroýed with in error becomse tboa unit ote, in r,2W does not resuzlt in

aL ftit atVP in ýf)

(i5. IMM) Ia.,.Lt us indicate brieflJy howr the slninna varlaxice uan-

biased OstiutbOr OWn be cCWVute4 In real) time. There are enswmtWa2JLY foc;r

Possibilities:

(A) TA~ the et obvious cane PhOM in' Fig. 21A.. Mle MinrJj por-
rfo~ath w tpitirndd~iated. in fte Integrand. of (ilc. +,henx t~c

iutegratS with reSPect to tiM. the mzltip:lying slipain cani be gs-ernated~

11& 14 ft=1udftJ systSK whose irkitial state9 in taken &a O~. T')M-1 (t Vt

ois ratbvr 1"Wcoysa1*t if 0=109a 0ORP"ing eq4Imukt is used, becanse of tLhe

41t54cult air accute' ujLtjp.icaticu.

() ir tspeftimr of (15.23). w note that tl(t, j(t1 ()
=we be intezrproted. us tho (generalized) ixru3A* rexpoxse of the dil.ferentilj

dw,/t m1t(t)TA + 11(t)f1 (010~t)



(the fme part of *icdh is tba ".Joint of (4.1).) No t tp~m. ayinieti-
%&tA= bas the obvious pl~aiftl r3.iUtio shown iza 141S, 213L It =L te
Ocinwniant -to OVA arap S1b3* inl amb a&a thut t~a vat~rX g i

UPe idantity. Mah a iF'stm ameI easly built maaing ata*a.aza ea&L-4 am-
paenwti It It has a ae~iou If*ma.. Zr (t) adimit aa n waymtaii-

eallyr stable &Sffercntial equation, then the eoirspcand~ing *Ajo~iit amyt-ma
d~t~n4 by- ['(t) i~~4m i~.alia 4.~iw ~4a1..

th~is metho I" t.siioed by !(iebkin [.OII,
(U) Notin~g tbe &ifftoulty jwmt *mit:LowA., ee~a aimborr ~

prcm~mntil luaglna [3Y1) )Isv. suagated the follovrfr c-Itexuatives. a~-

the. maood of the obaori~d famction s(t) (t 0 t a o) is in.tiin tiam_
that is to as.. ve introduce a nev tim veriable V deftned b

t' - T - T -t

and consider l(tt). z(2T - t), inst~ead ofr (400.

Since t(t, T) - t(!, t)V in the tresnitin vwntr~ix at the 4o~

of I&~),it is Clear (by Chbaging Variables) . t r*A (2T -t', T)1 i

trunaltiai uwtrix x(t., T) of tb.. dual p~taof(n

ishere

(2 -

Hance

(T- t' T) -A E.(t ',, T)J (T.. t).
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Sarmfors after the ohmn of ver-Ibled t. 4 t' wo obtea'n t"~ physical resii-
nation shown in 71g. old.

M required tie-i•nm •yra My be pe-arzfo d, for instance, by recording

(D) Thnany.. i Uwe e the rwdiatioa prciid~ed by Mo.ores (15. 21).

W*O*= %Pm.-J xite Va In. this cas the minimal v~iae unbiase .m44,-&

is eayotoatica12Iy stable (See n*Xt Seotimu) no time-inver-sica is required,

end it is not neoessu•s to oban. coordinateZ so =s 0 o Lu" M_ unity. On

tb, >thtr h#Adi, o raquirwo time-varying gdzae Kt(t). &ae Fig. 2

(15.30) CAM * noi. simplest estimation problem concerns the detecttior

of the sime vve in ihits noieve

ZI(t) - xj(t)cos(t- T) + z2(t)oi(t - T) + T1(t).

Ibis problm Li of importance in dyna•ic tenting [•].

The corresponding mtrices are

,1 and R .- 1 0 1 0= rL• -D

The matrix M given 'by (15.7) is found to be

M(tOT) 1 [2(T - t0 ) + min 2(T - to) -1 + cos 2(T - to0 )

-L + coo 2(T - t) 2(T - t) - sin 2(T - t)
L ..I

It is easily checked that this mtrix is positive def-inite for --" T > to-

Appreciable sizpi."Ic&-L.,..n results " wo take advantage of the orthogona-

lity properties of sine and cosine. Thus one is led. to assume that

T -. to - q(q - positive integer) (15..)
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4L

in vchioh case

g(t 0 , T) :!(

let uxs sXLva also ani empliet anprsionv f'or tba tiw- mwzg a~ia* Of the

minilm3 vxiinoe unbiaoeG estimator f(1!5.13).. Usin~g (15.22) .zr. (1~.31) t*-A

a~suaming (15-32)., wa ftI theat

2(t - t )+ #in 2(t -t)

-~3. t0 ) 2  
- in(

_ t 0 2 to -2t t 01w ~

.1 2[(t - t 0 ) 2 
- mi 2 (t t t 0 )]

At t Cý the vaues of k31 i&k ame 'bt inf ini1. 12my 44,1erm=

Mw Mock d&i.m of the fl~ter is abom In 71a. ~



16. Prrtise of the varia- e eqution. fte main purpose of this

section is to generalize the results of 3,wples (12.7) ond (1k.11). ie

do this t trying to imitate the methods used to study these examples. The

desired generalization ca.n indeed be cxriaed out. provided we a"Oe that

the 47stew (1) .ta v-o tpiortant pro~ertices: it ic copletely orb5 rvable

and coletely cmtrollable. Most of the discussion is concenied vith tf-it

oaae of continumn tiwc wless explicitly pointed out, th!s t =;-,- vo

the case of disarete *" is very similar. Of necesaity, this satiun in

m~hez tachnicall amd W~~ be omfittedi at ffrn- reading.

In the interests of simplifying the notation, w aaume that the oxigin&L

model of the rwAm process is one in 'ihich the croa:;o arice trix

q(t) of v and T is zero. This does not entail any loos of pnerality.

For let us replace, F(t) by

1_(t) - Q_(t)C(t)R_-(t)H(t)) (16.1;

a~d !(t) by

Q(tl + o(t)n 1 (t)_,(t). (16.2)

Wt)- W-t)

we obtain the matrix block diagrsi shamn in Fig. 2 !, in which the rioasi

xoitations 3r XM axe IndependerA. Tko a ffect of depandence betwten

v =A v in the original model is now rtpruentevd by the feedforward term

( in the block &iagram of the optiMl filter.



Barnco from nov oni q(t) is talon to 'be idoaticalI.. zor'*

* 9opoe that 1(t~t.) in nonzi.-lr, ft= (III, may be ite

dE t t)/dt - ?(t)j"(t)-r(tti) + _

2hiv equation boa pr~eisely the *awe generall foy-u am 111X) but the oymboln

deai~atirig the four ter-wo tht rlgbit arre tc"-vhet diff~erent. We rewg-rd

(III*) the adjoint. cf~ (III ).We can formalize this notion as3 follove:~
C c

(16.,A) DwiflIEN . Th !Ajo!t of the w-odel (I) In ti'ven by

dj/dt -- F()x+ 9R(t)v(t)

R(t) - o(t):K(t) + ts

where (2- )

corfv~t),!(r)] -

covE!E(t), iv(¶)] R E(t)b(t -)

This definition is in agreement with the uisual terminolokgr in diflerenUbia

amquations. (In (4i - 5] a souwvhat cl-U:-rent concept ("dwa~ity") vas use417

but iLn the preisent case the concept of thv P.d-oint is mor~e convenliant.)

0a6.4,) Rw x There In no lose of genert2Aty in apeuvine tha~t Uieq

_qri (t) in C ) is ixwerrtbl~ I- factx we can even aosiujm½.t h

covariance matrix of v is I., as van discusp'id in Sect. 7'. Thus the &djoin~t

System alwacys exists.

It in natural to introduce -the

209



(16.5) T =CP. A "te (I) is said to be qoleta_4 cc-itro i

if its o•joint is o3l.etely obrervable.

In Tiew of (15.7), caplet controllability is equivalent to the follovi.n:

(16.6) CM ---AIILITY IMIL. so (YNU ,! -OltJ ontrofl-

able If au l f the s1 _

T
W(to0 T)" f g(-, t)g(t)j(t)g'f(t)j'((T, t)dt

to
is postive Of.....

One can of course also define complete controllability directly [33]t

2h system (3:c) in comapletely controllable if there exists acme forcing

f• .to !(t) which takes the system initia.l- at rest (x(to) - o "

any arbitrary stato x in a finite length of time (K(T) = 1). Furthermore,

it follows [3] that the iniiuim anmount of "con-itrol energy" necessary to accom-

plish this is given by

t 0 9Cl(t) W'_(t 0 )%0

•he matrix W, ihich is the adj•oLnt of the information matrx M is thus

seen to represent "reciprocal energy".

Jimt as in the case of Examples (12.7) and ('1.11), it- i;• tl .ble

to impose conditloms vhich guarantee that observability and.tJbi~ it-

axe essentially unaffected by the choice cf to.

(16.7) WIMITION. A eyte (Ic) is iuiforM complete2y observabi.

if there exist fixed positiTe conatants cr,. P such that

0 < Ca S Mot -- , t) ;6 PI*

for all t. The system (Ic) is dAioriy completely controllable if

1• •c 0,i1 te on page '198
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0 < CLT a' ot)

a, aj, A ictcw in botb inequlitioa.)

(16.8) sum etrifrntciitou4at the beginning of this

secticm does not affect ob~ryab4lity =r ccctnzi1ebilty. frt~ad, iuf

z(tp TI Is the transition matrix cow epondii-6 to (16.1), the

byt - I aNTO MS

TT

tt

& vbich inhowe Vat there exists an wiblaaed eatiastor for (16.1) ifr and uzO-y vf

thr exsts~ fr J andi it in clear tbat the "triummse ot tme w-1r*ý

estluators wm te mm in the tim cas r. bSR1oe tte intrix X Ir the t

in both, caoole. Pmazzing to the adjolzrt system, we reafth the sma s 1~i<
renwin8 the Matrix y.

laraits -to the mun th~hf'e- (16.4~, '12 h ~i imctbr-,

'vhiah arM of interest In tbasselves.

(16.9) MM ko (ia)QZ ±5 litl LI%

-- 5-- - PMd, +,a;t

To prov tkUi, -" wakw- won of Sisorea (13.21) 'ehiclh proyides a fillter

for vbi&Ased euastIft'-o. This filt-or is of 'aours. not qI4tiam in the ueiws

*See footnote an pW 198,



of Sofct. 9., and therefore provides ain S~ g for tbhe mri~rce of the

optlmiil filter. Nov th. most Umpotant feature of u.nbiased. en wmat ion is

the fact that azro due to the inlItA-l vwrflAmw of x ame reduce to zero

in a. finite lnth CT.~o time. to pab iii~otoL0 N~It 1 Sluff~ita$% t")I~b

ani da~ta over the At,-! L-eeralCt tv ti.

2ecoanrim wemtrix-of the filter (15.22) at wý-,frae t At0 +~

in therefore giyen by

apt) + eovt I ¶- v0,,
t-EI ff

*sare T(tP Ir) is t1w transitioni matrix of (1522). AAdtng

71 t
cow[ 14,dlt(t, )(Tg¶ f dv *!v, v)gq(v)l!(Y)'

to the preaeding emzression~e Iinki vf&4m AoorO (15w.23) eistabliches thie d~tsirad

O.610 ~4& ~(Ic) is MW&Vakl c nMpete' cgit~rolh..ble and -,jorMJy

~~ .gt,,It.) iipqiti', definite, then

r.&t 'ii ooipaite firztt an tzprmsstot 1'or tht" vate of chang" of the det$.r-

£S.Izzat of th6 coY'nrl~we wtrIxc. ESomri.tary but erterinsivo uanipuiatICnm yi.ACid

d~mr Z/d, " trql - x' + tr(1IR3i+t(

*±tch is valid ofat ene o4 If dot & > 0. We homeaylsreet3 encooixtatred a

special cawn of this fonmil In the fam(1.3)

2be mwaa snd third tegmx on the rI~gt-hwAn sift of (16.11) mme non-

nip&etive becauss they sare the traeso of nemaWtive deftnite omtrice-a en



t
VA=t jt) %P M 2h Q r t M6% -- • a, taw 0t0Ito).

0

NOv -" zeamused to be a CODUMMaoS functci= Of t (me saotý. 4)

and so in F,(t) by Mu ifo.~ >0
000

Proii tbir. and1(3.~ it I Ollws that if &(t' 0  is poit'-v- t-fl~itte,

("t It) exist* f,,z *.1Ia t >t t0  and. is the imiqiVA Golut.1co of (3IE:) he~vftag

the Initial Val%* ~(t 0 It 0 ) Aipplin4ii (16.9) to the a4joft evsej, the desired

inequality follows at once *

(continued on next page)
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(16.12) MM"a 8vu.tA. syste (Id) in wMifOlmly CM40teJ

ooatr~lab -L-1 -,g £t t) la nonnepti've definite. Then E(tlt) is

No bay" e2.reay "an in t~h coln'ee of the proof of the preceding 1eaFa

the. if E(t pt) le ome ncnginT1,~r,; 4L. t wjil .,re in gu-1*lxWr thereafter.

Hence it is suff±ieint two p-. s-, th-t K(t~ Iit) in nonuinguJ.ar.

Let us assuin the con~trary. Then there in a :ýLwd ncam~ero vec-LOr

such that

ITI I(t I1t1) m(16.1i3)

-We a&3al show that actually

ubere T denotes the transition matrix of the optimal filter.

ftat 1(t) satisfies the integral equation

t

0

+ Vt' t)YtlitC 1* )ov (tjL t)'J-. 16 15) ~~n~ iid

1II1jts(t) 0 by hypothea..I. Hience '1P. 1 (t 'Pat v3rirsh Wl~iielLy C

&(tlt)?z(t1 ., t)p -0 when to 0a t -t 1 (6.)



Let

Differentiating with respect to t and using (II) and ('16.14) K •t

dSL(t)/dt [ [1 (b0tI, /dit]•

- J- rf- aJ.X

Mm uS(t) satisfies a differential equetlcia whch is the adjoint of (aI;

this equation haa the unique solution

4.-ch 4&ti5is + the initial cudlition %(ti) = B. Subftituting (16.14) &xA

(16.17) into (16.15), we st

Ity hypothesis (16.13), ,e have then

Since ~Q the right-bad poet tive by the assu.wd =iitonm c~owaete cont-roll-

ability (a*- (16.6)). 2his contri•Action prong that fE(+,,t.) i• positive

e eortinite.

Ve sz'e now in a posnitica to Pro Ue ab.,ehof resulit of the pamper.
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(16.18) MAN TMCORML Qwse 0 )inwm fm n ai (I is cm 2tcl

observab 4Ar IF±tormk oM~pletolg ooitrollable. 2en thr, 2Eti-=- filt-er is

U1g±O29 s.yoiOi. table.

(16.1:) nARL It uhoU15 be mVntirm6d riht a•-y that, "opIci-ality- bj1

no means impliJ "stability". tt in hw"idmal: a -plicat.ionz, the uniforn.

asyMtotic stability of the optival filter is an indifapensable requireeen.t.

If a system is not uniforwly asymptotically stable, then a bounded input may

re.su_1t in an boaud-Wd output 1!4 1. i!Hnce =-11 bia• errors can r.dn the

performanme of the filter. Perturbations in the values of x would be

d1aa ro=a umless the filter in at TesiLt stable. M ;ar, -i ror conditions

ium*r *bich "optimality" implies various forms of " stabl lity" is the central

prblm of filtering theory. In the el•alscal Wiener appi-oc, this problem

is compltet.y igwnred, but it turns out •sa.ebelow) that the classical Assaump-

tiosm guarratee stability anyway.

(16.2o) UMW1r . ae 'conditions of the theorem are clearly satisfied

in case of ftles6 (12.1)., Case (iv); (12.7); (14-1.), vith Q- >O (0. I)

in t•ese Sxuiples ue were .ale to show vnirfozu asqtot-e stability of the

optimal filter by direct etnhos.

(16.1) Co m. Wt hsppens if 4to not ha" complc.e

controlla~bilityl In v-amle (12.1), Came (il), with = 1the qptimal

fiter in stable but not aV toticaall stable. On

e oter •-•, in Ow. (iii) of the sam axauI the optimal filter ia "-ympto-

ti•ally stable. Similar l ovownts apply to hAxeIl (I4.1). Another illi•"tfation

of thb tboorem is p•rvide by Came 11-A- of taaple (.1.20). Every steady-State

optleal filter eorresponding to the imtricea on page 176 in =zrtable; the cigen-
_valws of ,_ - KH are + 10 in each ease.
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PEoof gX IM t orum. Lot 1(t, w) be the transition matrix

of the optimi filter (fla). M~M

is the transition mtrix of the 43oint of (TI )I

dxJdt -- £•'(t) - H'(t)R'g-t(t)g(t)I(tlt) x (16.•22)

We s&b2L. • that, fi• ll. t, therd are Pslitive Qonstautsu C1  2 c, such

that

IV(t, t + a)1i c • (16.23)

This implies
-2•

and thus he uniform asymptotic stability of (1I ).

To establish (16.23), we irtroduce the Lyapunav functican [(14

V, X

By lem•as (16.9), (16.10), (16.12) we know that v(_, t)/l111l ise uniformly
bounded from above and 'helow, at least for t a t w t + 2r-:

(a + V1)1111 t v(• t ( ++ 13)1!1!2. (16.224)

Th•e darivative of V along motions of (16.22) i giCve by:

&• x av

- iln(t)•(tlt)• lt) + II•)x•(t)._ (16.25)
R (t)+ W

Thus V is nondecreasing along any motion as t -+ co. We shall ohow that

.;_(t), t) * + + t + ~ o (16.;216)
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*MiOh A-11. prorv (16.23),* in viewr of the w 1-knowni tlhorem of Imun.v0y k3

The nrobles is to find a lover bound for the intepi'.1 of the rl gbt-

hand sid~e of (i6.2).

tatt

1.e'Un, b~y (16.22) anad (h.)

ACT t + a t+ (I) - O'(t + ap, r14(t + ar)

+ f 1v rT)4'(v)u.(v)dv.

tott

fIIc( 2I(~a - 'IZ 011,2;
t-

n v, t + 0)Kt+ 0)I 112 I a11(t +

'vbcre 6 and Ti depend on t + a and -xt + a). -Aenc*e, wrll.ting

e2 2 +

Q:t+ 0), + all V(Ix.t), 0)- b2 l8 +012

Fuit',her

ij Hx(t + VA~ 2 a f t o r*( + a,9 r)j?(Ir + ) + f t *'9ý(v., t+cr)n(v)ul(v)dvII12
1  .r

t -¶-R (¶

(16. 27)

Now if t I Tr 9 + a

11 f Si'(,V, t + u)R(vuE )411

S ft+UtIe(v t +.
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By obvarz a inequality,,

S 62 [tr 11(t, t + 0) 111(t + )112~

E&3-janding the intagrand in (16..7,) anid using~ Wit; Fxh~iwA f, iniquva.U ve

see that

T1 1jE(t +4 0)II .Hx(t + 0 !,t

By uniform cc'E4pete obaarrab1.liI4y avMitro;Uabilityp

Moreovar,, we have rariviaUly also that

52 aa2.

'1omabining the two preceding inxeqk&alitex, we find that

Hence

V(M(t +.0) 1 t + ) - V((t), t) z (a2 /'4C#3V3) V(L(t +, t + ).

2his establishesa (16.26), andL c~emoea the pi~xW of the theorea.

(16.28) MOCA, #s ta e Up th p (Ia Is

* ~ ~ r 4"4Vl')1 ~ oa~a.~ £ (tit) "A rd'b(tlt)

W!S tyo 0olutl.W -of its DMl~o M ata UC
denall wJ.Qm at t -top am

+ Ofit + or) TCb)(t + Olt + W)fl aS0ýt



That is, the effect of the inilttl state _(t0) is gradually

"forgotten' as t - oo. 7his is important in practical applio-attons, .becaufte

the value of 4(to) may not be accurately known.

Numerical integration of the variance equation is facilitated because

the effect of rovnd-off errors vill not be cumulative.

_roef. Lt

!((t) - *a)(t t) -(b)(tt)

It in •esiiv verified that W(t) obeys the diffarential equation

d _(t)/dt - [K_(t) - (a)

+ WF•t) [Vt) - (b)(I)W'Ct)W E-t)W_(t)1'

IPra this, it follows easily that

WOt) •[ (t ; to0)5;;(to0)A(b)' (t., to0) (116-29)

which Is the SWag of (,."i8)i _) r-ap. i(b) , te tran--ition matrix

of the optimi filter coresponding to E) and

Taking norms lin (16.29) and invokin (16.24) pt-v-rn tine tlieorom..

Consider now the solution of the variance equation correspondring to
,(t - 0, whicih we denote by _(t; Q o). u r tb hot • (t.

the i'i~mt

UM V(t3 Q, t) - E(t) (i6.30)
0 0

exists for all t. To prov, this, it is only necesuary to note that

&(tJ Z t 0 ) is nonuecreasing with to, i.e.,

SK(tj Z to) a (tl 9j t1) (16.31)



whenever tI a t 00  Thn (16.30) fo*3iOws by standP-V! convorgence argumentc

since bW (16.9) E is uniforoay bounded from above.

.To prove (16.31), let T(°) arA T_(1) be the transition matrix and

K% and W ) be the gain of the otimai filter correspon4ing to

•(t; , t0 ) and Z(tj Q, t). 0T-1

&tt 0 t0 ) - cO.T' f 1(l)(t, f)(g(,•(T) -f_(C)(.)_ d .
t

0

Dy optimality,

SCOT( f x0(t, T)g(Tl()E(T)- ((cvQ)d)
t

0
t 0)

which wa• to be proved.

Hence we have, as an imdiate corollary or (16.8),

(16. 52) TEOREM. Suyeose that the s!ntem (1I) is uf._yptl

observable anl uniforml•y comletely controllable. Then every solution of the

variance which has a nonnegativey-efinite value at t - t convergea unifo

to E(t) defined by (16.30).

In view of this theorem, we call F(t) the moving•_ uilibri_ state
of the variance equation. In the case of constant myetem (It ) the oobticon

of the variance equation 'icpendi onli A-,- 41P.-, t - t . iC"Inco

(16.33) TZREM. Suppose the random process x_(t) is goneraded by a

constant system (I_ ), i.e., P, G, H, Q_, are conrt-zxt5. 'uppopcc_ýrurter

that (Ic ) is completely observable and completely controllable. Then _S

soluticn of the variance equation which has a nonnegative definite initial

value tends uniformpy to a constant matrix _ in the limit t - oo. This
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,sa-Aix is the •miQue DO:tirOe dini."te eqtilibriuLu nate of the var!p.ce

Oji~ ., it If IM e HOMMQ jDO& .t.r definite solution of the system

of 9&WLtajou nS•ratlc CUgbra-c equetions,

hoof. '=O Zirst part of the theorem follows at once from (16.32).

is positive 6ofinte by (16.12). It is uniqw, because if (x ;

than one cons*ant solution., (16.28) is contraiicted.

(. Coauidww Example (14.20). we

always have complete oboerambility. If det R > 0, or dýt • - 0 blt

r # then we also have complete controllability, and Theorem

which ,e.s proved by direct methodjs, shows that E is unique taid, positive

definite. On the other hand, if det 9 w 0 and fl 1 1  f 2 2 ' then Theorem (14.48)

shows that E_ though possibly unique, will always be singular. Hence the

condition of complete controllabilizy cannot be dropped frrn (16.33).

In Example (1i.50) we have complete obaervabiliLy and complete controll-

ability; the equilibrium state E given by (14.51) is indeed poltivte defiia.&,.

(k the other hand, if complete obeervability i destroyed by setting h] Q.

then there doeis not even exist an equilibrium state (unless ql C0 which

me&us that the second-order problem is degenerated into a first-order one.)

Hence the condition of coplete observability cannot be dropped from (16.,55).

In Example (14.52), we have complete observability but not ._Omuplete

controllability since • = 0. Indeed, we sne from (l,.57) that all. s1UlLi

of _t runc_ equation approach E = 0 af t -+ oo. Thus irn the abuencý,,

of complete controllability we cannot gumrantee thlet T_ > 0.

It is not clear a priori whether or not the assumptionz of ihc; cl.5i:kc&1

Wiener -blonm imply complete observability aaA oidpic controiiab"iity. (LD

fact, the answer is yes.

For if (I )is not completely observable, we can introduce upecial

coordinates so that the defining equations assume the form [35]
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d(1)/dt - F_( )x_() + G(1)r(l)(t),

(/ r(2)x_(1) + _(22)X(2) + _(2),_(t)

(1)x(a)(t)
• (2))

In other words, eome of tha state variables (namely the , of x
do not affect z(t) -- hence they may be igaoid in tha -tatoan- t . . tI
filtering problem.

A si'iilar decomposition holds if (Ia) in not copletely cantrollable:

Jl)/dt -(1)..(l) + p(12)_(2) + o(1),_(t)

•(2)/dt .•(22)_(2)

In other woids, no random excitation acts on the vector x (2) The sump-

tl v- of stationarity in the Wiener problem implies that Me ix..t st x ) O.

The stsament of the classinal Wiener problem does not explicitly
involve x. Therefore in setting • the presentation (I.), there i& no 3 .st
of 1gnerality in asaaliin that x(2) iz absent from tb*i pr-cedlg eqwtionu.

"This proves

(16. 35) MM . oi*i. 5.±uay Wi b1 corrjp-oi4

A simple exile ix prom. I by the followinag upoectl wL" of t Ia
(324.20). Lat det a - 0 buzt q 2 0, While f 1 f 22 <i) 0.M~~n

change of codrdifAites

whderend

where

22)



i + 0
S• 1T_

thc equations of assume the form

i +

Since f3l < 0, the second equation may be diaregardnd win the. Wiener pro-

blem reduces tc a first-order one.

It should be noted, howvecr, that in nuawrous applications (, ... ,

baft e (14.3)) the Wiener formoution is not sufficiently general, and in

such caeos questims of observmb 1lity and controllability ý present some

nontrivial problemsm.

In t)n classic&! theory of the Wiener problzm, the process of 6o!,-tion

invol'evu the spectral factoriation of fourier transforms into two componentr

which are analytic in the upper res. lowr halves of tJbe complm planc.

Intuitively, this proaelure is rtloated to the fact that the eigenvalueu ot

the matrix defining the hamiltonian system (Vr) (mem Sect. 15) occur in

pairs; ff X ios an eigewmlue, so is n .

n ow show tbat unmdr the byptheses of the main theorem, this reault

bi b ýener&J!ized to. nonconstant ny&Ltms as well.

oboe ble cgM]&.y cggtroA-3.e. Thn there "lat.? a,

i* - V~fiiUAaw tMOISSIMAML: xt



suach t# tht hf.LtoI ian qI1ýAikw (v,) _OM. tb ,UM r.m

dt/dt - - I
es/a/t - ! (t)ir.(v)

!%ere y(t) ietb MEifiniDteatmJ5 temaitiozi metrix Ovlxý ý
corresponding to _(t).

M.c-eower. T (t) and its inverse are uOifdOTly boundp43 fr zIf t.

a.of . tat- Z(v.* t) (t fixed, -v ---r-iAble) j' v. ru4aitioa

matrix of the optima filter, corresosponing to

t)- _•t) - tg()Rltt.

The mations of the optimal filter may be denoted by

Mhe scalmr function

v(X(¶), T) - W .) 2

tends to 0' with T -+ Cw in view 'of the main theorem end of the lenaan

preceding it. Differentiating -ith respecct to r, we obtain ax- integral

expression for Yt

Y(.x(t), t) - Y(x(T), T) f1[H()()_ 2 , jjo'('C) 1-I(-])" j 2  bi.

+ _b

'MTis prove. that

Sgt) - li.p ..
T -+oo t R(r

exists. Ditferentlating with respect to t.' we see that 8 iD a solution

of the differential equation
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low ve define the tran~sformation T bY

T(t))

+

irt~iiz1.ng (16.3T-8),- ve um tbat bbe nev irriables ( )snatisty t""=

oano-ct'lo. differential equmtione

L~~~t 0 ZJ LO J~+1*~~f

cothat 112(t) II in uniformly bounded. The pv~oof is complete.

With the' aid of (16.y~ ve cen write the matrix a occurring ix, (15.11)

in iU.iz -:ýnonict%! form



if 7 R areconstant, then sois A and an • the

determination of S in reduced to the elementmry problem of solving the set

of llmar equations in the coefficients of B obtained by getting the left-

hand side of 8 equal to zero. Moreover, in this special caseo

!(t, to) = exp(t t - )fj,

which cez b- explicitly computed as a mtrix -,Ktoments consist of sums
)I (t - to)

of exponentiea e . where I. are the elgenva.ues of F-. •is

shows that the solution of the claesical Wiener problem under the markoviar.

assumpti.cn contains tn it also the solution of t!%e problem with finite

observation interval (to ý - oo). Thus we have:

(i6.J.O) ~ _qheofp (lf) o1utý=L of the

varlsene equation can be expressed in closed form by the follav•InPi•ra w

(i) rind f by settLzg te • te-band side of the wr.L e ,e Iati=

(III) !I to zro;
c

(ii) f IM se"M Ant •.= d- side of (16.33) !a - ro:

(ii) det•eyui• th .ieUrvaiuos of (which will aivb" hae .es,•tiive

(iv) ,',*ss exp[(t t- 0 4] ; the of the _PUM M o Y

(T) cg•f 9(t, to ýZ (16.39)j

(VI) utilze (13-12).

(16.1i) XUAWI. As an illustration of thi theomma, ve =ue

expressice for in Example (1k.i)- ¶TbM Constants 0, m

given by (14. ) WA (3A. 7 )1 VO 0" that sa obey tim .SM.M

0 2 4 .+.q/r. 4 1/r
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or

Bainttu~ngthse'r&uo o r .UP~ into~ (i6.39), wer vrerlfy iýhe-

Previously given~ foruuaa (1410~i).

it myA~ be added1 th..t Xc*M1e (A4.1) wat c.,nsldered. pre'vio~ualf by

Mjunurot [8, AW3Ve 2],r t7 karo a~eial v~thod of ~ooving the Wlerer4hopr

integral equmtion. With the Aiev metho&, the soilution of the integral equ~a-

tiqu in &voided. anid tho 44gebrsic natuare of the problemi (wtiich is the

explnawtioii for the possibility of obtaining r-.sulta in closed fom!) is

clearly evident.

(216-4i2) IWK AII w&Iovur cIýu' be .azily carried

oviez', mitatis sutar&is, to the ease of 4Liscrete time. Th~ere io only one

point *Ihch requires caftinc. 'A"" writing dowvn the discret1,e @aim~Jog of

~~-g aWe.i~ '- puaw-led by tha sppearszxce of certain additional termsi.
But these terms all V y virtue of the pseudo-inverse leiwA (A.4~).



Appendix A L %W

"In mtrix uelulittions tbaex is a frequently recurxing dificulty due
to the faot that the :lvtn, of a at•r i-.. -ot - " x±:t. T_ prove

the exstnoe of a given wtrix is often cubersom end dIfficult. yore-

over, in a oasses ,oltuiona of a set of linear equaticns axiat eve•i n

the inverse of the mtrix defining' these .tis, d...oes not.

To alleviate " (thout& not all) such difficulties, it bas been

fo~umd cowrisnieaat to introduce the notic of (,h 'ao-'!*6I~d pa.o o

of a uterx. ftugkL speaking. a pse-ado-invetse =wt posenss ti-o pro-rtieb

to be useful: (i) it m=st alwy exiit; (ii) uhen used in place of tho

inverse (which =Ly not exist) it should give the correct ansver to such

Tistins "a solutions of equations. In Seneral, the pseudo-inverse is
not unique; this gives rise to certain complicaticen.

The mterial vh1ch fellowv provides the main facts nee4id -in thi,

pasr•.r ?or fvrthter details, consult Penrose [30-] and Yh3s-, (4k].

A matrix A is called a peeude-inverse of a rectanrasLr (net neces-

wrilzy square) mztrLx A if it satisfies the following relation

Mi) AA . A

If A has an inverse, it in equal to At. For ther1 (i) ianp1ies

AA- I and A tA -I; as is 'well known [42 p. 62], thokwa two reJlationf.

imPl that A f Fo (1) , see also that - (A'),.

It is easy to prove that a pseudo-inverse satisfying (i) fItiL tor

any rectangular mtrlx & We show this first for a nonnegative definite

zatrix P. It is wUI known in numrioal ansaysis W.4 that every

nennegative definite mtrix can be traneforued to a dia~goal •o• orm

'T' E, (A _.

where T is noneingul•r and the matrix B is diagonal, having on2Ly zeooes

or ones on "tree diagonal. Thus = E. "1en

Pt ; LU>



satisfies (i). I% em now Getim & peudo-inerse of an arbit.--- -- ÷---

by

Te pseu.c-inverses occurring on the rzlt •-.m defined by (,L2).

To show that (A. 3a-!) actualy satisfy we nee. a simple leuua,

-&ich is the chliof tool in applications of the pseudo-inmerse ar far as this

papdr is concerned:

(A.4I) PMUD-I3VJ LaOW. j~ be - 1,.. ,K,

SI U 1, ... , N. SImary, let B(t) be an arbitrary m x n matrix

Vhose elSnta comtijM•gH factima of t in the interval (0, TI. Tben

T t T
ý(t) -B(t)[ f1D()()r f B(¶)B(-T)d-r 0

0 0

for all t e [0, TI.

Proof. let C. respectively _(t) denote the vatrices on the itfi-
hand sBles of the preceding equations. Uning (i), we find trlt

N
i-i "' "

-a-a -



T
f D(t)D(t)1t -Q

Keuce for any Sp

N

C~mseqwintay

0910~ - IIDt)?J - 0

for Oll X.0 Iftch 1w~Ues

the lo&i L ra d

A! Sives W (A.3&) is aL pua.o-invTSe. Ywrmal (A.,%) in pruve miziJ*ry,,

takin~ trmapoSS. am*~ (A."~4) ex* in pesarl not tb* iame, 16 gee tbmt

the pwoaao-invrvTU in =At viq'm.

For emqwating tin peodo-invelS *,f a Vat&IX %Uld is 'St inqjwra mm

vould natzrJI dhow.- that ct o fmg-MIA (A 3a-b) In =fLO~A -- oa;Ml

utrix AIA or AV Is mWflai. Pr 1AUMp lain P"WW*-1uYSX4 Ot
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t A1

For mry purposes., the lack of uniqueness of the poeudo-inveree toi incon-
Yenjezkt. This iiffIict-Oti 1--b crer-c=e by adal AXMg-,-V . U-'-U1.Lailg

further ax±cw:

(III) (AA t mAA,

(tv)(AtA)f AtA.

Mmee aziom wors £ntroduoed by Penrose [391, who, pmroed the followring

(A.5) TOM= (Penrose). For every rectan~g1LiE uatrix A., there e.aJqový

.4 m 2Rly me atrix A satifyiM a aou (-iv).

To avoid confusion, ve shall call the (unique) matrix g.1ven by Penroaet i

Thearm the &q soizd inverse of A and datignate it byAi

Pranzos (see (W)], with slight xiodifications) has proved &lso the follaw-
ing Is~ortmzit pcrty of the generalized Inverses

Ot. 0) TNOI(Penrose). Roasiddr tibe eqation Ax -ab. Let x ft Albi

(a) either g~-bi > IAE 0O 4

In otbor vords, x' - ASb &iv%,s the solution of Ax. b if one owiatý-.
and the best m~zei-rt1UM to, .owto 00RC .2T DGe=C. Thas, yf, ýývo
we can call F.0 the _b" SMf~~ sn3~4io of AE -_b

Iat al ote Us followrig wa f the -,trixb

142 -taeA Z 2(A7



(A.8) CO~oUXU . _Let -erloI m of L. tp2

I~~~.t 
- Ii.I.i , 

•.

u•,iiz vhieh at4i•r t. \

In other words, the generalized ierse is "weswler" (in 'the oense of

the nors (A-.7)) than am other pseudo-invvere.

To prove (A.8), tt sutfices to note that the matrix equDti4ox

my be interprete, ! a vector equation in the elownts of Uv.- "atrix X. fw
4

hypothesis, A is a solution of this aquationr, so that c-ee (b) of (A.6) is

applicable. Q.E.D.

To illustrate this result, consider the matrix

Two pseudo-inverses amre given by

o1/3 0 0J - 1/6  1/6 o 1
L 0 / /3 0a6 1/6 0

LO
aed the generalized inverse is given by

A' [1/9 'Aý 1/9 P

L , t9 t L 1 19 1/9-so that

A_-] 1/3 > 2/1• ',' > 1_I /9.



te ge ,emi4 inermne is evidently uniquely determined by (i) and the
,tpT _-eam t- t its he t%-t saeuAo-lnverve.

rinmflyj let us ntic•.Ath gseneraliad imverse ceA be determined by a

method similar to (A.1) thbroq (A.3). This is done .01 by iterating, twice

tU algorithm. which deterais% T sat~isfying -" .

Let X be an n-dimeioml randc vector with mean x and covari-

This definition of a gaussian randc -,,ector does not apply., hovi'.r........-'',,; when

!, in i!Mul.r. Tn this ease the 1I&lUE9 S t.•kmvi eFvn hr _,•-,P.,.'•.•, ,,•t)

probability 1 to a h~yperplane of dimension ].es•' thsn n, end one cannot e,,preas
this fact by a formlad such as (L.i). Consequently It £_ ie •.ngu2.ar, the

prbaility d estribution of i is defined by first J ntroducing a linear tranzi-
}ormaion x - AY+ (where Z is a u-'vector, m being the rankL of !), such
that the cyariance Itrix of 0y is nonsinular [t4ay , p. 261 and E(yx O.

ifn the probabi.ity detwity function of I can be expressed by a formul• sa-

1oglos to (BD.3).

Theme avkwnm-d lifficuIties cmased by the sir•gulearity of Z can be avoide'd

-a-.o

Tfom hoosdesfinithion b dfnt of aaugsiannan the characteristes not apply

issril T hn aete auR0 ekrev yv1-

proabliy 1toa ypeplneofdimnsonles tann, an oe annt r,.s



3:n this definition the- inverse of Z is not requim~d.*

Since the distribution of a gausimzi r,.ndo vector is unique4, deterainod

by its mean and coverimnce matrixp It in des irable to calculate nog mu~ch as

pcaaible directly with g and F or tbase rpomes, (D.2) is better z-ed-

a than t'B.1).

Similarly., a pair of gawssiez randcai vectors x,2is defined by their

joint characteristic functiot-s-

12)) 1 ~ 1 12

CM W ll 0 + -(t.;1, 2.

it~~~1 (B.~ t3()3 ha n
I 2 42~~J .1 El k ten + c ia a A22

It fclow fro*se(B toa xriv And, wi ezr~ iRm* frA th cifdiionly if

wA ccm4±tional canriaimnea of, a pair of gassian YUIw5JC vactors. To do this

elsenntly,ý we ki use of a receat observation of Dki a'isba [4~1 which re-

late* these quamititie* to the joint characteristic Twictior.. In a sli~lltly

MC4-MOifi*&to, thIs tVs3Ult is$

LTMcmt'm -M&-MO -Li ALA, is & 11MA-Elact.1ca of --

tj Z'70L-42 MU + j]\! (BA')



where denotes the rector with ccogmq~nts t,8 i

Proof: Since every moment of a gaussian distribution is finitej it

follws •, p. 67 and 89] that we msy interchange difT'erentlation wltb -mpect

to is with the expected-value oeration, Thus

(RIVI~iS 2412I 2
0

Taking the expectatio first with respect to the conditional probability distri-

bution of x71 given and tbhsz tith r _ect t- 2 a-'one, we get

~' i~e

Interoha inixg Z and6'z.

CAi 1 2
4 ~jJ +!)

whIch croves Vwrt (ii).

To prove Vart (i), we proceed as before, interchamging I and •/ZiB

Vhiuh lead. to thz relation

valid fo eve'ry !2 This implies (BA) by the uniqueness of the fourier-

8-tieltJOS trwosfemu q3.BD2



We now state the main result of this seotion:

(3.6 TIW3L T 0 c itiona3 avectation of x. j~vei is a
mlslSi EMO .*-O-r AJ+ X (k - Ad.

This 1i the. forawza foud in textbooks ([4., p. 28], except that bers the
inverse, in rplaced by a psee-o-im.n rse. Not.e that if x - salust u.zuyv,

i.e., - , t•en (B.6) is correct since Of - 0.

To prove (&.6), we utilize (B.5). strmightforvard difTerentiatim lea&

to the condilou

Al + .k2 -2 M12 + -K M + ."221)

Since this must. hold identicmlly in !2 w j e see that X must satisfy t*r ;qu-

tion

We now show thoat this equation always has a solution, which can be expressed as

Where £ denote5 a pseudo-inverse of . as defined in the previoum section.

Indeed, if K satisfies (B.7-8), (B.6) fol3losa' at once.

lot t be a nomxnua paeudo-inverie -of sut m~c tr t raJY5v

exists; it can be found, for instance, by means of xlDations (A.1-2).) The
mat.ri x

((A2-1, 1-x- -x2) -Z.-- - - - ' Ž ?' - -F-11..

is clearly nonnegative definite; hence we can w.iite

k -. 2-"t (B.9)

We must show that

_%• =.• _•(B. 10.)



ltbatituting givwn by (Z-9) into (B.10) an~d =iking use of the psaudo-

inversCe ieumi (A. Cho we find that

t
since Ii wva chosen to be nonxingular., tbis iapliteu (B.10). Q.E.D.

'a." wtod. ne that the choice of Ia nonslngular p~eeu-o-invereo c

was for camputatioa.% -. rtiwnienae only; masy be azy pseudc.- inverse.

Fca(3.6) we obtain In&eisatlys

(BLu) in(~~ is ±,epexd-gt of S,.

To prove this., it suffices to ccqupite the cross-covarisance welbir1.x ol'

X1 (-ll-2)and ~.We have

1--1 Al-E ~ý - P-)12

t

which in 0 by (B.1).

similarly,,

(B. 12) The ccamr'ane matrix of 3(X1 jx2 ) "a q 2T-2

(B.13) The c~tc?3roavariarice mtrix of x. yL tepnln

of an~d is -ji-

PiD&11Y., we point out a usatza~ fkct:

(3.1)4) If xlo k,' 3 sare gaussifkt randcu vectors tIzd their x

13 indpeuen~t. then
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N(Yz1J12  131 13(1k + IaI2

TrO, rove this., let NI 1
Then

+ "a. 15)-

by aePWIPtI.OrA. Bubstitut~iti into (B.15).~m (]Llk).

Sau2to the inverse if the latter exist.. jýýt if the corariance

mtrizx of the conditiOinig ran&=~ variables is siun*ika . the Pseud.O-~inerae of

this matrix ("n therefor.- the con&±tioynsj expeetatien) vili nort be unique.

Thi-s is Only 'Li~ (2 cto.F~ htne lert y., and y2  be tvo

(sc&ALer) conditionaing variable. nd ... z that y- Y2 (with pjrOI!biut.Y 1);

?ben the conitional. e~pcaion Of, 66, x, Civen Y:1 s-ztI y " -,e v24ttoe,

But simo Y-1 - Yo we can also writ~e

In both cases the cOinIitiamWA erjg&taftM is tks 84 ran# mab ~to)

u-xw.sso. dift'xeut3.," tb. qm1j agiftaM ig th" in tka . tiut *

Of UA~ CO~ftiCient u~trIX isl ko. IS V t~e MeA OM, it IA s ý)* ii



I M rTerical cUittiOa l ix is sgoetimes of interest to Uke the nom' of the

matrix in (g8) as 8% aS pOS6iblO. n this case, one can take. for the

psedio-nlnVrSe th- generalized inverse of Penrose, which has the asur1est nor

(in a certain specific sense) mong all pseudo"inverses. See (A.7)-

i~
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