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FOREWORD
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Study of Adaptive Control Systems. Tats is the firat peport to he
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The vork was edminiestered vnder the direction of the Flight
Control laboratory, Aeronautical. Systems Division. Lt. L. Jolestsz
and Lt. P. C. Gregory were task enginecrs for the laboratory.

The authors are members of The Center for Diffevential
Equetions at RIAS. .
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ABSTRACT

This 18 the first detailed report on Contract AF 33(616)-6952,
ckncerned with the fundamental invescigation of adaptive control
sysiems,

A general survey of modern analytical methods of control theory
is presented, witbh emphasis on special topics relevart tn adaptive
system problems, In addition, it i1s shown how these methods are im-
piemented by means of digital computers, A get of new matrix nub-
routines is described in detuil.

To render this report as nea} gelf.contained as was conslidered
feasible, a cosprehensive appendix hxs been included. This apperdiv
is referred to in the boly of the re as [Kelman, 1961 C].

PUOLICATION REVIEW \

The publication of this repoit does not constitule approval ny
the Alr Force of the findings or concluslons contained herein. 16 ic
published only for the exchange and stimulation of idean.

C. R. BRYAN
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INTAOINCTION

This is the Tirst detailed report on.Contract AF 33(616)-6952.

This cortract 1s pait of a continmiing effort in the broad study of
complex systems rroblems. Accordingly;vit was thought that an encyclopacdic
presentation of all resulits obtained to date was not particularly desirable;
instead wve have concentrated or givinged:carorul account of the'conceptual
and mathematical foundations of the research problems involved., It is hoped,

, therefore, that the report will serve as an introduction to papers on modern
asystem theory which are now appearing in the literature with increasing fre-
quency.

The report consists of two main parts.

Chapters 1-6 give the technical and mathematicsl background of our pre-
sent approach to system theory, with particular sttention to the adeptive pro-
blem. This pert is primarily concerncd with a clear exposition of the funda-
mental ideas, with numerous illustrative examples. No attempt has been made to
state all mathematical facts with absolute precision, and in particular most
proofs are omitted. Furth»r details, which are often very involved and technlcal,
may be found ir the references.,

Chapters 7-1ll are concerned with the motivation end description of digi-
tal computer techniques used for automa“ic synthesis of optimal systems. Thesae
methods are a fairly radical departure from current engineering practices in
the systems field. They are, therefore, explained In considerable detail. It
18 expected that this materisl will eventually be incorpcrated into a "handbeok"
of instructions for the everyday uocage of the asutomatic ontimization vrogram
which ve are now develuping. Besides a complete degscription of the subroutines,
a2 munber of check programs and cvolutiona are iven which should facilltate use

of the program by others.

Manuscrirt released bty author 31 March 1961 as an ASD Technical Report



It is difficult to give « falr description of the =zdvantages ns well an
- shortcamings of the methods used in this report or of the original contribu-
tions which are involved. Two muin aspecte should b onphaoirzed, bLoweser,

(1) A comprehensive snalytical theory and method of linear syostem optimiza-
tion has been J2veloped (with partial suppert of thin contract) and is currently
nearing completion. The most important features of this method aryw:

(@) It 18 new and quite different {rom conventional metbod:.

(b) It io applicable to linear systems of any degree of complexiiy;
in other words, no modifications are needed to treat mulbli-Inpml
or multi-output systems,

(c) It is applicable in principle without sny modification (but
possibly at great cost of camputation) to lincar systems with
varylipng coefficients.

(d) 71t provides a unified treatment of control &nd filtering proble o
camuinavions of the two, etc.

(e) It provides a cancnicel block dizsgram for the cptimsl system
which can serve as the starting point of engineering design.

{(£) It i3 well suited to high-speed digital computation.

The last property of the new method of acslysle {scmetimes called the
"ptate-trensition™ method) gives rise to the gsecond tumpertant contribullon of

the report:

(P} A comgrehensive system of mumericnl computsbions ig heing developed
to 1mplement the theory. The computer progrems will b "actometed" to a very
large extent and eventuslly it is hoped thet they wiii ve avn ' ~hle ta snedeames
without detafled theoretical tralaing. Speclifically, the followlng has been

accomplizhed an fer:



{a) Matrix sudbroutines have been developed which epresent & new
spproach to the ususl computational problews of trans'ient,
response, stablility, etc.

(b) These subroutines are quite simple from the mathematical point
of viev and allow good control of mumrerical errors.

(¢) Thz method of computations ie "eigenvalue-free”; in other words,
it does not entail the soluticn of aigebraic equations of hiuh
degree which is characterietic of conventional techniguse. s &
result, our methods can be ekvended much more essily to large

scale gystems than the conventlonal ones.

For esse of cross.referencing with the other volumes of this report — which
are to ke issued loter — each chaptef 18 writtep in o8 seir-con.uined 2o way oo
possible, REquations a»d figures are numbered geparstely within each chacter,
Refere}xces are made by author and vear of publicetion; =ueh chaphber contalnn ita
own list. of references, even when this entalls some duplication; duplicaie re-
ferences occurring in different crapters asre designated in a comsistent rfashiom,

Since A+«teils of the mathematical arguments used in this i1eport are nol yet
rmadlly svallable, a recernt paper by R. E. Kelman, "Rew Methods and Rewulis in
Linear System Theory" #o included as an Appendix. ‘This paper containe a very
extensive discussion of the theoretical aspects of the optimel filtering problem.



Chapter 1,
CONRCEPTUAL BACKGROUND

1. Introduction.

The fundamental mathematicel problem in the design of a control aystem is the
specification of the control law.:
We are given a dynamicel system to be controlled, called che‘contro§_9§§gqg.

Examples: (i} an airplane, (11) a satellite, (111) a chemical plant. Information
about the physical behavior ¢f the control object i& conveyed by neans of certeln

physical measurements 2z(t). These measurements may be (1) altitude, Mach number,

pitch apngle, etc., of an alrplane; {(1ii) distance of a satellite from the moon;
(iii) camposition of a chemicel formed in a reactor. The bhehavior of the dynamical
nystem may be affected by changing certein physical parameters u(t), called con-
trol variables. Control may he exerted through (1) atleron deflection or engline
throttle in an airplene; (11) Jets or flywheels instde a satellite; (111i) hent or

*
catalysts influencing the rate of a chemicel r=actisn. The tontrol law is na pre-

scription for determining the Instantaneous values of the control variables u(t)
¢n the basis of present and past measurements of z(t). The control lav may slso
depend on certain other parameters specifying the desired behavior of the dynamical
system under control.

The problqm of determining s control lew can be ewsily stated in conceptusl
terms, but the precise mathema*ical formulation is not a simple matter. Careful

assumptions wust be made conce: ning the mathematical model which ir to represent

the contrel object, and onc wust specify in what sense the control law is to be op-
timal. Without a clearly defined model apd a clear!v understood criterion of opti-
mality, sophisticated mathematical techniques are uncilled for, perhaps even detri.
mental. In simple cacsa, tricl-and-error experimentation will lead to a system de-
éign which will be intuitively satiasfactory and probably nearly optimal. In complex

In more conventicnal terms, =z{t) 15 called the output and u(t) is the input.
This uzage ig reather ambigucus and will be avoided in the sequel.

LY



vases, this procedure becomea irefficient and scmetimes impossidle. One must rely

on mathematical ressoning, and tals requirez grester precinicn of provlem forsula-

ticn. In the physical sclances, the dangers caused by sloppy applicaticn of mathe-
mutics cen be checked by physical intuition. In the control systems f£ield - which

dealp with man.made cbjects rather than oboervations of Xature — physicel intultion
is not elways a reliable guide.

Many agssumptions must be made to derive rationally a particular control
law. Critigue of cssumptions is eapecialiy ipportant when one starts to explore the
concept of an adaptive contrsl system. Such a system is characterized by the sctusl
or desired independence of its control law from overly sypeclific assumptions on the
nature of tliz control object. To put it crudely, a control system is adaptive if 1t
can perfcrm well (pcrhape after a short atart-up period) without detailed prior
krnowledge of the dynamics of the control object. An adaptive pystem mnt be, itherve-
fore, capable of some form of learning.

Idenlly, an adaptive controller should do Just n3 good o Job in controlling =«
supersoru~ airplane as in controlling a nylon factory, without being speciticaily
designed for either job. The gap between such desiderata and the present ntate of
tcchnplogy is very great indeed. This bhas led us {and olher research vorkers in “ic
control systems field) to re-exsmine the bases of pregent knowledge Ln nn attewpt Lo
see why the adaptive control problem scems 50 exquisltely difficult. And,of ccurse,
there 18 also a very reel need for a better theory in order Lo zvalumte and
possible — understand end generalize numerous intuitive preposuls now belng made tor
practical adaptive systems.

In the initial phage of reeearch on adaptive systems we have assumed that She
equations of motion of the control object are known, and have been comcerned primar-
ily with the rigorous mathematic:,1 formulation and cffective numerical solubion of
the control problem.

The most interesting problemns in adaptive control arise when thi: szaumption (o
reiaxed; extensive proparation 18 necessary, however; hefore we can reach Lhat staogoe.
In essence, 1t {s nccessary to put conventional control theory in s c¢learer and moxw
precise form - a process which will be seen to yleld important results and suggesi

new problems even ln convenlicnal control theory.

2. Mathematical Models for Dynamical Systems.

Fundamental in the mathematical description of a dynamical syoiem (o the concept
P yn N} i)

of state. This ic ainply a convenlent way of expressalng what might he Loosely called

3



the Principle of Causality. ¥or clarity, we formslize this ideas as follaows.

IEFINITIO® OF S8TATE. The state of a dynamical system is o minimal set of num-
bers which, specificd at any given time, suffice to determine completely the future
evolution of the system, providad the future forces actiig on the system are known.

We are accustomed to represent phydical dynamical eystems by meens of & system
of n differential equations of the firet order. The state of the system ic then n
(finite-Gimenatonsl) vector. The n real numﬁcra comstilut ing the state vector are
the n initial conditions needed to uniguzly specify the solutlor of the differen-
tial equations. An exampie of this sort ie provided by particle mechanlcs: a vystem
of K particles free to move in i-dimanaionalsspace has a state vectrr of 6N com-
ponents, made up of the 3N position and 3N velocity coordinates. TIn some cases,
even the dimension of the state vector may be infinite, as in partial differcntial
equations. In other cases, the number of states may be finite, as in modelo for di-
gitel camputers.

By the équntiona of motion of & dynemical system we mean a rule which specifien

how "the state of the system at a given time 1s trensformed into other staten in the

ture. We shall alsc refer to this procese as state transition. Usunlly the equa-

tions of motion are given In the small; that 1s to sey, by differentlial equatlons
which gpecify the infinitesimal state transition corresponding to the infinltcoimal
change t -t + dt 1in the time. By integreting these differentinl equations we ob-

tain the cquetions of motion in the large; that is Lo ray, we can specify the state
trensitions corresponding to arbitrary cﬁnngea to "tl in the time.

As is common practice, we shall usually assume that the equations of motion are
linear differential equations. Without some form of linearity, explicit methematical
treatmept of the equations of motion Is seldom possible. We emphasi::, however, that
the conceptual fremevork presented here remeins valid also in the nonlinear case. In
fact, with the prenent formulsticn of the ymanical prodlem ol Soanlliicn fuia Lho
linear to the nonlirear is guite nstural — which is not the case with other methods
of Linad ool sie (l8pieec trensfo.., ..eyuwency domain mebhow., elo.)

A sufficlently general mathematical model for linear dynemical syntems i pio-

vided by the vector equations:

(2.1) dx/dt = P(t)x + 6(t)u(t) + J(t)wlt),



(2.2) | y(t) = H(t)x(t),
(2.3) z(t) = uft) + v(t),

where
x 18 an n-vector, the state of the system;
y 1s & p-vector, the ocutput of the system;

z 18 & p-vector, ih= observed output of the system;

u 13 an m~vector, the control of the system;

“ v 18 a p-vector, representihg the noise in the measurement of y;

v 1is & g=vector, the random disturbances acting on the system;

We assumc that F, G, H, J, which are arbitrary rectangular matrices, depend con-
tinuously on t.

_ In a purely schematic way, these definitions may be visuslized with the aid of
Figure 1.

The set of equations (2.1-3) includes most of the situstions commonly encountered
in engineering practice (see numerous examples of this in the Gequel). A similar set
of equations mey be obtained also in the sampled-date case. Certain complicotions may
arise, however, if continuous and pulsed elements occur in the same system. The settlng
up of equations then requires rather complicated 'bookkeeping", for the details of
vhach the reader may consult [Kalmen and Bertram, 1959 ).

It will always be assumed that v(%t) and w(t) are gaussian white-noisc pro-
cesses, i.e., théir'values occurring at different inctaunts of time are independent gaussian
random vectors. Thie can be done with virtually no luss of generality. We can repre-
gent the gonexal gaussian random procees as the outpat of a linear (poscidbly inilnite-
dimensioral) dynamical system excited by white noise. (This 18 the anntent Af ¢ha
Loeve-Karhunen cepresentation theorem [Loeve, 1961].) It is physically reasonable to
aprroximate the resultine dynamical svstem with a finite-dimensioral one. (This weans
that the power spectra of v and v are aisumed to be raticnal.) The state variubles
associated ir. this way with the randcm processes v(t) snd #(t) can be combined with
the state variables of the gystem to be ccontroiled. In other words, all prcbiems in
which the cocunptions of linsarity and gauscianness hold can be reduced -- with a change
of voriables -~ to the standard form (2.1-3).

1



P4

%, Adaptive Systems; learning States.

8o far the concept of an adaptive system hes been discussed in rsther vegue
terms. Certainl&, shere 18 no definitiion at present of an adaptive system which
meets with genéral acceptance. We are, therefore, obliged to introduce our own,
soamewhat special, defimlition., Thisg is done as & metter of convenlence; we do not
wish to claim that ours is the uvnly reasonaile point of view with regard to "adapt-

etion".

DEFINITION OF AN ADAPTIVE CONTROL SYSTEM. A control system is adaptive 17 {t
is capatle of changing 1ts control law as a resul} of measured cnanges of the: con-
tral okjeet mnd 1ts envircmment and in such a vaylaé to operate at all times in en
optimal or pearly optimal fashion.

A cystem with a fixed control law may operate quite adequately in a changing

environment. Such a system may be more properly called insensitive or invariant,

rather than adaptive. The word "adaptive" usually carries the cunnotation of an or-
ganism being able to tske advantage of a new situstion. Hence we do not regard a
system as adaptive unless it i3 aldo optimal in some sensc.

The cperaticn of any adaptive control sstem will depend on two groups of data:
(1) measured (orvestimated) values of the state variables of the control object, which
are used to determirne the instantaneocus values of the control variables; (11i) measured
(or estimated) numbers defining the equations of the control object and its environ-
ment, which are used to determine the control‘law, The tirst group of numbers des-
cribes the momentary behavior of the control object; the second group refers Lo "struc-
turel” characteristics. For instance, the positior, velocity, and anguiar momentum
of & rigid body belong to the first group of data; the mass, moment of inerila, und
internal constitution of the body belong to the second group.

A strict disftinction between these two concepts 1s not always possible, of course.

In specific cases this i1s unlikely to lesd to comfusian, however, eince we are accus-
tomed to identifying the second group — structural cheracteristics — with thouve pro-
pexties of an object which are unchengeable or change slowly In time relatlve to
the first group. _

We shall call the flret group of data the dyvnamic state, and Introduce a spectal

term for the egecond group of data,

D



DEFINITION OF LRARNING STATE. This is the "state of knowledge" - expressed in
mathematical form —~ concerning a4ll equations, statistical deta, performance indices,
etc., which are utilized in arriving at the function specifying the control lesw.

' In other words, the learning state {8 & set of numbers ropresenting all the'
quantitative information which an engiaser would use iv raticnally arriving at en
optimal control law, PFor instance, in case of the model {2.1-3), the learning state
is the collectior of numbers making up the matrices F, G, H, J, etatistica) infor-
mstion concerning the randam processes v(t) and w(t), as well az tle zwthematical
specificaticn of the performance ihdex vhich is to be minimized or maoxitized by op-
timal control, ,

As time parses, the "state of knowledge"iis likely to deteriorate, unless fur-
ther information becomes available from physical measurements. In an adapiive sysn-
tem, these measurements are utilized to update the "state of knowledge". The way in
whizh the measurenents of the structural characteristics are utilized determines the

transition law of the learning states.
In short, there are two types of Jdynamic procemsess taking place in an adaptive

contyol system: (1) the state varimdles of the control object are estimated frca

measurements and corresponding control action is taken in accordance with the contrel
law existing at a given moment; (1i) the structural characteristica of the control
obJect and its environment are monitored by snother measurem:mt procees, 4.3 corres-
ponding adjustments are made in the optimal control law from time to time,

The concept of the learning state introduced here is clearly evident also In
[Bellman and Kalaba, 1959]. A schematic picture of an adaptive system is shown in
Figure 2. We shall return later to the discussion of this tigure.

4. Examples of Adaptation.

The fcllowing examples give what we fecl is a reasonable interpretation of the
rnotinne of "ctructural characterinting" and "learning states",

Consider the proolem of manipuleting the control surtaces of &n aivplane or
missile Lo produce lateral acceleration. The action of the conbrol system will be

inTluenced in the main by the following tyr 3 of etfects:

(A) Randon atmospheric disturbances of various sorta,
(E) Loss of hydraulic fiuld; aging of -racuum tubes; eftects of temperat ire,

meisture, rediation, ete, on clectronic components.



{€) Decrcasing air den=ity at higher altitudes which (1) Zecrenses the
effectiveness of the control surfaces: (11) decreases aerodynemic dreg;
(111) changes the statistical properties of windguets; ete.

The classical theory ¢f a comtrol system [Truxal, 1955; Newton, et al.,1957]
coasiders the problem of randcm distwrbances =8 part of optimal linesr deaigpn. ¢
have.emphanized this point by including rendom effecte in the model (2.1-3). Thus
only (B) and (C) are to be regarded as "amtructural changes".

One of the pain reesons for the use of feedback is to countersct chenge. ob
type (B). Internal feedback is use& to render control equipment largely inscositive
to changes 1iu the characteristics of electronic and other comporents. According
to cur visy, emphasized in Section 3, this ia not adaptstion.

Changes of type (C) are usually the mcst drastic; they affect the very nature
of the control object. In cther words, chenges of type (¢} are not slow changes in the

environment but substituting an entirely new environment.

5. 8pecific Forms of the Learning State.

The procese of acquiring information about vne structural characterlstics of
the éontrol object and its environment may teke numercus forme depending on the
nature of the control problem. We mention briefly some of the problems which have
been dlscussed in the literature [Aseltine, et al,,199Y; Levin, 19%8].

A large class of adaptive systems 1s concerned with learning the equutions of
motion of the control object. 1In some cases, this learning process may be guite
gimple in principle.

For instence, we might Le able to express the lift and drag coefficients of an
airplape in terms of the mass, Mach number, and altitude., These three quantities to-
geiher would conptitute the Jearning stote; if they cap be directly measured, the
problem of adaptation would reduce to calculating i1t and drseg by prenssigned
formulae and utilizing the number sc obtained to wodil'vy the control law. 'This type
of adaptation can be only moderately effective since IL {5 of the open.loop typs;
no eftort is made to revime the original formulas giving lift snd dreg in tomms off
the measured quantitles. More etffective (cloneduluup) adaptation could be obialned
by fittirg & model of the equations of motion of the alrplane to Lie physical quant!.
ties messured during flight. It the date processing can be done fast enouwgh, such
& nodel vould obviate dependence on prior aerodypamic data in malntaining = neorety

optimal control law under a wide variety of flight conditionz.

10



Another exemple showing the need for a more sophlaticated 1earning proceseg 18
the following. The bending modes of a ballistic missile change with the expenditure
of fuel. If there is un accurate measurement of the loss of mass, one céde, in
princziple, compute tha shitrt in bending modes. In practice, measuring the logs of
masg with aufficient acéuracy would be very 4ifficult, and one would rather sattempt
to measure the instantaneous bending modes. The latter are to bs rejarded then as
constituting the learning astate.

Difierent 1roblems of adeptation arige whgﬁ the problem ¢ »w %o lewrn the
equations of motion of the control'object: but. to estimate the random charactoristlcs
of the command rignels which the control system isa to follow. (This is sometlmes
called "input adaptation”.) The problem migh€ bc, for infstence, to eatimete the cor-
relation functions which are needed for the design of sn optimal Wiener filter. The
predictability of a random process depends on being able to represent it by a dynami-
csl model, 80 that some "equation of motion" of the random process would conatitute
the learning state. Thus this problem is quite similar to Lhe preceding one, thiugh
there may be many variations in the details,

N.l“ine.lly, let us mention the so-called performance-criterion sensing or extremum
alaptive systems. Bome overall performance index 18 measured experimentally and ouc
attempts to find a control law (by trial and error) which oplimizes this pertormance
index. The learning states are nere parameters describing the control lew, and the
learning proceés consists of ﬁhc trial-and-error adjuctment of thege parametere.

Of course, the division of an adaptive controller into the two setn of states
1s quite arbitrary. It is difficult to conceive of a physical experimeni whi.h would
always distingulsh between the two types of states. The division 18 medc as & motter
of ccnvenience in attempting to give a workable definition of adaptation, and Is
strorgly motivated by scientific tredition. We zre used to representing vhysical dyna-
mical systems with linear or auasi-lipear models.

A single representation 18 not likely to it accurately many situntions st the
same time. We musi have tuerefore a capability of changlng the parameters of Lhe re-
prec- ‘~*'an, i.e., the equations of motion., A particular learning state corresponds
fo & particular cquation of motion; the transition in the learning states corresponds
to changing estimates of the instantaneocus equations of motion of the control object.
If the learning states can be changed rapidly and accurately, the adaptive controller
will be able to hmpndle nonlinear control objects: the learning vtates will represent

* b oy

the ba notantanecus linesr approximation to the nonlinear system.
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Chepter 2,
THE NOIGE-FREER EEGULATCR IROBLEM

1. Aesusptions and ¥oration.

For vector-matrix notation, see [Xzlman-Bertram, 1960] or the Appendi«.

It will be assumed that a sufficiently accurste m=lzl of the dynsmical system
to be controlled is provided by the linear equationn diecuseed in Chapter 1, Bection
2. In sddition, it will be assumed thrcaghout this chapter that noise effects are
absent; in other words, v({t) and w(t) are identically vero. Thus we shall be
concerned with the vector equations

(1.1)w ax/at = F(t)x + o(t)u(L),

(1.2) y(t) = 5{t)x(t).

It 18 convenient to visualize this system by means of & vector block agrsawm
shown in Figure 1A, This diagram ‘s to be interpreted Just as mn ordinary block din-
gram, with two differences: (1) the fat lines used to dencte the uignal rlow nerve
as & remipder that we are dealing with vector rather than scelrr variables; (1t)
the boxes denote lincar tramsformations on the sigopals rather thsn mulitplication
by a3celars.

Ir concrete terms the block disgram in Figure 1A 18 to be interpreted as follows.
The box 1/8 Tepresencs & s~t of n integrators. The cutput of the J-th integrs-
tor 18 fed osck with the coefficlent f ( ) to the trout of th» 7 .th Integrator.
Tha jJ-tk comtrol variable u (t) 18 fed forvard with coefficisnt g J(t) to the
input or the 1-th 1ntcgrttor. Fiually, the 1-th output yi(t) 16 a linesr cow-
binstion of the cutputs of all the integrators, where *he cutput of the J-th irtegre-
tor appears with coefficient h, J(t). S8ee IMgure 1R

We shull assume thmt ¥(t), g{t), H(t), and u(t) nre piecewine contimous

15



functions of time. Then given a fixed control u(t), (1.1) will have n unigue
solution. Aside from the time, this solutioa will depend also ov (1) the initisl
state x ; (11) the initial time t ; (111) the control u(t). It is often conven-

jent to exhibit this dependence explicitly; we shall therefore write & golution of
(1.1) in the form

Qu(t; Xo? tO)'
This aotation implies that
(1.3) ol o t'c’)im’;_xo'
and
dep (ti x,t )
0 ( 0 . " ,
(1.4) dtJ = F(t)@u(t; X s to) + Gt u(t).

The Yast equation is the definition of the solution of a cdiffererntial equatlion. The
equélity needs to hold almost everywhere with respect to t; more precluely, f1.4)
may fall at points of dlscontinuity of ®t), G(t), or ult).

Instend of the cumbersome term "aolution"; we shall usually speak of wu(t;xo,to)
as the motion of (1.1) passing through the point x = at the time t = under the fo-
fluence of some fixed control u(t).

It is well known in the theory of differential equations [Coddington snd lLevinson.
1955; Kelman and Bertram, 1960] that the motions of (1..) can ‘e expressed explicitiy

by means of the formuln

to) = Q(t, to)xo + ft Q(t, 1« Y3(iulx)dr,

t.
o

(1.5) x(t) =g (t; x,

which is valid tfox any X . ; t, t,,
The matrix o(t, to) occurring in (1.5) 18 the transition matrix of (l.1) and

(and not merely for t z to).

is uniquely determined by the followipg reauirements [Kelman and Bertram, 190].

(1.6) e(t, t) = I = unit matrix for ell *%,

1.6



and

(1.7) , an(t, to)/at = pt)e(t, to) for all ¢ and t..

From these proporties and the uniqueness of solutions of {1.1) one can show at once
that

(1.8) 8 (s, £.) = o(t, t) for all t, ¢

(1.9) oty t)8(ty, ty) = oty £)) forall b, t,, t,.

CORVERTION. During the sequel we shall frequently cmit explicit mention of
arguments (such as time) if they are obviously Iimplied by the context.

2. Quadratic Performance Indices.

We nww define the regulator problem. Given that (l.l) is at same arbitrary ntate X

at time t, we wrv to sclect a control wu{%) which driveec the output of (1.1) to

-
»

ro.
In general;, there will be many control functions which accomplish this. To

assign & numerical -alue to a particular control, we consider the following function

of the controlle »ion, ugually called 2 performsnce index:

(2.1) 2v(x, t, T u) = o (15 %, £)I5

2

~
+ fT["H(T)wn(TJ x, WS+ Hu(1)‘“<*\ldw,
t - IR Ny ey,

vhere we use the special nctation
o) n
(2.2 x||[T= £ x Ve
for an gquadratic form in x whose coelficients constitute the symmetric nonn=eative

7
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definite matrix Q. The scalar iix'llg can be regerded ms the generalized euclidean
Atstence from the origin, In (2.1) Q(«) snd R(%) are positive Gzfinite and contiruous in
T, The term o (T2 x, t)tl‘g in (2.1) 1s the coat o the _evistion of the.final
stats of the dynamical system from the origin, measured with the aid of the distance
furction fix|f . The teman [R(v)o (73 x, €)I5 oy smd fw(rME,y im (2.1) re
Present custas per unit time of tho deviation of the ocutput of the dynssical system
from ‘the origin and the ccst of the control action wu(t) . respectively.

The terminal time T d4n {2.1) muy be finite or infinite. In the latter case
spe.is’ precautions are wmcessary, as the mtegmi (2.1) must be defined by n Iimit-

ing process, letting T -» co.
This formulation of the regulator prodlem can be readily generalized to imclude

the servomechanisk problem. In that case we mre given m certain deeired cutput
yd('t} which the system (1.1) 1s to follow as feithfully as possidble. To include
this requirement in the definition of V, we slmply replace the first term in the

integrand of (2.1) by

ly3¢x) - Br)e (13 x, t)”g(T) .

Purther discussion of this problem will be postpored till a later chapter.
Eyidently the performance index V in (2.1) 1s & qumdratic function of the in-
itial state x for any fixed u(t). The reason for this sssumption is that it leads

to 8 lipear control iaw.

Finalily, it should be noted that the problem becomes meaningless if the cost of
the control power Hu(T)"g(T) 18 not included in the integrand iu {2.1), for then
V can be made arbitrarily small by using control variables of Increaningly large

amplilitudes.

5. BStatement of the Noise-Free Optimal Regulator Problem.

u.ven that the moti.. of ...2) pasoc. .l..ugh the point x at time t, find a
control uo(t) whlich minimizes the performance index V. The minimum valu~ of V
will depepd only on x, t, and T and can be denoted by

(3.1) vo(x, £, T) = min V(x, t, T; u)
u

18




A rigorous treatment of this problem may be found in [Kelmen, 1961 A-B]. We
shall now sketch the main features of this theory, omitting most proofs.

The optimal regulator problem is & spe-ianl case of & gereral problem in theorehi-
cnl phyeice or the caleulus of the variations: that of sinfimizing the action, whick
is8 the integral of the 1agrangian.* In ‘he pre_snt cese, ‘

: . ls)
Vix, t, T) - V(x, T, T)

18 the action and
(5.2} L(x) u, t) ""% Ulﬂ(t)ﬂlg(t) + "u(t)lii(t)]

is the lagrangian.
It can be shown further [Kalman, 1961 A-B] that V° satisfiles the hemilton-

Jacobi partial di fferential equetion:

(o}
(3.3) g{— + H(x, Vo, t) = 0,

O

where Vz is the gradient of ¥V with respect to x; setting

o
(B'h) Pp= Vx )
the hamiltonian ae i8 defined by
(%.5) A (x, v, t) - min (Lx, v, t) + p'(K(t)x + a(tyull™

whirh 1anda +n

, T ' ' 2
(3.6) 2Kz, 2, ) = pie)xigyy + 20 HE)x - o RLLNETR

— o v -

In accordance with modern usage, adjectives and nouns formed from -ames of mathemati-
clann who died before 190() are not aspitalized.

* W
The prime denoted the transpose of a matrix or of a (column) wectos.

19
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‘The minimization involved in (3.5) 18 known as Ponbtryagin's minimwns principle
{Pontryegin, 1957; Kalman, 1961 B]. This principie yields at once the oplimal con-
trol law as & function of p, and ¢:

(3.7) | u%(t) = -KH(t)ar(t)p -

Hence specificetion of the optimal control law reduces to finding p os 8 function
of x and t, in other worde, to the solution-of the hamilton-jacobi partiael differ-
ential equation (3.3). ' "

Formuls (3.7) io valid provided R(t) 18 u nonsingular matrix. More gencraliy,
an optimal control lsw existe if the right-hand side of {3.%) has o minimum with re-
spect to w — for which the nonsingularity of R s a sufficient, though not
necegoary, condition. These mathemutical facts have an instructive physical interpre-
tetion, es was pointed out at the end of Sectioun 2.

4. golution of the Hamilton-Jecobi Equation.

,- Equation (3.3) may be solved by assuming that
o N 1 2
(1) Vx, t, ) = 3 Il -
There 18 no lose of generality in assuming that P 15 symmetric. Since
[ ._'x‘ = 2._ 2
(’4'2) Viix, T, 1) 2 "x"S »

making use of the symmetry it followr thet
(k.3) PT) = 8.
From (3.4) and (h.1) we have,

(b.b) p = Mt)x

Butetituting (k.1) into {3.3) gives

20



(k.5)

o
%
2le

x +E X'H'QEx + x'm-%x'mn‘la'm = 0,

i

This must hold identically for all x; hence (roting that the symmetrical part of
PP 1s 3(F'P+ PF) (L.5) simplifies to

(4.6) -~ =Py PGRIG'P + K'QE,

which is the so-called matrix riccati equation. Hence we have arrived at the follow-
ing result; P

+ (k.7) A solution of the hamilton-jacobi partial differcntial equation corres-
ponding to the lagrangian (3.2) end the hamiltonian (3.%) is given by the guudratic
form (4.1), with time-varying coefficients governed by the matrix riccati equation
(4.63. This solution must eatisfy the boundsry condition (4.2). 'rhe riccati =2qua-
tion is to be solved BACKWARDS in time, starting with P(T) ~ 8.

L]

It follows from (3.7) and (4.4) that
(b.8) wt) = K He)er(5)R(t)x(t),
which shows that the op*imal control law is linear. Hence

(4.9) The optimal controller is a lincar feedback system In which ull ntate
variables of the systen must br known et all times to effect control.

The matrix

(4.1C) k(t) = R‘l(t)G'(t)P(t)

will be called the optimel gain. Figure 2 shows the vector matrix block diegram of
the optimal control system. '

The resiriction that sll state varieb. os be known at all times will be removed
in a leter chapter

2l -



5. Agplicsticn of the Theory in a Simple Case.

In order to give the resder a feeling Tor the details of the theory,-we ghall
glve a complete discuseion of the first.order case. The model of the control object
is takan as '

dx

1
{5.1) T "X ety o
¥y ®hyy%

This means that the matrices defining (1.1) are given by

F=[£,],
G = [gll}’

H = [hllli

i

all these matrices are assumed to be constant, and &, ¢ 0, h, fC. SeeFlg. 3A.
The performance index 1 defined by

u

(o] RN 4 2 T 2
(5.2) v (xl, . ) = omew \Aslla‘cl('l‘) 4+ { [qllyg(x) + rllul(r)]dt],
and therefore

Q - qull’
R=(ry!

8= [0y}

all these matrices are also assumed to be constant. Moreover, Qp; >0, 1y >0,

sllZO.

The riccati equation (i4.6) is now

22



e 2

dp 84P
: 11 1P 2
‘ - (5.3) el T R + hyiqp,

i

g8ince this is a first.order nonlinear differential equation, it is easy to dis-
cuss its beha\'ior in qualitative terzs. Eguation {5.3) has two eguilibrium states,
pll and pll’ which are the roots of the - uadratlc resulting from setting
/at = Q

B q.
2 Pu_, /2 4,
€11 12 fn + 81_1"11 .~ 0

Ty 11

P q
2 P Jz 2.2 Y
gc. 22 w p r° 4+ g% n <.
1mr, " LI TS

We then find that (see Figure )

dp
11 . ~
T <0 1 Py >Ry ov Py SFyy s

dr, ~ .
“d@ >0 1f Py <Pyy <Py

which shows ‘that pl1 is a stable and pll i8 an unstable equilibrium point of
! (5.3) a8 t 5. oo,
The meaning of letting t — -00 1in (5.3) is the fuilcwing. By the constaacy

of fll’ qu, Ty 811 the optimal performance index (5.2) is independent of the
origin of time:

(Remember that dt € 0 1in thiscese and hence the 1requalities ave Just opposite of
of the usual case wihere dt > 0).




v°(x1, t, T) = V¥(x;, 0, T - t).

Bence %+ —-~00 18 equi#alent to T -+ 00,

Then the limiting solutions of the varlaucc equation as + - .00 correspond
to infinite terminal time T.

8ince pll(O) =8, z 0, it 1s clear that euly the equilibrium state 51]
iz of ipterest. We shall calil P1 the steady-state solutics of the ri:
tion (5.5}. Note that 511 is independent of 8y, B8 long a8 &..,% 0. Tae corres-

3

ponding steady-state optimal gain is

- 2

_ P f b 5 Q

(5.1‘) kll = 811 -I-:!:—J-‘ = _E + —:_L.!' + h‘fl .;‘.].'.l
11 & 11 1)

the equations of motion of the optimal controller are
(5.5) —L (e g K )x
- dt 11 11717y
as shown in Figure 3B.

2.2 - p

Recall now that gllhllqll > C. Then L g.”k” < 0 and we nee that in

Fhe by NEMHER bus spbdusl papbom du veal o st g t‘u. oo powd Live o pogall o,

i.e., vhether the uncontrolled system was stable or unstable. This i{a not trivial
because the mere fact that a system is cptimal does not imply that it is also
stable!

Not only is the optimal system stable, but any degree of stability cen be
accomplished by sultable choice of the ratio qlb/rll'

It qll/rll >> (fll)’ using (5.3) we can write, approximatcly

A

5 2
e O N 5 I (s O
. p]
1'11/ 11 €11
\



Regarding
o - 2
LAV $IPEN

as a Tynranov functicn, we 1.’ that (te Gerivaiive along motions cf (5.1) is the

integrund in (5.2):

f

(Xe) - »
Vixy) = Byyx(0,- 68 )x

2 2 2
-(ag9hy) * rp Ky dn -

Using egain the approximstion qn/rll > > (f‘l)’ 1t follows that

—

~ 9
11 M1V T

Y

11

Hence

.0 " o »
Vix)) S-2q) 07Xy .

Yige

From the theory of Lyapunov [Kslman-Bertram, 1960, p. 386] it follows that the’
constant’ of any dynamic system (linear or nonlinear) {s tounded by

vo(xl) P Pq- ¥
10 - 2 max .~ '2—""1';;2— .
X L -vix) 91171

- e s o ru e

- e o Em am e e me em Wi e e wm ee am e o e we m e se e e wm em o m e em e o e

* That inm, TV o< V. Regarding V ap & measure Of the distance of the state from the
- 1,0
origin, this leads to the estimate V(i) = e Y ‘v(0) of the tranalent response.

25



Latting p = qlm/rll’ v2 csn summarige these results as:

A S

: 2g) 0y, Vo
(8.6) \

E11 - hlilb *

#ence the tize constant of the optimal system can be made arbitrarily smell by let.
ting p© be large, but this ie always accanpk%shed by increasing the gain Ell and
hence the amplitude of the control eignal u(t).

The guestion now arises as for what values of T-t (5.3) can be regarded as

having practically reached its steady-state valae. In other words, on what depends
the time constant of (5.3)7?
Let

{ Py TP - Py

and constider the Lyspunov function

2

Hence
, 2 2
. N “Pii €173 2 .
v oy, 44 Id - ——— R}
(6p,,) = ®p,, at (2f31pyy r USRI RSN
11
A Pyt P
=z © - _L.l:..,..-ll
(21, -8y -y
11

2 P, 2
€11 v 1172

21
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Hence the maximum time constant of the riccati eguation is

. P Qy, -1 Py ~1
2 f11 .2 - ofg? ks 1.
(5.7) n ERey Tt s bomeley, 2 o)

P11

Evidently the more stable i the optimal control system, the "famster” dces the nolu-
tion of the xiccati equation approach its limiting value.
To summarize, we have found that:

(1) 1r p,.(T) ®# O, all solutions of the riccati equation tend to .. as
, 1l 11

t = ~-00}

(11) 511 18 the solution of the optimal regulator prohlem when T = o0;
‘ (111) 1r 32 2 G,y >0, the optimal system is alwsys stable;
11711711 ’

(1v) by making the ratio q‘l/rll large, any desired degree of stability can
be obtained; ‘

(v) the time constant of the riccati equatiom is directly related tc tue time-
constant of the optimal filter.

The main aim ¢f the theory of the optimal regulator problem is to extend the re-
sults to systems of higher order and to systems with time.varying coefficlients. Thise
requires fairly complex matrix analysis, and will be discussed later. Focr further
details, cononlt [Kalman, 1961 A-Cl.

6. BExistence of Solutiops of the Ovtimal Regulotor Problem,

The main result here is expressed Ty the following .heorem, vhich is proved in
[Kalman, 1961 A].

27



(6.1) The noise-free optimal regulator problem has & solution for every finite
T -t 4if the matrix R(Y) ard tbe matrix Q(7) are_positive definite for Jl1 T in
. the interval (%, T), while S 18 nonnegative definite.

In order to understand this result, a simple counter-example will be considered
in detsil, Define a performance index by

A P

. . 2 2

(¢.2) 2 (x,, 5, 1)~ max(e %o () + [ [or) - E(n)] ar)
3 | . b

“hile

- dx. (t) b

) 1
(6.5 el axl(t) + ul(t) (o = real).

In other words,
F=(a), G=(1), 9y =3 My, 71, rgg = oL

The corresponding equaticn has a folution

e ) 2
av (xl’ t, T) = pll(t)xl'

vhere
P (T) = 8y
and
(6.4) - ffg.i.(f_) =1+ 2wy (8) + B (8).

Integrating (6.4) by separation of veriables, we get, setting B8,, =0,
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WIS

1 "Jf;é tany1-of (T-t)

- l. ‘ .
: 1. tan ¥1-o° (T-t)
Py, (t) = 1t of <1,

2, tam wof-1 (7-t)
Py, (t) =Ya- e i1r of >1,
. l- ’_g,_ | N +
(6.5) / 2., tam oP-1 (7-%)
T-t

ifa=-1,

\ p,,(t) = TL:_('F:E) 1 a=+1.

From (6.5) 1t can be observed that if « > - 1 the solution pll(t) hac a
finite escape time and the meximization prodlem is MEARINULEAS for T - t >t

where

l—(xe

(6.6) te "J;"'LE tan’l =
-

For a % - 1 a solution exists ir the steady state, that is, T - + oo 1f
811 = 0. However, if #41 f 0 and is a sufficlently large positive number, even
when @ # - 1 there is no steady-state solution. This phencmenon is shown clearly
by the state-space (l-dimeneional) plot of the diffevential equation (6.h). GSee

Flgure 5, where the arrows indicate the direction of motion ac t — -co. Indesd 1Y

29
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s, >-a +'~/a2 - 1, then no steady state solution exists. These cages 1llustrete
the problems vhich one may encounter by neglecting existence questions.

' The classical apprcach via the eulsr equations would not roveal the fact thst
the optimization problem becnaes meaninglsss Tor large T - t; the cuwler eguationg
in the present case always have a unique solution.

.7. Existence of the Solution of the Stesdy-State Optimsl Regulator Probiew.
The optimal reguiater problem makxes sense in the steady-state {T = a;) orly
if the limit f

(7.1) " V(x, t, 00; v) = Um V(x, t, T; u)
T - 00
exists and 13 finite for some control function u)t) defined tor T ¢{t, oo).

In order to investigate this situation, we introduce & new concept:

‘'

DEFINITION OF COMPLETE CONTROLLABILITY. A system (1.1) is sald to be completely
controlleble if at any initial time t eny initial state x can be teken to the
origin in a finite length of time by the application of a sultable control function.

The abstract defsnition of complete contro1lab1l1ty 18 egquivalent to the follow-
ing concrete condition (for prcof, see [Kmiman, Ho, Narendra, 1962)):

(7.2) IHFOREM. A system (3.1) is completely controllable if snd oniy if the

matriy

T 1
(7.3) W(t, T) = § o(t, T)a{. 0ol o)
t

2R S ’ -

is positive definite for some T > t.

0 -
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The &alirix W has tie following interpretatiocn: The minimum energy required
to transfer the state x at time t to the origin at time T Ig '

T 2 s ,
PG e = el

The computation of the matrix W is most easily performed by observinz thst it,
too, 18 governed by the riccati equation. To see this, we note two lacto: (4} If
' -1

A matrix P 18 governed by a riccati equatién, then its inverse P~ (4if 1% exists)

1s also governed by a riccatl equation, {ii) By the remaxk in the preceding pars-
graph,

ix"2 1 1s the performance index for a special optimization probiem:
w{t, T) f

teke x at time t to the origin at time-’T, minimizing along the motion the con-
trol energy.

Diffeventiating (7.3) with respect to %, using {(1.7-9), we find

(7.%) aw/dt = F(t)W + WF'(t) - ()R M (e)ar (t)

i

"which 18 & special case of the riccati equation (L.6). Tn practical ceses, W 15

ususlly computed by mesns of this equation rather than by numerical integration of
(7.3).

If the system (1.1) 1s constant (or stationar;) that is to say, if F, and

G are constants, then complete controllability can te checked more simply (for prooi
see [Kalman, Ho, Narendra, 1961]2):

(7.5) THEOREM. For a constant system (1,1) a necessary and sufficient conditicm
for completc controllebility is

. -1
{7.6) rank (G, YG, ..., ¥ G} = n.

The condition of complete controllability 18 not npr:-~-eorv for the existence of
the limit (7.1). But if a syastem is not completely controllable, ita stute variables
can be decomposed insio twe groups, one of which 18 completely unaffected by control.
Bee Figure €. If the part of the pystem which ie not coupled to wu {8 asymptobtically

stable, then the limit (7.1) existsy but 1 this part 1is vuntable, the Iimit will not
exlst,,



‘It can be shown ths;”if“a;linear constant aysteam is dencribed by a transfer
function, then 1t 16 always completely comtrollsble. This is due to the foct that
in writing dovn the transfer function terms which account for lack of comiplete con-
trollability cancel out of the mwerator and dencminetor.

Because a single-input/single-output coutrcl object described by a transfer
function 1= always campletely controllable, the importance of controliahility was
unncticed for a long time in the literature of control engineering. In simple ceses,
lack of controllability is easily defected and .eliminated by physical counsiderations.
On the other hand, in complicated cases when the aqus’ Lore Of motlon are wiitten in
the normal form (1l.1) and there are several inputs and cuipuie, controilability ie
not obvious and efficient mathematical means ;pnust be Cdevised to test this propertiy
of the system. This is the price cne has 10 p@y fcr s more general theory.

1¢ we do not have complete controliability, the limit (7.1} will not exist in
general. This ie easily seen by the following example

dxl/dt £ * ul(t),

_" dxg/dt = Xy,
dx3/at - X,

o O
] N
f e | ~
| S )
[ ) [
- -

m
8
o
= O
o N e}

Then V will always contain the term

”X(T)”g = [x,(t) cos T + xj(t) sin T]°

vhich cannot be affected by u.l(t) and clearly does not have a limit as T — oo.
The wmost important consequence of complete controllabilicy is the Yollowings
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Ca et

_ (7.7) THEOREM. If = system {1,1) is _constant, sompletely controllable, end
S = 0, then the limit (7.1) slweys exists.

By complete controlladility, Vo(x, t, T) may be bounded from atpve, independent
of T. The t¥:ovem then follows immediately since V°(x, t, T) is nondecreasing ae
T - 00 and a bounded, monntoue sequence always converges. It is an open ginstion at
present wvhether thio theorem holds also vhen 8 # ¢ (because then vo(x, ¢, T) is not
necesssrily monotone inereasing T.)

81ight further arguments prove also

{7.8) THEOREM. let P(t; O, T} be a soluticn of the riccati egquation correspond-
ing to P(T; O, T) = O. Then f

(7.9) P* = lim P{t; O, T)
T - 00

always exists, and P* is an equilibrium state of tne riccati equation, i.e.,

dP/dt = O when P = P*,

[

See (Kalman, 1961A].
We note also that, whenever the limit (7.1) exists, the following 1s true:

(7.10) min { 1 V(x, t, T; u)} = lim [min V(x, t, T; u)]
u T =00 T 00 v

= 1la Vo(x, t, T).
T - 00

The left-hand side is the definition of optimal control for infinite terminal time
T = o0. The right-hand side shows that the min and 1lim opcrations may be interchanged;
in other words, optimml control when T = oo can be obtained as the limit of optimal
controls as T - oo.

The proof of (7.10) is almost immediete, appealing +o the definition of optima-
1ity.

Finally, let 8 observe that while complete rontrollability gusrantees the exist-
ence of the limit (7.9) when S = 0, it may happen that for other values of S there

will be a different limit.
the equilibrium states of the riccatl equation are obtained by setting dP/at = 0.
We show that it 1s possible to have undev complete controllability more than one
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1 07 1 0
r-[ l, o.[;’ }, E= {1 1].
o 1| 0 1

By {7.5), the system is clearly completely controllable.

i1 0
" ll], R = n 1 {*

We let

0

Then the riccati equation is

4p,,/at = 2p.) - pa, - po, + 1

11 u o 1 12 4

(7.12) ~p,,/at = 2p;, - PPy B0 * 1,

“dPpp/dt = 20pp = Bl - Tp + 1-

It can be proved [Kalmen, 1961C, Fyample 14.20] that on setting the left-hand

sides 1in/{7.12) equal to zero, the resulting set of guadratic eguations has precisely
two nonnegative definite solutioms:

343 3 -1

(1
P )-é wf}-l 3+~f3

and




$(1)  4g nomsingular, vhile B

is singulax.

8. Unigueness of the Solution of the Steadv-State Regulator Problem.

To prove that the ste.dy-3iteis control law is unique, i.e., indeperdent of 8§,
we need a new concept, which may de regarded as the dual of controlimbillivy.
DEFINITION OF COMPIETE OBSERVABILITY. The system (1.12) is said to be coapletely
observable if it is possidble to determine the exnct value of x(to) given the valucs
of y(t) in a finite interval (t__l, to) preceding t_.

The analog of Theorem (7.2) 1s proved in [Kalman, 1961C, Lemma (15.7)} and may
be stated as follows: '

o

(8.1) THFOREM. A system (1.1-2) is completely obe-~rvable if and only if the
mtrix

’ T
(8.2) M(t,, ™) = [ 9'(t, TIA'(£)Q()E(t)e(t, T)at
%

i8 positive definite for some T > to.

The analog of Theorem (7.5) is:

(8.3) THEOREM. Fcr a constant system (1.1-2) a necessary and sufficilent coudi-
tion for complete observability is

mk [n', F'H', es ey F'n—]n'] = n-

According to this criterion the system (7.11) 1s not completely observable. Thus
the exampls at the end of Section T showa that in the absence of complete obsarve -
bility we camnot expect in general to mwye a unique optimal control law in the steady-
state.

Ll
A



The main result of this chapter may be stated as follows:

{(8.4) THEGREM. Consider a constent system (1.1-2), t.e., F, G, K, Q, R are
constant mpatrices. Assume that the systom is completely controllable and completely
observable. Then:

(1) The solution of the riccati eguation starting at any nomnegative definite
matrix 8 converges expomentially to & unique, positive definite matrix P es

t »-00 (or T —o00). ;
(11) The optimal control law for T = do_  is constan’ and the optiml regulator is

asymptotically stable.

This theorem can be generalized in a natural and ztraightforward way also to
nonconstant (time-varying) systems. The precise statement of the results is more com-
plicated. Xor theec statements and the proofs the reader 1s referred to (Kalmen,
1961A and 1961C].

¢« The fact that under conditions of complete controllability and complete observ-
ability the optimal system is stable 18 not a triviality since the formulation of
the optimization problem in Saction 2 did not include this requirement. Nor does
stability of the optimal esystem follow in general. For instance, if we take the
matrix 5(2) of Section 7, we find the corresponding infinitesimal transition
matrix of the stesdy-state optimal eystemn is

Ji-V3 -3

FOu?P -G = &

ol

[?1 -3 -3

vhose eigenvalues are
- o Y e
.\.l 2 "' \,2 2-
Thus the optimal system for T = oo is unstable if we choose
g = §(2)‘
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But the deeper significance of Theorem (8.4) iies in the result that every
solution of the riccatl eguation starting at a nonnegative definite initial veluvs
converges o F; morcover, convergence is exponential. This mesns that the riccati
. equation provides a feasible computation procedure for obtaining the optimml system
which is not likely to be atfected by roundoff‘errara. Note thset, according to the
thecrem, one could have obtained F Yy setting the left-hand side of (4.6) equal
to zero and solving the resulting set of simultaneous quadratic algebraic equations
in the elements of P. This procedure oan indeed be carried out ir Blmple cases
[(Kalman, 1961C, Sect. 1l4] dut when the order of the system becomes larger than 2,
the approsch via the riccati equation is 1ikgly to be appreciabiy more efficient.

+ 9. Some Important Iﬁequalitiee.

From the point of view of practical numerical computation 1t is of course by
no means enough to know that the solution of the riceatl equation converges expon-
entially, one must have also an estimate of the speed of convergence.

This aspect of the theory is not yet in a definitive form. We shall confine
ourselves therefore to the statement of thc major resulis %o date. Proofs may be
found in [Kalmar, 1961A and 1961C].

If A, B are syametric matrices, let us use the notation A > B [A 2 B] to
signify the fact that A - B is positive [nonnegative] definite.

We assume (1.1-2) is constant, completely contrcllimble and completely obser-
vable.

The desired inequalities are then as follows:
(9.1) 0 <P(t) s w'l(to, t) + M(to, t),
(5.2) P'l(t) s M‘l(to, t) + WL, t), t >t

oy
(9.3) Prt) - (b ) 3 G RGP AYY 1
"l tr M?(to. £)tr W(t_, t)

vhere xmin(A) denotes the smallest cigenvalue of o symmetric matrix A

These inequalities are useful in gulding the cholce of numerical values of Q
and R.
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Chapter 3,

A THIRD-QRTEZ CPTIMAL REGULATOR PROBLEM

1. Iatroduction.

We shall dimcuss ‘w thie chapter thé noise-free optimsl regulator probica in
a svccial case vhen the control object iz cf the thir® order {(n = 3). On ¢h

+ha
LV TR PR ¢ 1wy

0

ey
AL,

hand, this example is simple enough to be treatable in part by snalytic methode} on
the other hand, the example is complicated enough to illustrate warious problems en-
countered in numerical computation.

2. Definition of Control Object: Transition Matrix.

The defining matrices in equation (1.1) of Chapter 2 are taken ns

0 100 0 13
(2.1) F = -100 0 1 and G = | 0

0 :-1 OJ oJ

The metrix H will remain undefined for the moment.

The (conventional) block diagram of the control object ie snown in Figure 1,

Nots that tha element values of ¥ and G may be read off by inspection from the

figure.
We now compute the transition matrix corresponding to F iven by (2.1}.

simplicity we write o(t) = &{t. 0). By (L.7), of Chapter 2 &{(t) satiofies the
reiations

For

(2.2) ae(t)/at = Fo(t), o(0) = I.

Taking laplace transforms on both sides, we have, just as in the scalar case,

L5



< (2.3) | {s1 v P)8{s) = T,

Ope can compute 9{8) by solving (2.3). 'Mis is quite gomplicatéd, however,
A eixpler method is thds:

‘We observe that by (2.2) ”14(“) is the transfer function from the inyut to
the jJ-th integrator to the ocutyut of the i-th integrator in Figure 1. Utilizing

Msson's loop rule [Mason, 19%6], we can easily calculate these trapsfer Functions
21l obtain :

e+ 1 ' 1008 100

0(5) - = 1 ~1008s 8"~ 8
s(s™+ 10,000) | -8 82+ 10,600

which checke vith (2.3), Taking the inverse laplace transform of each element of
#(n), we finally get

2 . |
1+ {w-1)cos at 100 @ sin at 100(1-cos wt) i
() = -—é— 100 o 8in at o cos ut w 8in wt .
)
100(1-coe ast) - 8in at 101! + com ot

where m2 = 10.001,

3. Contirollability.

We can use Theor=m (7.%) of Chapter 2 to check whether the system {2.1) iz cou-
pletely controileble. The answer s in the affirmative, for the matrix

1 0 10,000
@, Fo, ol ={0 -100 O
0O 0 =100

ko



has ‘rank 3. o

This result is mcrely qQualitative, To get o quaniitative anewer as to how
-affectively control can be spplied, we must coprute the eontrollability matrix W
given by (7.3) of Chapter 2, and find i%s inverse (which always exiats by complete
controllability) to see how much energy is needed to take the verious ststes to zero.

We could compute W by direct integratiorn, since the integraznds in (7.3) of
Chartear 2 would iavolve only simple trigonmometric fumctions., Dut this tesk ie
erceedingly tedious, Calculating crudely, we see that if T -~ t 15 ceveral times
larger than the period (2m/o = 6 X 10‘9) of ®(t), then tne amount of ensrgy
required to take the atates

¥

)

e N e

to 2ro is about 5 x 107 times emeller than the energy required to take

H
N
]
OO

to zexo,

in practice, the matrix W 1s obtsiped by computing the solution of the differ-
entiel equation (7.4) of Chapter 2 by mears of the mdthods discussed in Chapter 12. .
Takdng R = [1], we get the matrix

b,9765 G.0126 - 0.050%
W0, 1) = 1 0.0026 5.0201  0.0000] x 107t
["0.0503 0.0000 000015J

whose inverse is
[ 0.0003 0.0000 0.0101. ]
"

w0, 1) = 0.0000  0.0002  0.0000 | x 10"
0.0101 0.0000 1.0001

47



The numerical results thus confirm the earlier qualitative conclusions.

b, First Attempt at Design.

We azsume that the primary objertive of control 1ls to aesure that X3 is
amill at all times, Therefore we set

(b.1: H=[1 O O}

It is & good idea to check immediately whether, with this choice of H tho system is
campletely observable. In view of Theorem (8.3} of Chapter 2, complete obskrve -
bility is eguivalent to

1 0 10,000
0 -100 0 A0
0 0 100

det[H', F'g!, F'2H'] = det

o

Hence H given by (L.1) assures complete observability.

Guided by the anaiysis of Section 5, (hapter 2, we now wish to choose the ratio
Q/R large in order to assure an adequate degree of stability (in the present case
both Q avd R are 1 x 1 matrices, i.e., scalars). Suppoee we let Q/R = 10",
Moreover, in view of the method for computing *the riceati equation explained in
Chapier 11, 1t is best to take Q = R-Y = 102,

In view of the discussion of Section 4 of Chapter 2, the steady-state value
of P can be obtaiped by setting dP/dt = O 1in “he i1iccati equation {4.3). More-
over, this solution 1s always unique. We observe that if P = I, then dP/dt = O.
Hence P =1 1o the steady-state svlution of the ricceti equation, Therefore,

K =®ig'p = 10%'= (100 0 0]

is the ‘opt:mal gain. The infinitesimal transitisn matrix of the closed-loop optimal
system iag



2100 4100 © ‘I
(nz) F=F-ok=r-10%06 = | -100 o +1
o -1 0 _l

The eigenvalues of this matrix are given by

Xl = . ,01000

(4.3)

A, « ™ - 49,9950 * 1 86,605k,

2,3

which shows that the optimal closed loop systém 18 very poorly damped.

The explanation for the poor dampirg is the followipgt The criterion of optimai-
ity requires only that 3 be quickly reduced to & small value. This does indeed
happen, since the first row of the optimal closed-loop transition matrix 1s given by

ﬂ 9, (t) = 107 4e 0Lt 4 3 151~ H9e995t oy (86,605t + 2.005),
90(t) = 2107 %e 0Lt 4 3 15ue~¥9-995t i (86605t + 107V,
?,5(t) = 1072e7+01t _ 51356-49-995C 41 (86.605¢ + 1.047).

This shows tbe effect of unit initial conditions in Xys Xp» X5 OB xl(t).
Ov the other hand. the criterion of optimality does not require good control
over xj. 8ince (see the discussion of controllability) xj i very weakly coupled

to x,, the good transient response of x, does not bring about & similarly gocd

transient response in xi. Another way o; saying the same thing 1s Lhat the control
energy 18 used more effectively in reducing Xy thng in reducing x§, because x3
does not enter directly in the error criterion ”Jx"Q and the amount of energy re-
quired to quickly take x3 to zero is enormous.

It should be noted that,in eccordance with the general theorem {8.L) in Chapter

2, the cloned-loop coptimal system is asymptotically stable,

k9



5. Second Peaign.
Motivats] by tre firat set of results, ve now let

' 1 0 0
. A=
(5.1) 0 0 1 ’
and
00 o 1.,
(5.2} Q- [ J , R=[1072],
L o 100

In other vords, ve weighterrors in Lj and Xy squally.

The observebility wetrix corresponding to (5.1) and (5.2) wes obtained by comput-
ing the Bolution of the riccati equation (4.6) of Chapter 2 with R“l = 0. We fourd

[

4,5778 0.0126 0.0502 ]
0, 1) = | 0.0126 5.0204 -0.0001 | x 10,
0.0502 -0.0001 9.9795 |

2.0090 -0.0050 -0.0101 ]
(5.3) w10, 1) = |-0.00%0  1.9919  0.0000 | x 1072
-0.0101  0.0000  1.0001 J

The stcady-staie value of P was obtained from machine calculatioms as
0.0101 -0.0001 0.0099
(5.4} P = {-0.0001 0,001 -0.0100 | x 10%
0.0099  -0.0100 1.0083 .

This gave an optimal steady-state gain matrix

50
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(5.5) ¥ = [1.0099  -0.0099  0.9899] x 10°

and an infinitesimal transition matrix of the closed-loop optimal system

l’ -1.0099  1.0069 -0.9899']
(5.6) FPep-@= |-1.00 0 0.01 l x 1072
0’ -OQO:'.. 0 [

)

-

The =igenvalues (5.6) are
).1 - - :9999,

(5.7)
Ay 5 =" ¥9.99%0 + 1 86.60%%,
 J

vhich shows that we have improved the damping by a factor of about 100 by giving X,
equal weight with x in the error criterion. Defimsd by H and Q, the aew
error criterion hat forced the system to distribute the contrnl ensrgy botter be-
tween x, and Yo Thie improvement has not been made, however, without a coaslder.
able increase I(n required control energy, even though the firat componzpt cf the
K matrix remsins essertially the same. Note also that '1?'}3 18 100 times larger in
this case than in tba previous section.

Firally, observe that control over x a1d X, is virtusily unchanged, avd

the complex eigenvalues of 7° have remained the same.

6. Third Design.
Another design vas investigated, setting
{mn TR
(6.1) B@gE = {0 0 0 .
[ 0 0 500

Error in r.j ure weighted five times more than errors in X, - W sgain have com-
plete observaliility.

51



. The observability matrix was found to be

0.k984%  0.001%  0.0ks52 '!
(6.2) | 40, 1) = | 0.0013  0.5023 -0.0001 | x 107
0.0452  -0.0001  %.9991 ]

Notice that the terms in the third row amd third column (i.e., terme mesociated with

13) sre much larger than in (5.2).
The steady-state value of P vas obtuined from machine calculziicme und 1t was

observed that P converged more quickly than it did under the comdiiions of Bection
5e

t

0.0102  -0.0008  0.0223%
(6.3) P o~ -0.0002  0.0102 -0.0228 | x 10°.
0.0223 -0.0228 2.2862

We see that all terms associated vith X, @are (eprroximately) &5 times larger

than in (=.4).
The optimal steady-state gain matrix was founmd to be

(6.k) K = [1.022% -0.022%5 2.2259]) x 10° .

The infinitesimal transition matrix of the clused-loop optimal system was found
to be:

-1,022%  1.0225  -2.2259
x 107

(6.5) r°=r_gx= | -1.0000 o. 0.0100
o. -0.0100 0. i

The eigenvalues of (6.5) matrix are

. A, = - 2.2%
(6.6) 1 55)

N k9.99k9 + 1 86.6199.
’
Tha following are some notevorthy aspecis of this examples

o



(A) The elements ky, and k13 in (6.4) are larger by a factor of 3
then corresponding elements of (5.5). This 1s due to the change in Q/R.

(B) Despite this change, k,, 1s aow still only .02 times k;, which bus
remained unchanged. In other words, ther: 1s .essentially no chaage in the control
ovey Xy and xe. Hence the complex pair of_gigenvnluee in (6.5} remains sbout
the same as (5.7).

(C) The ubiquitous factor of V5 is to be expected from the scalar analysis
in Chapter 2; see equaticns (5.6) and (%5.7).

7. Fourth Design.

Finally, we took

(7.1) H'QH = 0 20 0 |.

8

Again ﬁe have complete observability with

1.5025 -0.0013 0.0352

X 102.

.
(1.2) M(0,!) = | -0.001% 14977 -o.oooo{
|
I

0.0352 -0.0000 1&.9992_~i

The riccati 2quation converged ton a steady-state value of ¥ more slowiy than
«u the third design (Sect. 6), indicating that the largest eigenvalue of the closed
loop system is somewhat closer to zero.

Thc gteady-gtate gain matrix

(7.3) R = [1.5826  -0.7523  2.2203] x 10°.
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ceomaa

e infinitesimal transition matrix of the closed loop optimal system was

1.5826  1.7523  -2,2203
(74) ¥ =F-0R=|-100 0 0.0106 | x 20°.
0  -0.0100 0

e sigenvaluss of this matrix (7.4) srw

Xl w -1,2910 .

(7.5)

2 = ~78.4830 + 1 211.2952

2,5

The size of the real eigenvalue accords with the qualitative prediction made
from the rate of comvergence of the riccati equation.

Qualitatively the shifts in the eigenvalues could be predicted on the basisc of
more control energy being put into the X, =X, loop at the.expense of x5 control.
Quantitatively the picture is considerably more complicated then 1t wee in the one
dimensional system analyzeé in Chepter 2. For instance, it would appear heuristi-
cally inviting to assume that X, and X, are 8o tightly coupied that

[100 o o]
H'QAH = 0 200 ©

0] 500
18 the seme au
I %00 0 n‘l
H'QH = C 0 0
0 0 0 I
L 20 -

ard such an éanumption is possible to maintain about the obse:vability matrix where

1" x2 terma. But this point of view is too

naive to account for the changes in P wand K.

s factor of three appears In the x
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A careful analysis of the means of applying the insqualities of Chapter 2 i8
required in order to obtain information about Q and R in terms of parameters
more familiar to the engineer, such ap tims constants and frequencies.

8. Refexrances.
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geaphs”". Proc. IRE, Ml 92
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Chapter b.
OPTIMAL FILYENIG THEORY

3. Motiwvation of Assumptions.

Another prodlem of optimization of 1mpaftuncu fer the stuldy of adaptivm systems
is thet of statistical estimation tbeory or gzperalized Wiener filtering. In this

problem 3t is usually assumed iLhat one ohserves a signal in the presence cof additive
poise and one desires to find a "best eatimaté" of the signal by linear operations
on the observations.
ent (but by and large equivalent) form. We assume that the state x of the control
object cannot be observed directly. We can, however, measure some lirear combinstions
of the state variables. These measurements are denoted by the vector y. The measure-
ments are not made with perfect accuracy, so that actually w= obscrve & ﬁector z
thch is the sum of y =and a vector v representing measurement errors or noise.
In addition, 1t is also assumed that the control objJect is subject to certain random
diaturbanées v acting on 1it,

In accordance with the discussion in 3ect. 2, Chapter 1, thege assumptions, com-
bined with linearity, yield the equations

(1.1) | ax/dt = F(t) x + G(t)w(t)

(1.2) 2(t) = () + vit) = wlEdx{t) + v(t)

vhere w(t) and v(t) are random processes (see below). In the first esquation, =
omit & term involving uft} since we are not concerned hers with the control problem.
. This term will reappzsar again in Chapter 5.

Alternately, one can interpret these equations in the foliowing lorms: We are
given a random process x(t) and a related random process z(t). Values of z(t)
are observad over a certaln intervsl of time. On the basis of these observaticns,
we wish to estimate the value of x(tl), vwhere t, 1is some arbitrarily ~hosen
instant of time. It can be shown that if x(t) 1s a markovian and gaussian random

Lremira

o1
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process, it can alvays be represented by & schoms such as (1.1-2). See [Kalman,
1961C, Sect. Tl. ,
¥e make the further assumption thet +v{t} and w(t) are gaussian white-noise
progesess independent of each other. Thay are speciiied mathematically by their
cuvarienss matrices

(eI (1) = Ty (Ehvy(1)] = ()8t - 7),

Eefe)v! (v) = i (B)u ()] = Qe)B(t - 7).
(1.3) / *
‘; xw(t)v'(t) = 0 for all t, T,

( Ew(t) = Bv(t) = 0O for all t,

vwhere E ‘cepresents the mathematical expectation, 8(t - t) is “he Dirac delta func-
tion, §, R are positive definite matrixes., The case of nonvhite noiss can be re-
duced to this formulition by o change of variables.

«We ehall often refer to (1.1-2} as tke model of the signal process. The matrix
block disgram for the model is seen in Fig. 1.

A much more detailed discussion of the subject of this chapter may be found in
[Xm1man, 196iC].

2. Btatement of the Filtering Problem.

€

The filtering problem can be stated as follows: Determine a linear operator on

the set of obwarvations (z(t)|re [to, +1} vhope valus ':‘:(tllt) at time t, bhas

the properties:

(1) ER(t)]t) = Ex(t)),

L4 n o~
(11) EIIx(t‘..Lli‘.)";?3 =L bi‘jﬁixi = minimm (B agy posiiuive definite
’ 1,3=1 - mq.trix.).

Above we used the abbreviation
(2.1) (t|t) = x(t)) - (¢, |t)
for the error in the estimate ?c(tllt). The observations of =z start at time

58



(vhich is taken as fixed), and end at time t (which is taken as a rumning para-

neter). _

Thus %(t,!t) 15 to be unbissed, minimum variance estimator of x(t); that is,
Q(tl{t) minimizes the average valus of the squares of the error. " One of the interes-
ting properties of the estimator R(t,|t) 1s that the best estimstor of the scalar
quantity

' . n ‘
(2.2) a‘x(tl) = § aixiit}‘
=]

tums out to be

| g’ﬁ(tlit).

‘3. Solution of Filtering Problem.

‘By & rather involved argument glwin in detail in [Kalman-Bucy 1961- Xalmsa 1$61C)
it can be shown that R(t|t) 1s the output of a dynaumicael system similar to (1.1)
whose input consists of the cbservations =z(t):

(3.1) BEE) L p(e)k(ele) + K(e)2(t) - BRI,

The dynamical system (3.1) cen be physically realized by a feedback system as shown
in Pig. 2.

It can be shown that K(t), the gain of the optimal filter, is determired by
the covariance matrix of the errors of the optimal filter. In fact, if

Ex(t]t)x(t|t) = £(t)
then
(3.2) K(t) = S(t)H (+)B (1)

Furtber, it can be shovn [Kalwan-Bucy, 1961; Kalmsn 1961C] that =&(t) ie deter-
minscd as the solution of the following matrix riccati equation:

(3.3) %‘- = F()S + ZFT () - Z*(£)ES(L)H(t)L + §(¢)



where
E(ty) = lb:(to)x‘ (to).

To avcid confusion between (3.3) and the metrix riccsii equations of Chapter 2,
we sball usualiy refer to {3.3) ae the varlance soustion.

Notice that this equation is sclved forward in time. By solving (%.3) and then
using (3.2) the optimal tilter {3.1) completely epecified

4. Duality Relations. .

It should be noted that the solutions to the’ regulator problem and the filtering
probleat are quite similar: 1in each case the problem reduces to the solution of a
eatrix riccati ejguation. Actually ouch more is true. To every riltering problem
there corresponds e "dual” control problem so that the same riccati equsticn providen
the answer to both problems. The "duality relations” may b stated explicitly as

follgwa :
p
Filtering Control

£(t) C— P{t)
F <> F'
G o> H'
H > , G*

t, <> T
] <> Q
R <> R

This shows in particular that the conditions of complete contrsllability and com-
plete observebility are duals of one another. A compietrly controliablc dynendc sys-
tam of a control problem is the dusl of & compl '~ ohmervadble dynamicel pyyten of
a filtering problem. Hence the existence and wnigueness theorems in Chapter 2 are
valid also for the filtering problem, with the conditions dualized amd the copoiv-
sions now pertaining to the optimal filter rather {han the optimal cotrol system.

Esch counter-example of Chapter 2 would serve, after 1t 1s dualired, as & counter-examploe
fer a filtering theorem.



%. - Dample of a Filtering Problem.

The rollowing spesianl case of filtering problem will be considered in Aetail
to illustrate the application of the gensral theury,

The signal process x, is given by the dsfferential equation

1
(5:2) ‘;;" = rll?l'; ¥y
the observed signal is .
(5.2) Zy = Xy + vi.

In accordance with (1.3), it will be assumed that
Ewl(t)wl(f) = qllb(t - 1)
( -
(5.3) Bv, {t)vy(t) = r ;8(t + 1)
o
By (ty) oy (L) - a

or

F - [rll]) C = [l]) H bl [1],' a = :.q.]l}v R 4 [rll]'

Specializing (3.1) to this case, the equation of motion of the optimal filter is

ax, (t]t) oy, (t) N
(5.15) —--aT‘-— - fllxl(th;) + ;;I-—“ Zl(t) - xl('t}lb)]

The block disgram of the optimel filter is shown 1u Fig. 3.
The solution of (3.3) in this case can be found by separation of variables and
integrating. The end result 1s
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The soluticn of the steady-state filtering problem (to = 00), ‘the conven~
; tional Wiener problem, exists since the model 1s completeliy controllable snd com-
Fletely observable. The solution of the Wiener probdlem is given by

e
q.. 3
11 - 11 -
(%.6) e o,,(t) = (£, + J 2L, P Yo, = = = g,
t - +00 Tt 11 ryy o WR —n 1
"1l 2
;]_l + fu - fll

t

T™is is a well-known result of the conventional theory.
Notice that the optimal filter is stable regardless of whether the signal pro-
cess was stable or not.

Ir fIL'I. < < _.‘._ll-l_ then the time constant of the optimum filter 1s at most
r
& 1
;]J.
‘ .a——- » which shows that the less noise power in relation to signal power the faster
11

the filtering loop. Hence the time constant ol the optimal filter depends directly
on the signal to noise ratio. Since the filtering problem is the dual of the control
problem, all of the extensive diecussion in Chapter 2 is relevant also to the filter-
ing problem.

6. References.

R. E. KALMAN (i961C) "New methods and results in liunear filtering and predic-
tion theory", Proc. Symp. on Kngineering Applications of Probability aud
Random Functions, Purdue Univsrsity, Nov. 1960; to be published by Jiley.

H. E. KAIMAN and R. 8. P0UGY (1961) "New Results in Linear Filterin, ¢ Pre-
diction Theory", J. Basic Engr. (Prans. ASME). {(83) (to appear).
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Chapter 6.
TEX ADAPTIVE CORTROL PROBLEM

1. Crientation.

It is now quite clear how Fig. 2 of Chapter 1 is to be Itexy *ed, We assume
that the egquatioms of motion sre given in form introduced in Chepter 1. We solwe
the filtering problem first, yielding the box marked "state cstimator™. Then, as
discussed in the preceding chapter, we form the "optimal controller” by cperating
on %(t). This will be a linear operatiom, represented by the matix }(261;).

Asgume nov that we have a means of measuring the values of the matrices,

F, G, H, §, R. The estimates of theve parmmeters will form the ¥ arning statea.
fhe other paramcters of the problem, nemely 3, Q, R specifying the gquadrstic per-
i‘ormnce index are usually given exactly.

« With these estimates, we compute the solutions ot the two relovant riccati
equations of the filter and rogulator problem, closing tha "adaptive" lcop,

Of course, nc¢ claim can be mmde at this time that such a procedure 1s oplimal.
It 18 probdbly not. But the combined problem of instantanteously best control and beat
estisntion of the structural parameters is too difficult ai prepent 4o he zariocunly
studied.

2. desl Adaptatjon.

Bupipisns bhat bha [aepipg firossns wma ddsnd  bhat o 10 Li popmatbla L A Sk
the values of ¥, G, H, J, §, R by observing the system output =z{t). Then me ccuvld
design a controller on the basis of the theory of Chapter 5. 'fhe cowblnutiom of tho
g=neral controller and this i1deal learning model will be celled an idsal adaptizc
syatem. Obviounly, 11 wil) have the Bast LOrfOrBANCE Gl wiiy crwe. -ice S50 eedie  Doofiwen
of tiae theory of the gemerai control problsz presented in Chapter %, thc performmace

of the ideal sdoptive system in a given environment can he detsrmined exnetly -- this
is Just the general time varylng control problem.

The concept of an 1desl adaptiwve systen has two major prectiosl uses:



The performance index is now defined to be the average value of V, denoted by EV.
The average is taken with respect to the probability distribution of w.

The general control problem is then the followings Find a comtrol u{t) such
that EV is minimized.

In Chapter 2, the optimal u(t) depended only on the initial state. Here this
is no longer true, becsuse the effect of w cannot be predicted at the begimming of
the contirol process. As additional values of.ghe state are messured, more information
is obtained and this information must somehow be utilized in computing the optimel
u(t). ' o
To define the problem precisely, we musf; t.i:ere:tore also add the following:
Control must be based on the actually observed vulues of =z(t) in the interval

(¢, t).

3. 8Solution of the General Control Problem.

In this section we shall give the form of the general solutlon; details will be
omitted, since the theory is not yet complete.
The best estimator i(t|t) of x(t) 416 orthogonal to +he error of esiimation
x(t|t)s hence
1 | x(t) )2, = Bx + X(t)e))3
(3.1) Ellx(t) ey = Elx(ele) + X(tle)llg, )

- BR(s 10y ) + B I0) Iy -

It can be chown tbat x(t|t) and X(t|t) satisfy the differentizl equstions

(3.2) %—f-(ﬂﬂ « F(2)X(t]t) + xl(t)[ﬁ(t)£(ti-t) +v(t)] + o(thult)
and
(3.3) %%'(ﬂﬂ = F(t)x(t]t) - xl(t)ln(t)i‘(tit) + v(t)] + w(t)

Or the tesis of equstiom (3.1 )1t follows that
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s %

+ Hafell_ . acy

T
. A n2 Hae £ _ A
(3.4) KV « n(||9“('r,z,t,w)u§ + ftlln\‘ ¥ HR{T)

~

T
+ BUB (7,0t w2 ftnn(r)éu(r;m,z)ﬂé(?)dﬂ»

wvhers @ 1s the motion of (3.2) and § ' is motion of (5.3). From +the form of (%.2-14)
we sce that the problem splits into two paris;

(A7 sstimate x{t) by filtering theory.

(B) Cantrol the system defined by {3.2) accurding %o tis noise-free regulsor
theory. P

This "decoupling”™ of the problem into the two parts previcusly discussed ia due
to the linearity and the fact that the random forcing term in (%.2) is a white-nolse
process with zero mean. 8ince such & process 13 completely unprmiiclainle, 1t carnct
be taken into account in computing the optimal control law. In other words, the solu-
tion of the regulator problem when the state can be exactly sand instante=ncously mcuasured
ie the same with or with-ut a vhite-noise type of fcrcing term.

‘  fThe canonical form of the optimal control gyztsm In the generel casse 18 siown

~

i» Mg, 1, which 10 self-explanatory. Kl 13 used to denote ihe optimal fesdback

gaine obtained from the riccati equatlon of the control problem.

4., Engineering Implications of the Form of the Solution.

A3 in the filtering problem, the railc of the dlsturbancs power Q *o Lthe notue
power R gives an estimaute of the reciprocal time constant oif the riitor (o &l 0.
If the disturbance power {8 smoll in comparinon to the nolee powar one gobo o reln-
tively low gain in the filtering loop. However, Q& may be regarded nn a rough mes-
sure of how w21l the dyremic model 1s known, o} beling large for the couoe vhorn the
mnde! dyanmics are not known well. In prectice usuilly @ ean be agsured to b
fairly large in comparisom *o R.

As in the nolse-free roguiator problem, the time constaat of the control loop
can be approximately snecified by tiwer cholce of RQ-l.

Arguments almilar to those in Chapter 2 glve equivelent time constenis for the
sicentd equations (14) and {17) and prouvide verifiadble conditlons as to when ihe two

gains K,J and K, can be replsced bty conslantu.

‘o
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Chapter 6.
THE ADAPTIVE CORTROL PROBLEM

l. Crientation.

It is now quite clear howv ¥ig. 2 of Chapt:er 1 is to be nvery *ed, UWe assume
that the egquations of motion are given in form introduced in Chepter 1. We solwe
the filtering problem first, ylelding the box marked "state cstimator™. Then, as
discussed in the preceding chapter, we form the "optimal controller™ By crerating
on Ql(t). This will be & linear operation, represented by the matrix Ka(t).

Aspume nov that we have a means of measuring the values of the mmtrices,
¥, 0, H, §, R. The estimates of there parmmeters will form the ) armming states.
The other param>ters of the problem, nemely 3, Q, R specifying the quadrstic per-
fomnce index are usually given exactly.

¢ With these estimates, we compute the solutions ot the two rolowvant riccati
oquations of the filter anmd regulator problem, closing tha "adaptive" loop.

Of course, nc claim can be mmde at this time that such & procedure 1s optimal.
It s proﬁnbly not. But the combined problem of instantanteously best control and best

estimntion of the structural parameters is too difficult at present to be zeriousiy
studied.

2. ades) Adaptatiom.

Bipipsnm thak the [austidng firtradn sap ddmm) | bhek fn 10 Ly prmatlia Lo A S mrmtpe
the valves of F, G, H, J, §, R by observing the system output =z(t). "en cme eculd
design a controllear on the basis of the theory of Chaptor 5. The combination of the
gzneral controller and this idenl learning model will be celled an 14sal adaptivo
syatem. Obviocunly, 1t will have the bast [OrfOormRAnCe ol .y wiy tit. Srlied. Doiluwe.
of the theory of the generai control problsm presented in Chapter 5, the performmnce
of the ideal edaptive system in s given environment can be detsrmined exnctly ~- this
is Just the general time varying control problem.

The contept of an 1desl adaptiwe system has two major precticsl uses:

T



{1) The evaluation of various alleged "adaptive™ designs; the determina-
tion of whether an udaptivé conitrocller is really needed, and vwhether
even an ldeal adaptive controllier cen dco the Asb, ’

(2) The actual design of adaptive comtrollers.

These two uses will be explored in the asxt sactions.

3, Ewaluntion of Adaptive Designs.

To check a given adaptive syatem damnian. vm preferibe the evolution of the con-
trol object in time Wy spccifying P(t), G{zj, H(t), &t), =nd F(t). e then
coupute the optimml control system based on tae knowladge of these parameters. This
glves us the perforwance of the optimal ad&ptti\.vé system, For large learning times,
a well-designed adaptive system should approach this idesl,

X'ie cant also obtain a lower bound on the performance of an adaplive sysiem. We
take some "awverage” value of F(t), G(t), E(t), &{t) and R(t), ond design u
control system with a constant control law based on these psrametcrs. If a control
system 18 truly sdaptive, it must perform beiter than one whose control law is based
on the "average” equations of motion. Of course, ihere is no guarantee that any
'-.’.asign with s constant control Jlaw will be atable under the various conditions which
mey be encountered; 1f so, this is e sure indicaticn that an adaptive system {p calicd

for.

L., Design of Adaptive Systems.

Sy A

An adaptive filter could be envisicmed as follows. Tuke estimstes 1:, G, H,
& B of F, G, H, Q, R supplied by the learning process. Substitute the coti-
mates in the riccati equation, amd use the solution of this equation to set the gatno
of the optimml filter. Sece Fig. 1, where the sdaptive adjustments are indicated by
dashed lipes. This is, of course, largely an "open loop" process; it coulid de lm-
proved by messuring the pemformance of the filter and then feeding this infommation
back to the leaming process.
If one vould *%ry Lo extend thle scheme to the control problem 44 ieultic: would
arise nince the control feedback gains arc obtaincd by solving the viccatl eguation
- backvards in time. Therefore in the control predlem the leerming procese must suoply
pmdiction_s_ of F, G, H at least as far into the future us several time ~onziants
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of the ricoati sguation of the acatrnl problea.

This 13 ow of the resams vhy

| o
A d

is important to undaratand quantitatively the d;mamical dehevior of the riccati

equation,

™his approach separates the art of the design of the learning procese from ths

. science of optimal control.

5 le of an iva Filter.

This e.nupla will be explained only in a superficial way since it 1s quite

volved, The interested reader can consult [:_Buny, 19%].
The model of the signal process is taken as

(5.1)

while the obsarved signal is
(5.2)

In otber vords,

[0

. T =
(5.3) o
0

§ =
0

Mote that thia srstem is completely observable and completely controllnble.

dx,/at = x,,-
d.xé/dt =V,

1]

, BE=[1 0]

0

O 1

- ’

qu_‘

case the optimal filter 1s described by the equations

>

i this



(5.9)
| dx /At = k(2 - %)
where
o A T . -
.6 Koy = : K, o= R = »
(5 ) 11 fu 21‘ rll ¢ Ell

The scalars kll’ kal and ¢ satisfy the aquations

2
dxll/dt - 2321 + kll’

(5.7) ak, /At = ¢ - kK,
q
11 2
' de/at = &= - k_.,
_ L 21

vhich follow immediately from the variance equations in Chapter k.

Nov suppose that 511 and ;11 are the only unknown parameters. 7Then it
followas from (%.7) that 1f all/;ll could be estimated then {5.7) could be solved
to ot the gaina in (%,%) and hence achieve sdaptive behavior.

T™he variadle € = zl(t) - fi(t't) = §i(t|t) + v(t) is witc-noise, 1.s., has
Tlat spectrur when the system (%5.%) 48 optimsl. When (%5.5) 1= nct optimal € {with
). being the es*‘mate of all/;ll)" varies as in Fig. 2. One can compute the arca
yr:ar the spectrwm £ ¢ from 0 to ®, by vassing € through a low-pass rilter
and then rectifying it. TLikewise, the area under the epectrum ¢f ¢ from o to
ano is camputed by mears of pasaing € through e band-pesa filter and then rectify-
ing 1t. Therslore a convenient lerarning process is provided by the nonlinear
differential equation

(508) d:“'l/d't - k§b !G'lL.P. ~ B lGIB.P.]

where

Th :



“‘L p. ™ result of passing € +through a low-pass filter and rectifying;

Mn,p, = result of passing & through a band-puss filter end rectifying;

The final adaptive system shown in Fig. 3 is described by the equatioms (5.5),
(3.7), (5.8). |

This system can be made more scphisticated by detormining the comstants a, B,
‘and k5 80 as to provide the wideot atabiiity margins, el ressing ¢ throwh sa

exact copy of the filter loop.
In [Bucy, 19%9) a rather deteiled system is described, and results of computer

similation are given vhich substantiate the theoretical analysis.

6. References.

R. 8. BUOCY (1959) "Adaptive Finite-Time ¥iltering", Johns Hopkins University
Applied Pbysics Isboretor;, Tanternal Memorandum EBD -645.
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Chaypter T.

GUIDING PRINCIPLES OF NUMFRICAL COMPUTATION

One of the important objectives of this project is to develop effeciive methods
for dealing with coaplex contrcl systems. Since emphasis was not on the analysie
but on the optimal synthesis of these systems, analog computation was out of the
question. From the beginning we were striving to obtain efficient wethede of digl-
val computations. As a matter of fact, the methods presented in this report would
be rather awkword to apply without the use of a digital computer. This is the prace
that must be paid to obtailn methods vhich are applicadble regardless of complexity of
the problem. Only by & cashimtion of imaginative computer utilizetion and advmnced
rﬁg'.themtical techniques can engineering problems of complex system design be effec~
tively attacked.

Guidefl by this philosophy of approach, we developed a general computational
framework for problems in systems theory. The following speclfic objectives have
been accomplished.

(A) A1l computwtions should take place in the time domain. 18 wus necessi-
tated by the nature of the underlying mathematicsl theory.

(B) The computations should be "eigenvalusless”. That 18 tc s=y. no inversimm
of laplace transforms, solution of high-order algebrafc equations, etc. should be
requimti.* The methods we are ugivg work easily for 15-th order systemn (whick ig
the maxirum eize {or which they have beern designed) and can surely be extended to at
least % -th order systems without the need for basically different numerical methoda,

»*

These approeches run into serioua nuserical Aifficulties when th= order of tha sys-
tem oxceeds perhaps 10; the Aifficulties becoms probably fatal when tho order exceedo
%.
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(c) The n;geciﬁcatioua of the system phould be given in matrix form. This
i8 pecessary for ease of programming and desiradle ip order that the programs bave
maximun flexibility.

(p) Sampled.data systems should be possible to treat without specidd techniques.
This ie really a by~produet of the mathematical theory. Much of the elaborate ongi-
neering theory on sampled-dais systems can be dispensed with., The same programs can

e used. The principles of solution of syecific problems 1n the continuocus and
sampled.data ceses difler only in minor details.

(R) The results should be displayed in o nest form., We bAve adopted standsrd
formats for yristing matrices. Every offorh hne been mede to present remults of com-

putations in & clean, uuwable, and complete Torm. VWe are nenring the sisge where the
epd-result of a specific system optimization problem ig a "book” produced by the
computer, vhich describes the problem, exhitits the answers, jprovides pawtial checks
in the course of the cumputation, ete.

The principel mogram from the mumerical polnt of view (s n subroutipe for the
cimputation of the exponential of a matrix. Tais {8 the central part of tranatent
computeations. One can aleo use this subroutine to solve efficiently vome problems
vhich at first eight reguire cnly elsmentsxy mothods.

AConuider, for instance, the linear matrix equation

(1) F'P+PF~_.Q

¥bere Q wnd F are giveu constant n X n matrices and one wante to 7'ind a sym-
eetric n X o matrix P saliisfying the equation, Tiis probleu occurs in the sccond
method of Lyapunov, in constructing a lyapunov functiom: for a linesr nyatem wvith con.
stant ao8fficients. Of carse (1) ic Just a set of nln + 1.}/2 equations in the
n(n + 1)/2 unknown elements Py1s wees Pyg) Ppoy vees Puoi wes By Of the symmstric
patrix P, Hence the problem can be solved uaing a atandard matrix inversion auh.
routine.

Tharw are two Airficulties with this mwethod. Pirat, if n = 10, then
w4 1) /3 - & a-® Jipe~: ~quatioms -~ ’Li: aize cammot be scl.ed U, coesenbar,
mmerical techaniques. Becond, the data are not arrenged in such & way that the matriy
definiag the n(n + 1)/2 lineer equatioms in the elements of P can be read off by
inspection. As & matter of fuct, exceedingly telicus bookkewpirg 1s zeceded to bbinin
this satrix, since it bas (55)° = 3,005 elements.
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(One can compute P by a different method, however., It is well krown that if
F 1is a stadle mairix, then

) R adPCT PO LTTS
o

apd this axpresslion can be readily evaluated by using the riccati.equetion subroatins
(which, in turn; is based almost entirely on' the exponential subroutine). In fect,

consider

®t) = f° e!'(&-t)qerirwt)dt
t

Differentiating with respect to t, we oee that Pt} sntisfien the differential
[
equation

(2) -P=F'P+PF+Q

which is a special case of the rdccati equaticn. If all eigerveiues of ¥  have maus-
tive real parts, then &8 t .+ - o0, P, 1t P= 0, then (2) reduces to (1).

The solutions of differential ~qusation (2) can be computed rapidly and accurately
by means of the riccati-equation subroutine which 1is, in effect, a specilal iteration
procedure,

Thus we see that Ly raducing @ trivial slgebralc preblsam (1) to & nontrivial
analvtic one (2), a great deal can be galned fram the point of view of efficlency
and ease of numerical computation.

The tollowing 1our chapters contain & asovcyiprion of bie main duwsoiabi.ce which
were developed to dato., Each mubrcutine combaips some centrilbutlon Lo numericul
analysis. To ald the eventual users fairly detailed explenntionz eres glven concern-

ing the origin of the subroutine the methods of computation, and mumerical checks,
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Chapter 8.

T™HE EXPONENTIAL SUBROUTINE

:!.a mg' ;2*
The aatrix exponeniial. eFt way be defined with the aid «f the sverywhere con-

vergent power saries

. 00 i
*
1=0 :

To mhow the convergence of the power serles, note that

co .1 oG 1
¥ = 2 sz ugl,l_ . Gl
1=0 i=0 "

which shows that the matrix series for eF converges whenever the scalar series for

e"fn converges; the latter series is well-known to converge wmiformly for all ¢
in any bounded interval [T, U]. This function is of interest in this report primarily

because it i8 the transition matrix of the‘vector diflerential equation
(1.2) ax/dt = ¥x (F = constant).

In other worde, we can shoy that

(1 %) olt, £ ) - exo{t - t )FI.

Accorcing Lo Sect. 1, Chapter 2, we hove to verify two properties of cuwplii - tU)F}

3

in order to prove (1.5). ¥First, 1t t = t

P en e s e ar we e e sr e e e em ee e e ms e e e e em e e e mm ma am me e ee s ma R M e e e e e

-
It phould be ncted tnat cxp{A + B)t ¥ (exp At) (exp Bt) unlese A& and B commute,
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o(t, t) = oxp O°F = I,

vhich is trivial; second, wo must shov that ~xpl{t - 'co)I"'l natisries the diftercn~
tiul equation {1.3). By the definition of the derivative,

(t +h - t,)F (t - to)F

dfexplt - t_)Fl)/at = lim = - e —
° h
h =0

Staee tF and hT cowmnmute,

(¢ - t, + nF  (t - 'L‘O)F

kF.
e . - 8
.
Hence
{t -t )F hF {(t -t )
de " fat = itm E—=L - 6 o,
h
h -0
By (1.1),
(t -t ))F
. =F - e ¢

vhich was to be proved. Note that this proot faile in general if F ,f constmii.

This may be demonstrated also by termwise differentiation, (88 we bawve =lresdy
shown) because the series(l.l) converges uniformly on avery interwal [0, t].

Some other facts which may be proved about o't are (vee (Coddington and
Jevinocon, 1955]

{1.4) ﬂeA{i # (n -1) + e“K“ where n  is ihs order af the matriz.
{(i.5) M I 66?17 and only If A snd B commute.
(1.6 eJ“LFJ = 3T,
(1.7} Determinant ef . et¥ace ¥
The last theorex znows that et'r is always nonsingular, moveayer, the columna
of ¥ are n linearly ndependent solutions of {1.2). Thus any mclution of (1.2)

+7
can be obtained by r linear combination of the colums vectora cf =« ‘.

2. DProgram Algeritim.




For comiputing f'F the sum of at most the first thirty-six terms of its defining

’

series (1.1) is us=d4, Thus we compute

: » i,
(2.3) B g =
i=0 L0

The sum (2.1) i2 actually computed as follows. Let '1'1 ke the ith term of the expan-

sion: '1‘,) = I, Tl = P, etc, The sum is eccumilated an
zy maltiplication by "

141 iz obtained from "“‘i

e}

3
i+1° .

The following motivates why vhirty-six terms are used in (2.1), and gives a con-
dition under which the result can be expecied 0o be accurate.

In the TEBM 709 and 7020 a little more than eight significant digits sre carried
vhen oparating in the single-preci{sisn, floating point mode. This impoacs limitations
on the accuracy of the program. Consiler a simple cosine series. Ve know that for
any yalue of the argument the abaoclute value of the function 1s one or less.  Yetb 1f
the argument wecre 20, the tem Qf_?_ is 80 large that the eddition to it of n number
of the order of 1 in magnitude 4022; not effect it. ‘that is, if any t .m of A serled
exceeds 108,1ue know that no enswer of the order of 1 or less 1in magnitude will in

general be correct. Thue if we want an enswer that is correct tc four decimal places,

no component of the sum may exceed l()k. The largest term of the et series ie T,
. k] ~
t - . m o
vhere J 18 the smallest integer such that - I 1; therefore by §~ where
J T L4 o -

V)

3 = (t] » the greatest integer less than t. Foxr our purposes 't»'v;, gbould always
v YO Iy
be lens than 13“, whifch iwmplies that t ahould be lese than 10; elnmee 1077 I 0%

5]
¥ithout attempting to discuass the problem more rigorously, (t wms decided that 1F
IPfl- 1t} <10, then the answers could be depended upon to four decimal places.

--n--——---]'(“’55 " =% +
|1 < AU, it 18 avident thsat wo more than thirty.nix p;:.’rm:;
- oF A
nesd b2 carried. On tha other hand, if %51- is grester .han 10 2 4hen }-5—- WA G

'Y
graater_than 10, and the validity of the answer is open to question anyway. (-

Furiuer, suace

fortymately, there ic no error return if such a condition occurs. Error return
occurs when one of the T, 18 greater than 10% (machine overflow); computation

of (2.1) stops when a term T, 1s lesa than lO_bO (underslow).

ek -



Do ChQCkB. ) - -

tA

(A) o vas computed for the 15 x 15 nilpotent matrix

.
O Ilu-] (Vhete C., 15 the lu-dimensional

| o o1y J 1 1
the 1k x 14 ddentity matrix)

zaro column vector and I

tor t =~ .1, 1., 5., &nd 10. For all these wvelues of t, this checked to six aigni-
ficant figures and approximately thirteen dec:™nl places.
{8) Choosing at "randcz”" & 15 x 15 satrdx F such tyat [[F] = 91 and
tA ‘
P
- = tA fe 2.2,2 ’
t = C.10983016, e and {{(e Y)5YF)  were computed and the results printecd %o
. tA
g 2
elght significant figures, Tt was felt that (((e }°) was probably guite close
to¢ the exact value of ctA. Comparison showed the two results to be the same to

)2)?

noout six decimsl placee, with the swmaller elements losing eccuracy, belng correct
to only four or five significant digits,

* Yor the matrices involved in this check see ¥igure 1.

(C) The exponential was computed for the 7T x 7 diagonal mmtrix
diag(-10, =4, -1, 0, 1, %, 10) with t = 1. The result is ir Fig. 2.

Bacausc this matrix is diagonal, the scalar anxlysis used in Sect. 2 applleéd
exactly and the answers accord with this very well. In the submatrix (-10) where
we were not only at the limit of the acceptable range of spplication hut were taking
differences, we barely menaged to have accuracy in four decimal places. In fact i
the snswer had been printed in the four-place rounded format which we uze, rownding
would have produced the wrong answer. However. where dirferences were not being
taken, ar in the submatrix (10), the snswer is corvect to seven significant figures,
which again we expect. The same results are true, with dwcreacing cignificonesof
the submatricee (4) and {-4) and (1) and {-1).

In general however, the accuracy ssems adequate for our purposes.

4., References.

E. A. CODDINGTON and N. LEVINSON (1955) "Théory of ordinary differentlal equa-
tions, (book)",McGraw-Hill, 1955.
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Chapter 9

THE INTEGRAL EXPONENTIAIL SUBROUTINE

1. Theory.
The concrete definition of the integral exponential

1+
-

(2:2) [ eFae
(o] .

can be obtained by integrating term-by-term the series defining the matriz expon-
ential:

+
’t TF 00 1,1 1

Tt
e "4t = % -~ — .
Jo 1=0 (I~+ iS:

If F+" exists, this may be written as

F"l.(e'fl‘

- I).

Notice, however, that the watrd  (1.1) does nct dapend ror its existence vpon
the existence of F .

In Chapter 8 it was ototed that the solutton of & free syntoem

Gy
a "™
pay be expressed ac
(t -t )F
*(3) = e o x(t ).

Often, however, we arc interested in r. controlled system, wnich in the linear, consiunt-

coefficient cane may be written as:

(1.2) X = rx + G ult) (¥, G conetent),
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The solution to (1.2) for x{(0) = 0 may be written as

rtn(t - T\F

(t) = G u<'f)d'l'.

o]

To obiain s complete syetem of sclutions when "u is constant, replace the vector

u by the identity matrix. Then

v, |
r(t) = [ et® = T¥oar,
(o] o

Making the substitution T'= t - T, the integral assumes the simpler Toru:

E

dt o

S
I‘v(t) = _l'oe

This 18 the matrix which the Subroutine "Integral Exponential” computes,

2. Program Algorithm.

The terms Ti of the defining matrix are obtained as they arce for the mpabrix

[
exponential

however, To = tI, not 1.

The asguments concernlng permissible range of t  given in Chapter B, oot

are applicable here also,

A) The integral exponential was computed for tie 19 X 15 ntlpotent mateix

r -
! Olh 14 1
1
|0 O
- —
(where ()1u ig the lh-dimcnsional zero coluun veclor and T]b o the 1h s 1L lden.
tity matrix) for t - ,1L, !t., %, and 10. Tor all valucs of t, thile cheched to

six significent [igures and approxinmtely thirteen decimal places,
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B) The integral exponential was computed for tha 7 x 7 matrix

dieg(-10, -4, -1, 0, 1, &, 10)

with t = 1. The result is seen in Fig. 1.
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Chapter 10

THE TRANSIENT PROGRAM

1. ZIheory.
The Transient Program is designed to givq‘a time history of the state vector

y of the gystem:

X = Fx +Qu .
(1.1) o= Jr{t) - Kx
' y = Hx.

TrLis prodblem, as explained in the first Sections of Chapters 8 and 9 has the

solution:

] t ) 3
(2.2) x(to +t) = et<F - GK))1:(t,o) + [ et - QK)GJ r(t)dr.

t
o

Under the assumption that r 1e a conetant vector, the solution (1.2) may

be written stepwise as follcows:

. | T
x(t +T) ity GK)x(to) + [y FF + OK)y e

wheres T 18 the sampling period.

This enables us, «s in ihc Riccati Program, to obtain a step-wise sampling
of the analytic solutiun cf the problem, after computing the expcnential and
integral exponentisl of T{(¥ - CX) only once.

2. Program Algorithm,

The equations which bave been mechanlzed sre the {cllowing:

%t + 1) o 2ax{t) + M
u»=s Ar - Ix
y = Bx.
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Where the matrices &, I, J, A, I are inputs, as well as T, x(t ), K, the
maximum number of steps, and another sampling pericd v = TX, Xk an integer, the
use of which will bs explained below,

Input might be, for instance to molve the syste= {1.1)

o = oT(F - GK)

™m

- 3 '
I'= !OET(F - Gx)d’fc

A=J, L =0.
i .

It is apparent that 1f r 1s a constant and the inputs arc as they appear above,
then u.= Jr, a constant vecfor, and the equation for u 1s superfluous in the
stepwise procedure.

To sccommodate the case when r is a plecewise constant (sampled) function of
tims, the second, T, sampling period has be-n provided. Every k steps of lengih
T in the ccaputation of x, the valus of r 13 usei to compute a new value of wu,
It ; is a constant this offers a saving in machine time since choice of a k
greater than N will prevent reference to the second equation except at the begin-
ning of the run. In this way, it 1s easy to find the reeponse of & sesmpled-data
system dbetween sampling points. As in the Riccati Program, observe that this 1s not
2 stepwise integration procedure; the only errors are round-off in the computer and
vhatever 18 involved in assuming r 10 be sufficiently well approximated by e step
functics.

Another feature of the program is that nol *the state variables but linesr com-
binations thereof, are printed. In several problers -hich bave been consideved,

e.g., one conce™ing asuclliite or’cntation, the state variables could not he obreoved,
but oniy linear combinstions of the state variables. To %= able to coapure muchinc
results with experimental deta, the Transient Program has an additioral input matrix
H and the vector of obsorvables y = Hx 18 printed.

At eovery interval T <the complete output 1is printed. This consists of the time,
two components of the r wvector, seven components of y, and three couponenin of u,

The probiem is terminated Sy exceeding the maximum number of steps N. Becausge of
progrummed cpoace limitations N must be less than 200,

\2
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Chapter 11

THE MATRTX RICCATI EQUATTON

l' M’ "
A system of 2n linear differential equations is sald to be hamiltonisn {or

ganpnical) 1if it can be written in the form:

= uilldt = g—g—:, ﬁi = dpi’/dt = - géz s 1 =12 ..., n.

(1.1) %
. 1

i

vhsoe 7f , the hamiltcnian, 1s a homogeneous quadratic polynomisl in the x, wand
Py with coafficients which are function= of time.
The most geaneral such function may be written as

(1.2) 2} = [x, ylH [z],

v

vhere H 18 a symmetric matrix. H can be wertitioned as

f‘ I

c' -Bj

P
ped
]

e

L 4

wasre A and B ave symmetric, C 1ims srbitrary; the negative «ign before 3 io

oy

punely for 2w leter convenlence, AVl these ratrices may be functions of Lim:.
Substituting {1.2-}) into (1.1), we get

(1.4) {f . {x] :

RO NNES

This equation possesses an lmportant kind of symmetry which we can ntate ag

follows:
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(1.5) THEOREM. A 2n order system

is hamiltonien 1if and only 17

Z = J2'5
vhere .
- *
o 2]
J = .
I 0

Proof. Only 1if: This follows from the fact that the 2n order system {1.4)
pbove -~ vhich was derived from the most gencral possible hamiltonian Amction
‘=— satisfies the conditicr.

If: Consider
[c -B
7 =

[+

vhere A, B, C, D eare erbltrary. Then

~R! c! rB c
JA:J Ed L
D! ~B'’ L ¥
e -t [ -
r .p? ~B' m ¢ B
J2'd = e y
~At i3t . % D

. me e S ee mm MR ee m e e e s P em Mm se mE M e e EE an e R e MR R e me  me at AR am we e m e s e e e

I=nxn identity matrix sand O = n X n zero matrix.
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and A=A', B=mB', amd D= ~ L', Nut these sre just the conditlons satisfied
by the matrix Z in.(1.4) sbove, and & 18 apparent thet the form c¢f 2 determines
that the system is hamiltonian.

(1.6) COROLLARY. If M 1s an eigenvalue of Z 8o is -,.

w1
X ond, since J = -J, w2 have

Proof., Zx = X 4

Z'J\-h- = -xilr.io

4% implies J4'Jx = A

(1.7) THEOREM. Tet

0,06, t) Bt v ) |

o’ 12 o’
921('.‘;: to) 922(’0, t o)
| 8,k © % . -
(2.8). 20 *) 8pp(tg ®) e,,(t t) -8t

6y (tys ) 8(t,, t) B, (8 1) 8%, 4

w—d .

Proof. If o{t, to) 18 the transition matrix of & = 2x, +then, &s 1o weil-
kmown, the trapsition matrix of ¥ = Z'y is @'(t_, t). Rowm that J' « 370 . AL
By Theorem (1.5)

Z' - 'J'ZJ' L] -\Tul?J' = .T“lZJ}

, . =1 -
Tab Jy = x. Toan % = JF « JA'Y = ~JB'WT "x = I = Y0'5x -~ T, the lsatl

stsp folloving by ‘Theorem (1.5). Hemce

-

J'Q'(to, t)T = a(t, t)
v

or
e(to, t) = JB8'(t, tQ)J'

is fdentieal with (1.8). Q. E. D,
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We shall now explain the connection batween the riccati squation ani thc
hamiltonian system (l.4). Consider the n by n matrix P(t) defined bdy:

(1.9)  B(t) = [8,,(t, t) +8,5(t, tIB(2 )1(0,, (8, £) +0,,(t, £ )P(s )17
over an interval of time where

{en(t, to) +'912(t, to)p_(*éo)} ie nonsinguler.

We nov determine the differential ejuatjlon satiefied by P(t). Writing out in
detail the relation & = 28 we get i

[+ 1}
i

co., + B9

11

2y’

8, = 08y, - B,

[} é = M "‘C'9

21 11 21’

- - - _ 1
Bop = ~ABy, - C10,.

Let us write P_ = P(to), and temporarily drop all arguments. Differentiat-
ing both sides of

; \ oL
(1.10) p(ell +8,.P) =86

21 22 0

with respect to t and using the preceding relations, we get

P(e,, + 8,7 ) + P[CBy, - BB, + (C8,, - BB,,)F ]

-~ AL

ot - A g
1 " C'8y - (M, Cle, )p .

Rearranging and using (1.9) and (1.10), we get the matrix riceatl cguation

(1.13) -~ P = - PBP 4 C'P + U - A.
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Choosing ?(to) to be symmetric guarantees that P 1s symmetric and then
P(t) is always symmetric. Although formula (1.9) does not seem to be symmstric, it
is, az can be verified using relations (1.8).

In ths specisl case whers the riccati equation is linear (B = C):

e

msm,

- 123

= s - Y + \ - » ®
But ulzcto’ to) 0 Vbecause e(to, t ) i_;, therefore 8, = 0. Then
3 . " "'l . Y
pf) = [8,(t, 1) +8,,(t, TP (e, 8 A, ).
But from equation (1.8) we tee that 9:% =8,,. and
(i.12) P(t) = [821(t, t) + eee(t, tO)P(tO)}eze(t, t ) 1f B=C.

Thus we have proved:

(1.13) THEOREM. The solution of the riccati equation (1.11) may b exprossed
in texms of the transition matrix of the hamiltoniun system {1.%) 47 5 .« O, thc polu-

tion always exists and is given by (1.12). ‘;g B # 0, the solution is glven by
(1.9}, in an interval of time whaere [ell(t, to) + elg(t, tO)Poj i _nonsingular.

Tee last condition rules out the so-calied "conjugetc points" of the czleculus
oF vnriations. An example where a conjugate point does occur wasz given in Sect. 7
of Chapter 2.

In case of the riccati equation (.6) of Chapter 2, the matrix 7% has the
forn
-1
¥ -GR u'.}

(1.14) Z ]
T

In the case of the ricceti cquation (3.3) of Chapter L, the matrix 2 has the fom
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(luls) Z =

2. Fiugrom Alogrditbm,

The transition matrix of (1.4) can be computed eaeiiy only when 2 18 s con-

stant matrix. In toat case,
(2.1) e(t, t ) = exp[(t - ¢t )z].

The progrex first computes (2.1) and then Pétf, by subatitut.ng the four pub-
matrices of 6 1into (1.9) or (1.2). In this way one obtains a step-wise solution
of the riccat! equation without any truncation errors, subject only to roundof?
errors in computing ® by means of the exponential subroutins of Chanter 8.

At each step P(t) 18 symmetrirzed before proceeding to the next siep by
replacing it by

L]

R(t) + PI(t)
2

Symmetrization 18 ebsolutcly esasential because otherwise urcomtrollable voundoff
errors may accumulate in the antisymmetric part of P(t).

The input to the program consists of the mstrices A, B, C (C arhitrary,
A, B symmetric), a symmetric matrix ?(to), a sampling period T at which in-
tervals the matrix P will be computed, a convergence criterion nusber €, a
maximm number of intervals N, and various printing codes.

™e "sampling period” T = t - t. for the riccati equation way be arbditrer-,

gublect o1ily to the restriction tuat

Iml-lzfl < 20
vhich 18 necessary for the converzence of the exponantial subroutine {see Chapter 8).
Since only the ratio of Q to R matters in (1.14) or (1.15), cwe shouli state
thrse quantities so thet R 16" and H'QH are approximeiely of the seme order of

megnitude -- thie will keep [|A] smali.
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This problem 1s terminated in one of two ways. Either the maximum number
of steps 15 exceeded or the convergence criterion is aatisfied.
The convergence criterion is that

?fllpii(t + T)-p,, (t) ¥4 %-;Lpii”(t + T)

be lesas than €, an input number,

When P(%) 4is computed, K{t) = R‘lc'p(t)i or K'(4) = P(£)GR™1 can be slao
coapuisd and printed, if desired.

Print controls cnable the customer to print K{t) andfor P(t) nt cvery step,
every fifth step, only at the f4inal step, or never.

As stated above, the Riccati Program must be provided with the matrices A&, B,
and ©C. If the customer does not care to pre-compute these, the Entrance to Kiccatl
Routine, may be used with inputs G, H, Q, and R_}'. This program wil! computs
A= H'GE, B=GORG', and R G'.

3. Checks.

A) The Program was vun with

I 1
Og  Ig
F =

where 06' = 8ix dimensional zer. column vector and Ib’ = 6 X 6 1dentity maitivix.

.
[2 ]

T

S o= Q=H w7 X7 zero matrix
L o6

> o)
[

[0.6075]

P{0} = 0.6075 I,

T“"O-Z. ~
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This was iterated for ten steps and the resulf compared with s hand-computad
result expressed exactly in four-place decimals. The Riccati printout appears in
Fig. 1. The hand computed result is:

0.2025  0.%050  0.L40%0 0. 2700 0.1350 0.0540 0.0180° T
0. 40%0 1.4175 2,0250 1. 7550 1.0800 0.5130 0.1980
0.%050  2.02%0  3.8k75  A.1850  3.1050  1.7280 . ©0.76%0

0.2700 1.75% 4, 18%0 5.827% 5. hl50 3 7170 1.5680
10

0.13%0 0.0800 3.10%0 e 4450 5. 6375 5.8110 3.87%0

-

PSR

0.05%0  0.%5130  1.7280  2.7170  5.8410  0.8%31%  =.917A

0.0180 0.1980 0.7v50 1.9680 3.8730 5.9178 Hh.80h2%

i
 E—

2) The Program was run with

1 i
06 Q
F w H= {4 og]
)

L—IG Ub
Y \-l .
G =R =7 X7 zero matrix
Q = 2.02%0

P(C) . 2.025%Q I.

This was iterated for ten steps and the result compared with a hand-cowmputed
resull which was expressed exactly in four place decimals. The Riceatl printout

appears in Flg. 2. The hand-computed result isl



2.5535
-1.97%6
1.2990
0. 6726
0.2780
-0.0900
0.0180

Pm = 10.

«1.9710
2.2725
-1.9358
1.2150
0. SuuL

0.1300
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1.2870
1.93%0
2.182%
-1.75%0
0.94%0

0\, 2700

0.2790
~0. 6480
1.215%0
~1.7550
1.8225
~1.21%0

0. 4050

0. 4050

0.2025
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1. Introduction. There 16 no doubt that Wiemer's theory of stabietical
prediction and filtering is one of the great contributions tc éngineering

" science. Yet the thsory has found few practical applications eo far. This is

probably due to the aifficulty of measuring the statisticel characteristics of
randaom processas, which is the starting point of the theory.

But even {f ome is villing to accept physically motivated assumptions in
place of experimental statistical dste, there remains a major provlem: compu-
tation of the optimal filter. Current textbooks [1-3] contain several methods
for doing this, Thede meathods yield um:vticml anevoys only for a few trivial
academic examples, and they are rather poarly suited for mmerical compmtatiops,
Most of these procedures terminate with the impulse response of the optimal
filter. This is not = complete sclution of the yroblesm,however; since there is
in genera’ no simple metkod for synthesizing a filter vith a prescribed impulse
response, Another shortcoming of the conventiopal approscn is that the trestment
of time-variable problems is very awkward,

This paper is concermsd with orvearcoming difficulties of the mecond type
zentioned above. The raguired statistical data ere sssumed to be glven as part
of the problem statement. Moreover, these data are given in such a form that
camputation of the optimal filter is highly simplified, with a singln equation
covering all cases.

The Wiener problem is reduced to the clessicel hsailtonian formeiism of
the calcilus of variations; many long-standing difficulties of the thecry are
resolved or greatly clarified. The solution comsists in the specification of
the Aifferential equation of the optimal filter. |

The reader should be wvarned right eway ihat the Hienmoar vroblam ia ot
really one in wtatistics. It belongs to the reaim of pure probability thoory; 1t
1o ztutlar ln z2aee vays to the lew of lmxge misbers, the contrul limitl Goeoies,
otc. Wiener's approach, as ours, requires thsat the probabilistic structure of
the random processes be known exactly. Therefore confidence limita, ststisticxl
decision rulss, ete. 20 not enter the picture,

Vienor assumes stationarity and describes the repdom process by its paower
spectral density or covarisnce function. In this peper, we assume dlightly more:

11
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the xandom process i to be markoviang in other words, it can be taougnt .
of &8 heing generated by A linesr dyuamical system (of finitely many degrees
of freedom) axciisd by ~hite noise. Thnis is very nsarly the only case where
axplicit solutions of the Wiener problem have been found in the past., Very
rovghly, ¥iener's point of view is to admit the poseibility of denumerablLy
infinite degrees of freedc:u -~ this is important in some cases. But, in
enginearing vroblems, our aeewmption 1is frequently wmore natural.

Tn sny 2aee, the difference between tha cinsyionl point of view apd
ours becoma importent only if cne imntu to form an estimate of the power
spectrel density of s xandom proceszs on the basis of actual measurements,

We shall not be comcernad with this question here and will atudy the Wiener
problem solsly from the standpoint of probability tbeory.

The exposition given here swmarizes the contributions of two eariier
papers [4-5], although wmny details will be different. Tiere are alsc a
nurber of theorems and exsaples wvhich appear now for the first time.

+ The intent of the peper is primarily expository, end we shali not hesi-
tate to omit certain mathematicsl technicslities connected with the rigorous
definition of comtinuous random procsssea. Ryerything else will be stated
in precise wsithematical termsj the reader wishing to £111 in the misning
detalls should have no difficulty in muking contact with the pure mathematical

literatura.
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2 ‘mﬂg_\g_gt_&‘qnm. We begin with o survey of the main topiss of

" the paper; leaving the definitions intenticnally scmewbat vegue for the

woment. We Zive hers also an accoumt of the general philosophy of approach
teXen in this paper. The reader might read through this section 1lightly at
first, returning to it after a detailed study of the succeeding materiai.
Starred secticns and examples may be omitted without interrupting the logiocsl
sequsnoe of exposition. |

A random process is a family of fmctions x(T, @) depending on two
argusents: (i) the time T, which is & real number; snd (ii) s vendom event,
wvhich is denoted abatractly by the symbol w. If m = @, is & fixed random
event, then x(t, mo) is some function of time, usually called the sample-
function. If T = T 16 a fixed instant of time, then x(To, ®) 18 a rendom
variadie, which 18 frequently written simply as x(Tc). Instead of letting <
be a real number, we can take T to be an integer; in this case we call the
family of functions x{7, ®) a random sequence. A random process or sequénce
can also be regarded as a l-parameter family of random variablaes.

A random process or seguence is described methematically by specifying (1)

‘e collection ("ensemble") of sample functiomns (x(*, ®)) and (i1) the probabi-

lities of the random events w. In general, there are nondenumersbly many
random events and therefore the probability of a zingle ~v ° ==t be sot equal
to 0. One gets arownd this diificulty by defining the probabllity of sets of
avents. A rigorcus definition of random procsoss is & complicated problem; see
Doob [6,Chapter 1] ard Ioeve [7, Chapter 9.

Suppose that we have observed values of x(7, m) corresponiing to some
interval of time, say to $7v st, vhere to denotes tre starting point of
observations and 1t yrefers to the preeent instant of time. lat Ft be the
set of all samble functions which agree with the cbhservstions mada during the
intorval, to >% »t. Iet Ot be the set of all w's such thet campling
functions corresponding to them belong to the set Ft' By dividing the pro-
babllity of any subset of ﬂt itgelf, we obtain the conditional probability
of the cccurrence of sample functions for values T # ¢, We can noiw state
the:

PREDICTION PROBLEM. Given the actuslly observed values of a random
process over some interval of time, find the conditicnsl probabilities of

all future values of the random process.
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Thus the predicticn préblem ccasists in ctlculating conditional proba-

bil_tiaa we often of &: nry cwplioated tyre.

| mhe filtering problem is very similar: instead of cbserving x(7, ).
we cbserve a random process z(t, o') related to x{*t. w), J.e., the pro-
nabilities of sets of events o and o' are dependent on one another. For
axanpla, X DAYy de 5'31@41 and ¢ ‘the signal plus noise. Stated formally:

FILIMFING PROELEM. Given the actually observed values of a random
process over soms interval of time, find the conditional probabilitles of all
values of ancther, relsted, rundom process.

Once the comditicnal probebilities are known, one can of course answer
in prineipls any problem concerning the probadble futuz= evolution of the pro-
cess: the conditional probabilities incorporate all the information inherent
in the cuserved values of the random process. The adjective "optimal" as uvsed
in prsdicticn and filtering thesory refers to the fact that all information
contained in the observed data is taken into account.

At present, there is but one class of problems in vhich the prediction
or filtering problems can be effectively soived: both x and =z wust be
ga.uu-mrkmr processes. In this case the solution 1s quite simple in principle.
m conditional probability distrilution of a gaussian process is completely
dascribed by its mean values and covariances, Tf in addition the procens 1is
also markovian, then it sufficee to dnow the means and covariancez =° ‘ma
instant of time,

The solution is as follows. We must compute the conditicnel menns and
the canditional covariances., The conditional means will derend on the observed
values of the 2 process. They are computed by putting the observed volues

through the so-called optimal filter., The conditional covariances are inde-
pendent of the observed values, Therefore they can be computed separately,
ever tefore any obscrvations have bean mnde. Krowlmdge of the conditional
variances at time 7 = t 18 nccessary 1o compute the conditionsl moans at
time 7T = t., The equation for the conditiwel mean ip linesr, the sgustica
for the covarlancesz is nonliamess.

We digress momentarily to emphssize scmec consequences of the markovien
apd gauscisn assumptions.

Any revdow vrocess may be regarded as markovian with a suitable defini-
tion of the state of the process. For instunce, the state may be taken as
the observed past history of the process. The important thing iz to find the
"smailest” state space for which the merkovian property holds. We whal).
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assume hare that the state of the process can be descriled by & vector with
finitely wany compinents; in other words, the stete spsce 1s finite-dimensional.
This azsumption is highly desirsuble because it leads to differential esquations
of finite order which can be treated by standard methods., Ve could, for the
sake Of greater gemerality, operete in & "larger" (i.e., infinite-dimansional)
state space, but the mathsmatical subtieties wnich ariee do not gsem to uave

' pbysical significence. And, after all, physical sysiems can bs (and often wust
ve) approximated by differential equations of finite order,

Tae rsascns fox the guussisn assuspiion call for = longer srplumatiom,
fince the atrict prediction or filtering problems cemmot be solved in general,
it is natural to take &8 lcok at weaker versioms of the same problem, For ine-
stance, let us consider the: P

LINWAR FIITWRTNG PROBIXK. Find an cstimate x(t;) of x(t,) whioh is
{1} a linear functicn of the gbserved valuss of ={7)} and (i1) minimices the
mean-square  Blx(t,) - X(t,4%.

It 4urns cut that the solution of this problem is identical with the
solution of the {Btrict) gaussian filtering problem: the optima) gaussian
Jilter 18 a linear filter vhich minimires the mean-squars error.

The proof of this dual interpretaticn of the ophimsl fiiter is the
following. If we ssek the best linear ostimate, then oaly ihe first end sscand
order moments {i.e., the means and covariances) of the z wracess need to de
knnwm. Gilven any random process with prescribed means and covariances, ome
can find a unique gaussian process with the same meane and covariances. (This
in trivial since a gaussian random procsss is uniquely determined tw its meana
and covarisnces.) Hence the solution of the linsar filtering problew in tha
faussisn case must be the same as in the gemersl case., But in the gaussisn
case the solution of the linear filtering problems is simultsnecusly aleo the
solution of the strict filtering problem*. 'Tis i3 becausc in the gaussisn
cane the Wehi:-RiwRTS STTOT 18 minixmized Wy the condiiisnal mran whish {sa we

bave ncted before) is computed by means of a linear operation on the © proccas.

.

This and similer ohasrvations hawva led Dook [6, pp. Ti-78] to introdues tho
noticn of "strici sense™ and “wide sensc™ prupertiss. Thsse concepte axrs mobi-
vated as follows: Buppose a randon process has a ceri.in preperty ¥ whicdh oan
be expressad in torms of weans aad aovariances. Supyose 2150 that the unigues
gaussian procass vith the sams means and covariancses has & aorrespanding but
stronger property .'. Than P! is & ptrict-sense p snd P 1is o yigo-
sonss property. In particular, tke filter vhieh is optimel in the strich sensze
in the gaussian cése has the wide-senss property that it is the optizei Iinegx
filter, without sny asruption of gasussisnness,
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7 fxg‘is o matter of tsete which of the two questions we pose; the answer
ig alvays the same, If we demend s strict answer, we wust alro accept the
highly restrictive gauseian assﬁmptio-= If we look only for the best linear
filter, then knowledge of tne first and second moments o the random process
suffices and ncthing more has to be assumsd about the nature of the probabi-
lity distributicn. To put it differently, if we know only the first and
second moments of the random process, then wa nave only the flrst (linear)
approximation to the dynamical model for the process. {Knowledge of only the
Tirst mouents would give the zero-th order epproximation, i.e., a wodel which
is neither dynamic nor stochastic.) Virtuslly nothing ia known at pregent
even sbout the second-order approximation.

We now turn to a description of the mathematicel results section-by-section.

The concept of a gauss-markov sequence 18 introduced in Sect. 4. We uze
as the basic definition a linear dynamical system excited by a geussian white-
noise sequence Tris is physically appealirg and avolds the unnecessary restric-
tion to stationarity.

~ The gauss-wArkov process is defined nimilarly in Sect. 6. Tais involves
an unpleasant tecanical difficulty because it 15 not possidle to give a rigor-
ouivdafiniticn of the gaussian white-noilse process by elemeniarv meens. We
give here only an intuitive definiticn in terws of an (improper) limit nrocess.
A rigorous definition via generelivsd funce.ons 18 nowadayvs fairly straight.
forward, as may be seen from the literature cited.

Sact. 7 1s concerned with showing that the representations of the grusg-
markov sequence and gauss-markov process given in Sect. 5 and 6 can be deduced
by postulating merely the guassian and markovian propertiss., Hence reprenent-
ing such proceases as the mo:ion of a linear dynamicsl system acted on by
whits noise 1a not a loss of generality.

Sect. 8 intrcduces the main topics of the paper by A rigorous but elemer -
tar, discussion of a stendard prediction provlem. This vrovides an interostirg
comparison of 0ld and new methods.

A procise statement of the filtering problesw with which the papss 1w
concernad eppears in Sact. G, together with n discusgion of come trmdiiional
problems, ali of which reduce to our filtering problem by a suitable cholce of
notation or by wminor supplementery essumptione, Egustione (Id) and {IC} denobe
the model of the rwndom sequance and process.

Eince the prer at problem formuiation 18 uncanventional, its relations
wita wore standard formulations rre explored in Sect. 10. Unforiunertely, the
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standard mean-equaxe approach to filiaring rather tends to obecure the
theoretical imaues involved, The main point is that mean-sgusre opiimal
linear 24ltering is optimal also with respect to many criteria other than
mAan AQUAYS,

Seat. 11 is the solution of the optimal Tiltaring problsem when the time
s discrete, This is an improvement over the presentatium in k], achieved
By ths use of the so-osllad psaudo-inversa of a matrix. We amphesive strongly
that & finite number of perameters (the conditional maan and the comditional
covariance matrix) can bs regarded as the "state"” of the filtering problem;
the resulting simplicity of the sciution ie due soleiy to this fmct. The
principal equations of the thecry in the discrets case are: (IId) , the
opiimal filter and (nxd), the varianceiequation. In Sect. 12, we give two
axsmples which 11lustrate in detail the mathematical and also the vhymical
asignificance of these equations.

In Sect. 13, we obtain the continuous anmlogs (nc) and (III ) of the
optimel filter and of the variance equation, Because of the dlrric:.ulty in
giving 8 rigorouvs definition of random differentiel equations when the axcita-

-tion is a white-noise process we do not give m rigorous derivriion of these
resulte but apply the improper limit srgument -- alrxready used to define the
vhite-noise process in Sect. 6 -- to deduce (IT ) and (x:c:rc) from (nd) snd
(IIId); Again, & rigorous derivation requires the use of generaliized functivns
or other advenced tools. The same eguations (IIC and (IIIC) were obtained
before in a different way [5]. Since the variance equation (I].Ic) 18 nonlinear,
even the proof of the exlstence of its solutions is nontrivial -~ but ewmoy.
Once this 1s established; we sce that the varisnce equatior can be relnted to
fapillar frow the caleulus of varisiions or from theoretionl physics. The
latier can be solved more-~or-less o.liicibly: thiz 1s important becsuse one
thereby avoida having to solwa the varisnce agquations by nuperical quadra-
ture, vhich would be quite wipleasant becaure of the muny variankles invelved,
This surprising and yet nacursl cuonnec*lion between the Wiener riltering and
the calculus of variations was Tirst pointed out by XKslman and Bucy in [51.
This opens up mwany promising possibilities of rcoearch!

Sect. 1b applies (Ic—!‘vc) to & wide veriety cof problemn. Thie axplicit
cieps are elementary but at times, particularly in Exomple ((Lh.20), very

intricate., Some of these problews are among the moot complor ever nolved in
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Wienar filtering theory. Additional examples are given in [%5].
The vory great difficuliles encountersd in the direct and explicit solu-
tien of ﬁlﬂring prob).ﬂn literally snforoe a change in point of viev. Ro-

 signed to the Tact that explicit enswers can only be okisined by numerical

computation, ome wankz to have at least a good qualitatixe understanding of
ths filtering problem, particularly as far as the dynamical behavior of the

varisnce eguation is concerned, “This is indeed the chief tesk of filtering

theory -- in the opinion of the writer.

In Sect. 15 the much simpler prodler of minimmmerarisace auvlased pass-
meter estimation 1s considered from this point of view. We obtain an impor-
tant criterion -~ complete observability -- for the existence of such an esti-
mt&.

Thie ia then used in Sect. 16 to prove the most important theorew of
the paper, concerning the existence and uniqueness of limiting solutions of
the varisnce eguation. Finally, we exhibit a cenonical form for the Hamiltomian
squations (fvc) vhich can be regarded as a generalirzation of Wiener’s well-

Jmown metrod of spectral factorizatiom. ~ follows in particulsr that 1t

the steady-state soluiion of the Wiener problem is nown, a complete solution
of the same prohblem with the cbservation intarval being finile can be coustructed
using only elementary algebraic steps.
Mroughout Sects. 13-i we avold appealing to the duality relatfoas which
exist betwesn the optimal riltering and tie optimal control problew |[4-5]:
the proofs are given by direct arguments whenever possible.
Aprendix A presents some relevent facts concesrning the pseude-invorue
and generalized inverse of a mMatrix. Appendix H 16 & convenient summsry of
the propexrties of gaussian random vectcrs. A noteworthy featire is a new
Tormule for clafitional expectetion which fc valid even 4¢ the e cpian reoades

vectors lnvolved have a singulaw covuriznse mairix,



3. Historical remarks and acknovledgemezts. A characterdstic feature
of this paper 1s consistent adherence to the "Hime-domai=" point of view. 1In
the 1QO40's and esrly 1950'sz most of the engloeering litermture in prediction
and filitering thecry waz written from the "rmqmngy-dmin“ point of view,
This wae in harmony with the fashions of system snalysis then prevailing, and
can de explained 'by the fact ihat most stochastiic problems in engineering at
that time arose in the Tisli of commumnicetions vhere the “frequency-domein”
deseription of systems is quite natural., However, the freruency-dommir wethod
2z 4% now stends 1: not well suited for ths study of nonlinear systems or even linear
syatems with tims-varying pa.mﬁetars. Progrese in the latter fields hag ra-
awvakened interest in "time-~domain” methods,

One of ths first effective solu‘timni of & tire-verishle filtering problem
was given about 1956 or 1957 by Shinbrot [8). Although his results can now be
obtained wore easily by other methods (see Sect. 1Y), Sninbrot's work contri-
buted substantislly to a better understanding of the timn-varimble filtering
Problem.

Concurrently or perhaps slightly earlier Pugachsv began a systematic
ptudy of tims-dowain wethods, culminating in his sexcallent textbook [9], now
in second edivion, which jis scill 1itTie “—-wm outside the Soviet Uniom.

More recently, in a series of .mportant repere, Parven [10-12] has lsid
the foundations of a general theory of statistical estimation by cddrdinate-free
methods) that 1a, indspendently of the particuler hillbert-spece representation
of the raadom process,

Very crudsly spoaking, our approach is the most cffective but slso the
icast gensral of ths two. Parzen's work occupies the other extremes Pugmchey
is in the wmiddls. Parzca's wnd Pugachervis starting assumpticns lie closer o
experimental data, but the calenlations widch they st pexlcrm 0 gt coplictit
answars are more involyed, Ultlmmtely, sowe symrbhesis of the thise methols 1o
iikely 40 evolve.

The other charecteristic feature of this yaper Is the insistence
prediction and filtering is primarily the determinstion of canditicaal Atstri-
butions and anly sscomdarily the computation of certain fwnctionmis oxX the
capnditicnal distridutions. This point of view ig new: 1t s been forcefully
Wrought forth in ihe work of Furstenmberg [13]. Burely, thi= {= ths clsacasi
and wost canveniant way of stwdying prediction and filitering of gmussisn
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process: surely, this will ba the starting polnt for Mturs studiss ir non-
linear prediction and filtoering theory.

This exposition was prepared with the partial support of the U. S. Air
Force under Cantracts AP 49(638)-382 and AF 33(616)-6952. The writer is in-
dobbed to his collaagues, particularly R. 8. Buey, for numerous stimulsting
conversations.
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4, Motation. apd othar vrallsineriss. We ahsil employ in the main
the notations and terminology of [5, 14], Small Loldface ietters wu,

Yy sesy & denote vectors with coordinatas w., v,, ..., z,. Holdfsce
Rousn and Greek cepitals C, X, G, ..., 8, T .
ments are writicn as Cyg cos Vyy The wniv matrix is I. BSmall Greek
lettars usually dencte constants. Tio tiwms is denoted by ¢, ¢t o? b2 OF
T} thase may be srbitrary real numbers (continucus-—tima) or arbitrary
integers (discrets-iime). The letters 1,:J, ..., 9@ &ave resarved for
integers. ' |

ote madyrices vhosa ols-

il

o)
2.
Q -
t

;

¢

The trenspcss of a matrix is dgnot.ed by the prime. 'The inner produnct
of x and y 1s donoted by x'y and tha “tensor product by xy' which 18

Just a matrix with elements %,¥ye The nors fxil 1e  (x ﬂi Ir A s a
symmetric, nonnegative definite matrix wo use the sbbreviation [x||? § for
the quadratic form x'Ax. Rumerical quantities will be clways ;331, never

complex.

The symbol E( ]} denotes the expectation operator (or ensemble aversge).
we -shall retain the curly brackets for greater clarity even if severs]l symbela

£ are used in the same formuls., ~ wetimas v write covarisnce matrices &s
covix] = B((x - E{x})}(x - E{x})"'}
and

covix, yi = B{(x - £{x)){gy - =zy)")

A continvius-tims lineer dynamjcal system in this psper <ill meau the

system of aguations

ax/at = F(t)x + g(t)ult), (4.4,

y(t) = E(t)x(t), (k.2)
and a discrote~time lineas dynamical gysism will L= the system of differeacc
equations .

[
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x(t + 1) = g{t + 3, £)x(t) + D(t + 1, ule), (4.3)
g(%) = g{sdx(*}. (%, 1)

In both omses, we call the n-yector x the atats of ihw system, ohe
m-7ector u(t) ie the input or contrcl imction, and the p-vector ¥ 1ia
the oufput. Whem the input 1s an 'mcontrolladls, 'say rexdom, gquentity,
we replace u(t) by wit). F, 4, H reep. @ I, ¥ are nxn, nxm,
P X n matrices. If all these witrices are cénstant, then the sysiom is
said to be constant (or statiomary); 1f u(t) = Q, then the myste= is
free. -

The general soiution of (k.,1) 18 w1l known to be (1% |3

t

x(t) = a(t, t))x + [ e(t, 1)a(=)u(v)er (4.5)
t
o

with arbitrary x, t, t . This formula is valid if, for instance, u(t) 1o

a continucus function, in which case the function x(t) defined by (4.5)
has the following properties:

(1) it satisfies the initial condition: x(t,) = x;

{11) 1t is differentiable and eatisfies everywhere the differcutial
squation (4.1);

(111) 1t 18 wniquely determined by the cholce c¢f X, b

The metrix  §{t,7) occurring in (4.5) 1e called the traneition matcix
of {4,1); 1t <8 charecterized by the propertiles -

e(t,, to) =1 forall ¢, (L,6}
(tnts foliows from (1);
g(te, tl)p_(tl, to) g(te, to) for all t_, t,, t, (h.7)

o (this rollows from (h.5) and 7i11) 3
in addition,,satistiec 1is own dlfferential cauntian
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dg(t, t,)/at = E(t)a(t, t ) (. )

(this follows by setting u(t) z 0 and then differentiating (&.%)). Frou
(¥7) 1t is ciear that ¢ 18 never singuler.

It can be shown that properties (U.6-4.8) uniguely dztermine the
transition matrix of the differentiesl equation (%.1).

When F 18 constant, the transition matrix depends only on the dalfrer-
ence t - to and can be explicitly defined as the &xponential of the

matrix F:

% 1 .
o(t, t,) = exp z, (R(t -t )1°/1 {4.9)

i

When F is not constant, there 18 no simple way to compute 2 explicitly.

Turning now to the definition of a discrete-time linear dynamical
system, it i3 not necessary tc essume that @(t + 1, t) iz nonsingular.
But it is virtually no restriction at all tc odd this assumptlon; then one
can define by induction ¢(%t, to) go that reliations (b.6-7) are satisried
for all integers <, to.

Tt 18 easy to reduce L. 1) to (4.3). As far ap the transition matrix
is concerned, we slmply consider 1t for integer values of time only. He

must aseume, however, that u(t) is piecevise constaust, thst ia
ufe) = u(k) when k £t <k + 1, where Xk = integor.
Then the integral in (4.%) can be computed explicitly and we find

3
F
-
15 4
-
1
S
1y
-~
o

+ 1, 1)nlt)dr, (h.1n)}

The converse s not truc, as may be geen ai once by conaidering

xl(t 1) = - xl(t), (.11
since the rumber « 1 does not have a reai logarithm. In other words, 1t
is impoesidle to "imbed™ (U4.11) 1in a continuouse-time dynamical ecyztem with

a resl core-dimensional state space.
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A linear dynauical system is said t. be stable ir
lie(t, t )| 5 a for all  t z t.. (k.12)

It is asymptotically stable if, in additiom,

1 fle(t, t ) =0 for all b . (4.13)
t »00 : ‘

Finally, the system is uniformly asymototically shable if

Bt -t) o
loft, t )il % ce for all t & t, where g, (5 >0. (k3%

These dafinitionr Tollow by specielizing the wore general definitioms for
arbitrary (poscibly nomlinear) dynamicul systems [14 ]. For a conntnnt
seatem; (k.14) e equivalsnt to: all eigenvalues of F bave negatlve roml
parts.

124



5. The gauss-warkov sequence. This i: a saquence of random vectors
x(t), x(t +1), ... gonerated by the rscursion relation

x(t +1) = ot + 1, t)x(t) + o{t + 1, t)ult), {(5.1)

vhere !(to) , y_(to + 1)) oo 18 & sequance of gauesian random vectors, any
two of which taken at different time~ are indanandent. By gaussianness, the
last property is equivalent to the vanishing of the cross-variance matrix:

covlu(t)), wlt i1 =Q 11 %, At (5.2}
g
Though not loglcalily necessary, for the purpoges of this paper 1t 411l de
assumed that the sequence W has z2ro mean:

E{w(t)) = 0 for all t, (5.3)

Then, by gausslanness, 1t follows aiso that “he sequence w 1s uniguely
determined by its auto-covariance matrix:

covw(t)] = g(t). (5.4

It should be noticed that this definition is not complete \mtil tne ini-
tisl state :'_._(to) ot the dynamical system “5.1) is specified. It is notural
to assure that ;_L_(to) is o random variable, in fact, a gaussian random
variable, with zero mearn and arbitrary variance, independent of ¥. Hince

linear combinations of gaussian random variablez are gausplan, It follows

that §(t0), ;(to + 1), ... 18 a sequanc: of gaussien random veylables with
zero mean.
By repeated application of (5.1). we can write:
-

. W .
x(t,) = o(t,, tJ:_:_(tO) + L., O(tl, L)r(t, t - Lwlt - 1),
: i

Wi
B
O

v

Since th= !(t) occursing at different timee mie ind:pondent, 1t follows

that, for tl > to’

ed
)
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Pr(!i(t13 5 %1"';"‘iﬁ(tn) s gnlgfto)’ &(to - 1), vee )

~Pe{x)(t)) & &, -oi, 2(8) 5 & Ix(8)) (5.6)

In other words, tha conditicmal probability distvibution of z(t,) given x(t )
shd preceding observed values of the state variable is identical with the

- probadility distridution of x(tl) given the last -observaticn xw ). PRele-
tion (%.5) 1s usually called the (strict) markev property.

We have now Jjustifiad the use of the !u.liectiveﬂ "gavuea” é.nd "markov' with
the ssquance generated by (%.1).

By analogy witk the common usage in randcm processes, wa may call y &
(ganssien) white -noipe -ssquence. Thus & gauss-markov random ssguence is a
discrete-time linear dynsmicel system _ggcitiedf‘ by gmussisn white nciso.

The sequence (5.1) serves as an idealized linear model for random pro-
cesses observed in nature, In genersl, the state x(t) cf (5.1) 1s an abstract
entity, not amenable to direct physicel measurement. o make the model more

realistic, ve sdd the assumption: all observables y{t) =sre as linear func-
tions of x(t). Thus we adjoin to (5.1) the equation

‘'

z({t) = B{t)x{t} + v{t) = y(t) + v(t) (5.1%)
vhere y_(ti) 18 a vhite-noise sequence, specifisd by

.OO’V[!(tl), !(‘tg)] -0 \ if tl # tz:

E(v(t)] = Q for all t,

covly(t)] = R(%).

AMatng v{t) to g(t) = E(t)x{t) 18 inlended to refloct the fact that
physical messursients of ohseivables can never be wmede with infinite precislon,
We shall reserve s detailed motivation and critique of this assumption wtil
iater.

Evidently, z wiven by (5.1') 18 a random sequence which i3 related to
(more precisely. corrolated with) the seguence x. Kot only does z{t) de-
pend on x(t). but there may be & correlation betwsen w(t) end v(t):
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.cov[!(t)» v(t)) = c(t) - (57)

We shall adopt (5.1-1') a8 the standsrd form of the gauss-markov segquence,
Any guassian white-noise sequence can be put into this form, as we shall prove
in Sect. 7.

Ths system (5.1-1') is shown schematically sn Mg. 1. This is a conven-
tional block diagram, except for the fact that the rectangular blocks denote
matrices (not mcalars); the signals are vectors. To differentiate ¥ig. 1
from scalar block diagrams, the zaigmnli flow is depicted by foi arrows.
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T The gauSSs-Barkov QMeds. Intuitively, this concept 1n most resdily
\mdarstood ac the limiting case of a gauss-markov saquence, when the distance
batween 'mcceuaive valuss of time tends to mero, We have alrecdy noted in
Sect., b that -- if the forcing function is piecewise constant -- any linear
differential equation msy B convexrded into & linear ditfference equation in
such & way that at integer values of time the solutions of the differential
equation agres with the solutions of ihe difference equetion. This prucedure
vill novw be used in the reverse order.

Let us replace (5.1-1) formelly by the systew

dx/at = B(t)x + 0()u(e), (6.3)

z(t) = B(t)x(t) + v(t). (6.1')

. The block diagram of this system is shown in Fig. 2; the dox 1/t ayw-
bolizes intogratica with iespect to tiume,

' fhe terms v and ¥ ’a (6.1-1') shouid be limiting cases of the gaus-
sian wvhite-noise sequences dencted by the same symhols A in Sect. 5. The
probler ‘- tn mwake this notlon precise.

rirﬁ. we define the random processes v and w 1in such a way that at
integer values of time the random processes x ond = generated by (6.1-1")
agree vith the random sequances x and z generated by (5.1-1').

To accomplish this, the sample functions are to be piecewise constant
cver intervale of length 1. Ve set

v(t) = y(x) and w(t) = w(k) (6.2)
vhere
Xk w {nteger and ATt <+ L

the right.hand eides of (6.2) are to %e the gauszien white-nolse segquenies
dsnoted by the same letters in Gect. %. See Fig. 3.



e solutions f the differential equation (6.1) curresponding %o
tha’lo" saxpls functions constituts ths sample functions of a rendcm process
. The prodabilities Of these sample functions can de resdily calonlated
since the driving terms in (6.1) are gaussian. In this way the random proceas
x 1is rigorously defined, ard so is the random proces: g given oy (6.17].
If thae Aifference equation (%.1) is dorived from the Aifferential squetion
{6.1), these random processes will oo~ at integer values of tiae with the
reandom sejoenced ganArated by (3.i-1').

The wathemmtical structure of the random processes juet defined is nou
more compliceted than ths ntrﬁcture of t".he correasponding random sequence!

‘we have merely introduced a ccmtinuous time parameter.

_ Now we coxs to a delicate matter, the definitvion of the gaunsian vhits
noise process. We shall not attempt to give a rigorous definition (which
would require advanced analytical tools) sut hope that the following discus-
sion will lend some intuitive wmeaning to this important concept.

log !_(-q-) and !(q) be the gaussian random procegses defined shove,

but. now we assume that the intervals over which the sample functions

are constant are of length q'l (vhere @ 318 a pomitive intager). We lat
Q@ -+ 00. Wnile this bappens, we musat multiply the coveriance matrices by q,
in order to preserve the phyzical characteristica of these processes. This
can ba saen easily as follows. lat

X = fl v<q)(t)dt . (6.3)
= 4

iz 18 s Wwll-defined random varisble for all q. The meon of X
18 zero because the mesn of '_i‘_(Q) is zero; wc computs

i 1
v ) = 50 @011 f xl (e
11, .
= trace jc fo E{!_(Q)(t)y_(q-)'('r)dt dt

The 11t expreassion can be ewplicitly svaluatad from the definitior of the
v process, the result is

129



¢l |
wr e = 2 R4/a)a®

It R is coﬁltlnt, this axpression tends to rexo as q"l,, In other words,

if R is kept constant as q - Q0, then the affect of white noise in ihe
differential egquation ‘

ax/at = ¥ Vs)

would eventually reduce to zero -~ this is physically absurd. Heace to ksep
var ﬂ:g.‘na = const. a8 q =00, we must mltiply the coverisnce watrices of
v® ana ¥(¥ py g his means that the smplitudes of the random steps
in the .sample functions of !(Q) and y:(‘l) ircreaszs as ﬁ s on the other
hand, the arsas of the random steps tend to (0 since thsy change as
’[E * q-lr "

Guidsd Dby these oboorvations, we derins the gauessisp vhite-nolse process
v snd v as the formal limit of !(Q) and \_{(q a5 q - 00, BSince they
m"jfga.uuim, Y ant ¥ axe specified by

B{x(t)) = 0, E(w(t)} =0 for all t {6.%)
E(v(t)y'(r)] = 8(t - 7)R(¢), E(w(t)w'(r)) = 8(t - 7)Q(t) for a1 ¢, 7; (6.5)

B(y(t)u'(v)) = {t - T)g{t) for mr1 %, r, (£, 6)

vhere 8 1is the Dirac delta fumction,
The preceding discussion shows also that the values of the samnle functione
S ¥ and v are to be regarded as delta fumctions of vealshingly swall areas.
Mathomatically speeking, this definition 4s of courso sheer nonsense since
5(t) 1s not s well-dafined fumotion; it 1s even wmore absurd to speak of sample

»
‘The term "while” is due to the fact that these processes, like ordinary
light, may be thought of as containing waves of every frequency with equal rro-
bability. When values of v(t) occurring at different timss aue not indspeu-
éant, this 1s no longer trus and then one sometimes “alka of "colored” notes.
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funictions vhose "values" are delta functions of zero area. Stiil, the idea
of white noise iz a very ussful cne. oW is this te be reconciled with une's
maihemmtical consciance? )

W points should be swphasized bere. First, in thz usval applications
one never deals with the covariance matrices (G.%-4) directly, btut only in
conjunction withk the computation of integrals. For instance, consider the
gaussian reandom process x generated by (6.1A), with ’i(to) = 0,

Since E(x(t)} = 0, its covariance matrix is

ov k()] = B{x(t)x’(t)).

0

By (4.5 ),

t
= E( [ o(t, ©)a(r)e(v)ax
tO

t
X [, W(DE (e (e, T art)
(¢

We prcceed foxmally, interchanging the evrectesd-value operstion snd in ¢:e;"»;a~.
ion with respect to T, and using (6.4):

t t
- av [ av'a(t, 7)G(v)gT)E (v7)ar (s, vr)e(v - 7).
t, to !

Utilizing propertles of the B function, we finally obtain

t
cov [x(t)] = !t o(t, 7)6(r)g(v)a'(v)e’' (v, x)ar (6-7)
o]

The derivatian oY this result is purely formmi, becausz the randoa LIGCeBS
X has not aven been defined, 8ince the smEple funcvionk of y end ¥
cre mathematically mesaningless, so is almo the dif¥erentisl equatiom {6.1A).
Bt we could have obtained (6.TF) rigorously by the following risorous
procedura. The integral (6.7} certainly exists iu relatiom to tie procesns

X(Q)l 1t3 1imit q - o0 also exists, end wo can regard this limit ss ‘e
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covariance metrix of socme randol process X, not yet completely defined.
Carrying this method farther, we can define ¢ random process by epecifying
the values of its integrals (Jinear fimotion=ls) znd not assigning any
mesning to its ssmple functiona, This ldea was developed by Wiener in the
1920's and still constitutes cme of the main tools of the rigorous theory
of random proceases.

The ocecond point is this, The subterfugs of dasling only with iniegreis
of A random process 1a not resally sstisfactory bscausc no meaning is attached
to the differsntial equation (5..1) itself. In recent years. a nev apprcach
has ovolved shich is relatively free of difficulties of this sort. Tie
wiite-noise process is regardad as a generalized random process which is
the random counterpart of the concept of a ganeralized fumction (or distributice )}
invented by Sobolev and L, Schwartz. This technique 3= used successfully
by the Ruasian school led by I. M. Gel'fand [16, 17].

As mentiomed in the Imtroductiacn, as far ag the present paper 1g concerned,
‘e regard the difficultlos surrounding the rigorous definition of random
;prcceaus as purely technicalsy we shall not hesitate therefs> to take limite
formally, interchange the expected value operation and integratica with ree-
pect to ﬁm, etc. (The reader will noiice that the "inadmisaidble &.eps" are
used only to derive integrals of the type (6.7) -~ these results could br
rigorously Justified by Wiemer's teclmique.) We shall devote a future paper
to such problems, using the Gel'fand theory.

The definitiom of & rerdom wroness by means of a linear dynamical system
axcited by white nolse vwas emphasized in the sngincoring litersture particul-
arly v Bcde and Shannon [18] and Zadeh and Regazzint [19]. Not only is this
assumption physically pleasiug but it leads to & cloar and convenient mathe-
matical framework,

» .
¥ i{mmgine that noise origloatss (n a microscopic isvel. Macroscopic noise
is clearly gaussian, bdecause of the superpoaiiisn of many @mall reedom sfrectis;
and 1t is whito, bovause the dyasmics of microgoopic phenomens are very rasi
an the time-scale of the wicroscopic chezxvor. Apprecialls dymamicel «iTuchs
come abozt ocnly on a wacrescepic ~cale end arz represantsd By (61).
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7. Axiomatic definition of the gauas-mariov sequence ani process.
The derinitianl'given in the previous sections may seex to he highliy arbit-
ary: guided by physical intuition, we poitulate a "mechsnism” 18 simply &
natural representation of the process; we can derive this representation by

taking the gaussien and markovian oroperties as fundamental axioms. In other
words, from a logical point of view there is no loas in generality in starting
with (5.1-1'; or (6.1-1') as the basic definition.

AXTOMATIC DEPINITION. ¥e say tﬁaﬁ5a 1-parameter femily of random vectors
itt) (¢ = integer) ie & gausn-sarkov ssguence if it bas the following proper-
tiesn:

(I) the sequence is gauesian; that is to say, for any fized inlcgers
t, T the random vectors x(t), x(r) have s Joint gauesian aistribution
with mean p(t), w(r) and cross-covariance matrix E(t, ).

>
l/ t

(II) the sequence is markovian, in other words, for sny integer t
the strict markovian property (5.6) 18 satisfied.

Similarly, we say that the l-parsmeter family of rapdou vectors x(t)
(v = resl number) is & zauss-markov process, if the preceding properties
hold with t, T being real numbers, and if x(t, t) 1is noneingular while
Z(t, v) is a continuwously differentiable functicn of %, 7. (End of defini-
tion.) ‘ '

Firast we shall study random sequences. We assume for the momcnt that

u(t) 2 0. We let ¢t > 1 be integers and write

o

oft, 7) = £(t, 1)EM(t, 1) (7.1)

aa A i Sighn ——— ek

wha e ( \’ Aarrtan the saravraTdond dnvernm A Danrwranas (11,,‘\ Apormmydis A \
\ 4 -, v e & PSSRV A I SUlMES LS S D1 AL S A i w0 e age b e

By (B.11), w(t) = x{t + 1) - E(x(t + 1)|x(t)}, 18 a gaussoian ranacm vector

with zerc mean which 15 L Aepawdevt ~f »{+) Hence = can write

x{t + 1) = ot + 1, t)x(t) + w(t) (7.2)

which 1s identicel with (5.1), except that T = I.
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Morsover, ¥ in {7.2) is = while-nolse sequence. For
E{x(t + 1) |x(t), x(t - 1)) = E(x(t + 1), w(t - 1)];
by d=rinition, x{% -1) and w(t -1) sre indeperdent of emch other, 8o that

= 2(x{t + 1} |x(t - 1)) + Blgle + 1) |u(t - 1))

- et + 1, t - Ux(t -2) + E{8(s ¢+ 1, 8)xlt)|xlt - 1))

s

+ Ef{w{t) {x{t - 1)}
P
by (7.2) the middle term in the preceding equation 18 Jqust ot + 1, +)w{t - 1).
Hence
E(x(t + 1) |x0t), x(t - 1)) = ot + 1, t)x(t) + E{u{t)|u(t - 1))
By the markovian property, this is also equal to
= 2ix(t + 1) [x(t))

which implies that

E(x() |x(t - 1))

]

0

proving that w(t) apd w(t - 1) (being gaussian) are mutually independent.

Fuctuer,

E(wit) lx(t - 1)) = B{x(t + 1) - gt + 1, t)x(t)[x(t - 1))

- [0t +1, t ~1) - o(t +1, tyelt, t - 1}ix(t - 1)

5o that the independence of w(t) and x(t - 1) wlll follow 1f we prove the
identity '
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o(t

S
N

3.‘ te)?ﬁ_‘:ta: tl) = Q(t

t.) vhenaver b, <t <t (7.
l i C 3 . -

In fact, let :_:(tl) be arbitrary and consider
Y e Piw!

8ty t)x(t;) = Eix(t,) [x(t,))
by an elementary property of conditlonal expectations [12; ». 351,

= B(B{x{ty) Ix(t,), x(t))}]x())],
uging the markov property,

] H . -
= EE(x(ty) ix(t,)] [x(t,)};

using gaussianness, we calculate the conditiomal expeciation by (B.6) and
:"'mte vy (7.1),

= B8ty t,)x(ty)lx(t,)],
= 8ty t,)0(t,, t)x(t,),
which proves (7.2) since :5_(1;1) me‘ aibitrary.
Extending these d.rgumnts bty indGuction, it folicws easily thot
cor[w(t), x(t)] = 0O 54 t e,

coviw(t), w(t)] =0 1r ¢ £ 1.
voitvesseay, (T.s-+) show thae vue recursion relation ({.2) asiinss a
gauss-markov sequence, which has zero mean and 'the preacribed covarianc: mairix

Z{(t, t) (provided we let :_x_(to) be a grussian random vector with
cov E(to) - §(t°, to)).
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The covariance mairix of ‘¥ is nonnegative definite but may be singulnr.
For convenience, we factor it into the form I' ' and then (7.2) beccmos

\J

)

x(t + 1) = Z(t + 1, t)x(t) + Dt + 1, t)ult), {1.

where ¥ 1is nov dsfined as an m-vector wvhite-noise sequence with zero mean
and wnit varience,

Now s can remove the zoro mean assumption by comsidering x(%) - u(t)

[ T P A P BN e
ingtead of et ST T QI T R A - o

x{(t + 1) = ot + 1, t)x(t) + (¢t + 1, t)u(t) + a(x),

4

vhere tha deterministic component d&(t) ie defined ae
a(t) = w(t + 1) - 8t + 1, +)u(t).

Now let z be a gaussian random sequence which 18 causally related to
x(t), that is to say, the conditiooal distribution of z(t) given x{t)
1s‘ identical with the conditional distribution of 3z(%) given x(t), z(t - 1},
={(t - 1), z{t - 2), ... . Define

E{x{t){x(t)} = B(t)x(t),

v(t) = z(t) - H(t)x(t).
Prozzeding se befors, it cen be proved that ¥ is a gsussian white-noise
sequence (possibly correlated with w(t)).

We hava pow proved that (5 1-1') 1s & represeniation of the absiractly
definad gauesisn segquencez x snd z. This representation ds olearly wicue,
e3ide fromthe unimportant erbitrarinesa in defining I and besce also .

The derivation of the repressntatiom (6.1) procesds similarly. Therw
== rog~ aipnr printg y?'<h requive r~o=mert., howover.

Since E{t, t) 18 aseumed to ba nonsingwlar, it follows from {7.1)
that

o(t, t) = & for all t.
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If &(t, t) is continuously differentisble in ¢ for all ¥, then

afa 5 ‘ - rO(t T h- tl - T » .
E(t) = 3(t, 1)/, | ¢ = Mim [meogpl——z olt, )
h -0 ;
T ot i
1s defined. Tharefore by (7.3) &(+, ) satisfies the differential equation

de/dt = P(t)e for all t & T.

By (%.7), ¢ will then satilefy (7.3) for ell real numbers tyy T tye

On the cther hand, any scalar of the form
o(t, 7) = expla(t) - a(r)]

satisfies {7.3); but 4f @ is not ditferentiable, we cannot regard it as
the solution of a differential equatiorn, so that the representation (6.1)
cannot exist,

1T the gauss-markov process is stationary, i.e., ZI(t, i) depends only
on t - T, then it suffices to assume that L 1s contlnuour in t &t
t =1 =0 {20, p. %6] to assure that @(%t, t) 15 the transition matrix ot

a differential equation, and thus to prove the representatiom (6.1).

Similar results were obtained a 'long time ago by Docb [21] and Weng
and Uhlenbeck [22], but the present derivation is nimpler.*

*

Incidentally. reither Docb nor Wang and Uhlenbeck make any neguvmapilons
about continulty of I. Without sume such assumptlon thelr results are 1lu-
correct. For instance, assuming estationarity o(t, t) = 1, ond considering
the scelar case, {7.3) reduces to u(t3 - tJ) « a('t3 - tz)a(t2 - tl). Moreover,

pince © 1B 4 corresation coetticlent, f[ol =2 L aua o 1s sn even functio

of 1ts argument, Doob [22] asserts that the oniy nonzerv function oft) setisfy-
ing these conditions is o(t) = expl- aft]], where @ ir & nonnegutive constent.
But this ie false, for one can ¢onsiruct -- using the axiom of cholce -- func-
tions which satiaty these requirements but are everyvhere discontinuous so that
they cannot be reépresented by an exponentilal.
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8. A simple prediction problem. Bafore embhrking om the dstailed end
upavoidably complex study of prediction snd filtering in the general ecase,
1t will be helpful tu pause for a minuts and solve & simple prodbiem. Conzider
& gruss-@arkov procese gsnorated by

dx, /b = - o, + %,

dx, /4t = - ox,, + 3w (%) {g >0) (8.1)

LB

\.-_-"-"' —\—-/’
o

2y (6) 5 3y (8) = el

The ordinary block diagrsm of the system 18 ghown in Fig. bA. Hote that the
output of the system can be obeerved without any corrupting noise.

The matrices F, G, H can he reed off by inspection from Fig. 4a. They
are:

i - 1 0] "l
’ Fu ’ Q= H = [1 O_J {8.2)

s
- |

We wish to estiuste the value of xl(t +Q), vhere 2 >0, heving
obaerved all pest outputs zl('c) of the system up to time t. This prohlem
is 1dentical with one stated (':Ln different languagejin { 5, p. #00l. ¥We shall
soive this problem here after very few preliminaries and In a very much simpler
way then in [ 3], whers the goiutiom, soing older mothods, appeers after L0O
yages of preparatiom,

By iinnarity, the quantity xl(t + @) depends on two things: (i) the
state x(t; end (11) the excitation wl(-r) in the interval {t, + + 8J.
Bince ¥y is & vhite-noise process, 1ts future values cennol be e¢stimated in
any way [rom past observationsg or, worc precisely, the bect estimate io

simply the mean, vwhilck in this case is zero. Expressing this in writing, we
have;
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B(x,(t + 0)j, (), T 5 ) = B ot + 6, £)B(x(4) ]z (1), 7 & ¢}

t40
+ E(E ft o(t + 6, 7)& g(-r)d'rlzl(-r), T 5 t)

- E ot + 9, LIB(x(t) ]z, (), 5 ) (8.3)

Now we oalculate the transition matrix of (8.1). Tbis 18 easily dcne
by noting that wia(t,'r) = response observed at the i-th integrator in
Wo 48 2t thme % 17 & owmit dmules 15 spplisd £5 s imput of the Stk
integruter at time 7 < €, The result iag

e'a(t - %) (4 - 'r)e"a(t - 7)

g(t, 7)) = (8.4}
o e-a(t -T)

What is the conditional expectation of x(t), von 211 the observations
‘ zl(‘t) up o time +? Clearly, xl(t) 1s known exactly becsuse the cbzerve-
tions are not corrupted by noise. On the other hand, by (8.1},

xa(t) = d.zl(t)/dh + ax_l(t) = dzl(t)/dt + a:al(t) (8.5}

But the white nolse process w, passes . through two "smoothing” cperations
as shown in Pig., 5, Thus x, 1s "smoother™ than v, {xz 16 the so-called
Ornstein-Uhlenbeck process [21]) and x, 18 emoother than x, 3 ‘n particular,
the X, process hae s derivetive, ox, + X, vhich is & well-defined rwndom
process. Hence we DAY evaluate the risht-hand eide of (8.%). Thus ws ewi by
(8.3)

A z, (t)
Rixitile(r), v & t] =~ x(tlt) =

Lazl(t) + d=, (t)/at

| D |
-

and, using {B.k),



E(xy (¢ +0)g(r), v 8 ¢} =
= % (t +0lt) » e ®[(1 + 00z, (5) + 6ds, (v)/at]

This agreas with [3, p. k0B, eq. 73]. The optimal predicrier 18 shown
ic rig. 43, Tbe symkol 5 depotes differantiation with respect to time,

5 most interasting Teature of this regault ia that 1t 1e independent of
the wvarimnce of v, . Using the conceapt of _uﬁlite noise one cen aimost com-
pletely disvense with the machinery of probability ibzory to get the answer.

Another important point is the fact that the optimal prediction in-
volves the operation of differantiation. This operaticon is not realizaile
in practice: mathssatically, because differentiation 1s &n untounded operutor;
and physically, because the idsal differentiator hss infinite bandwith., We
obBll see later that this unpleasant feature of opiimai prediction 15 a
ec&meqmnce of the assumption that the output of the system (8.1) can be
observed ziactly. If we introduce white noise in the cbserval’ -nr, with no
matter hov'littla energy per unit time, the difficuliy dlsappsars. We Lave
therefore two choices in fonﬁula.ting g8 prediction or filtering problem in
continuous time:

(1) either we assume that the obsarvaticns on the random process can
be made with infinite accuracy -- then we must spproxfwete the ilasl pre-
dictor which is not physicelly realizable;

(11) or we aspume that the cvservatiocus are contaminated with wuhite
noise - then the optimal predictor 4o slweys remliiabis.

We ahall alwvays choose the secomd pasummiion which 1n Fur more pobursd
from the phyatieal 1oiul nf view.

It 18 clear that this difficulty does not arise in discrete-time eysitemn
and therefore the gqueastion of whether or not the observetione are exsct is
immaterial.
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9. Statemsnt and exmwoles of the filtering probiem, Wa hes
azrrived &t th_e main part of the material. For eaae of reference we resdtnte
the escence of the discussion in Sects. Z, 5~T as follows: ’

FIUTERTHG PROBIEM, fGonsider the geauvac-mwarkoy sequence

Foed
~r

2(t + 1) = 86 + 1, t)x(t) + D{e + 1, thu(v), (z,)

z{t} = 3_(\‘3)!(") + -'-(t) >

vhere v, W are pavasian whils-noise sequences.

Or consider the gauas-markov process

ax/at = F(t)x + o(t)u(t), (1

e

z(t) = H(t)x + v(t),

wvhere v, w are gaussien whiltec-nolse procenges.

Tn either cese, v and ¥ are explicitly defined by the relationn

-

E{v(%)) = 0, E{u(t)) = 0, tor =1)

E(v(t)v(r)} = 8(t - TIR(t), E(w(t)w'(v)} = 6(t - ©)Q(L), fovall &, =

E(v{t)w' (1)} = B(t - 1)C(t) for =11 t.

{in these expressions +, T are integers rcep. real nusbers; B(% - 7) 18

the kromecker delta resp. the Dirac dslta function. )

Now suppose the cctual values of tha rasdom warisbis (7Y heve boe

[

cbasrved in the interval to 7T & t.
Wnat iz the conditional probability distribution of ;(’tl)‘r
We shall —efer to (T) as the model of the madsage DIOCCEH. This

terminclogy 1s motivated by comnmication theory: one pay regard intuld tyely

y(t) = B(c)x(t)
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Lot f A e = e

‘as the megaage, v is the goise, 3 1s the signal (message plus noise);

¥ 1is the reason vhy y io a random veriable.
It will be convenience to use frowm noy on certain spscial notavioasz.
Iat

£t 16) = Blx(t,) [5(t0), -ony 2(1))

be the ccaditional mean cf :_:(tl) given ctmerved wvalues of z{(7) for
t & T <t. Sinflarly, let

x(t, [¢) = x{t;) -
be the "error” betwoen the actual value of x(t ) s&nd ite conditional expec-
tation. We note, by (B.11), that x(t It) and x(t [£) are indspendent
random variables. Finally, let the cond.itiona.l cmrls.nce matrix of
x(t, [t) ve

E(t [t) = B(X(t, 43" (¢ [¢))

The quantities ﬁ(tlit), ¥(t 1), F(v. |t), ete. are dofined similarly.
By _gaussimnness, the solution of tha filtering vroblsm ° . sculvslent
to computing x{t,|6) sl Z(t,[t).
Vary many different problems are included in the matrix equatioms { IC)

or (1,).
(9..) EXAMPLE: Dypamical systems eubject to rendom disturbances end
measuremcnt nodse. Consider a physical dynamical aystem (an airplens, spsca
vahicle, or chemlcal plant). Assume the mystem is linuar, The stabe of the

aysher cuunct be obseried diractly tut orly through the output y(i), which

can be meesured only in the presence of additive gaussien nolee v. In sddl-
tion, the system is subject to random disturbances (atmosgheric turbulerce,
meteorites, chemical impurities) in the form of the gaussian white-noise pro-
ceas Ww. The squations of motion of the syntem are evidently (5.1) and (6.1},
provided we add a deterministic foreing term u(t) te¢ (5.1) end (6.1) to
account for control variables (ruddexr, control jets, catalysts). In order to
control the syetem, ?t is necessary tuv knowv the state varjableis. They =azn te
“rsconstructed” Ly means of an cprimal tilter. The variance of ¥ end w
can often be specified (within an order of megnitude) by physicel cmm:dumti ong.
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(5.2) EXAMPLE, It is not necessary to assume in the preceding example
that the measurement noise or the random disturbances sre white. One cun

always rspresent correlation by adding more state varisbles, For instance,
the instruments which measure y(t) may have dynamics of their cwn and the
noise may enter at the output as well as the input of the instruments. Goe
Example (14.52) for a problem of thir sort. After the additicmal dynsmical
effucts have been taken into account, the deseriding equations can alwaye be
reduced again to ths standard form, perhaps aftar some radsfinition of wari-
ablad.

(9.3) EXAMPLE: Eotimation of irarémmrs. Thie 18 & very conmon problesm
in statistice [23, Chapters 32-3%]. Supposs we are given a femily of fumctions
7;13(*:_;; 1=1, seepm Aamd J =1, ..., n. Wa omn measure mn  random varisdics

() = Z ey ye) + (0 (e w) (9.4

in the pressnce of gauui&n vhite noise v (1) The problem is to form the
"best possivle estimate” _0_ of © bawed on observatiocns of r;i(r) i oowe
interml [t tl.

VYo can easily reduce the problem to the context of il‘d } or (Ic } as
followe, ILet w = 0, Wa can then regaxd © a8 the unimosm state x(t) or
‘\'.Idr)\ar (Ie )s provided that w van represant the functious N, 8

ngy(r) = Jij:‘1 By ()@ (x; ¢) (.%)

vaere Q"k(f, t} are elemants of & transivion mairix. Of cowrze, (9.%) im-
poses a restriction on the admissible functions Y It i aince any continuous
functior can be appraximmted by solutions of ordivary differextial aquatioms,
this is not u Jeriows linitation in practice.
IntmitiveLv, this problem can ke visualized as generalized curve fitiing.

W bave m experimental cuwrves re,rezented by Wluse of the ranics yariabis
;1(1). Thase experizential curves ar 40 be fitted simuitansovely By lliear
combinations of sennth curves v the fwndly rgu.

Thie probles zan e zolvsd 5o5ily ovon LRGN the assugptic. et ¥
i a whita-noise Process. Bse Sect, 15,

(9.6) ZIAMPIE: Commnicstion systay. A yery slsmootery wadal of o
commmication system might bs the following. A messsge i e ssmple-fwmcticn
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'o’: the ruh&ainwecean ¥, definsd over some interval, seay, [te, tl}. The
tranmaittod passage y iz contaminsted by nolse y before it reachss the
receiver. The mathamdiical pxobler in receilver design 15 the followling.
Given the cheerved values of z(t) on the interval [t,, t], wbat 1c the
bast estirate of that sampie function of the y proceas which actuaily
occurrsd? In other words, find

A,
wiwlt) for all T in [t . t,].

-~

This problem 18 quite difficult becauzs ﬁlt:‘,m;lg,ht involve simultaneouwaly both

predictior and smoothing; no adequate solution exists as yet i the framowork

of this paper.

It should be noted that this 1a alsoc an estimation prodlem. Unlike
Exsxple (9.3) where the unknown parsmeter was a {finitc-dimensional) vector,
here the wnknown paremwter ig & wore complex mathematical object -- & resl-
,valued function.

™e formulation of the filtering problem given here is different from
the conventional formulstion in the engincering iiterature [1-3]. e two
roints of view car i. eacily reconciled as was mentloned briefly in Sect. 2
and ae is digcusged in more detaill in the next section.
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0. Cthsr formmlations of the filtering problem, Comnsoticus hetween
our veraion of the filitering problem and othar pointas of vieyw appesred alvesdy
in Sect. 2. To aid the readsy in certain zpplicstions of the ithacry, w
sumcriss heve some well-kncwn facia. |

Often the fiitering prodlem is formulaisd as followa. Find an eatiseie
g*(tl) of :_:_(tl), based on cbservations of g(r), t, & T st whlch
minimiras the sxpacted o33

:{s{x.(;(tl) - g*{tl))l_&(ﬁ},: t, 5T %)) (10.1}

e loss function L is dafined as follows. Iet p(x) be a real-veiusd

nonnegative, convex function of x2

pdx + (1 - x)z) s ap(x) + (1 - Me(y), where C = 3 1.

Then L is a real-valued function of x such that

L(Q) = Q,
L(;z) ® L(:_:_l) 20 vhen ,0(3_52) z p(gc_l} z 0. (10,2)
Evidently p(x) wmeasures the distance of x from the origin, =m the loss

is nondecreasing with this Alstance, QOhe=rve that L nesd not be comzen.
The solution of the preceding problem iz centeined in the theorem:
(10.3) et x be an n-dimensions) randon vector with mean u  and
distrivubion function F(gjy. If

fA) P 12 guwmetwioml pbort o, and

- asine.

(B) 7 4is unimodal (1.c., comvex for S, %w, 1=, ..., n),
T B(L{z 23

I

ir minimized by asstting x = u.

¥or the proof, see thermen | 2b |,
Toe preceding conditions are cbviously satinfled by » gaunsion diagtridbue-
ticn., Hence (10.1) ie minimizeld by taking for )_c*(tl) the conditional

expectation
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x#(t,) = ;(tllt) = Blx(t)) ]z(¢), £ 5 T 5 ¢),

vhose calculetion is a pait of the filtering problem, &8s stated in Sect. 2,
A special loss function 18 L(x) = UxlZ, where P 1s nomnegative
dafinite in thiz case; (10.3) i» trus vithout sny essumpiion on the cisbri-

bution function:

B - x42) ~ 2(hi?) + 2E0eme) + D),
= const. + 2u'Px* + “{'"i ’

. 2
- flxt - &“2 + const.,

wh_ich le obviously minimized asgerin by x = g3 1t should be nolted that this

Nﬂﬁ\llt doos not depand in any way on P. Tn particular, suppose P « aa-.
Then the best estimate of a'x 1is a'py.
in Lhe literature one often reads snap Judgments to the 2fteci that

only squared loss functions can be treated, This is incorrect or st !must

misleading, The preceding discussicn shows that the condiiionsl mean suppiiczs

e minimm sxpected loss for many loss functions., Thus the lons funcilon
plays a secondary role. Of course if the conditicnal distributdon iz known,
the best estimate x* can be computed for any loss fumction.

Fionlly, we may wiah to find the beai estimate x* which is a jiloear
function of the deta z(T), & # T & t. We have seen tbat for a “rousonstle”

loss function the bzst estimete g_*(‘t.—l) in the meuesian cpec i always {he
~ e o . ) A » . . . . .. Vigo e - . - -
cundillannl eapocisiion )_..‘_(‘n;lit), Wiluh Lo, Bgalic B guiaeetive i, 3l S

z(7). The calculaticn of this estimate involves only the means and covariauce
rleen O Je gnuasian process. Thus (as we have vointed out alrveady $v Sect,
J_t_*(tl) = i(tllt) 16 cleariy the best linear estimate for the closn of sl
racdow processes with the crme wesxs end covarisnce matripes as the gaungian
process for which g(tllt) wns computod,

16

we i, -
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We bava now proved:

(10.4) If o linear estimate x*(i,) 18 optimal for ome .ome functicn
ot type (10,2}, it is optimal for all such loss functioms,

Bence the linesr minimam maan sguare op ivote 1x optleml for muil loss
functions (10.2).
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11, Solution of the f{iltawring picblem fOr random Bsguences. According
to the problem statement in Oect. §, ve are to comwmte the conditional distri-
bution of _x,_(tl}, given observationz 2z{7) 4n the interval L S7t&%. Ry
gaussiannesz, this is of course squivalent to computing conditional meens and

covariance mutrices,
Tt will be convenient to work in terms of ‘Xt + 1]t) and Ht + 1]t).
First we 8how how $0 rediuce ithe probiesm to the cogpobtetion of theos
quantities. y
Let t, X ¢t +2. By repeeted use of the de™intng cyuation (Id} of a

randox sequence, we obtain the expression

t..1

2t ) =gt ¢+ Ux(t +1) + = ’ oty v+ 2){r + 1, 7)ulx), (11.1)
. ™=rtl

which 18 velid for all tl ¢t + 2, Teaking conditiomal expectatlions of both
aldes with rewpect to 3(to)’ arsy 2z{(t), we obtain the relaticn

I ESE S T YO S WY . B
{t,, L 1}x(t ¢ 1|t} when IR (xv,)

¢ +
O

)-

P
I

3

using the fact that w(t + 1), wl{t + 2), ... heve zirc mean and amrv Independ-
ent cf g(to), eeey 2{t), We sec that gitlit) is_ovtalrned by cxirapoisziing
x{t + 1{t) by memns of the trensition matrix of the random sequence (Id).

et tl = t. Teking conditional axpectations om both sides of (1d), wo

get

2(t ~ 1le) =~ ot + 1, t)x(eft) + [t + 1, tjw(t]L). (1.2}

It is emsy to see that w(t) 1s indapendent of x{t), 2(t - 1), ...; oince
Fle(t)] = 0, 1t followe by (B.6) that w(tit) = a(t)s(t), whorm afs
Sticor(2(t)]. Since we have assumed (sse Bect. %) thet &(t + 1.t} s wcae
eingular, (11.2) cem be sclved for z(t]t). In o~ther words, we can ernrose
x{t]t) as & limewr fumction of x(t + 1]t) and =x(t).

It #{t + 1, t) is singular, thils procedure fmils end we must vork wiib
x(t|t) iustesd of x(t + 1|t) as the basic guentity — the required modificu.
ticus are easy Bt the :sesuliant formules are less siwple,
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If t . <t, we cannot express '_x‘_(‘-.:llt) 80olsly in terms of i(t + 1)

and g(t). As & matter of fact, ?;(tlh) will be in general a linear combina-
tion of E(t + 1jt), z(t), ..., %(t. +1jt), z(t)). Portwately, this is
sellom required in practice, The detaills are mesasy, and we omit them.
The computation of ;_(tllt) 18 similar. B8ince the ewplicit expressions
for §(tllt) vill not be needed in the sequal, the details are again omitted.
The remainder of this zection is concerned primarily with cozputing
%(t + 1]t) apd g(t + 1]t) 1in en explicit form. .

¥e shall computs %(% + 1|t) by iniuction, supposing that Z(tit - 1)
is Jnown, The comditional eypoctatics of (x,} with respect to
g._(to), seey %(t) mey be decomposed irto two pexte:

(1) the condition expsctation givén: 5t ), <oy a(t - 1), end

{2) the cenditional expectation given

A
;

E(tlt - 1) = g(t) - B(E)x(t] - 1) = BO)R(tI - 1) + y(v). (12.%)
gnussian
These two sets of fendom variabies are independents hence the comditicnel =xpec-
tations may be compuied aspmrmtaly (=ae (®_ 1))
* vions on both sides of (Id) with vespact to z{t

Twking condittomal expacta-

), z(t - 1}, ... yilelds:

Rt + 1]t) = a(c + 1, t)x(t|t - 1) + (e + 1, )ER]E - 1)

+ Bix(t + 1)|z(tie - 1)1,

¥s bave ssez already that w(t{t - 1) = O.

We compute the conditiomal expectatice in (31.k) with the aid or
Theorem (B.6). For vhis purpcse, we noed two coverisnce watrices, Tae Cirst
of thase iz

cov{z(tt - 1)) = covlB()z{t]t - 1) + (8} ];
=ince v(t) and z{t) are indmpondemt,

% Y
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The other metrix is, by (I,),

covix(t + 1), E(t]t ~ 1)] = cov[(t + 1, t)x(t) + 7t + 1, t)u(t), B(cit - 1},
= covia(s + 1, B)E{ele - 1), Elels - 1)),
+ eov(D(s = 1, thw(s), v(t)], (11.6)

= a(t + 1, t)r(t|t - 1)E'(t) + p{t + 1, t)clt).

Elx(t + 1) |Z(t]t - 121 = B(Z(t + 1]t - 1), %?t%t - 1)) (12.7)

= [8(t + 1, L)E(t]t - V)R () + Dt + 1, t)C(e)I{H(L)E(t]e ~ 10 () + gtt)]"ggt;t-l).

Combirning {11.3-T), we obtain the equatiomz of the optimel rilterg
2t + 1it) = y(t + 1, £)3(s]t - 1) + K(t)z(2),
whare
k(t) = fa(t + 1, t)E(t|t - 1)E'(t) + (e + 1, t)o(e) Hn(e)n(e]e-1)E (£) + 26s)]
¥+ 1, t) = ot + 1, t) - K(E)E(E).

0f courme, thée inltial state g(to}to - 1) o&‘""(]:td) must b spocificd
also, 7This is vo be taken ss rero, since initially thers sre no observaticus
and the meen of ;(tc) ia zero,

e gencernl block disgram of the filter is shown in ¥Filg., 5. Xt is a
feedback cystem built aromnd the model of the random svmwmca {I,}. e error
sigpas. z(t|t - 1) 1o fed forweard intc the model with gain (g}, T gain
is such that the input to the model in the cmd.ti.imal axpectation of
x(t + 1) given the observed diffsrence =(t) - Z(t|t - 1), Ure part of s
conditionel expectation is due to estimating x(t + 1} t - 1), and the othor
part is due to estimting w(t).
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The valua of £(t + 1[t) 1s known immediately after time ¢, »ut it
1s not needsd for couputing the next astimate wntil time +t + 1. This time
d=)ay makes 1t possible to perform the computaticns indicsted by (IT. dl).

The magnituds of K{t) 1s indicative of ths emount of informatiom
contaiped in the signel Sfele _ 1) ahows dme ctate x(t + 1), Tiis property
of X(t) oma be meds precise Dscause the quantity cf informtion iz the ssnse
of Shannon can be explicitly caloulated for gaussian randca processss [23].
One can ihen show [260] what XK(A) 4is to be determined in auch & way & o
maxiniso the information comveyed by g(t|t ~ 1) =about x(t + 1).

We completa the solubticw of the filtering probism by deriving & recur
sion relation for the coadrvicaal covarisuce matrix JB(t|{t - 1), whish 1e
the only vemeining wnknows in {(Il,). This can b= cbiamined Ly ineperiicn fivs
Theoren (5. 13), remembering that i

cov (Tt + 1|t - 1)] = covig(t + 1, t)x(tle - 1) + p(t + 1, t)mle)],

- 8% + 1, t)E(tjt - L)' (L + 3, ¢)
+ r(t + 1, L)@(e)r (t + 1, t)

i

Thus, by (B.13;

B(ta1]€) = 9(t+1, ) (E(t |t-1)-[E(t le-1)E" (t]r(oaL, £)g(e) ) (E)R(e | e-1)Er (e omies 1
x E(OE(E]L - 1) + ' ()" (ved, g pple-2 1)

+ T(e+1, t)alt)res,e), ()

Ve shall call (ILI, ) the yarisnce equetion.

Saverel leatuves of this siosticm ere notewarthy.

Fivst. the equation does not {Avolve tha obsexrvatises xft). $uis o=
special property of the multivariate gnuwsisu 4isArideiiim: e oedistownt
covariancy mairix doss not dspend on the weiuer of i comfitlimien viwiskise.
S8inc the gains of the optimzl filter arc governed 1 thw wmriswcs sgmbtia,
this Wweens that the strwciwre cf the optimal filter {f.e., {t9 elamnt valss:)
can be determined independently of the vendom data ().

Second, equations (Zl:l'.’1 - T, - xvd) together ~oomlately detorxins the
conditional distribution of the rendom requemce for all t &% ¢, glveu

l&(‘am



£(t_)s «ee» 5(t). In Other words, tbe quentities Xx{t|t - 1) and 3{t|t - 1)
appearing in (II, - III,) mey be regarded as the giatw of the filtering
problem: the conditional distributions casnh be specified by a finite numbser of
ramsters, This happy state of affairs is due to the gausian and mar¥cvian
. asgeumptions. There are no oitder cases known A% prosent were ohe canditionsl
diatridutions can be specified with comparable aimplicitys this is precisely
vhere the basic difficuities of the nonlinear prediction and filtering problewms
1le.

Third, the variz-re equaticn is ,iusiﬁ another form ef the celsbrui=4
Wiener-Hopf equation [1-3]. (See [5] for a detailed discussion of tho vector
form of the Wiener-Hopf equation in ths cbntinucue case.) This equat:on states
that x(t|t - 1) and X(t|t - 1)2f§ncorre1ntea (crthogonnl) random variadles;
in otker words, the variances of :2 and i add. The varisnce equation is
Just one of weny ways of expresping the game thing. The variance equwsticm
for random processes can be derived directly from the Wiencr-Hopf eguation
as vas done in [5]. The variance equation is also closely related to the
calculus of variationa, as will be 4iscussed further in 3ect. 13,

q Fourth, the solution of the variunce cquatian 13 not determined wntil
the initial state §(t0|to - 1) 4s given. This should be r=garded as part
of the problem statement, since obviously g(tolto - 1) = 2{t)) = covix{t )].
To evoid any possible misunderstanding, let us mention how g(toltO - 1) s
determined in tha coventional Wiener theory. There it i1s assumed that the
random sequence is cigtionary, in othér words, @{t + 1, %), I'(t + 1, t),
H{t), g{t), R(t), C(t) are constents; moreover @ is a stable matrix.
Then

t-1

x(t) = I §{t, v+ 105 + 1, V)u(%) (11.8)
v=~00

ig # wvell-defined raniom vector with zero msan whose covariance matrixz 8 is
ird~nendent 0of t and can be veadily calculated. Thua E(t“lto - 1) = 8;

while not explicitly given, the valus of §(to}to - 1) is implied by the aspumpe
tions of the problem. Finally, if g(to) 18 nonnegative definite, thep

oft + 1] ¢) 15 slso nounegative iefinite for all t a t - This s obvious

since E{t + 1{t) 415 a covariance matrix.
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(11.9) SOLUTION OF THE FIITEKING PROBLEM FOR PANDOM SHQUERCES.

Under the assumptions_of Sect. 9, the solution consists of calculating the
g:n_dij}wecuﬂme and conditicoal covarisnces, by meens of equatione
(124 - IITy = TV,).

: e cwditional mosns are computed by the ‘optimel filter! (fIId) ¥aich
is a_feedback system with its input being the observations z(t). [he initisl
atate of the filter ts (t [t - 1) = Q.-

The_conditional veriances are solutions of the verisues squation (IIT
and are calculated jndepepdently of the obseryations = (t). Tee cond.itimu.
varisaces determipe the sain X(t) of the optimel filter, Ths initial state
g(to) of tue variance cjsavicn 18 giyen as pert of the prodlem ststemant.

The solution of the filtering problem is given in 8 coavenient form cnly
£ b, &ty then k(t +1jt) emd 3(x + 1/t) contain all necessary informs-
tion for computing the corditional probability distributions of the future of
the rendom sequence. x(t).

This result wes first obtained by Kalman {#] in 195} except for a
slightly less general problem statement and the unnecessary assumption that
the inverse of the covariance metrix of z(t]t - 1) exlsts. The letter difri-
dulty 18 now eliminated by the use of the pseudo-inverse.
| In the coaventional Wleuer problem we agsume that o, I, H, §, K,
are constants; in addition, 1:,9 is teken as - 00. In this case the variazzce
aquation \:_IId) shouwid have & constant nomnegative defiaite solution (equili-
brium state) X, to which will correspond a constant gain & and therefore
s constant optimal filter., In Sect., 16 wa shall discuss the condiiions wder
vhich & exists, 1s unique,and is the limit of every solution of the wmriance
equation (I.T.Id) which starts st a nonnegative definite initisl etate, We
hasten to point cut already here that this is always the ceae 1f wm add ths
Jest remsining assumption of the Wiener theoryt the model is asympiotically
stabtles. Hence mdexr the conveutional asswmptiona, the solution of the Wiener
problem reduces to the determinsiion of the wnique equilibrium state T of
(md) which 43 purely an aligebraic problem involving the solution of simnl-
tagec s 7 ad . ahic squationg., This Cau we oarrie. cuw explicitly only in simpls
causes and will de discussed extensively in Bect, 12.

Tve chi2f remaining task in filtsecing theory is the study of ithe veri-~
ance eguation. This 1is 4difficult becswse ths eguation is nopiinser, e pro-
blem cen be best appreciated from the study << dntailed exsmplan, Two of thane
are given in Sect, 12, 4 suemyy of what is known akcut the gualitsiive Jchawior
of ths variance equation appears in Sects, 15-16,

!
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12. Resmples of digorets filtering, In the two exampless discussed

of B(t|t -1) and u“(tlt = 1) to save space,
The simpleet possible csse is the following:
(12.1) EXAMPIE. Consider a constent, first-orter
constaats 11 and hll equal to 1, bve have:

i) m e (45 4
xl(~ + 1) pllxl(t) + \rl(t),

Z, = X

L =% {e) » v (b

The varisnce equation follows hy inspection from (IIX L

o,?:l(t)

) 2
e el
1 1

The equation of the optimal filter is;

0, (%)

01(t) + r

2 (t +1|t) = g, (& (tht - 1) +

 here we assums for siaplicity that O(t) is identically zero.

entail & great loss of generality. We ahall write £(t) and “1;1(

]+qll.

A .
{zl(t) - xl(t't

t)

R

Thic will not
instead

(12.3)

(12.4)

There are several cases of interest, depending on the valuas of the

parassters Qll’ qu, and rll'

Cage (1): T
\ ” =
ou(t, 4y, = const. for t >t . Therefore

le

= 0. Equatizn (12.3) 1mmediately reduces to

In other words, the filter has no wsmory and the bes:t estimate is the last

piece of data,

In )l other cmsea, thLe transient behavicr of cll(t) will be move cou-

pliceted. 1Mo analyze 1t, let 511
(12.%), defined by

stand for an cquilibrium point of systiem



2

911711 -

; J-u)oll+qll'
°3 * 1y

all = ( {12.5)

Of course the requirement o,, ¥ 0 must be satisfied aluo.
' We define deviations from.equilibrium by

Boll(t) = dll(t) - 511'

Substituiing this into (i2.5) and using (12.5) gives

2
[ SN i F

ball(t + 1) ) 6cll(t). (12.6)

gy * Ty Ol vy

We are novw roady to discuss the remaining cases.

Case (31}): vy >0, 9y, ® 0, lell %2 1. Equaticn (12.5) has only one
golution, which is 511 = 0., If cll(t) = ball(t) > 0, their the factrr on
the right-hand side of (12.6) is always positive and less than 1. Hence
6oll(t) decreases monotonically, snd all solutions of (12.3) comverge to 0
if they start at all(to) a 0. Negative velues -f oll(to) are of course
{uled vut.

Came (141)3 Ty > 0, 49 = 0, leli > 1. Now (12.5) has two solutiona:
511 =0 511 - (Qil - l)rll. Substitute the second value cf 611 into
(12.& ¢ then the factor om the right-hand side of {12.6) is less than onme,

Thus |cll(t) + (¢§l - l)rlll " decreases monotonically and every solution of
(32.3) with all(to) >0 converges to the second equilibrium point. The umly
exception is the colution o, J‘61:) = all(to) = (;, which is an unstahle equili-
brium point,

Case (1v)s ry4 >0 9y > (0. Now equation (12.%5) has a single solutlen

The first factor of (12.6) is less than one ac & consequence of (12.5).

O,
T%i second factor 48 leas than or ecual to 1. lﬁall(t)l decreasag monotoni-
cally and all solutions converge to the unique equilibrium point 311.

what can ba said about the stability of the optimel filter? Tn Case (1),
this question 18 vacuous. Otherwise tre 1 X 1 transition matrix of the

optimal filter 183



¥,(t + 1, t) - cpnrn/[cll(t) +r,

In Case (ii), ¥v,; tends o @), 88 & - 00; in Case (£41), wy; tends to
l/bll In both cases, the optimal filter is asymptotically stable uniess
|q>n| = 1. In Case (iv), the optlma.l filter ia always asymptotically stable,
since by (22.%) /

P11 11

iim |v,,(t + 1, t)l - i -

t 400 oll+r

1|

{12.7) EXAMPLE. When the model (32.2) of the random sequence is nom-
constant, the discussion is similar but much less elewentary. The wain point
18 this: we must assume that the parameters I@ll(t +1, t)], q,,(t) and
wll(t) describing the model are roughly of the same oxrder of magnilude at

-]

all instants of time; 4in other words, they cannot become arbitrurily large
¢r arbitrarily small. A convenient condition assuring this 1s:

0<a & |q>n(f,+1,t)l 8 < 0o,
0<a, & qll(t) B, < oo, (12.8)

0< oy = rll(t)‘ s By < 00.

We shall assuxe (12.8) for the sequel. ¥What happens when these conditions
are not aet remmins a3y open problem,
An immediate cousegue. .ce of {.218) is that, even though olj(to) >0

is arbitrary,

< [N
~7

G = TN

(1
o
-t
3
N
~

-5

51p5 + ae fer ail ¢t o "

In other words, the soluticns of the variance equation ave uniforwly bounded.

Using the variance equation, one gets immediately the inequality
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Btz ) ESCIRN(EE
(L+3) c (t) ’

ull\t) + rl_(t)

By (12.9), the bracketed term is bounded by #

2 Cs

<1,

A z

-l-

ent therefor:

| (61, 6] - | wll(tql,t)r,,(t); xN/UQE(t+l)
(t) +ry, (%) ¢

Tterating this relation and again using (12.9), we obtain

t-t g, (t) BEB + By bt

0y (%)

)

vhich proves that the cptimal filter is .iifcrmly ssymptotically stable.

Now let diz)(t) and °§§)(t) be any two solutions of the variance
equation. Let

Bo,, (t) = o(a)(t} - aig)(t)

be the difference between these two solutions. ‘Then

+1,8)r, . (t
P (44 1) = ( ¢Tift+l t)xll(t) . ( (?ti' )rllj_) )8a. (t),
(¥) + ru(t) o®H 1) + 1y, (1)
= ¢§;)(t + 1, t)vgg)(t + 1, t)8o,,(t), {(72.10)

and the preceding results shows that the difforcuce between sny two solutione
of the verimnce eguation will tend to zero wniformly with t. This uweans that
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every solution of the variunce equation will tend iowsrd scme pasrticular solu-
tion Ell(t) coatained in the region (12,9}, This solution is conveniently
dsfined hy t-o.!!i.ng’ita’ gtgsr&wmt un(to) = 0 and then letting £, o,
The function qll(t) AMeY be regarded as the "moving” equilibrium stete of
the variance equatiom,

We carried out the discussion in 80 much detail in order to indicate
the wethod of proof in the general case. Even though the veriance equation
is nonlizear, its transient bLehavior can be studied convenisntly by meana of
formulz (1220) and its geueralizations. ' See Sect. 16.

The next examplo concerns a second-order model; thias siight incresse
of complexity uskes the explicit discussion quite involved, even for the
steady-gtats “abuvior, e

(12.1); EXAMPLE. Consider the random smequence x(t) gepermted in the
following fashion:

x(t) - k('t') + m(t):

vhere
X(t + 1) = x(t) + w (t),

w(l + 1) = m(t) +nlt),

n(t + 1) = n{t) + w2(t);

wl(t), w2(t) are gaussiean white-noise sequences with zero meen. In other
worde, x(t) 1s the sum of two random sequences: one with indegendent
gaussian random increments (first differences), and one with independent
gaussian random second differences. Moreover; values of x(t) are mesjured
with an error Y‘(t) which 18 also a gaussian wvhite~noisc sequance with zero

mean. Thus

z{t) = x(t) + Vt(t)

It 18 easy to see that X, =X and X, =1 is a sultavie definition of the

state variables in this case. Tne matricex in (I d) are:

* .
The limit m g, (t; 0, t ) alwoys cxlatel see Sect. 10,
£ = - oo 0



The variance eéquations are.

(g, 08) + g (t))°
t + 1) (t) + 20,,(t) + 0,,(t) A - AR

031 = 0y (87 ¥ 20,5007 7 Oppl®/ 7 \ 155

ﬂ'll(t) + rl-x

a,(t) o, (t) + o, (t}]
oot + 1) = gy (8) + op{t) - o S-AAa,
12 2 22 o..(t) +r
¢ 1t 11

(t +3) (t) loyo(0) +
a + . = @ - q; ok
22 22 qll(t) + r]] °e

The optimal filter is given by

‘. , a,.{t) + 0,,(t)
TR e a) = R(ele - 1)+ Ryele - 1) - B 12 (o) - % (ele - 3
oy, (8) + ryy

9,,(t)

WA o A ] A
x,(t + 1{t) = xe(tlt - 1) + [fét) - x, (t]t - 1))

314 (%) + 7y5

The detailed analysis of this example 18 so tedious thav we shall conatder
cnly the stealy-state behavior. 1in other words, we shall analyze the cquill-

brium stetes of the variance equations, given by

= 12 f1 10)
ooe)

’)- ~ ~ - o o
(20,5 * Oy + 4y )03y + Ty) - (0y, * 915

G PG TR I (12.15)
(6., + xy,) = 35 (12.14)
Iplvyy T T T G122 2. 14

and subject to the condivion that the steady-state varlance matrix (e
be nonnegative definite, which will be true 1f and cnly 1f
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& 0, (12.15)

11
5 5. -5, 70, - (12.26)
1172 12 ' g
B Y
To avoid discussing cumbarsom: epecial cases, we masume thet 3 g
r gre all positive. Introducing the abbreviations

G= Gy /Ty >0, B ‘*102/,;_:"/‘*'.‘..3 > 03

VST R IPVA L P P VAR

‘eliminating ¢ and {, relations (12.1k, 12.13, 1212, 12.15, 12.10) bocemn

respectively

] {77 ey
! =N - l, (.'L‘i' T)
i at = BV -1+ VB ) \12.18)
nd e VB - (2+ ) - VB +1 =0, (12.19)
£ ao, {(1z.20)

2 . r~ -
£ 2 pn". (12-23)

o
By (12.17) and {12.20) 7 & 1. This, (12.21), and P >0 Lwply thet
£ >0 and § >0. Combining (JZ.1f; erid {12.18), (12.21) bmpumen

a(n - ¥ avp. (12.22)
With (1z.17), thle ylelds
n>1 {xe.23}

Turming now 0 (12.19), we notice the symmstry of tho coafficlsuts.

This means that 12 3 ie a root then 1/n ‘s 2len s root. Zoro is mever =
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root. Denoting by 1, l/nj, Ty l/vx2 the four roots of (12. 10)
obtain the following conditionss

(ng + /) + (0, + 2/n)) = ¥B,
, (12.24)
24 (o + 1/n) (n2 +1/n,) = - (2 +a).
Tois 18 equivalent o & quadratic agquation an the unknown hy ST
which has the solution:

£

—
By *t 1/'!1 = %(J;z-l 16 + ha + B) (12.25)

In view of (12.23) we muat chooss the + aign; the minus &ign will
tken correepond to 1, + 1/112 in (12.2hk). OColving (12.25) for noowe ol

'

mo=f(VE+ Vi6+harpn 1 Voo dar2 VIG s ks pi)

The root corresponding to the - sign 1s the reciprocsl of the root coriws-
ponding to the + s8ign. In view of (12.23) we must choose the larger root,

80 that

Tl'*xji(’vla*'JIG*ha*'B +J$+ha+e-./116+ha+s)g). (1e.206)

18 the oply roct of (12.19) which could lead to & positive definlte matrix.
It remmine now only to chack whether (12,22) holds. By (12.26), sad

12.25) we have

(7;-3}!1‘}2- (gn#ﬂ+ yllékhc.+ﬂ)§)a'l\[ﬁff/'l-

Eence wa have proved that ulmre exists one and only one solution of (1.19)
vhich 18 nonnegative defirite; this solution is actually positive defintte,
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ané is given by (12.17, 12,18, 12.26). It can ba shown (Bee Bect, 16} that
all solutiomns of the variance eguation converge to the equilibrium state
(81ys 9y Gpp)-

Although this problem appears to be quits elementery, ithe suthor is
not aware of any detailed study of it in ths literature. As a maiter of fact.
in a recent note to the Soviet Academy. A. L. Bmdno and A. I. famta [27]
erm&:eu,, assert (without proof) that the solution of this problem is not

unique, 4y, = 4.
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13. gelstion of the filtaring problem for yemdom processes. The main
objsct of this section 1s to establish relations analogous to ...J.d) and
(md) i rigorous proof of this must be precaded by a rigorous definiticn
. Of the ¥nliz-nolss yrosessss in (I c). ¥Ya ahail not do this here but will
sppes: to the semi-rigorouws liwiting avguments aireedy used in Sect. 6. A
differeut durivation (rigorous except for the use of delta fumotions in the
detinition of the covarisnne matrices of v&;}te-’nciee procssaas) may be found

i (%),

Az in Bect. 6, let g be a positive intsgsr end loi the Viss 1
digcrete eo that ite successive valuss diffsr by q'l. 'Then, assumiig vhat
2 1is the transition wetrix of & comtinucous-time linesar dynamical systenm

and T is given by (4.10), we have

ot + a7, 6) = T+ qTE(t) + olq

Py - - *
r(t + 7%, t) = g loft) + ofa™h),

In view of the discussion of Sect. 6, the cuvariance matrices oC(t}, Q(t).
"and R{(t) 1n (IIId) Jre to be replsced by

a7 lo(t),  qg(t), and g R(w)

ag g - oo,

+ -
T™e cyubol g_(q 1y denotes a wmotrix which 1o zero in bhe bimil oy = o,

4
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Substituting thesc sxpressions in (!I'I.d), we obtain:

-1 -1 )
B a o) - 5006 - a7 | preymiele - o)+ 2lels - @ hEr(s)

g1

+ g(e)Q(v)ar(t) + ola™).

Lt Co t . e

Since @A) =a A 1f o F 0 dut 0 =0, we must ve careful no’ t¢ in-

troduce & discontinuity in the term [ 1’ vhile teking the limit y — co.
and for all, tha%

The trouble is most easlly avolded by asouming, cnce

y

R(t) 48 positive definite for all t. {13.1)
Peaning to the limit ¢ = oo, we obtain the veriance equetion:
az/at = F(U)L + T (t) - [ZE'(8) + G(e)C(s) IRT(2) (B(E)E + €' (1)a" (+) ]
(171 )

+ o(t)a(t)o  (+),

#hose solution is the covariance matrix E(t|t).
The same liwiting process spplied to (IId) yields the cquations of the

optimal filter in comtinucus tiws:

~ " A~ -
1R/at - P(E)F + X e(r) . ), )
i
vhere ’ { (r:c(:)
sym ey, )

K(t) = (B(s]e)E' (¢) + a(r)c{

Tha sclution of the shove differentis] squetion 4o e comiitionel expectation

z(t]e).

We have already noted In Sect. § that if R(t)
linenr combination of componente of y{t) car be obsarved exmctly) them the
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ortimal filter may be an unbounded operator -- such as differentistion --

which cannct be realized by means of e linear dypamicsl systew. Hence condd-

tion (13.1) cannot be readily relaxed, as is ciear from the expression for

the optimai gain.
The matrix block disgram of the optimal filter is shown in Fig. 6.

Remarks concerning the fnitial conditions of (II o - TIT d) epply without
modification to (IIQ_ -In ).

Equation (I'Vd) gencralizes toivizlly tod
x(t, [t = aft,, £)x(t]t) for all t, ¥ t. (Iv )

Hence we have:

(13.2) SOLUTION O THE FILTERING PROELEM FOR RANDOM PROCESSES.  Under
the assumptions of Bect, 9 and (13.1), the solution congists of calculeting
the conditiomal expectations and conditional coverlances, by meany of oguctions
oy P -
{1, - III, - IV ).

The conditicral veriamces L(t{t) ers solutions of the variance sgua-
tion (ITT_ ) snd are celculated independently of the cbserwations z(i). The
copfitignal varisnoes determins the gain K(t) of the optimal filter. T
ipitial state ;:_(toito) of the wvarisnce cquation is glven es part of the
problen statsment.

The solution of the filtering problem is givon in coovenlent form cnjy
if 0ty @t then Z{t{t) wnd Z(L|t) contain all necessary in‘oruation for
computiing the conditional probedility ddstributions of the future of the randow
process x{3).

This rasult was first published in [%1l.

Although Theorsm (13.2) appesrs to e complefely ansiogous Lo Theores
gu.g) , theve is one msjor difference: the 'solution' of thz problem in
Theoren (1%.2) ie tied to obiaining a solution of the varience aqustiom (IIIC}.

1Ak



. 8ince (IIIc} satisrias r lipschitr condition, 1% follows [i4-1%]
that solutions of (IIIC) will exist for arbitrary §(t0}t°) in soms swall
interval gf time containinx t c* Put it is not clear without further inves-
tigation that solutions exist Zor all t 2 ¢ . {A= p mwatter of fact, this

may not even be true for arbitrary }_j_(toito).) However, we can resdily show:

13.3) If E(t,it,} i nouwnegative definite, then (TII ) bAs o unjque
solution which exists for all t & % ..

This mey »= proved anAfollovs. EIet §(t) be the covariancs mairix of
x(t) defined by (I ), 1f the covariance matrix of the inftial state x{t )
. 48 §(to) = g(tolto). Utilizing the formulas of Sect. 4 and recailing thet
B{x(t)} = 0, we have

L{t) = covix(t) ]y

- ot 4 )5( o (8,5

t t
+B( [ dav [ arte(t,v)a(n)w(v)e (z1)a (v )e' (v,77)),
to 1g
t
= ot )R (4,0 + [ e, 7)a(r)g(rie! (v)e! (v, v)ar. (13.4)

This shows that ZL(t) 1# bounded whanever t & t,- But the definitice of

conditional covariance watrix {see B.13) shows that

o(t]t) s L(t) for all TRt (17.5)
%

in other wvords, it 18 Mmown g priori that zolutiona of the rsrignce oquation
mist be bounded for any t 2 to. Subotituting this fact into the standard
exister~e proaf of snlutions of nonlinear differeatial aquatiors [15] proves
(13.3). It should be noted that the argument. leading to the inequality (13.5)
does not hold 1f L is not a covariance matrix, in other wvords, if };(to‘) ic
indefinite,
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Ab first sight, 1t may appear that the golution of the nonlinear
differentisal equation (xx:c} would in genseral require nuwerical quadrature --

a
disagr=eable prospsct becsuse of the n(n + 1)/2 warisbles invoived (which are

whe distinet elements of the n X n gymmetric matriz I). But (IIIc) is noct
a general nonlinear differential equation: 4t is a very special cne, the
matrix riccati equation, which is well-known from the calculus of variations.
We shall utilize this fact to derive an exsct formule for the solutions of
TIY ),

-
Consider the hamiltonian function ;ﬁ{ dafined by

24 (z.p%) = -iig'(t)glg(t) - 2p'E () + ‘.Szi(‘:>§'(t)q'(t)zsllf_l“) (23.6)

f

and the associated canonical differentia) equations of Hswilton:

ax/at = 3M fap* = Er(t)x + HU(8IRTH(4)E()p + B (6)R™H()C (6)G (t)x
dp/dt = ad/agu = g(t)(t)e'(t)x + F(t)p - g(t)g(t)g'l(t)n(t)g

- a(e)e{e)R™(B)e (1)a(t)z.

Let X(t),  P(t) denote the unique pair of matrix solutions of this equation
corresponding to the initial conditions

— . f4 % -
X(t) =1 amd  R(t)) = Z(t it ). (13.7)
Then we have the identity
p(t) = D(tlt)X(t) for a2) t % T, {(15.8)

oy

which can be eanily verified by substituting (1%.9) and (m{_‘; into {LA.7).
We see then that ¥Y(+) satlefics the differential equation

(Y]

ax(t)/dt = [F1() + B (0)RH(OE)E(]E) + B (LR (t)e (1ot (v 1x(v), (1

vhich 18 defined for mll t & t_  because of (15.%). (In fuct, {15.10) is the
ad Joint of the differential equation of the optimal filter.) In view « -
F “rhe "cOmpenents of the vector dM/dx e Jf}%mi.

th

1L
——

.G

)



(13.9), it follows that X(t) 1e the transition mstrix of (V) and
thus X(t} 18 never singular for t & t,. Hence (13.9) becomes

E(t]t) = B{t)XH(t). | £1%.10)

Let vs partition the transition matr.x 8 of the 2n %X 2n linear systew
(13.7) into n x n blocks: '

[Bnltty) et

3, t) = . (3.5.11.)

8, (t,t,) (Lt )

Then {13.11) can be written explicitly as

E(tlL) = {By(0,ty) + 8p(t, o E(E I8, 18y, (6,8 + B,(ttE(E )17 (13.22)

Thus the solutions of the varipnce aquation for ¢ & t, sm bo expressed
exactly in terms of the trapsition weirix of the hamdlitopisn system (13.7).

The commection batween the metrix riccati equation and the canmical
equations of the calculus of variutions has Been kncwn for a lomg time [28],
but it was relatively umnoticed wuntil rucently [29]. "o thz best of the
writer’s kncwledgs, [35] wvas the first inmstence in which the relation of tee
Wiener problem to the classical chlculns of varimticns was explicitly noted.
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14, Examples of continuows filtering. The number of cagses where it
is possible to obtain closed-form solutions of the filtering problem is

surprisingly smell, We pressnt below some typicsl samples of thesa cases;
other Mba of this scrt are discussed in [5]. Being too simple, the
avamnleg to ba discussed here are of very limited practical interest, But
they are useful in conveying insight into the behavior of the variance
eguation and they serve as= = ueeful guide in obtaining general resuitis,
such as those presented in Sects. 15 and 16,

We vrite z(i' Z £{c|t) and E(t) = B(t|t) for the ocake of simpli-
city, an’ assume again that C(t) = Q.

(14.1) EXAMPLE. Wha: is obviously the simplest filtering prodlem
sppears- in Fig. PA. This is a constant, first-order system and was treataed
in detail alrealdy by Wiemer [3C]. As way be expected after 15 years of
progress in the fleld, the present treacment is m good deal simpler apd
more ganeral. The discussion js very similar to that of Exemple (i2.1}.

The descriding matrices can be read off by inspsction from Fig. TA:

= [fll]’ G = 1], E=[1], Q= [qll]’ and R = [rll}'

We assume of course that Ty > 0. Then the varisnce equation 1s:

2 *
duu/dt = 20,0, - o‘n/rll T . (14.2)

The optimal filter is shown in Fig. 7B, vhere
Xy (t) = 0 (%) /Ty

Setbing Gy = C, we see iiat the pquilidrimm siates of Lbe varinace

squation ars given by thes roots of » guedrat’c:

- 4

ﬂ'n - (rn A rf.l + qu'/rll:)rll * (lh.})
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| Since En is a variance, it must be nomnegative; thus we conclwie:

(14.%) The verlspoe equtior (14.2) bas & wpique equilibriwe siste
a'!'! -j-'-f- q‘l‘[ >0 M tu ,‘ 0. 20 eguilibdrive

states, O spd 2f,,r,.

In the classical formulation of the Wisner problam, the mecsage
proeeil st be otatiomry.' Tais reguires fll < 0. Moreover, ono msc\umes
of course alsc that 43 >0, since otherwise the vuriance of ths messaze
process would e wéxo in the steady state. Under thess aamsgiions, the
steady-atats gair ~f the optimal filter is given by

E].JI. - oll-/rll =it frfl + q]_]_/ru.v (1h.5)
and the steady-state optimal filter is descridbed by the equatiom

af /ot = 2,.% + K 20 (4), {14.6)

vi-re

TS N TNy (2%.7)

In particular, (1h.6) shows. that the optimal filter is always asympto-
tically stable. These resuiis sre %5li dmown [1-3].

In accordance with Rewark (14.4), these formules continue to hold if
either flJ‘ =0 or qn > 0. If on the sther hand fll >0 and qll =« O,
then ther= are two posci¥ic equilibrium states and it is not obvious et
first which of these corresponds to the solutton of the filtering problem
with t = - 0o, Inspection of the Iirst-ordsr ncaiilnoar differsctisl cqua-
tion (14.2) obows that of the two possible equilibrium staies -3-11 =9 1a
alvays unstable and au = 2f),r.. 18 alvuys stable at t - o00. ALl eolu-
tions starting at 511“0) converge tu the second equilibrimm atate as
t -+ 00. The optimsl gain ELl corrasponding tu the second equilibrive stete

is positive, and therefore the optimal filter ‘e ssymptoticslly stekle. Hence:



S

(14.56) The cpiimal fiiter is asymptotically steble. except perhaps
in the tnvg; gase 0,,(t ) = q,, = 0.

Kote that stability does not depend on the model-iteelf bsing atable.
The optimal filtar always provides feedback a2round the model so as 4o maks

the closed-loop system stabls’,

In this example; it is sasy to obtain an éxplicit sointicn of the
verisncs equation, We consider the associated Hamiltonisn system ( "v'c):

8ay /% ety X0 + (L1500,
: {1%.9)
8p,)/at = q)yx) + £330y

We assume that either f,, # 0 or q,; ¥ 0. The other case is triviel.
Then fll <0 and the transition matrix of (14.9) is8 [5]:

ponee

; —
cosh ?n'f Y ainh ¥ < L sinh f‘llr !
¢ ? 11 x. .
. 11 171
g(t + 1,t) = L1k, 10}
94 T
?;1— sinh ?11* cosh fu-r + ;—— ginh fll"

Applying formu:la (13.12), we find, for t & C,

(qu/fu)sinh ? (t-t ) + [cosh f_u(t-t _,)+(ru/f l)amh F (t-tc)}onﬁ‘ﬁ)

cosb f (t ~t,)- (fl,/fu)sinh 4 (t—t )+ [(1/--11 ll)si_nh ?u(t to)lau, o)

oy, () =

If C‘u(to) = Qyq = 0, then c_u(%}“ vanisnas identicaliy. Othorwies, wo
ayq * (&, - F5)e, )
PSR S . S
t - 00 £y, + Il]. - (i, rn)au(to)
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By (14.7) and (1k.5)

lim
L - 00

T
(t) = =0

0),(¢) = vy (Fyy - 55)

vhich checke with the previous conclusions.

Although the precsding dmlo;meu?.a‘ provide a complete and expliciy
picture, the resuliing formules are quite complicated and difficult to
understand intuiiively. More information can be gained by trsnscoribing
the quolitessyr wwiysis o B<ample (12.7).

(1k.11) XEXAMPIE. We corsider ugain the system siown in Fig. 7A-B,

out now fll’ 9p» ¥y AT assumed to be functions of time. Ansiogously

to (12.8), we impose the “uniformity" conditions:

l2 (sM 8 By < oo,
0<ay * qn(’c) £ B, < o9, (3%.12)
0<a, % ru(t) sg} < oo,

Applying these conditions to the wvariance equation (1&.2) , we conclude that

_ v
&n>0 AL Os:(uk-vAa.}pl* '[gﬂl"’azay

8, €0 1f a>p -ppy 4 inag+aap}.

Hence every solution of the variance equation starting ai - (to) a0 was
sventuelly enter ths region

O<oy ~&8oFR +a<oo, (zh.13}

providsd € >0 1is . suitably owall. Fouos it will suffice to restrict
sttention to soluticns of the variar:e squation lying entirely in tha rvegion
{14.13)

\ L3 L]

It 1s now easy to show that
(34.18) 7on gptimal filtar
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d&i/ht = [£., (%) “.“11(t)/*11(t)]§1

is uniformly ssymptotically stable.

The solution cil(t) of the variance eguation will onter tha rexicn
(14.13) at some time t, 3 t . It suffices to consider the bshavior cf the
optimal filter aitar time tl. We introduce the

V), +) - ~2— 52, {115,

a4 (t)
axd verif; that o
1
Y

___-.Ae % ) £ ......-....... wi o~ 4,

in other wvoxrds, V is uniformly bounded from above and below. The derive-
tive ¥V of V along motions of the optimal filter 1= given by

. &
2% -3

it

- de. , /ot ax
w - { —g'/'_ - 2 "-""l % ]V, ,Lh.l6)
11

45,(t) o, (%)

- - [ + "‘"T"ylv,
c'u(t) rit

winich shows that V ie strictly segative vhem t @ b, uslens X, = O.
iz proves (13.14), in view of the well-Xnown theorem of Lyapunov
[24; Tworem 1].

Yo can now complete the qualitative sualysisa of the variance aquation.
Lat wg)(t) and ag) {(t7 s two such solut‘ons of the verience eguation.

I% 1m asily verified tumi 4

i7e



Be, () = ag)(t)’- + vg)(t),
then

oy (0)/ee = (£0(0) 4 e B ima 00, quap

H{0ee) = 208 - a“)ct)/r (t),

and r(")(t) 1p dafined similarly.

Ir v("‘)(t t) and t(b)(t, T) are tha 1 X1 transition watrices

of the optimal filter corresjponding to o§";) (t) ena c.g) {t}, then

1 (8) = ¥, (e, v yea (6 ), (14.26)

es i3 immediately verified by differentiating and using {14.17). Hence the
distance betwsen any two solutions of the varisnce eguation which start at
0,,(t,) 3 0 tends uniformly to zoro with t - oco.

Bquation {1%.18) is the obviocus analog of equation (12.10). As before,
we can define

1im cu(t; o, to) - an(t)
to —¢ =00

as the moving egquilibrium state of the varisuce equatiom.

A particulariy notewcrth; feature of the Lyapwov Immetion {(1h.13) 1a
thai it provides & quantitative weepure of the factorsn 1nfluwencing Whs
stebility of the optimal filter. This may be sson from the bDracketed tore
tn (14,16) which contains the *wo ratios

oy, (£)/r () end 95, (t)/0y, (%), (14.19)
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s first of these is just the uiim-’bd;noiie ratio

varly. tl‘d)l/m" 1 ()]

of the error signal % (i{t) of the optimel filter.
avyor aignal, the more stable is toe optimal filter,

The less noisy is the
e second ratio in

(14.19) is a measure of hew sffective ths optimal filter is in counter-

Yorom o

acting the 1 i i=F .lI'vl'C-t.‘\i!. ¥y ths Eﬁ;u&vﬁﬁi‘é’é processe
can be relatsd vrecisaly to mOmtim-theorotical concepte, as 18 discuraed

aloevhere {28].

Beth ratios

If the complexity of the problev is incressed just & little moxe, the
discusaion qf cven the steady-state properties of the varisnce eguatin

following
.’.

becomes quite involved. A geod 1llustration of this stete of affairs is the

{(14.20) EXAWSLE. The model of the random process is as shown in
rig. &A. 1t consisis of two consitant first-oruer systems whose outputs
&rs ohsarved separately in the presence of indepenient vhite nolse; the
complications which arise are due to the fact that the random inpucs Vi)

v
2
firstv-order prohlems,

The matrices corresponding to Fig. §i are

— —

|
0 1 o 1t
A

2 0 1 0 1 0
Z‘rn s G= {, B~ I= Q“"'

2o

Since the messurement noises iiw lndependent, we mst set  r

optimal f1lter 1is shown in Pig. BB.

We aspume of course that

T4 >0, Foo > Q.

et e e o

t e problem was suggested by R, 8. Bucy,

Fust
3
=

may be correlated -- this introduces an "interaction" oatween two

(34,22



& o2 ‘
- R ™ N ¥ - "
dy = A% - r. T EL Yy \
Syalir  T1p0pp

Iy - Sl - 4
81 = (£15 * f50)055 r, T, | a2’ 5\
% . & ’
”22*‘*’22"22‘&‘1;”:11*“22‘ i

{1k.22)

We shall investigate only the problem: How many real nomnegstiva-definits

aquilibrium states has {14.22)17

To aimplify the nota -,-.-asot«

o/ ot P )

Py ™ 953/7y50

Mo = 390/ V¥ Toor  Hop ™ /ool

by = 93/%

/‘

o =Wyt IF), G = gy + Ty

Iatting the & be equal to zero and using these abbreviatiome,

1)
reduces to

(pll—tll)2+’§z'al’
(Ryy +bpp = 13y -~ Tppllp = Wy
(oo = )" + 0T = e

In addition, p must be a nomnegative-definite matrix so thet

’11"0’
92230!

det{g] = P11Pop - "?2 x 0.
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It will be oonvenient to utilize an auxiliary relation which ie
obtained as follows. Add (1k.24) multiplied by p,, to (18.26) mltiplied
by pyys and then subtract (15.2%) wmltiplied by 2p,,. This gives

3
3

lpyy + Ppp = 208y + 755) (888 ) = wyypop = 2090055 + 555055

which car: also be obbained by setting d(dstD)/dt equal to 2.
The discussion now proceeds by considering mmercus speclel cases.
Case I. p,, = 0. By (1%.25), this can happen only if yp = 0. Then

equations (1h.2k) and (L4.26) are decoupied and the problam ie reductd to
two separate firet-order problems vhich were discussed in detail in Fxample

(1k.1).
Gase II. py, ¥ 0. Then by (14.27-29) p,; >0 and p,, >0.

A'"” Zow we must consider several subcaees;

Case JI-A. Py, ¥ 0, det p = 0. By (14.30), this implies

M1Poe = BoPrp * Py 7 O (1%.31)

therefore

(hy3pp0 * "22"13.)2 - "“iz"i? = "““1?2"11"22

( . 2
WiaPop ~ Mzehyy)” = - blaetp)p, 0., 5 0,
~which 1 possible if and only if

det p ~ O, (1h4.32)



and (using also the fact that Pip £ 0),

s .
;i‘:: - :‘: " Ay (18.33)

simummg {1k.31) into (1k.24-26), wva cbtein

Pyy * Pp = 23y = Myy/Pyas
Byy * Ppp = T3y = Lo = /B0 ( (38.34;
P11 ¥ Pop  Pap ™ ugy/Pey) 5

this nhows that det p = 0 only ir

£, = Lon (ik. 3%)

Thus all three equations (1k.2%-26) reduce to one:
Ply ¥ Py =y v u'1.’.3'/03.2’ (3l )

Thare are now =gein tvs subsasesz:

Gase .E-\A-i. Pip ¥ 0, det p =0, Hyo = J.  Toin can haoepon
My = Hop ™ 0. Then {14,24-29) 18 now equivalent tc

wWritven out expliiocitly, thene relatt: .



(14.37)

0 % lpmi <t

There are of course many matrices vhich satisfy (lk.37). For instaxce,
1f Ty " r22 x 1, qll = q12 = q22 = G, ang  ?11 = f22 = 10, +the matricin

!16 8-{ B 6 18 -6 0 10
IL. hl' 6 2f | -6 2‘_}; m [ |

and
LIO mJ

all have zere determinant and all cre equilibrium states of the variance

equation (14,22},

Tote i7-A-00, o, # 0, dot g O, u,,, £y, Theu also p,, 0 and
v e . . - B .l

o ——— et - S -kl
b, o G e can now =liminate p,, and  op,., from (15050 wiih the il

oy (i 02 and selve ihe reselting guedruebic aguation.  Hewmomlxering (hat

AN £y

Sty o e
;



11 = fop > 05 (14.39)

in view of p., ¥ 0, this and (14.25) implies

Mo ¥ 00
and . : {1k.k0)

eign py, = 81 K, ,.

Equations (1k.24) and (1h.26) myvbe solved by rudicals.

—'/“1"’12' )

Py =Ty 2
f.____ (14.71)
2
Pop = Ton T Ny - PYy-

Bubstituting (1é.k1) in (1k.25), we odisin & quadratic equation tn
pix This eguaiian bas four roots] utilizing (1h.%9), the number of rocts
reduces to two]

Prp = hyalr(e,): (14.42)

vhere € - + 1, and

- - ~ = 2
f(:o)-vfal4§2+2aop, p~~!21a2-p12.

Wo have Yo verify of coures that B and ¢ defined by thess formaws ave
real numbers, In fact

’) ”

2 \ , 2
a” =00 b, - ’-._- + f'— EET Y ) y;( x l‘f r'c?;l & 0. (lli-.kj)



smmly, |
e oty ¥ 2P >0

the equality sigo 1s ruled cut hers due lc the fact that O by
(1k.50). |

Substituting (Th.k ).nto(l‘!—.hl)andla‘cing ¢ =t 1, woget

|cx1‘v-=:;3 vcp ~
fpp =~ Iy = (s, ‘1 cj { .
‘ {1k, bd)
|a2+e°p| a+£op
P22 = f22 = X Ty ) 2 Trle,) )

We now have to check whethor p,,, Ppy and p,, datined by (1k.kh)
and (1k.A2) sctually satisfy (1h.25). Bince (14.50) fixes the sign of o,
we heve to consider 25 casep corresponding to various aigns of €0 €y
2 He can immedistely rule out some of these caeas by noting that (1%.25)
is equivalent to

and
€

s - Lo - - ~y -
(cl - ljay + {5, - L)aT2 + co(gl +e, -2 =0

and regember!ng that a, >0, «, >0, P ¥ 0.

if €, - 1, then the only posaibility is € =€y = 1. Moxeover, it
is easy to verify that p,, sod p,, given by (14.44) are always positive

in this case.

1r ¢ = -1, then 2, ond €, may have e following values, with-
out violating any obyious codition: (1, 1); (- 1, 1), provided that

@ =8 ard o, >p; and (1, -1), provided that a, = £ and o > 8.
¥ow wa turn to the condition dot p > 0. We want to prove that
e =€ =€

- 3 o ™ 1 1 the only case whore this is true. In other wordu, we
vant to prove the ineqQualitise



k [r(l)rn +a, + 5]['((!.!)!22 -‘1-'_32 +8]l> ufz, whan 6w 1

r(-2)ey, +ay - pllr(-1)fy, +a, - pl % ufp_, vhen € = 1; e =1, &, =]
r(-1)2,, Br(-1)20p ~ @, + B] 8 oy b e =1, € =L, g, e

h“(-l)f -+ plr{-1 sﬁzg; when 8 = -1, € = 1, €, = -L.

Wree Samcz Lo 3ho savsier Broabkots must be 2iveye positive. Rl thess ineguaii-~

)

ties are implied dy

a lo + e (B -v(e)le H]{ap_'*tm»r(t)if 1) > el (2hd5)

Expending, we cbtain the equivalent inequality:

rie )8 + ¢ le0,,11 > Jo (@, + € p) + If,l(a) + € p).

" In view of (1h4.%2), the left-hand side ig nommegative. The preceding Ais-

cussion shows that the right-hand side ie alao noomegative. Squaring both
sides wo cbtain after some calculation the following equivalent relation:
6-7(det g_,+p12(lr | - |z ool) > 0 (1h.%6)

Stnce v >0 snd o, >0, the inequality will bo satisfied if either

dot p ¥ 0 . ”Ui a ”22"

Hence we distinguish betwean two subcasss;

Case II-Bel. 5., ¥ 0, <2t p >0, I& | # 12,1 or dety >0,
12 5 22

Then the only possiblility is €, "€ = = 1,



Qese_II-B-d. 912" 0, det p >0, det iy =0, and ‘fll' = !fZ‘Ei'
n‘co--.r, :mconnidnrmgmﬁmmasn;eetmm B =0 in
{14.55) alvays iwpliss Zet o & 0. Hence this cese cannot arise.

It ¢ =1 and *

T %2 >0 (2h.17)

and then d&st p >0, o that this case 18 possibls.

We now collect all results, &né state thon in terms of the matrix
{uul" i R :
If det pu >0, then we must have Case I or Case II-B-1 because of

(14.32).

If det u=0 but u,, ¥ 0, then p,, 40 by (1h.2p5) and vo mist
bava Cage II-B-i, Case IT-A-ii, or Case II-B-ii. If f,, = f,, >0, then
both of the last two cases covld arise. PFor example, take rll = 1’22 = 2,

‘_qu“lx q22“h’ end 912“20 Ther. 0155: 0228;5“6: r(1) = 5,
r(=1) = 1. Substituting into (14.38) respectively (14.l4) and (1k.k2), we
Tind the following two nonnegative definite aquinbriun; stetes of (1%.22):

12 whon ao--l, and X 2L 2 vhen € = 1.
2 h 5 > 2k °

If ¢et uy =0 and Pio = 0, we bave either Case I or Case II-A-i,
because Case II-B 41s ruled out by (14.40).
Collecting our findings and recalling the results of Exmwente (14.1),

ths Iollowing plcture mmerges concerning the equilibrium states of the
variance equation (1h.R2).

(i4.45) TIROREM. (A) If det Q >0, (14,22) has a vnigue, positive
defirite equilibrium state X3




i, - Lnge :
4
q Q q
/._.&J.‘z,,,fl”e +2/g§1—.1.+f2u,<§?¢=”;; -
~ rll 11 11 Ton ‘nrﬁ
~ /q y ]
- L, 2
R R i Al K {11.49)
11 111711 r’u i1 xur22 _j 7’ * <
_ = .
Z 1
- 12
Cpm Bron{fa, + f + f2 - — ls
22 222|722 Yoo 22 T4 T j

The formilas fce o, and 0,, redwes to (Mh.5) 1 q,, = O.

(B) If dst Q=0 mmd g, #0, there are several possibiltties:

() 1 fu""fzz' thexe 15 &
unique equilibrium state given by (1k.49), which 1s nomsingular.

(2) 1r £31 % 5 0, there 18 & wigue equilibrive state
given by (14.38), which is singular.

{(3) 1I£ 0< fll - f22, then there ams precisely two equi ) idrive
siatsa, ome singular and given by (14.38), gee romsingwlar and given ¥y (1h.49).
(€) If a4 =y = 95, = 0, then the following poasihilities aries:

(1) If the omdition £,y =, >0 &oes not bold, thes peessserily

3;1 o =0 and the problym redycos o .- 'm;:gg,l_ad. Lirst-ordisr proklsms: hare
way be (1) ane, (11) ve, op (111) four equlilstrium simbes depemding om wheiber
(1) £, %50 snd £, 4 O_t(:afu >0 or f,, >0 ¥uf ngt bhothl {144)

>0, ‘ze > 0.

n



{2) I 0<1r, =%, hen there are infinitely meny equilibrium

states, siﬂ__h (11"037) o

We have seen that a complste discussion of evsn the stead,-state behavior
of the variance agmtion is sxoeadingly tedious, What has baen gainedt
First, the results provide a check on ithe thecrews of Sect. 16. Hacond, the
various specizl cases vhich arime serve ss s warning that strong, generel re-
sults csn bae obiained only under rastrictive conditions; we see that the
typothaser of tha theorems of Bect. 16 cannot be eneily relaxed.

With the intormetion now svailaeble, ‘one could actually write down
axplicit formalas for the sclutione of the x'ai'iancc equation. The uteps axe
elementary but very'tedious and little insight would be geined. A nvmoriczl
illnstration of the dynamical dehavior of the varlance equations is provigdeld
by the next example; a case where the solutions of the variancs equations can

be expressed in closed form occurs in Exampls (1k.%2).

The very couplaxity of the present-- relatively e¢lumentary -- exsmple
shows tuat s datailed, analytic discussion of the variance equation is ocut
of the question for higher-order systems. We must therefore try to clarify
the qualiliative properties of the variance equation by abstract wethods.

See Sect. 16. Once the qualitative behavior is well understocd, ii s eesy
to obtain numericel anevers by machire couputation,

(14.50) EXAMPLE. Consider a dynamical system in which the acceleration
is white noise. Thir situstion cccurs freqguently in guidance problems (smae
also ths next Bxmmple). We azsume thst both the positicn and the velocity
of the sy=tem oan da observed; these obsarvaticns are conteminated with
indapendant, sdditive, white noise. See Pig. QA.

Froz the figure, the delining matrices are

OO |

0
hen

‘A-

r0 1 0 1 rh
x- [ , g~ howa z D
0 o 1_! |

Tha optiwel filter is shown in Pig. ¥B. The 7ariance sgusticns are:

LS



dg,,/at = 20, - ‘%1‘?1/ Tyt h;’ge/"ee’
= 3 _ 2 ; P AN 2 -~ - -
a6, /8% = G55 - 1301380 0/Fy - Boa®yaTo0Toe

2 2 2 2
o/l = hufa/"u ~Byy030/Tyy - Bagtae/Ten * %1-

The optimsl gmins are:

X, (%) = Byyay, (6)/ys
Koy (t) = 0y 0,,(t)/ry5,
Ko (b) = Bogey () /70
Koo(t) = byoey o (t)/r,,
122(1:) = “aa"ae(")/raa'

Wo have assumed of courss that T 2 0, Ton > 0.

Ir h}.l ¥ 0, then the variance equations will hsve at least one equili-
brium state; and if furthermore 9, >0, ths equilibrium stete will be
wique. 7These facts follov rrom Theorem(16.18),

Introduc ing th- avereviations

G mnanae

o - h‘lli N qll/rll’ i3 :h22l q}_l-'/“""’

i
(=7

1t ig essy to vewify that the equilibrium state L given by
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B O

a 3

M L Nmest

™ o4 @+ p

‘32;;;'”_.{_.523- (14.51)
) \_L. .

ru 12 0!"‘52 r22 12

h'zcﬁ od'm-o-n-'g

....2:.;224. =TSRk -

r22 a+a¢.

is positive definite. If hll =~ 0, the variance equaticn has no eguilibrium

atate, wilass 9y " 0 also.

The soluticns of the verisnce equation were camputed nunerically for
‘0 seis of values:
L3

Case A
By = 1 Sap = 03
9, =1, ri =16, ry, =1,
uu(O) = l‘, 012(0) = qaa(o) =0,
Cage B
by =1 h., =2

cll(o) =1, 2.{0) = g,{(0) ~G.

The colutions of the variance cquation are shevm in Fige. 10 and 11 ond the
corresponding optimal geins in Figs. 12 und i2. Shep responaes of 4he

optimal filiers appear in Figs. A-ig.
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It i8 clear thet the availability of a relatively sccurate velocity
signel greatly reduces the error and speeds up T On the other hand
% ‘18 actually somewhat slowed down by the addition of the velocity signal.
This phenomenon can be explained ecasily by locking in detail at the veriance
squetiong, .

(14.52) EXAMPIE., We shall consider a dsta-smoothing probiem en-
countered in dstermining the position snd velocity of spacs w;hicla:.% 45
will provide a convenisrt illustration of the hamiitonlan technigue ©ov obtain-
ing solutions of the variance equation. Moreoever, the example shows how to
obtain the model of the mmibm process, directly from physical considerations.

The physical picturs is as follo;rs. The position of a satellite is
.mea.sured by means of a radio aignal. it in assumed that the measurement con-
teing additive noise vhich may be taken to be approiimtely gaugeian and white
relative to the bandwidth of the satellite motion. A gsecond wsacurvment of
the sateliite motinon is mvailable from an accelerometer. This reading is also
subject to noise; but here the noise 18 due to drift and other very slowly
varying effects, and may be considered to be & constant randon wvoriable during
the interval of interest. The mction of the sstellite 1s lirearized and assumed
to be one-dimensional, and subject to & constant, gnussian random accelermtiou.

' The problem is to dapign an optimml filter shich provid s tbe best
running estimates of the position and velocity of the satellite based on the
two types of measuremont noise e.nd‘the variance of the acceleration.

The precading sssumptions a1z formalized by setting up a model for
1 denote the radio s‘gnal and &y
the accelerometer. Both signals are suppoeed to be known exmatly. The equatllon
v motior (lincarized, one-dimensiomai, with unit mess) 18

the message process. ol =z the resding of

X, = a(t) = acceisretion = constani = a

whore = 18 & gaussisiu random varizbie with zero mean. 'The acczlernaster
mesasures e plus & constant geussian rendom wiriadle with zexro mes=n {the diss

srror of the acoclerometer) b:

¥ Thig problem wes suggosted by s paper of E. L. Peterson [31]. Soce siso
the writer's discussion of this paper [32].
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-8+ bu

a

1
2 2
Ist Ba =r, and ¥b =Ty a:d define
LT
r;_.-f*rb

We introduce two now random variables which are orthogonal to sach
other (and thus, by gausaisnness, independent). The first of thess is exactly
known &nd the second is t0 be ostimeted:

mﬁa x-g':-gh.{‘
%, Ty 1’ 3 rao'l Ty,

Ther: the equations of motion are!

X, = Xx i-auu1+x.

1 22 T2 3

‘'

) The model ia now fully described and is shown in Fig. 20.A. By ir-
spection of Fig. 20.A ve havet

o 1 o]
F= 1|0 0 1], ¢g=|1], snd E=[1 0 0). (14.53)
0 0 0 Ry
The variance aquaticns are
do,,/dt = 20,, - 0" /r
11 12 171’
o) o/0t = 015 * Gy, = 01y9y,/%5
/A4 | T
d-ﬂlzv/dt ] 023 ~ 0y49 17/1" REWY
2
QoAb = gy = 015057/ 15;
dc”/dt - uu‘/rua
In 12 ' x, are not independent, and for this reston res "Lz siatsd

mm mt be oomcua -
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The Hamiltonian equations (

4

e

2

e

0
-1

o
0
0
0

0
0

0

Vc) are
o /vy,
0 0
o 0
0 0
. 0
a 0

o 0
o 0
0 0
0o o
1 0
o o0
. |

{(1h,55)

The transition matrix corresponding to these equations is easily found using

(4.9).

zero sc that (4.9) 1is & finite sum.) The result is:

G(t,O) =

t/rl.l
+%/or
11

% /6ry;

ta/?.rll

2
-t /Grll

h
t /2l¢ru
t
1

0

32 /61:'1.‘L
-t%hrll
t5/120rll
te/b
t

1

-y

(The sixth power of the matrix on the right-hand side of (1L4.55) in

. (14.56)

W assume that the initiel value of £(0) 1s: o,,(C) = 02?(0) e 0,
vhile 033(0) = p 1in the affect G o> +the bilas in the reeding of the eccclerometer.

(Of course, 1) off-diagoncl terms of 5(0) are zero.)

Substituting (14.9%)

into (1X.12), we rind that the solution of the variance egutlon correspond ing
to these 1nitisl comiitions is.

ut) -

]— t"/h
/2

t5/20 +

F12/

p 2

Ve /o

v /2

1R
ina

(1b.57)



vhere

L]

-

o

Tt is casily verified by direct substitution that this 28 indeed & solution
o1 the variance equation which satisfies the initial conditiors stated above.

The optimal time-varyine gains can now be obtained at once from the

relation EK(t) = ;(t)g!g_"l; they ars:

X5 () = € ha(t), Xy () = 7/20(6), Xy (£) = t/20(2); (14.58)

a(t) = t°/20 + 2, /P

The detailed block dlagram of the optimel filter ies shown in ¥ig. 20.3L.

It should be noted that the signal W, enters the wesssge process and the
model of the message process inside the filter at exactly the sawe point. Thia
follows from the fact that Yy is a known constant, indcpendent of the cther
random variables.

The differential squations of the gpuimml filter can be reed off by in-

- s

A~ 4
&, /4t -t/
o2 fat | = |- tP/on

A 2
dx, fat -t /20
)/ -

0
1

0

specticn of the Tigure. They are:

T Al oy, ~ -
x, t" /ey o]
L+ | rals + | u (1i4.59)
2 - 1 1 -
Fy »
x5 ta/i‘a 0

— b - - - o -J

Ipis differentinl equation is difficult to solve. Considerable ajimpli-

I
2
Vo = Ry - WXy
A
Vj » 22 - tx%,

Ther by {(14.52)

tication 1o ovained by inmtroducing a new set of astate variebles:

A o +’
v P =\ + d
(_‘ﬁ t vl \2 ur},
2 t +
x2 = wl fj,
-~
X, = W, .

3= Y
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r ’ - p- * e goms -~ p pass -~
av, /at cita P -] | 2 /e | 0
v, /At | - 0 0 1 v, |+ 0 g+ =t | o
a t : 0 0
w}/d. 0 0 {_ ¥y l-|

- - - - - L~ - e

The transition metrix correaponding to this ejuation is

£

[ bfa -8 - (r- /2|
M= o 1 t-r (1k.60)
0 0 1

where

o Blx) = /20 4 /e, ¥(6,7) = (Eha)B, B(e,1) = (87 - D)6,

Thus the transition matrix corresponding to (1%.59) is fourd to be

| a-8t2/2  (tor)a~(p2)ti/e  (12/2-t1)aH(prre-de i 2t /2 ]
A
!(x)(t,“) = % -8t a~(yr-&r)t -t + (ptyr - &2/2)1; .
) ~{y=01) B+ yr - M2/2

A
Trc impgulse renprase of the ootim] filter relating x5 to .2 1z glwen

vy:

‘Jﬂ

P 43
{x) L
2z

9 . SN -3 DA - NEEDSNUNE ) JOR
gr(tx ) tm (t:T)ku( ) tag_ (tJT)ﬁl( } #25 kjl('l he #ll ("")

. tr2
C2(/2 +x /o)

t zT. : {ik,61)

A
The impulse responss relating x, to 8, is

191



%, 7) - "*’ct, *)

gl t_ttg)(t. Wy =¥, 01+ 950, )

T s k b
r 5 i
b 2u(t7/20 + x,,/p)

Ths expreaaicns for paa(t) and g,{t, ©) agree with those giwen by
T USIEOU (5% Je nuwever, ne oviaing i

[ & _]

g {t,7) =2 11 - , taT, {15.620)
1 Fbl' t5+20ru/9J

Even though the two impulse responses g, sre not the same, either

. answer is correct! f%This is dus to the fact that we need to consider only

constant signals a,. The comvolution integral forwed with either (1k.62)
or (14.62a)gives the sane answer vhen applied to a constant signal.

The conventional tremtment of this problem (see _etarson [31] who
follows Shinbrot [8]) stops vhen the impulse responses reiating the measure-
mants (zl ‘and al) to the desired satimates (say, ;2) are obtained.
This is not completaly saiisfactory because the impulse respu:-u8 Ay h»
aifficult to realizne physically. For instance, 1% may be easier to build
the filter in Fig. 20.B (vhere only the gains X (t) ave tims-vRrying) thaa
1D 1npiessa. the impulse responses (1h.61-62).

fote alsy that if ouly gr(t, 7) im desirsd, it can be realized by i
l-dimepsional dymamical system

aw,fat = - (), + (42 /om)n,
A
~ tW,.

X2 1

igls
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(14.63) EXAMPLE. Consider the third-order systom defined by the
matrices: '

To 21 o o]
? - e ¢ 1 |, a = cg,‘ end E={1 0O o0l
i
6 0 ¢ b1g
i 35 | Lo

The modal consists of two cascaded integrators, precedsd by & singic-lag

elewant with transfer function 1/(s - £,,)..

| Aoy, /a% = 20, - o5y /7,
A0 /A = 015 + Oy - 811010/T13)
20, ,/at = TR 91393 5/%115 (14.6k)
dﬂze/d.t - 2¢23 + cfz/rn,
“23/‘“ = Lys0ps + Oy - 12"1:/"1.1’

2
du”/dt - zrﬁu” + "J:}/rll +q,,.

Ansuming 31 >0, it follows that the steady-atate value of i1
is given by ths quartic equation '
{0,/ laf a ? \
Gyq/% 8. /Tyy ~ 20,1 2 o

31.1/"'1.1 - Ty

The remining o,, oan bp nov eaniiy dstermined using {(1k.6h). If Tys % o,
ther equation (1k,63) hes a unique solution; if f33 > (. then there sre two
solutions, one of which is ruled out, however, by the ncupegailiveness requira-

ment on L.
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A detailed snalytical discusSion of this eaxmmple would be vointless.
Instead, we suat rely on the theorems to be stated in Bect. 1 for a qualita-
tive wmdsretanding of ¢He behavior of (1k.6h).

On the basis of the exsmples discusssd in thim wectlion, it is conlectured
that the behavior of the variance eguation can ba mscertained by elewsntars
(though not 2imple) algabdraic meens vhensver ths wodel of the measaga proonas
is ot least of the second order. By Example {1k.68), this is no longsr posaidle
vhen the wodal is of order ikrae, unlezs e erdix of the hamilioniss equa-
tions 15 nilpotent as in Remwpls (1L, 50), ¥yua & practical poinm of view,
such algebraic methods sre uselsss! one'alould remort to the dig'tal compyior
for numericdl answers and tc wore advanced analysis for undsx 158 the
qualitative behavior of the optimsl systems.
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15. MNinimplevariance unbicsed estimetion. Thie section im prepara-
tion for the detailed theory of the verimuce equation; at the came time, we
establish interesting connections between our methods and the classical theory
of paraméter ostimetion {23, Chayters 32-34].

We shall study only the case of comtinuous time. Thic will sppre-
cisdly simplify the formulas. The case of diacmf,e time differs only in
trivial details,

Consider & special cass of the model '(ic):
g(t) = B(t)a(t, Mx(T) + ¥(t), (15.1)

vhare x{T) 1is some fixed but unknown otaté, o(t, T) 1s the Lrensition
matrix corresponding to P(t), and v{t) 4s a gaussian wiiito-noizs procecs
vith coviv(t)] = R(t). We sssume that R(t) is noneingular.

Given that z(t) has been observed in the interval t,8t ST, we
vish to obtain the "best” estimate of the "parmmeters” x(T). This problem
m‘s discussed alreedy in Example (G.3). We may think of {15.1) as represent-
{ng noisy observations on a free dynamical system At time to it i8 decided
that the "best” estimate of the state is desired at time T.

I=t us constder first the prodlexm of sstimating the scaler quantity
T = p'x(T) (15.2)

vhers p is an arbitrary but known vector. Let T denote the catimator of
e

It is clesr that 7 will be in general = random varleble, since it
is to be s function of the observations z(t). To define the ™pest” esii-
mator, it is pot sufficient to minimize the variance of 7w, for the trivial
egtimator whic* is comstant (nonrendom) has zerc varience. One could reguire
that

~
=

\)
»
\»

(7 - m)2|z(T))

1ak



- be z minimum. It i2 more customery, howsvez, 46 require fiwvet that

bs 1zbiased
A 7] PR
E{rix(T)} = p'x(T) = ¥, {15.4)

snd €5en minimize (1%.3) subject to this comstraipt, Than # 1a & minime) -
Such on estimstor does not necessarily exist for the medel (15.1), &aa

is immedistely cbvious wpon setting MN{t) 1dentically egual to zero.

Evidently, the existence of an unbissed sstimator 13 e chermcteristic property

of the gsystem (15.1). This motivates the following importemt concept.

(15.5) DEFINLTION. A sy=tem (1%.1) (or (xc‘)) 15 said to be complsisly
dw if for every t, there exists a 'r(to) such that for ey pa.rn;
meter ¥ ﬁm Wy {15.2) cos cmn construct en unbissed sstimator T

vhich 18 a,function of the cheervations z(t) 1n the intervel to St s T{to).
By & lipesr esiimator 5 w2 mean
# =1 gritialzlat, (15.6)
t .
o

vhera 2{t! 1is an =rbitrevy (2% lamst placewies conbimucua) wectar fmc-
ticn cf tima,

It mey bo that thiy propertly holds for some bt not all vecbors p in
{15.2). A wactor p hich By (3i%5.2) defines & yarmmber ¥ hawing sa wbiase
. astimaior A 1s callsd an obeermals comiale. It turps owt thot gBuesgenelits
is the dwsl of ths concept of cgmivellability which 18 eriefly smsxdiiomed Dv Dwtt. 06
snd ddsoussed in muck further dstall o (26, 3551.

FYor the presmt pErpeses, o cmsherisstiors of complieds Cheerveiillisy
will ba suffiolent:

oz e s

{12, 7) EREVARLIE Sam, 4
(1) 12 epd (14) qaly if Sim weiyix

5%




T
Kty T) = [, 0'(t, DEHE{E)a(H)et, Mat
(3

is positive dafinite for some T > t,-

Progt 331, (1) 1r g(to, 7y 1s positive definite, then

£°(t) = R (O)E(t)8(t, mm‘lcto, Tp (t,#tsT) {15.8)

4

will dafine an unbiesed satimator (15.6).

(ii) Suppose that system (15.1) 1s completely observable but that
g(t » T) 1s singular. ‘Then there 18 & vector p # O such that

hﬂy%, ?) = 0. fihen

sM(t) = H(t)p(t, T)p

i

is 1dentically zero in the interval [to, T] singe it s a continuous func-
tion of time end sines '

T ol ye2 2
I fe (t)ﬂn-l{t)“ - unu!(to, 7) =0

[+

Now lat 5_2{1.) dafine sr unbiased estimstor of p'x(T). Then

¥hich coptrsdiiets the hypothesis that p ¥ Q. Q. E. D.
Beveral points should &= noted here,

Even if the metrir E s singular, it supplies valwable informaticn.
A wodification of ihe precedins oouof abhown namsly that T iz an cbservanle

SOTIRE_Rlatixe te the iaterym) [t , T! 1f snd omly 1f
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[z - Mt DN (b, D=0, (13.9)

vhare !_gi is any pecudo-inverse of ¥ (ses Appendix 4).

¥hile (15.7) i3 of acantral theoretisal importance, it is not conven-
tant to epply in concreta _aser, becavszs N is difficuit to calculate. If
eystem (15.1) has constant coefficients, s following purely algebrmic
criterion i3 equivaiant to (18.7):

rank{K', F'H', ..., (z')“'lg'l - n. {15.10)

Wis is proved in [35], using (15.7).

Differentisating the integral defining N with respect to T leads to
the differential sguation

¢

AK/AT = - F'(2)M - Me(T) + E' (DR (TIE(T), (15.11)

If K bas an inverse, then this equation tecomns

at/am = p{mM ™ + W () - MR (DR (15.12)
vhich ia o smecial cease of ithe varisnce sguation {ITT ). Taus ¥l i

analogous t¢c. L. This is easily saen also by computing the covariance matrix
of the unbiased estimator () defined by:

T -
§(r) = MMt 1) [oe6s, DEF (gt (15.13)
0

(see {15.8)). We find

B{E(T)] - !_l(toﬁ T.);

E((X(T) - x(T)1X(D) - ag(T)l'ia_c,g,T)} - g""(to,w. (15.18)

¢}
-



Except in the constant case, however, M will not be invertible in gensral
And therefore we wust wsually deal with (15.11) rather then ths varisnce
egquation.,

The matrix M(t, T) 4s well known in classical statietics. If
v(+) die gaussian, thez M 1s the Fisher information metrix (W1, The
definition of the lattsr is as follows. Iet £,(41x(1)) be the corditional
probabdility dsnsity functional of tho observeitions 'z{t) in the intervel
ft,, T, given x(T). (In the case of continuous time, this iz a probebl-
lity density Taiction of curves 3lt), the rigorous definition of which
is somavhat deliosts.) The Fisher information matrix is defined as

3% (zlx(T))

- fx }\,, /= “_'w:‘}
M« [midl B{ m ix(T)} {i0:1%)

In the case of gaussian noise v(t) we have, purely formally,

T
£,(8Is() = comsi. expl-3 S g(t) - H(e)(t, T)»gc'.r)ni_l“)du, (35.26)

«
am—

and one can check easily that the two definitions of M coincide. Rotice
A
that in the gaussian case the information matrix is independent of the

parameter x(T).

The moat important anplication of the Fisher information wmatrix is the
femous Cramér-Reo or information inequality [23, Sect. 32.% 10, Sect. 7 1.
Ir g('.l‘) 18 any unbiased estimator of x(T), “hen the informaticn inequality

15*

B((X(T) - x(T) 1R(T) - x(T))" |x(T)) = MJ; (15.17)

vhich 18 valid of course only if M is positive dsiinite,

Wo have just seen thet for the estimator dofined by (1:.15) the equality
sign 18 asctually. attainsd. Assuming ;_('l‘) i8 not coastant, 1t can be ahcwn
[35, §38] that ihe eaquality eign in (15.317) can arise if sand only if

‘ ------- -
I7 A, B ‘are two symsatric matrices, we write A > B [A % B] to express the
fact that A - B 18 positive definite [nonnegative definite]. -

anQ
> X5



the probability deneity functionar ¥, ( ¢|x(")) can be factored as

' R tmYa b fiety Fiiay
£ {glx(m) - s(g)em*)“(*(“ )R G0 (15.18)

vhers g, &, b owe srbiévery Punctioms.

e

By exvanding ths futegrand in 615.16), we sec immediatsly € st this
eondition ia trae In ths gausaian case; in fect,then

¥

w(x(r) = x(m),  2(xm) = kO, -
- 0

Whenever the probability dsneity functiomal £ can be factorst ac

£, (LIx(1) = e(x(t), =(1)n(D), (15.15)

one mays that % 15 a sufficient statistic. As 1s obvious from (15.19}, in

this case x contains all information wuich the data L(t) ( = the obsarvrd
values of g(t)) convey about the paramster x(T). This explains intuitiveiy

vhy the equality sign would hold in the informmtion inequality.

Stigge the mrietwe) minimal-varience unbiased estimator turms cut
to bemlina&g“:;ia eztcmiﬂtor copgtituicz at the saws time the solutian of
the (wide-senss) problem of finding the minimsl-variance linesr estisator.
(2en Bects. 2 and 10.} He mov prove this fact by methods indepsndent of the
preceding ecussion.

(1%.20) OGATTHS~HAREDY THBURRN. Armume the procave {(12.1) is comolately
observable. Lot v{t; s & white-noise process (not necessarily gmuesien)
vith a nonsingvlar covariance watrix B(t). Then the minimml-yarisnce ligesr

estiwator ¥~ p'x(T) of ths preoems (13.1} is
v = p'2(P), wbers (T) ia defined by (13.13).

Proof. iIst p be an unbizsed linesr estimantor of w, daYived W
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o R VR

p= fT !'(t)ﬁ(t)dt .
t
¢

T o
var p = E{ [ »r'(¥)v{t)at}

" )
2

oo
- 1 Tl

(o]

¥

T ° . o >
= jt "i (t) “ [E(t) -8 (t)]Hg(t)dt
o

8ince p is unbiased,

« T 7
[ R OROC®E - [ R mE (v T o - el
o)

o b (to’T)

Henee

T . ] ,\
wrp = [ U (g + Ba(t) - x(t)lgyylat = var ¥,
o

Bince R(t) 1a positive dsfinite for all t $t&T, the equality sign
can oceur only if r(t) = s(t)

arerywyhare in this interval, that is, only
if P = ‘i’o Q. r.' Do

L showid Be noted ihai ke gaudswarkovy thoorem Guinslly does
raquirs ths asoumptica Ut Y bo s yhite-moise proc.es. In fact, ir vy
hag the nonsingular covariance matrix

e
P

covrly(t), v(v)] = 2(%, 1);



T
o' 8 s
Wy 0 =0 [ (s, ARG, 9

. ¢
S ¢

the minima) veriznce linear umbiased estimstor of x(%) is given %y

5  JE S
2 - e, U, e D (LR (s, t)av pleiat .
(=] o

We now considar the guastion of }wum:;,r realizing the miniesl veri-
ence unbiased astimator x(T) by means of a dmsmicnl sywtem. In thise camzs,
‘the asgunption that v 1is e wkite-noiss procesa if & very apprecisbis almpli-
Tiocation.

(15.21) The wimimal varienco wpbissed estisator 3(7) gives by
(15.13) is tho termigs) eiate of the . .. dynamicel symiem

af/at = p(€)@ + K(t) (e(t) - H(+)X],
vhere (15.22)

K(t) = uf(x, ©)E' (8)R7(8),

s mtrix dlock Alegram of this equetion 1s identicel with ¥Fipg. o
vhich refers to the optimal rilter (n Jo T%e only difference lizc in the
Antinition »f l’(‘l’\ Wt thin s omlw ernarinial mivce 1w haws =] w

id
notad that g’{tc, ) 1s formallythe same 25 EL{t|t).

r

Procf. let ¥(t, 7} be the trausition metrix of the Tilter {15.22}.
First we show thmt

(T, t) = M (t o )8 (%, T)}&\t , t) for t <t &T. (15.23)
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T™his forenila is clsarly trie if tsr because then the right-hand side of
{(15.23) reduces to the wnit mstrix, Y(7, t), regarded as a function of t
vith T fixed, satisfies the differential equation

- ¥(7, ©) = 3(x, V) - & (e, OB WE RS, (15.24)
as is aaslily seen by differycidating
T, F(t; 1) =1

and using (4.8). Differentisting the right-hand side of (15.23) with respect
to t, using (15.11) and the pseudo-inverse lemsa (A.L), we verify easily

thn.? (15.?1&) holds. Thus ¥ defined by (1%.23) is indeed the iransition matrix
of (1%5.22).
(We see 1nmedistely from (15.23) that

l T, t) - Q (to £t t]_)) (15.25)

vhere i, is the largest value of time euch that

1
g(to, tl) = Q.
Since a transition matrix 1s never singular, this comssguence of (15.23)

is of course absurd. In fawct, ¥(T, t) 18 given by (15.23) coly for

t1<t:'r; further

m ¥(T, t, +h) =0,
o -0 h

and we simply dofine Y¥(T, t) to Be zero for i St S tye)

In viev of (15.20), we have to prove only two things. First, that

A T
x(1) = f (T, t)K(t)z(t)at (15.26)
t
O
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18 an unbiased estimetor of x{T); second, that the covarianse matrix of
x 18 Wt ). |

It is oasy to zee that x(T) given by (15.26) 1s unbissed if and only
it ‘

T
J X7, v)K(L)H(t)e(t, T)at

%

18 the it matrix. Tsing (15.23), the precading lategral bectmss

.
;IR t)e(t, T) +x(T, t)e(t, T)lat,

(o]
=L - YT, t)e(s,, T,

-1

because of (15.2%).
Further,

T
covix(T}] = [ ¥(T, £)X(t)R(L)K'(+)g (T, L)at.

t
s}

By (15.22) and (15.23), the integral is
L
¥z, ), 2t Mty (e, R (4R (E)E(L)
[

Thie pseudo-inverse lemmc (A.%) shows that the bracketad tarm s equal to
g(to, T). EHence

eov(x(T)] = f‘l(to, T).

The proof of (15.21) is complete. (RBemark added in proof: The preceding argu-
meant shows that actually R(t) defined by (15.22), is sn wnbimsed estimator

of x(t) for all tat, >t vhore t. is the first velue of % for which
M(to, tl) ie nonsinmuler.)
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(15.27) REMARK. The theorem Jjust proved shows that ths filiering end
uwbhiased eitimntion prodlams awve governed by essentislly the same thecry.
This is & familiar rtate of aflfairs in the caloculus of variations. One beasic
equation, the hamilton- acod! partial differsntiel eqm.ticn, covers s wids
varisty of pwodlexa, the differences between the varicus types of problcus
boing represanted »y the homdary conditiona. The hemilion-~jecobi partial
24 8Peseetis] eCumtim 18 equivalent to owr varisucs equetion. The bowndary
conditica im the filisring case im that L(t Oitc) is some nonnegative de-
Linite mitriz. In the undiased estlimstion problem, the Initiel comdition s
L(t,it,) = 00, Which is the mame as u(t , %)) IL'(s It ) = 0.

Clearly, the solutioms of the filtering sid cstimstion problems will in
general be different. We can sece with reference tc Exxplo (1k.%0) and Figs.
18 apd 19 that the optimal filter iz uswally not unbissed. In other words,
if the signal 4, (t} bzs a mean compowent, this mesn compiment will be re-
yrodinced with zn errcr becsuse the unit ster in sz(t) does not result in
s mit stap in R t),

(19.28) MBCEK. Ist us indicate briefly how the miniwal varimsce un-
Diseed estinator can be computed in real time. There are casentially four
posaidilities:

(A) In the most obvious case shown in FPig. 234, one zimply per-
Fo7us ths multiplication indicated in the integrand of {1%.135) wnd then
integrates with respect to tims. The multiplying siguals can be ganersted
.S Liggay dynamicsl system whore initial state is takem as (%, M (s, Tp.
A8 rether {zcomvenient if amalog computing equipment is used, because of txe
GifR{culty of acowrste mmltiplicaticm.

(3) By tusprotion of (15.13), we note thet @'(t, ME'(L)R™(t)
=@y Be imterpreted us tho (generalized) impulse response of the differantiml
epuation

QE/at =o' (L)x + E(6)B 7 ()R(L)



(the free part of which is the adjoint of (4.1).) Hemqe the optimel esti-
sator bas the obvicus physical resligation shown in Fig, 21B. It may be
convenient %0 changs variahles in suoh & 'way thet tap watrix X bécomas
the identity. Such a system can e easily tuilt using stamiard smslox com-
ponents it it has & sericus disadventage. If P(t) Gefines an waympioti-
cally stadle Aiffersntial eguation, than the corresponding sdjoint sysism

m’d - I'(t) 4. u-mun" Ty nmm'tn"‘lv na.‘hlh'ln l snaninl sese ~&

this msthod was noted by Mish¥in » o5, h T
{£) ZFoting the difficulty Just wentiocned, several auihorz {=ost

prominently Buggios {37]) heve suggested the followlng cliemstive. Sippess Ihat
the . record of the obsarvad fanction x{t) (t, §t & 7) 1s imverted in time,
that is to say, we introduce & nev time variable ¢° dafined by

t‘-T-T-—t,

and oonsider x(t')s= z(2T - t) instesd of z(%).
* Bince 9'(t, T) = [@'(T, t)]™} 1n the transition metrix of the e joint
differantinl cquation

tz/at = - 2'(t)z

of (4.1), it 1s clasr (by changing variables) that {[9:{2T - ¢°, 51-)}"JL is the
transition matrix ¥(t, T) of the dual svstem of (1)

el masna iy

\.._l

dx/at = E'(t')z + B'{t" Ju( {15.25}
where

Fe') = pr(2r - 2),
Hence

Q_'(ﬂ - %', 7 = [!(t': )] = :.(1') t).



Thorefore after the a!u\nu of m".ablei tst! v obbaln the physicsl reaii-
™e required tims-invarsion Aay be performed, for instance, by recording
z{+) on ths taps resomier and {hen rvaning it backimrds. '

(D) Pinally, we have the rexiisation provided by Theorem (15.21).
I% ahculd Be ucted that in this case the minizel wariance unbiased estimator
is ssymptotically stable (see naxt section) no time-inversion is required,
and it is not necessary to change coordinatez so a3 (o maxs M unity. On
the stber band, one requires time-varylng maize E(t). BSee Flg. 21p

(15.30) EXAMPIE. The simplest estimationiproblem concerns the detection
of the sine wave in whits nois~;

zl(t) - xl(t§cou(t- ™ + xa(t)sin(t -T) + vl(t).

This problem is of importance in dynamic testing (38].

The corresponding matrices aze

0 1l
E’-’ , ’ g- [l 0], and gn {r__.—];.
a0 L

The matrix M given by (1%.7) is found to be

[-a(r - to) + sin 2(T - to) -1 + cos 2(T - to)
Q(‘-"O,T) = %

i -1 + cos 2(T
L

- to) 2(T - t,) - oin 2(T - ¢t )

.g. (15.71)
J

It 18 easily checked that this matrix is positive definite for «21 T > % o

Appreciasble simpli./lcat.un resulis .1 we take advantage of the orthogona-
lity properties of sine and cosine. Thus one is led to gssume that

T -t = q - (q = positive integer) (15.32)



in vhich case

Mty T) = 5T - &)L

let us give also an explicit expression for the tims-varying galas of the
winisal varisnce wnbiased estimator (i5,13). Using {15.22) ssd {15.31) e

assuming (1%.32), we fird that

e(t - tg) + ain 2(¢ - tg)
b o ]
' Mt -t c‘)2 - 81n2(t - t )]

s1n°(t - t )

K. =  — .

rn 21
o{(t - tc)z - ein®(s - t )]

{15.3%)

At to" the values of kll snd km are Both tefinity. Thwy decramex

Stemisailr o l/g(f—'%;o) st G,

The block diagren of ths f1lter is shown in Pig. S5



16. Properties of the variance equation. 7The main purpose of this

-

section is to gemeralize the results of Exemples (12.7) snd (14.11), We
do this by trying to imitate the methods used to study these examples. The
desired generalization can indeed be carried out, provided we assume that
the system (I) has two important propertice: it is completely cbasrvable
and completely controllable., Most of “he discussion is comcerusd with toe
aase Of contiauwonts Wime; unless explicitly pointed out, the traxtmor+ of
the caga of disarets Liwa is very' similar. Of necesgity, this aection is
rather tachnical and muy be omitted at rivnt resding,

In the interests of simpiifying the notation, we assume that the original
nodel ‘(Ié) of the random process 18 one in which the cross-covariance mebtrix
C(t) of ¥ and y 4s zero. This doea not entail any loss of gsnerality.

¥Yor let us replace F(t) by

E(t) - 6(t)C(t)R™H(£)H(s), (16.1)

‘'

and Q(t) vy

aft) + ()R ()g’ (¢). (16.2)

Writing

(t) = E(w(t) [x(t)) » c(s)R (uhx(t)

F(t) = u(t) - €(v),

we obtain the satrix dlock diagrsm shown in Fig. 23, in which the rendom
exciiations Y 3rd ¥ axe independert. Thy effect of depondence dbetwten
v and ¥ in the original model {s now repressnted by the feedforward term

E(t)g(t)g l(1:) in the block dimgram of the optimal Tiltex.



- Bunce from now on §{%) is teken to ¥o ideatically zerv.

Buppose that E(tlt) 1s nomsimgwlar. e (III) =ay be written
equivalontly as

azt(ele)/at = o () (e]t) - £ I0R) + B (OR T (0)n(e)

- g waengr (g e (e

Thin equation hes precisely the same genersl form as (IIIO) but the sy=bols
‘deaigoating Whe ITour terms on the right are somevhed different, We regard

(Ing) the adjoint of (IIIC). We can formalize this notion as follows:
16.3) DEFINITION. The sdjoint of the moedal (I ) is given by
(o]

0x/at = - F'(t)x + B (t)u(t),
z(t) = @' (t)x(t) + x(t),

vhere (%}
covlz(t), ¥(r)] = g (L)8(t - 1),

coviu(t), w(x)] = RI(L)B(t - ).

This definition 18 in agreement with ithe usual terminclogy in differentisi
aguations. {In {4 - %] a somewhat Aifforent concept {"duslity") was used,

but in the present case the concept of the xdjoint 1is move conveniont.)

(16.5) REMARK. There 18 no loss of geperclity in assuming that ike
matrix g(t) in (I ) 1s inverti®ls. In fact, we can aven sssume hai the
covariance matrix of w 18 I, as wac discusred in Sect. 7. Thus the adjoint
system alwvays sxists.

It is natural to introduce the



(16,5) DRPINITION. A system (I ) is aaid to be goapletely canbroliebic
if 1ts sdjcint iw completely obrervable.

In view of (15.7), complets controlladility is equivalent to the following:

(16.6) CONTROLIABILITY LEMMA, . The systes (.} is completsly somtroll-
abls 1f g oRly 1X the metpix

T
Wt 1) = [ 4D, )Y (6)QN(T, ta

o

is ti Linite.

One can of course also dsfine completfe controllability directly [331:
The system (Ic) ie completely comtrollable if there exists some forcing
function w(t) which takes the system initially at rest (x(t ) = Q) to
any arbitrary stata x in a finite lengtb of time (x(T) = x). Furthermore,
it follows [33] that the minimm amcunt of "comtrol energy” nocessary to eccom-
plish thie in given by

o

!T he(t))? . at = fixi? .
s gt "'w"l(to, )

The matrix W, which is the adjoint of the information watrix M, 1s thus
seen to represent "reciprocal energy”.

Just as in the case of Examples (12.7) end {1k.11), 1t is deslreble
to impose conditioms which guarentee that observability amd comiroilabili

are esgentially wmaffectad by the cholcee of to.

1

&

(16.7) IEFINITION. A zystem (Ic} 18 uniformly completely observabisz
if there exist fixed positive consteante o, Q, f such that

0 <of & M{t -0, t) % BI*

for all t. The system (I ) is uniformly completely conirollsbie if

%
dee {ootudte on page 138
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2 x #
G<a:[_ig(t-a, ﬁ)Sﬁl

Zor all t. (Yor simplicity, it is assumed thet the same constants
o, @, 8 ocouwr in both ineguaiities,)

(16.8) MMARX. ‘e tronsformation introduced at the beginning of this

saction dces not affect observedilily or comtriuliability. Indaed, if
¥(t, ) 4s the trsnsition matrix corresponding to {i6.1), then

wit) = B(e)x(t, T)x(T)

A

= Q(t) [p(t, Tx(m) + f i(t: *Jefle o 32 (< )E x xle)ae
by (k.%). BHence
.
x(t) + ft!(t)a(*-, OISR )g(t)ar - B(t)elt, Tix(™) ,

vhich shows that thers sxists s wublased estimator for {16.1) if and aoly if
thare exists une for P, and it is clear thet the verimnces of the wbizsed
estinators ars the zame Iv the SYwe cases. Henos the mtriz ¥ 15 the cawe
in both cames, Pmsaing 1o the adloinmt aystem, we rosdh the same casclusim
regarding the mtrix W.

Enroute to the main theores {18 I8Y w5 caiallish iGs Toliowing fmacie,
vhich are of interest in themselves.

B(tt) € W H{tmw, £) +H(b-w, ) vmen tEt_+o

To prove this, W Wakc use of Theorem {13.2i) which providss a filter
for npbiased estimation. This filter is of courze not optimal iz the sance

* See footnote on page 198,



of Bect. 9, and therefore provides un upper hound for the varisace of the
optimel filter. Nov the most important feature of unbilased esvimation is
the fact that erromdue to the initial warianze of x are teduced Lo rerc
in a finite length of tim. To put it daiPereniuiy. It suffices to uperate
on data over the 4i=s interval [t~ g, t].

The covariance matrix of the filter (15.22) at any time ¢ ¥t + o
is therefore glven by

t T
H T (v-0, 1) +covl [ &r Yy, UEOEE [ v o, vieluln],
T~ i tegy

wnare Y¥Y(t, t) is the trensition matrix of (15.22). Adding

T t
cov [dr X(t, TIK(T)A(v) [ av &(v, v)G(v)u(v)]
Loty 'y
to the preceding sxpression and making use of (15.23) estsblishec the dsslred
insquality.

(36,20} L=MA. If (I_) is unifomly completely coptrolluble and wmiformly
aEpletely oheervebls spd if Z(t |t ) 18 positive dsfinite, then

[E'l(t..c, t) + ¥(t-o, £ = p{tlt) wem t 3 £, * o

let ua corpuie firzt an exprassion for the vete of charge of the detar-
Rizzsy of thes covariancs mirix. Nloemtary but extznsive menipuiations yisid

==, l 4 l :‘A " . . ‘
afdat Ti/at = {2 er(f - XN) + tr(x}g'g l1*3:;;’!) + 4r(L “GQO'L *jjéet £, {ib.uil}

vaich is valid of coumwse only Lf det L > 0. We have already encouztered a
special case of this foymula in the feaw (1h.30).

The seccmd snd third terms on the right-hand side of (16,11) are non-
segative dscsuss they ars the trecas of rnompegative definite matrices. ¥ance

Sea



Lir

st Z(t]e) = ¢

)]
—

t
I sele(r) - K(v)E(7)Jav)dat g(t to).

Nov F, E are assumed to e a nontimaous fumeticn of t (see Bect. k),
and so 18 K(t) ¥y (3.13). Bemoe if 3% g% jt,) >0 ik
dot L(tit) >0 for all t >t
From thic and {13.3) 1t follows that if z;,(to,. ) 12 positive Zofinite,
7 Y(t]t) extsts £z w t >t and is the unique solution of (III¥) having
the initial wvalue I (tolto) usplym, (16.9) to the adjoimi case, the desired
inequality follows at once. b

(continued on next page)
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(16.12) L. Syppose the systes (I,) is uniformly camplstely
contiolladls and thet E(t It} i3 nomnegative definite. Then L(t|t) is
positive definite for all ¢t X ¢, =t + 0.

%e have already seen in ths coursa of the proof of the preceding lesss
thst 1r ;{t;t) is omes nomaingular, it will remain nonsingular thereafter.

BEanse it is sufficlant %o p.ove thet §(t1|t1) is nonsingular.

Iat us assume the contrary. Then there 1s a Tixed nongero vestor jp
such that a

2 ,
llelt - 0, - {16.13)
'2(t, It))
We sbhall show that actually
(e, , t)Bllz(tgt) =0 for t &tst, (16.14)

where Y denotes the transition watrix of the optlmal filter.

Tet 8(t) = ¥(t;, ®E(t|t)Y'(ty, t). By (IT) and (TII)) 1t foilows
that 3(t) satisfies the integral equatiom

. |
5(6) - i) = J [Be)K(E, 2 (£)BH(O)E(B)Y! (5, ©))a(t)

o
+ 1(t., t)a(t)e(tla’ (eig' (v, t)lat, {16.15)
Tho Liltgrund Le aomnegttlve definite. S0 i g{fg}, Om the ovner hand,

ngug(tl) = 0 by hypothezis. Hence Ilgﬁg( 4§y TSt venisb identicaliy on
[t,, t,1, vhich proves (16.14).

Instesd of (16.13), we cen write also

B(t1t)'(t,, £)p = 0 vhen t ¥t t). 16.16)



. 0

let

q(t) = X' (%, t)p.

Differentiating with respect to t and using (nc) and (16.18) ve g=t

ag(t)/at = [ex'(t,, t;/atlp,

- [ - P(R) i.g'(t)g’l(t)g(t}é(tit)lE:
- JOER

Tus g(t) satisfies a differential equetion which is the adjoint of (T );
this equation has the unique solution
a(s) = &(t, t)p = ¥'(¢;, )z, (16.17)

vhich satisfies the initiml comdition g(t.) = p.  Substituting (16.1k) end

(16.17) into (16.1%), we get

2
hu;(t) - !(to) - “nai(to) tl) .

Ry hypothesis (16.13), wo have then
. _ halle - Iok2
belge ) = Blyce,, +y).

Since p £ 0, the right-handis positive by the assumed waiform complete controll-

ability (se. (16.6)). This contrediction provas that ,'f.;('t.K ftl) ir positive

delinite.
We are now in a positiom to prove the chief result of the paper.
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(16.18) MATN THEOREM. W___{I ) is wniformly completely
observable epd vniformly completely comtroliabls. Then tho optimel filter 16
uniformly aswewtoticslly gstable.

(16.19) RMEMARK. It skould be mentinued right away that “optizality” by
no means implies "stability™. But in phvwickl. applications, the uniform
asywitotic stability of the optimal filter is an indigpensable requiresent.

If a systen is not uniformly asymptotically stable, then a bounded input may
result in an unbouded cutput [ 14 ], Hence emell bisz errors cen ruin the
pertormance of the filter. Perturbations in the valuez of x would be
diuaterbu; unless the filtsr 18 at least stable. Thc ssarch for conditions
under which “optimality” impiies variocus forms of " stability” is the central
| praihn of riltering theory. In the classical Wilener approaci, this uroblem
18 completely ignored, but it turms out {eme balow) thet the classical assump-
4ions guarmntee stabdility anyway,

(16.20) EXAMPLES. ‘The conditions of the theorem ure clearly satisfied
in case of Examples (12.1), Case (iv); (12.7); (1h.1), witn g, >0 (1k.11).
In these exmmples we were sble to show wniform ssympioiic stebility of the
optimai filter hy direct methods.

(16.21) COUNTEREXAXPIZS. What hagpens if we 4o nol have compleie
controllebility? In Example (32.1), Came (11), with | 1.19 = 1 the optimal
filter 1is etedle but not amywptotically stable. On
the other hand, in Case (111) of ibs sams axample the optimal frilter is ssympto-
tically stable. Similer comxents apply to Exsmple (1k.1). Another illvetration
of ths theorem is pxovided bty Cose TT-A-@ of Exsmple (14.20). Every stoady-stste
optimal filter corresponding %o the matrices on page 178 is unztsble; the cigen-
velues of ¥ - Ki esre + 10 in each case.
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Rroof of the wain theoyem. Iet Y¥(t, ) be the transition matrix
of the optimal filter (I ). Then

Alt, v) = X'(7, t)
18 the transition matrix of the adjoint of (II_ )
dx/at = - (P'(t) - B ()R ()E(HIE( 1) e (16.22)

Wo shall z.cve that, for il ¢, thers are pisitive constants c,, ¢, such

that -
t - *&320
Ia(t, ¢ + o)l ce . (16.23)

This implies

—020

'€t + g, )} = lg(t + 0. t)]| eje

and thus - he uniform asymptotic stability of (IIc)’

To establish (16.23), we i-troduce the Lyaspunov functicn [14]

3
~

V(X t) - ".x.‘."z(t lt) *

By lemmas {16.9), (16.10), (16.12) we know that V(x, t)/HEHQ is uniformly

bounded from above and helow, at least for t 2 tl = to + 2n:

[

@+ Ml s vix, t) s (@ +8)xl> 18.24)

The derivative of V along motions of {16.22) ie given by:
i - % + &' %"Z"
- 2
= fEOzItEl 5+ lletmiigeyy- (16.25)
R () =
Thus V 18 nondecreasing along any motion as t — . We 8hall show that

v(x(t), £) s YW(x{t + o), t + o) eR 0 <y < | (16.26)
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wadich will prove (156.23), in view of the wéi l-known theorem of Iympunov [1k].

The problem is to find a lowver bound for the integrel of twe rizht-
hand side of (16.25).

1ot .
o(%) = BHOEMOE(TAT, t « a)x(t + o).

then, by (16.22) and (k.5)

Ax, ¢+ a)E(t + o) = (t + 5, T)x(t + o)

4
+ 12wy 7B (V)u(v)av.

Tet
t+g -
2 - € N
!t ||9.(V)||§(v)dv € “!’(t + 6\
and
. t+o . » -
| I gt v, ¢+ o)x(e + )R, av = lle + o)
v -
‘where € and n depend on t + ¢ and [t + o). lence, writing
52 - 62 + 1']2, '

V(x(t + 0), t + o) £ V(x(t), t) =~ 8%x(x + o)]|%
Furither

2l' - D t'."ﬂ. s tw 3 2
1 ikx(t + o)fi" & It o (x)e'{t +a, )ix{e + ) + f 2" (v, t+e)E {v)u{v)dv]|] 1 dx.
- T B R (v)

(16.27)

Bow if tsTatc+yg

t+o
I MOREE):JONOL
€
t+o
S U110, v R RO )l e
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By Schwarz's inequality,
2 " 2
s ¢“[tr M(%, t + o) llx(t + o}lI%,

Expanding the iuntsgrand in (16.27) and using agni: Schwery!s inequality, we
Bee that

2
nx(t + o)"2 - .'x(t + a)h\y!t t 4+ 0-)

25t W%, t + o) 1ltr M{t, v + u)ié"g:_(t + o)i%,

By unif notplete obesr@mw- and icentrollahility,
PP LN e i 2.“_,3/'7- 53/3 + &2

Moreoyer, we have crivially alsco that

62 & (2.

Combining the two preceding inequalities, we find that

8° u -ﬁf—->o.
4837

V(x(t +.0), t + o) V(x(t), t) 5 (/apW) V(x(t +o), t+a).

Hence

™is establishes (16.26), snd completes the proof of the thecrea.

Cur =ula thoOren b2z o imandiate and lmperisnt consaguenoes

u}"(")(t + olt + o) = go')(t +ejt +9)f s c,cwlg‘,("‘ t)-{(h)(tli“'

£19

“‘R'
NK.A




That is, the effect of the initial state ;_(to) is gradually
"rorgottan®™ as t ~»00. This is important in practical applications, because
the value of Z(t ) may not be accurately kmown.

¥umerical integration of the variance equation is facilitated because
the effect of round-off errors will not he cumulative.

Proof. Let
sL(t) = é(f)(t.lt) - g(")(tlt)
Tt 47 wosily verified that 3L(t) obeys thé .diffarential equation
ang(t)/at = [2(t) - £(*) (0B (0)B™ ()(%) Je()
+ sp(e) 2(t) - £ ()m (R (e)E() )"
Froa this, it follows easily that

ax(t) = ¥ (e, € (e pr®) (s, ) (16.29)
which is the vmlog of (1M.18)3 g(“) r=ap. !(b) is the transition matrix
of the optimai filter corresponding to I a) and g(b) .

Taking norms in (16.29) and invoking (16.24) prowss the theorom.
Consider acv the solution of the varlance equation corresponding to

L(t,) = 0, which ve demote by E(t; G, ¢ ). Unier the hypotbesee of (16.28),
the 1im+

Un  g(t; 0, t ) = E(t) (16.30)

>
~p &
vo OP

axists for ;1.1 t. To prove this, it iz only necessary to note thet
Z(t; 9, to) 1s nondecreasing vith t , 1.e.,

£(ts O, t,) 3 5(t)3 O ¢y) (16.31)



whenever t, 4 . Then {16.30) fcliows by standard convergencs arguments
since by (16.9) I is uniforamly dounded from above,

, To prove (16.31), let !(o) and !(1) be the transition matrix and
!_c_‘o) and g‘l be the gain of the optimal fillter corresponding <o
E(t; 0 t)) snd E(t;3 O, ). Then

. |
£{t3 0, t,) = cov{ ft 1P, o) a(r)y(r) - kP (ryp(ryleny
(o] i
By optimality,

AT (o)
s cov( ft (s, T)[QKT)!(T) - E_O'(T)g(w)]dT)’
o .

5 563 0, t),

wvhich was to be proved.

Hence we have, as an immediate corollary of (16.28),

(16.32) THEORKM. Suppose that the system (I ) is vniformly completely
cbsarvable and uniformly completely controllable. V‘an every solution of ihe
variance which has e nonnepgative-definite value at t = t, couverges uniformiy
to L{t) definsd by (16.30).

In viev of this theorem, we call Z{t} the moving equilidrium state
of the variance equation. TIn the case of constant system {Ic) , the aolution

of the variance equation depends onliy i Lthe AilfTeisnca  t - to. dencs

(¢} = £ = cmst.

(16.33) THEOREM. Suppose the random process x{%) 1s generaied by a
constant system (I ), i.e., ¥, G, H, Q, R are constaxts. Suppese further
that (I ) ie completely observsble and completely controllable. Then every
soluticn of the variance equation which has a nonnegative definite initial
value tends uniformly to a constant matrix ;:_- in the limit t = oo. This

e =

221



matrix is the umique vositive definite equilibrium state of the varisnce

equation, 1,6., it 48 the wgique positive definite solution of the system
of 8 QNeous tic braic e ions

dz(t)/ar = 0

Froof. Tae first part of the thoorem follows st once from (16.32). I
is positive dofinite by (16.12). It is uniqua, because if {111} = wee
than one aonstant solution, (16.28) is contradicted.

(16.34) EXAMPIES AND COUNTEREXAMPLES. Coasider Example (14,20). We
always have complste obsarvability, If det Q >0, or det Q=0 bur
T34 4 f,,s then ve also have complete controllability, end Theorem (14.18),
hich was proved by direct methods, shows that L 18 unique sud positive
definite. On the other hand, {f det Qw0 and f, = f,,, then Thcorem [1L.48)
shows that X, thongh possibly uniquas, wlll always be singular. Hence the
condition of complete controllability cannot be dropped from (106.33).

In Example (14.%0) we have complete obgervability and complete controll-
?bility; the equilibrium state g given by (14.51) 18 indeed positive defiulite.
On che other hand, if complete observability is destroyed by setting hl] = O,
then there does not even exist an equilibrium state (unless q,, = 0 which
mesns that the second-order problem is degenerated into a first~order one.)
Hence the condition of complete observadility cenmnct be dropped from (16.3%).

In Example {14.52), we have complete cbservability hut not complete
controllability since Q = Q. Indeed, we mea from (14.57) thet all solutions
$f *tha verisnce equation approach I =0 a6 t —»00. Thus in the absence

of complete controllabllity we cennot gusrantee that L > 0.

It 18 not clear a priori whether or not the assumptions of the clescical
Wiener rv~blam imply complete observability aid coiipicive controlimbiilty. In
fact, the answer is yes.

¥or if (Ic)is not completely observable, we can introduce special
coordinates 8o that the defining equations assume the form [33]



G.J_t_(a)/d.'b _ !(21)5(1) + 3(22)!_(2) + 9.(2)‘_{('5),

2(t) = B () + w(v).

.
In other words, some of tha state variadlas {namely the compai:~is of _:;}2))
do not affect z(t) -~ hence they may be igncicd in ths staboment of ths

filtering problam.

i

A similar decomposition holds if (Ic) im not completely centrollsble:

axfV jas - g0 (1) 4 02, (2) () 0yy

d}_(a)/dt - !(22)!(2).

In othar words, no rondom excitation acts on the wector 5(2). The assump-
tiom cf stationarity in the Wiener problem implizs that we must sot g_(z) = 0.

—

. The staiement of the classical Wienoxr prcblem does not explicitly
involve X. Therefore in setting up the presentation (Ic} , there 1 no lost
of gsnerality in assuming thatl ;_(2 iz sbsent from the moceding eguations.
Thie proves

(16.35) THEOREM. The clussical (stetiomary) Wisner problss covissponds
to & model (Ic) vhich is coupletely obssryahls msd cospletaly controlloilz.

-

A simple example iz provided by the fallowing aspecisl csaso of Exmagls
(14.20). Lot det Q= O but U0 $0, vhlle f < 0. MNeking ths
change of codrdinutes

1 = e

L= and o = Ty,

where
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Jl-rqza/qu 0

 Jagp/ay, 1

- ) -

the squations of (Ic) sssume the form

i, o= 2,,8

1™ Tafy F ey
8o = Iy ip :

Since rll < 0, +the second saguation lnay be dioregerdad end the Wiener pro-

blem reduces tc 3 first-order ome.

It should be noted, however, that in numerous applications [mes, ¢.g.,
Rxample (14.%2)) the Wiener formmletion is not sufficiently general, and in
such cases questions of observability and controllability way present some
nontrivisal problems.

In the classical thecry of the Wiener problem, the process of solution
involves ithe aspectral fuctorization of fourier transforms intc two cowmponento
which are anzlytic in the upper res. lower halven of the complay planc.
Intuitively, this procedure is related to the fact that tbhe eigenvaliues ot
the matrix defining the hamiltonian system (Vc) (see Sect. 13) occur in
pairs; Iif i is an aigewalue, so 18 .

<~ now show that under the hypotheses of the main theorem, this rosult

Tz D9 zensralized o nonconstent systioms as well,

(1A, %0} THBORMM. Grrrose the aveben (Ic} Loyt Porglae i ot x v

ble wnis c A controilable, Then- there existz s ot
singular linesr transformation
x L
= '_I.’(t') >

B

i<



mén that the hemiltonian equations (V) assume tho disgonal form

QE/ht " - !'(t)! ’
ax/ac = F ()1, ¢

vhere ¥ () 4is the infinitesime]l trupsition mabriz of tde orbimai Tilter
corresponding to D(t).

Moreover, T(t) and its invorse are uniformly boundad fox =l t.
moof. Yat (v, t) {t fiwed; 1 wvariadle) oo She Sransition
matrix of the optimsl filter, corresponding <o

4

) = F(t) - He)E (6IR(6)R(e).

The motions of the optimal filter may be denoted by

The scalsar function

, 1) = §x(< e
v(x(<), 1) = jx )3-1(13

tepds to O with T +® in view of the main theorem and of the lemnas
preceding it. Differentiating with respect to 1, we obtain ar integral
expresgion for Ve

V(x(t), t) - ¥x(m), 1) = (R0 ) e MengE e
t K (1) A1)

mia proves that

ORI OF Ol
T—00 ¢ R (=

exists. Differentiating with respect to t, we see that 8 is a solution
of the differential equation



ag/at = - F1(t)8 - gt} + B (t)R"(L)H(E). (16.37)

Now we Aafine the transformation T by

M1 s
P(t) = . (16.38)
E(t) I + &(t)s(t) |

Utilizing (16.37-8), we see that the new variebles (i, ) satisfy the
oanonical differential equations o

a/fet | (g - B r_i'gg'i} ¢ ]
&x/at aea’ r _} I_J
“ -F 0 [;
0 ¥ [ £

Finally, we note tbat
£y £ Fet . ! =X
~B(t) S2(t) Wt -0, v) +M (b -0 t),

eo that  lig(t)]] 1s uniformly bounded. The picof is complete.

Witk the aid of (16.3g) we cen write the matrix 8 occurring in (13.11)
in the canonicul form
{16.393

I s(¢) 1 [x'(e, ) 0 L+ 3(£)E(t) g
8(t, t) =

E(t) 1+E(t)8(t) 0wt t) || -E) 1
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If F, & H, § R are constant, than so is IE and 8, aerd the
determination of § 41f reduced to the olementary problem of solving the set
of lirear equations in the coefficierts of 8 obtained by metting the lefv-
bhand side of 8 equal to gero. Moreover, in this special case,

2, t,) = explft - £)F),

vhich cor e mlic%thr col)lpubed as & mtrix vhooo slements consist of sums
At -t
of exponentiel e - °

shows that the solution c¢f the classical Wiener probiem under the markovian
assumpticn contains 4n i1t also the solution of the problem with finite

y Vhere xi are the eigenvalues of i. Tais

" observation interval (t ¥ - 0o). Taus we have:

(16.40) THEOREM. Under the hypotheses of {15.3%) any solutico of the
variance equation can be expreased in closed form by the following purelw

alpgnbraic procedure:

(1) rina i:_: by setting the left-band side of the varispgce equation
(ITT,) equal %o seros

(11) fipd 8 by setting the left-hand side of (16.37) oqual to zero;

(111) dotermine the e wos of ¥ (which wiil aivsys hayve nesstive
real partas '
(1v)  expess expl{t - t)¥] i terms of the eigenvsimas of % s
(1) comuta @(t, t) Bx (16.3)
(v1) utilize (13.12).

(1€.41) EXAMPLE. A2 sn iliustration of this thsorem, wo ocorpute the
expression for @ in Example (1h.1}, The constants o, and ?11 o
given by (1k.3) and {14,7); wo sea that 8,; Obeys the equstisn




or

a ot l >o.

5
2&?1"?.1 Tt

Substituting these values of Eu, %19 *=11 inte \16 ), we verify the
previcusly given formula (1&.10) :

It may be added that Example (Lh.l) wae considered previously by
Shinbrot [8, Example 2], by his specisl wéthod of moiving the Wierer-Eopr
integral equstion. With the new method, tke sclution of the imtegral equa-
tion is avoided end thc algedbrsic nature of the problem (vhich is the
explanxtion for the possibility of cbtaining rusulta in closed form!) is

clearly svident.

(16.k2) RBARK. AL previous considerations can b@ oasily caxried
‘over, mitetis mutandis, to the case of discrete time. There is only ome
point ¥hich requires cauticn. In writing down the discreia amalog of
{(16.25), @ =ight 58 puxzled by ths appearance of certain additional terws.
But these terms all capcel, by virtus of the pseudo-inverse lemma (A.%).



Appendix A The Pseulo-Inyarse of » Mairix

In matrix caiculationz there is s frequently recurring difficulty due
+0 the fact that the laverzs of a matriw dose not alweys exizt, "™ prowe
the sxistence of a given watrix is offten cumberscms and difficult. More-
cver, in many osses soltuions of a set of linear equationsg axist even shen
tha inverse of the mirix defining these sgquations doss not.

To alleviate some (though not all) such Alfficuities, it has been
found convenient to introduce the notim ef che ;o-ssiled pseudo-inversa
of a matrix, Roughly apesking, a paado~inverse must possass two propsriles
to be useful: (1) it must siways exist; (i1) when used in place of the
Anversc (wvhich may not exist), it should give the correct answsr to such
questions as soiutions of equatiens. In general, the pseudo-inverse is
rot unique; this gives rise to certain complications.

@e material which fellows provides the main facts needed in thia
rer, Yor further details, consult Penrose [59-%0] and Eelmsn [501.

A watrix 5’ is called o pssuds-inverss of a rectangular (nct neces-
srvily squarc) matrix A 1if it satisfies the following relation

(1) M -4
If A bas an inverse, it is aqgual to 5*. For then (1) implies
Q&f =1 and 5’& = I; as is well known [42, p. 62], these two relaticms

imply that é - g. Proz (1) w» see also that (5')? = ({f)'.

It is easy to prove that a pseudo-inverse satistying (i) mmisis for
any rectangular metrix A. We shov this first for a noonegative dafinite
catrix P. It is well known in numerioal enalysis BB that every
nennegative definite matrix can bs transformsd to a dlagonal form

TP = E, (A3

where T 1is noneingulsr and the matrix E ir diagonal, having only zerwos

or ones on the diagonal. Thus 1_3_2 = E. Then

L)
3
¢

. L e



P s e

setisfies (4). We can now defins a pseudo-inverse of an 2xbitrery matrix
by

A= 'y,
o g ' Ao :‘
or by
RPATON
The psenic-inverses occurring on the right ~re defined by {A.2).

To show that (A.3a-b) actually satisfy (1), we need & simple lemma,
which is the chief tool in applications of ths pseuvdo-inverses ac far as this
paper is concerned:

(A.4) PSEUDO-INVERSE LEMMA. et (A}, 1 =1, ..., K, be arbitrmry
w, Xn matrices. Then

é - 9 1 =
| A - 4 L2 AA T Z AT =0

for i1 1 =1, ..., X. Similarly, lat B(t) be an arbitrary m X n metrix
Y .
vhose olements sre comtinuous fupctions of t in the intexval [0, T]. Then

T ' T
B(t) - B(t)[ [ B(v)B(x)as]t £ B (v)B(v)ax] « @
o] [s]

for all t e [0, T].

Proof. let C. respectively D(t) denote the mairices on the lafi-
band sides of the preceding equetions. Using (1), we find tnet

.|
L C!Cc, =0
{uy 71 =

1l
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and

[pt(4)D(6)at = Q-

Hence for ary X,

and '.

K4 5. .

[ lp(t)xi®at = o.
Consequently

g i = fin(vizii = 0

for all X, voich implies
%_“Q (1-1.'000;’) mg{t)ng (D‘tsy};

the lezma is proved.

mgtituting (A.3s) into (1), wsing (a.%) with ¥ = 1, prove: that
N given by (A.3e) is & peewio-inverss. Fermuila (A.%) is proved similexly,
taking transposss. Sinoe (A.38-2) ere in gamersl not the sems, we gee that
the psovdo-inverss is not wnique.

Yor computing the psswic-inverse of g =atyix WRish 3 =7t sQUeRs, Gk
would naturslly chooes that ome of forwmlss {3.3a-3) in which Ske S{RET-
mtrix A'A or AA' 1s sller. Mer Instawos; the peevdo-invexss of &
vector (l-columm matrix) is given Wy
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f - ”~
X =.x'x)'x' = x"/lIx]|® .

For mary purposes, the lack of uniqueness of the pseudo-inverse is incon-
veniert. This difficulty esx he cverccme by adlolning %o (1) the followhg
further saxiomss

(14) TYTHET A
(111) (_4,!_&*)' =mt,
(1v) (a'n) = a'a

These axioms were introduced by Penrose [39], who proved the Lollowing

(A.5) THECR®M (Penrose). For every rectangular matrix A, there exiots
ons apd only one matrix .4? satisfying sizsmlcapeously (i-iv).

,- To avold comfusion, we shall call the (unique) matrix given by Penrose's
Theorem the generalized inverse of A and decignate it by :A_.# .
Penrome (see [30], with slight modifications) has proved also the follow-
ing important property of the generalized inverse:

(A.6) THEOREM (Panrose), Coneidér the equstion Ax = b. Let x°= ah,

and x pFx° Toem

(a) etther fax - bf > jax° - u;

(p) or Jax - of = Ba® - i ed fxf > §x°).

In other words, x° = A¥b gives the solution of Ax = b if ome exista
and the bezt approximstiom to o solution whera nons exicha, Thus, with Faytopg,
ve cap call x° the dest spproximate salutiow of Ax = D.

Let  [p| demote the following musm of the mxtrix 2a

2

2 - -
l4]% = trace gra =z 8y, (A7)



(A.8) COROLLARY. Let a' # A¥ be » pesudo-inverse of 4 i.s., any
Y

2l
a

.l?i -
A >

»
1
‘9

#matrix vhich eatisfiss (1), Ten

bty

In other vords, the generelized inverse is "smaller™ (in the nense cf

the nora (A.7)) than any other peeudo-inverse.

To prove (A.8), it suffices to note that the matrix equetion

ASA = A

way be intsrpretes o a victor aquation in the elements of tiv wstrix X. Ry
+ P
hypothesis, A i3 a solution of this equation, so that case {b) of (A.6) 1is

applicable. Q.E.D. ‘
To illustrate this result, consider the matrix

1 1 1‘|
é = 1 1 1 .
o1 sl
Two pseudo-_inveraen ure given by
, rl/,’) 0 o‘l r /6 1/6
A-1o0 15 o0 and al-ie 1
L o o /sl lo o

and the gsneralized inverse is given by

[+ 19~
é:' = e 15 19,
L /9  1/9 109

80 Lhat

AT} = /3 > a2L =2/ > |aF) = 1.



The generdlizad inverse is evidently unigquely determined by (i) and the
roquivement that it is the emallast peeudo-inverve.

Finally, let us wenticm the generalized irverse cen be determined by =
method eimilar to (A.1) through (A.3). This is dove [LO] by iterating twice
the algorithm which detormines T satisfying ¥iFp ~ E.

let x be an n-dimemsiorsl random vector with mean gy = 2{x] aund covari-
ance matrix £ = B{xx‘}. It iz customary to say {43, p. i7] that z !a gaussimn
1f its probability density rurctiom is

1 1 2

_’;x_(&) “(QW)Va(daﬁ ;)1/2 oxp - '5”5 - _5:\._";_1}- (B.l)

This G=finition of a gaussian rendcx vecter does not apply, however, vhen
% 1s sinsular. Tn this case the valuas 2 taken om hy x  sre confined with
probqﬁility 1 to a hyperplane of dimmioan.eua than n, end one cannot epress
this fact by & forsla such as (B.1). Consequently if £ is »=ingular, the
probability distribution of x 1s defined by first introducing a linear trans-
formation x - Ay * 4 (vhere y 18 a m-vector, m being the rank of X), such
that the covariance matrix of y 18 nonsingular [4Y4, p. 26} swd Ely] = 0.
Then the probability density functior of y can be expressed by s formula ane-
logous to (B.1).

These avkward Jdifficulties caused by the eingularity of L can be avoided
if one chooses as the basic definitioi of gaussienness the characteristic functiom:

5 1 2 .
" \ o b -~ Joses [ Ty
a!(g,. Elexp is'x] exp {8’y + 2“9-"}:]' {B.2)

e AN
oS
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In this definition the inverse of £ 18 not required.
Since the distribution of a gemssian random vector is uniguely determined

by its mean and covariance matrix, it is desirsble to calculate As much as

possible directly vith 4 and T . For these jurposes, (B.2) 1y better sulted

than {B,1).
Similarly, a pair of gaussisn random vectors X, X, is defined by their

-' Joint characteristic function:

55_&5&(51, 5,) = Elexp 1(x, 'x + s??gg} -

- o (e * sl - Hla by + 2epmply o leglz )1 (2.3)

where

n, =2z}, Ly, - ![3155], 1, 3 =1, 2.
* It follows frea (B.3) that x and X, are independent 1 and only if
4, " 8. 8imleriy, if x) apd X, ave geussian, then ox, * fix, + ¢ ie aigo
gsussian. '

¥e now procesd to dsrive explicit expressions for the conditiomal msan
apd conditiopal covariances of a pair of gaussian randam vectors. To Qo this
elegantly, w2 make use of a recenmt observetion of Belakrisinwa [AS] which re-
lates these queriities 4o the joint charactaristic function. In 2 elightly

modified form, this result iss

Tho conditionel expectetion of x, given x, is a linear function of %,

N l{_x.ligzl -l *EE {n.k)

(1) i apd {41} omy

B e (o %) oo g ™ " & Bl % %) (2.5)

L




Lo o o = e R

vhexe -g-x- denctes the vector with componenmts /3, .

Procf: Bince every moment of a gaussian distribution is finite, it
follows W, p. 67 snd 89] that we may inlerchange differentiation with reapect
to 18 with the aipectad-vnlue operation, Thus

is!
9 {2, 8 = E{;;le -2 52}

Taking the erpectation first with respect "'t.o the conditional probability distri-
dution of x5 given X and then Witk respoct o = alome, we get

,Utilizing (B.4),

gz,

« x( (312"' BQ)Q

Interchanging £ and 3/632,

which proves part (11).
To prove pext (1), we proceed as before, interchangiog E and d/dis
vhieh leads to the reletion

B[y " Ex) - ‘(51!52"]"1%1 =2,

valid for every 8,. This implies (B.%) by the uniquenese of the fourier-

stieltjes L{ramaforn. Q.B.D,
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We now state the main result of this seotion:

(m&mlﬁmw_ﬁMSa!&L
gsussian revdom vector given by u,+ {12;;2(5‘, - 32).

Thio is the formula found in textbooks (A4, p. 28], except that hers the
inverse. ie replacsd by s pssudo-inverse. Note that if Sl TN almost surely,
l.6., 5, =0, then (B.6) 13 correct since 0F = 0.
' To prove ( B.6), ve utilize (B.5). Btreightforward differentistion leas
to the condition

Bince this must hold identicslly in 8
tion

ve see that X must satisfy ths squ

Lo = Koo (t.7)

¥We now show that this equstion always has a solution, which can bv expressed as

vhere };,32 denctes a paendo-inverse of I . as defiped in the previcus section.
Indeed, if K satisfies {B.7-8), {B.G) raﬁwa at once.

let rl, be a nonsingular paeudo-inverse of L .. (Such o Ef, elways
exists; it can be found, for irstance, by means of relations {A.1-2).) The

matvix

+ AT IS ¢ 1Y ¢ ' =
BUZp 2% - 50 EnIhX) - %)) 7 By, - B EEL 2 5y

is clearly nonnegative definite; hence we can write

= =t - - '}"
B = HafhiEp i) o, . (2.9)
We must show that

Dp % By (3.10)



Substituting 5., given by (B.9) tuto {B.10) and making use of the pseudo-

inverse lemas {A.4), ve find that

@A - EroBialis) = 0

Bince ;L was chosen to de nonsingular, this hpiies {B.10). Q.E.D.
Tt SuSulld T moted that the choice of ‘a nonsirgular psewdo-inverse ;:L

was for cosputations: soavenience onlys g,;? aay be any pseuds-inverse,
From (B.6) we obtain immediatelys

(B.11) - x) - Elx)|x;) 1s independent of x,.

To prova this, it surfices to coepute the cross-covarisnce malrix OF

x, - I{_:_'ll;:zl and x,. We bave

BLx) -y = Eyppa(xp - )18, - 1))

which 18 O by (B.10).
Similarly,

(B.12} Ths covarisnce matrix of zl_:_:_ll_zga] is }:'.J'_z_z;;og.m.

3 inpdependent

-

(B.13) The conditicmel cavarisnce matrix of x, given x,
.y
of x, and is glven By Iy, - Blalnodioe

Fpally, we point out a usaful factl

(Be1d) 1t X0 Xy Xy are gaussisn random vectors and ths pair Xor Xy
is ipdependent, then
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B T o

Ry Iz, 2,) = Elz ) + Bz |x)

2|
To prove this, let _x_k - | .

Then
Bl lxpy 20~ Eix Im )

=y * BB, - m) (3.15)

h: 144
L 8
Iy = B, Bl m_[gza sﬁ]

by asswsption. Substituting into (B.1%) proves (B.1k).
Wo have algeedy remarked lv igpendix A Lhat Ibe gmoudc-iovorse is

neceegsarily squel t9 the inverse if the lutter exists. Rt if the covariance
matrix of the conditioning reandom variablee is singhdar, the peeudo-inverss of

tbis matrix {and thereforz the conditiomel expectation} will not be unigue.
This is only & minor cosmplication. For instance, let Y. and Yo be tyo
(scalar) conditioning variables and assume that R (with prohebility 1).
Then the comditional expectatiom of, 8§y, x, given y. axi Y, =W be written
as

i

1 =
z{xlyl, Yo K,

But since y, = Y., We can also write

E{'xijla 1’} - gh]f WZ)

In both cases; the conditiomel axpesteticn 15 ths same raniom veriabhle although
expressed differently; the omly differvme 18 Shat in the first cade €-u Siwess
of the coefficlent matrixz is X%, 1m the sscowd omse, 15 1a s(/&)? = P/,

2%



In rumerical canputations 1t 18 sometimes of interest to meke the norm of the
matrix X in (B.8) es smull as possiblo. In this csse, ope can take for tte
pseudo-inverse tha generalired inverse of Penrose, which has the smsllest noTw

(in & certain specific sense) among all pseudo-inverses. gee (A.T).
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