
UNCLASSIFIED

AD NUMBER

AD282767

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; AUG 1962.
Other requests shall be referred to U.S.
Army Biological Laboratories, Frederick,
MD.

AUTHORITY

BORL D/A ltr, 27 Sep 1971

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

AD, 28,2.761
I6 -

ARMEUQ SERIVE TECNIAL MuOI~f4im= NC

UNCLASSIFIED

MOE: Whe govermout or other dravirnp, peci -

other than in- oonneti.o vfith & definitely rel.ated
goYZawnt proeur ~c opewz~tion, the U.ý 5.
Govoramt thereby ino~s no responsibility, nor soy
oblieption vhatuooeri and the fact that the QOcve=-
mmt, =w have fomuLlated4 furn~ished, or in any may
wipplied& the said. &rxwing$speciftiations, olz -)ther
data, is not to be regarded. by implicstiot or other-
vrise as in any ==r l.icensL4 tbe holder or amy
other per .son or corporation, or cenmeyin~g any rights
or peluission to inLmfacturc.. use or sell any
p*tented. invention that MY in anyway be related
thereto.

c] TECHNICAL MANUS(RIPT 10

A METHOD FOR

SYSTEMATIC ERROR ANALYSIS

OF DIGITAL COMPUTER PROGRAMS

AUGUST 1962

UNITED STATES ARMY
BIOLOGICAL LABORATORIES

ii' FORT DETRICK9' 11 •::iii':lh

U.S. AmKY C~aCAL-BIOL0GICkL-&ADIOLOGICAL AGENCY
BIOLOGICAL LABOW.AOU1
Fort Detrick, Maryland

The work reporte' eaei was perforawd
une: Project 4X99-26-001, Tak -02;
basic iomathemtics Rkarch. The

ependLture order w. 2038.

Joan C. Miller

Biomathematics Division
DIRWCTOR OF TECHNICAL SERVICES

Project 4X99-26-001 August 1962

1

2

This dotumant or any portion thereof may
not be reproduced without specific authori-
zation from the Comanding Officerj Biologi-
cal Laboratories, Fort Detrick, Frederick,
Maryland; however, ASTIA is authoriued to
reproduce the documnt for U.S. Oovrut
purposes.

The informtion in this report has not been
cleared for release to the general public,

3TI I L IOTI=

qualified requestors my obtain copies of
this dociuxnt frm ASTIA.,

7oreign announcemnt ad diteseanation of
this docunnt by ASTrAIs lUmited.

3

The author vishe* to express sincere appreciation to Dr. Clifford J.
Maloney, Chief, Biomathesatics Divi•ion, for his guidance and encouragement
throughout the course of this project aM for his valuable contributione to
the revi•eon of the manuscript. Gratitude is also extended to Mr. Tran
May, whose computer program vwa used am a basis for the experimentation
involved in developing the method presented in this paper.

A method is presented that wil1 afford the progprimr a systemetic way
in which to generate a test deck contain•ng all poesible combinations of
input to a gimve problem, After consideration of various alternative repre-
sentative form for the logical developme1t of the problem, the logical tree
is chosen as met suitable for manual genera•ion of a test deok that will
explore every branch of the ip0M. In additifos the tree is shown to give
considerable assistance to the proesimr in locating the cauie of any errors
that occur in the test rum, The type of analyuis zveomnaded here can be
applied to both scientific and busisnessapplicatiosm of computer programing.

4

Acknowledgment . 3
Abstract 3

I. IN'TRODUCTION 5

11. AC RO D 6

1II. NOTATIONAL ALTERNATIVES 6

IV. EFFECT OF LOOPS ON THE DEBUGGING SCHME 14

V. CHOICE OF MATHEMATICAL MODEL 15

VI. TEST-DECK GENR&ATION 15

VII. DEBU•GG• G 17

VIII. CHARACTERISTICS TYPICAL OF SCIENTIIC PROBLEMZ 18

Ix, CON CIAS ION 19

Literature Cited . 20
Reterences 21

1. Hypothetical lloi. Chart 7
2. Modified Flow Chart, Omitting Numrical Calculations 8
3. Logical Tree Cortesponding to Flow Chart in Figure 1 9
4. Calculation Sequence of Fibure 1 Shown in Outline Form , 10
5. Tabular Form of Sample Coýputation 11
6. Symbolic Path List of Sample Computation 11
7. Boolean Matrix of Sample Calculation 12
8. Path Matrix of Basic Computation 13

I. -INTROtJCTION

Effective program check-out is imperative to any complex computer pro-
gram. One or more test cases are always run for a program before it is con-
sidered ready for application to the actual problem. Each test case checks
that portion of the program actually used in its computation. Too often,
however, errors show up as late as several months after a program has been
put into operation. This is an indication that portions of the program
called upon only by rarely occurring input conditions have not been tested
during check-out.

In order for a person to rely with confidence upon any particular pro-
gram, it is not sufficient for him to know that the program works most of
the tiLe or even that, so far, it has never mAOr a mistake. The real
question is whether it can be counted upon to fulfill its functional speci-
fications successfully every single time. This means that-after a program
ha. passed the check-out stage, there should be no possibili•ty that an
unusual combination of input data or conditions may bring to light an
unexpected bug in the program. Every portion of the program must be
utiliged during check-out in order that its accuracy may be confirmed.

The purpose of the work reported here has been to develop a systematic
way in which a programer may test all realistic combinations of input
data, and hence all portions of a given program. Although at first this
seems to be an arduous task, its handling is simplified by an orderly
approach, and its reward is a greater assurance of the accuracy and re-
liability of the program. The potential number of test cases is given
by 2B, where B is the number of branch points in the flow chart. The
computer could be prograimd to generate all of these cases automatically.
However, if the number of branch points is at all large, the total number
of potential cases would become impractically large, though =ost of these
would be unrealistic or identical to others of the coses, and hence un-
necessary to test. The analysis set forth in this paper has as its object
the determination by straightforward irans of the full list of possible-
as opposed to potential-test cases, their method of convenient genera-
tion, and their use in the location of specific errors in the program,

The approach taken here of using varied input conditions as the means
to insure thorough testing of the program is particularly applicable to
business problems, because the wide variety of input is onc of the major
aspects of ouch a problem. The method can be extended, however, to deal
effectively with scientific problems, even though some of their branch
points will not be dependent upon the input data. The procedure should,
therefore, be useful as a method for systematic error analysis of computer
programs irrespective of the type of program to be analyzed.

6

1I. BACKGROUND

Probably the moat co n method of error detection is the running of a
test case whose answers have already been calculated manually for com-
parison. Carefully chosen test data can be quite successful in pointing
up the major errors. Other methods of error prevention that can be
effective are (a) to code into the program certain checking devices, such
as intermediate check sums, and (b) to write the code in such a way that
it will be easy to check even at the expense of certain sophistications
and time-saving devices.i/* It is always hulpful to make a detailed manual
check of the code as written prior to the first machine run. In addition
to reviewing the coding, a second flow chart can be drawn, this time pre-
pared directly from the coding, to determine whether the program executes
its instructions according to the original plan.

An increasing number of check-out methods making use of the facilities
of the machine itself are being employed. Some of the more conmon methods
are manual step-by-step operation, dumping of memory, a tracing program
with automatic skips, and the use of the break-jump switch, which wll stop
the program and jump to any specified location. Jacoby and LaytonZ/ have
reported on an automated debugging program that runs the program to be
tasted, creating a t ace record for later analysis by the debugging program
itself. Lois HaibtU/ has described a very interesting program that enables
the computer to draw multilevel flow charts directly from the coding of the
problem. 4 particularly promising approach to checking is that reported
by Senko.V-/ The control system for logical block diagnosis that he describes
will test a sub-routine or logical block of Instructions as a separate
entity, executing in one run all the tests necessary to explore each branch
of the sub-routine. The significance of this method is that it allows the
programmer to supply selected test data at different points throughout the
program without requiring •im to complicate his own program with the coding
that would have been required for incorporating loaders into the original
program.

III. NOTATION•AL ALTERNATIVES

As an aid to investigating the possibility of building a logically
complete test deck for a given problem, various ways were considered by
which the logical development of the problem might be displayed. In addi-
tion to the flow chart that is generally employed, a number of alternate
mthods of representation were discovered, including matrix, table, out-
line, logical tree, and symbolic path list. Karp-,/ has discussed the
applitation of graph theory to digital computer programming, and Voorhees6--/
has taken a somewhat similar approach in considering an algebraic formu-
lation of flow diagrams. Since the notation required by the latter methods
differs slightly from the notation chosen here, no attempt will be made to
illustrate their similarity to the other representative forms. Including

*See Literature Cited.

7

C C/)
X2 3

Figure 1. Hypothetical Flow Chart,

8

the flow chart, nine methods of representation will be described. It is
possible to build those forms either directly from the original specifi-
cation of the problem or from its flow chart. For the purpose of illus-
tration, each of these models will be derived from an illustrative flow
chart.

In the flow chart of Figure 1, the course of the program proceeds in
sequential order from each step to the following step except at each branch
point, where one of two available paths is selected according to the re-
sults of the decision at that point. The decision elements are shown as
oval boxes and are designated by capital letters; the alternative results
of the decisions are given by small letters. For example, if "All sym-
bolizes the decision elamnt [iax > y?J, then "all indicates the path
taken if x > y, and "at shows the path followed if x . y. Numerical
calculations are represented by rectangular boxes.

Since the logical developent of the problem is affected only when the
program is required to select between two possible paths, it is only the
decision elements that need concern us in our present analysis. For this
reason, it is advantageous t6 consider representations of the problem flow
that omit the descriptions of the numerical steps.

A modified flow chart from which the numerical calculations have been
deleted is shown in Figure 2. The formulation is somewhat similar to the
graph theory form used by Karp.l./

A

a a'

bC

d d'a etf t

stop atop stop stop
2 3 2 3

st p aop
2 3

Figure 2. Modified Flow Chart, Omitting Numerical
Calculations,

9

A logical tree is similar to the modified flow chart, with the dis-
tinction that a tree is defined as "a directed graph that has at most one
branch entering each node and contains no circuits.-/I" Since decision
elements E and G can each be entered by two different paths in Figure 2,
the results of those decisions each appear twice in the tree of Figure 3.
Although the tree is slightly more cumbersome to draw, it has the advan-
tage that each path is clearly visible, and the number of paths can be
determined simply by counting the terminal nodes of the tree.

Figure 3. Logical Tree Corresponding to Flow Chart of Figure 1.

10

Outline form can also ba used to depict the decisions (Figure 4). Each
level of the outline is considered to be a particular decision element, and
the two entries are mutually exclusive, in that exactly one of the two must
be chosen. For example) decision element A is represented by the Ro•-i
numerals I and III If the program does not select 1, which is path ') then
its only other choice is to select I1, which is path "a'." At each step of
the outline, the appropriate branch choice is indicated by its symbol cor- V
responding to a path of the floy chart of Figure 1.

1. a
A. b

1. d
2. d'

B. bt

1. •

2. a

II, at

A. c
I. a
2, ea

BI.
i. f

a. g
b. 9

2, f
a. g

b.

Figure 4, Calculation Sequence of
Figure 1 Shown in Outline
Form,

In the table of Figure 5, the decision elements and their corresponding
branch choices are listed sequentially by rows. A dash in any position
indicates that there is no test at that point because of the impossibility
of reaching the decision element for the row by the path selected in the
preceding rows. Each column of the table then represents one particular
path of program flow. This tabular representation can be used in con-
nection with the Logic-Structure tables of the TABSOL SysteWmL of program
analysis. Since the logical development of the program is completely
designated by the top half of the TABSOL table in conjunction with the
"go to" statements at the end of the columns, the third and fourth quadrants
of TABSOL may be omitted when the tabular form is used for error analysis.

11

A a a a a a a' a a' a' a'

B b b b' b'

C ,, C C cl cl C' Cl

d e.. .B...

E .e . el a el . , . . , .

C f f fl fl

7iibure 5. Tabular Form of Sample Computation.

A symbolic path list (Figure 6) is simply a statement of each indi-
vidual path that is a part of the program. It can be written directly
from the flow chart or, even more quickly, from the tree, outline, or
table.

1) abd
2) abd'
3) ab'e
4) ab'e'
5) alce
6) a'ce'
7) a'c'fg
8) a'c'fg'
9) a'c'f'g

10) a'clf'g'

Figure 6. Symbolic Path List of
Sample Computation.

The format of symbolic logic may be used to describe these paths in one
suatement, but the result seems to be too compact to be of much help in
error analysis. Writing "v" for the logical "or" and the absence of a sign
for the logical "and," this flow chart would reduce to

a[b(dvd')vb (eve')]va' rc(eve')vc'(fgvfg'vf'gvf'g')]I

12

A Boolean matrix (Figure 7), A * (ai•), can be very helpful in de-
scribing the flow chart. This type of matrix consists entirely of O's and
l's. In the connectivity "tr / for the flow diagram, aij will equal 1
if decision element j is the next consecutive decision element, and 0
otherwise. In this matrix, we will consider the decision elements to be
represented, in alphabetical order, by the successive rows followed finally
by Stop 2 and then Stop 3. (For the reader's conveniencA, the appropriate
headings for rows and columns have been displayed with the matrix.)

A B C D E F G 2 3

A 0 1 1 0 0 0 0 0 0

B 0 0 0 1 1 0 0 0 0

C 0 0 0 0 2 1 0 0 0

D 0 0 0 0 0 0 0 1 1

E 0 0 0 0 0 0 0 1 1

F 0 0 0 0 0 0 1 0 0

C 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 0 0 01

3• 0 0 0 0 0 0 0 0

Figure 7. Boolean Matrix of Sample Calculation.

A limitation of use of the Boolean matrix, when considering decision
elements only, is that two different paths from one decision element to
the next one cannot be illustrated. Such is the case in our matrix for
the two paths between F and G. In the matrix, all that is shown for these
two paths is a single I in row F column G, A refinement of the Boolean
matrix can be accomplished by replacing the l's 'by the notation •or the
actual path followed, in a manner similar to that used by Karp.-• In the
path matrix, (Figure 8) the entry in row F column G is fvf', indicating
that the program can arrive at G by one of two alternative paths.

13

Stop
A E C D E F G 2 3

A 0 a a 0 0 0 0 0 0

0 0 0 0 b b' 0 0 0 0

C 0 0 0 0 c c' 0 0 0

D 0 0 0 0 0 0 0 d d'

E 0 0 0 0 0 0 0 a a'

F 0 0 0 0 0 0 fvf' 0 0

0 0 0 0 0 0 0 0 8 8'

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

Figure 8. Path Matrix of Basic Computation.

14

IV. EFFECT OF LOOPS ON THE DEBUGGING SCHEM

Noticeably missing from our example flow chart (Figure 1) is any loop
that causes a series of steps to be repeated. Such circuits occur fre-
quently in flow charts, but their discussion has purposely been delayed
until now. Before proceeding to their consideration, it is necessary to
clarify the aims and corresponding requizements of our error analysis.
The approach to be taken in forming a complete test deck is to consider
conditions such that every path will be traversed at least once and,
furthermore, that it will be entered from every possible entry point. If
these conditions are satisfied, we shall know that the work performed
along a path is correct and that the conditions at each of its entry points
are the proper ones for successful completion of the path.

Under this premise, it would be unnecessary to go through each loop
more than once, because a single traverse establishes its correctness.
This mans that if we have specified conditions to cause the program to
exit once from each side of a branch point, it vill be inconsequential to
us whether the program subsequently loops back to a previous point in the
program or goes to a stop. Consider, for example, that atbranch point D
of the flow chart in Figure 1, path d loopt back to branch point A, rather
than going to Stop 2. If we simply form a set of conditions that will
cause the program to exit from D on path d, the program will automatically
execute this loop. Futhermore, all of the paths it can take subsequent
to this loop will be identical to ones we have already accounted for wtth
the other sets of input conditions that we have planned. Ideally, then,
we would wish to have a set of conditions that would cause the program to
exit from D by path d' the first time it arrives at D, thus omitting the
loop from its sequence of steps, and a second set of conditions that would
send the program on path d through the loop exactly once before it exiti
from D by path d'. Then correct answers for the first ret and incorrect
answers for the second set of conditions will indicate that the loop
itself is at fault, whereas incorrect answers for both sets will indicate
that .the error probably occurs on the path common to both sets before the
point of entry to the loop or later in the program.

It is interesting to observe the effect that the introduction of the
loop at D has on each of our forms representative of the flowchart. It
is most readily shown in the two forms of the matrix (Figures 7 and 8),
where in row D the entries at the intersection with columns R and A are
simply interchanged. In the other forms of representation (because of
the understanding that a loop may be considered covered, for purposes of
debugging, if its path has been entered) it is not necessary to make any
change whatever, for all steps preceding the loop branch were traversed
in getting to it. The mere fact that path d appears as one of the paths
in the representative form indicates that the loop will be entered. Hence,
in the tree, path list, and outline, a path that leads into a loop will
appear the same as one that leads directly to a stop, so far as the de-
bugging requirements are concerned.

15

V. CHOICE OF KAT1EMATICAL MODEL

Careful study of each of the forms of representation of problem flow
suggests that the matrix and tree can be most helpful in error analysis.
Further, the tree seems to be the simplest form for the programmer to use
in the manual generation of a complete teat deck, since it is similar to
the original flow chart vith which he in accustomed to dealing. By
writing the program in terms of a tree with each loop, as well as each
exit to a program stop, designated as a terminal node, the number of test
cases required for exhaustive check-out can then be determined by simply
counting the terminal node& of the tree. The programming noýtion for
trees presented by Iverson,I/ and the ideas used by SauderA./ in his
general teat-deck generator for COBOL, encourage the possibility of
mechanisation of this method of error analysis, Matrix representation may
be found preferable for mach.ne use because of the ease with which a matrix
can be stored in the machine' and the availability of the laws of matrix
algebra that would be advantageou ini the analysis. Since it is a mechanical
matter to translate from tree forw to matrix form, -the programmer could
still do his part using the tree, and then ask the machine to translate
the tree into a matrix and proceed with its operation.

V1. TEST-D&CK GENBR.TION

The potential number of test cases would be generated by considering
the effect of the interaction of each branch point with every other
branch point in the program. This number will never' become a reality,
however, because it will always be possible to eliminate the consideration
of the interaction of branch points between which there is no possible path,
such as points E and F in the flow chart of Figure 1. The logical tree,
drawn either directly from the original specification of the problem or
from the flow chart, will portray the complete set of possible interactions
among the branch points, each different combination of input conditions
being represented by a distinct path from the initial node to a terminal
node of the tree.

The mere drawing of the tree automatically simplifies the problem in
three ways, It omits, for the purposes of test-deck generation, all
numerical calculations, all paths that the program would ordinarily fol-
low subsequent to entering a loop, and all unrealistic interactions
between branch-point conditions. In addition, the tree itself may often
be furthr-r simplified for this specific purpose by giving attention co
branches for which the input would not differ from the input to some of
the other branches, i.e., where the same test criterion is used two or
more times in the program. For a set of branches having identical entry

16

conditions, all but the earliest of these branches may be omitted from the
tree, because test-deck data that will cause entry into that one branch
will automatically cause entry into each of the others. For example, if
Figure 1 depicts the flow chart for a business problem, the decision ele-
ments at A and E might both be testing whether the person is a salaried
or an hourly employee, the paths a and e being the ones that will be
chosen for an hourly employee. In such a case, input conditions that will
cause exit from A by path a will also, without exception, cause exit from
E by path e, so that the decision at E will always be dependent upon the
decision at point A. This means that in determining test-deck specifica-
tions, paths e and e' may be deleted from the tree in Figure 3, thus
leaving bt and c as terminal nodes and reducing the number of test cases
by two. Such repetition of test conditions throughout a program is not
uncommon, since it is often desired to inform the computer at different
points in the program of the type of data being handled in order that
appropriate computations may be performed. Before reducing the tree in
this manner, however, one must make certain that the input conditions are
not altered in some way during the course of the program, so that the input
to the branches under consideration is not, in fact, identical. After
simplification of the tree has been achieved, if the tree-'is still too
large to be workable, it is helpful to postpone the consideration of the
problem as a whole, in preference to working separately at first with
significant portions of the tree.

When the working portion of the tree has finally been selected, test-
"deck seneration is begun, Each terminal node of the tree stands for a
different-test case that should be run with the program for check-out.
Test data are selected that will cause the program to arrive at each of
these end points exactly once. In our tree, for instance, there are ten
terminal nodes, indicating that there will be ten test cases for our
problem. The conditions needed for any particular case are exactly those
on the path from the beginning of the tree to the particular end point.
Test Case i will contain data that complies with conditions a, b, and d;
Test Case 2 will meet conditions a, b, and d', etc. (Figure 3).

17

VII. DEBUGGING

When a list of all possible input conditions is secured, a test deck
containing an input card for each condition is prepared and run on the
machine with the actual program, After running this test deck on the
machine, comparison of the machine answers with ones that bave previously
been hand-calculated will indicate whether there were any erors and for
which input data they occurred. Next, a quick glance at the tree will
often give a very good idea of the location in the coding to begin, search-
ing for the error. For example, if the answers for test cases 3 and 4 were
the only incorrect ones, the error is very likely to be somewhere in path
b', whereas if 1, 2, 3, and 4 were wrong, the error is probably in path a.
Likewise, if 3 and 5 are both wrong, but all others right, path a may be
at fault because that is the only path common to these two test cases.
The aid that this type of analysis gives to pinpointing an error is par-
ticularly advantageous to the prograinr who seeks to find the error by
examining a monitor sheet showing each step the program followed for a
particular case. With the aid of the tree he knows where in the monitor
to begin searching for the error, and 'f there are two errors that seem
to have the same cause, such as 3 and 5, he can compare the monitor sheets
for those two cases to determine whether the errors truly are of the same
type.

If it is necessary to work with only a portion of the main tree, it
will be found that after this portion has been thoroughly checked out,
its test deck can be used in conjunction with other portions of the tree
until the testing of the entire tree has been completed. The use of this
systematic approach simplifies the dork considerably. Since each test
case will differ from the next only slightly, many of the hand calculations
will not have to be repeated for each new case. It would be most valuable
to choose the test data close to, or right at, the limits of the decision
points in order to test whether the branching is effected exactly as it
was meant to be.

18

VIII. CHARACTERISTICS TYPICAL OF SCIENTIFIC PROBLEMS

The method of test data formulation described was developed originally
in connection with the checking of a business application of computer
programming, The method and this type of problem are definitely best
suited for each other. In a business problem, there is usually a wide
variety of input, so that the combination of varied input conditions is
one of the major problems in the debugging of the program. In addition,
since most of the branch points are directly or indirectly influenced by
the input data, a test deck with input date varied according to the method
described in this paper will effectively test all paths of the program.
In a scientific problem, on the other hand- the input data generally do
not vary in this way, and the majority of the branch points are influenced
not by the input conditions, but by the inherent properties of a problem.
A loop may be executed a certain number of times befpre the program exits
from it, and the number of times may not be influenced in any way by the
input, For example, in computing
10
: xi, the loop that accomplishes this summation wila be repeated
i-1
exactly ten times before the program exits from the loop, regardless of
how the input to, the problem is varied., If, on the other hand
N
1 x, is desired, and N i-'variable, then the value of N will be
jul

included in the input data, and the frequency of the loop will be controlled
directly by the input conditions.

For some scientific cases, the r.nning of one test case will completely
check out the problem. In such a case, there would be no point in using
the tree method of analysis. For a problem that is to a certain extent
influenced by the input, there are two possible methods of dealing with the
loops that are independent of input in order that this method of analysis
may be applied. One solution is to omit from the tree the decision eliments
for such loops. The test cases would then be limited strictly to the
diverse combinations of input data. The assumption here would be that
since the loops that have been omitted from consideration will automatically
be executed in the process of the program, the answers to the test data will
indicate whether these loops are correct and are traversed the proper num-
ber of times. A second possibility is to load with the test deck a set of
pseudo-operations that will, for the sake of the test run, afford control
over the branch points that are not normally dependent upon the input. In

10
the loop for F, x, for instance, a pseudo-operation that alters che branch-

ing Instruc-ticn to tept whether x, has been summed wtll cause the program to

19

proceed immediately upon arrival at the branch point, and a second test
case containing a pseudo-operation that tests whether x2 has been summed
will allow the program to repeat the loop exactly once efore proceeding.
The answers for the two test cases will determine, respectively, whether
the summation procedure itself is correct and whether the looping is
achieved successfully, The advantage of running two such cases, rather
than checlkng the summation and the loopiig mechanism simultaneously by
running only the second, is that, with two individual cases, the exact
trouble spot in the program is immdiately indicated by an incorrect answer
to one of the test cases and a correct answer to the other,

With the addition of pseudo-operations, as described above, the method
of error analysis using a logical tree is no longer limited to input-
dependent decision points. If the complete test deck, including all test
data and pseudo-operations indicated by the tree, is used for the checkout
of the problem, there will be exactly as many test cases as there are
terminal nodes of the tree, The incorrect answers that appear when the
complete test deck is run will enable the programer to pinpoint rapidly,,-
using the tree as a guide, the-sp-cific points of the program.that are In
error. If the programmer prefers to spend less time amassing the original
test deck, an alternative method would be to use only the various combina-
tions of input data, omitting any employment of pseudo-operations for the
first run. Then if errors appear for which he cannot determine the cause,
he can, in a second run, use some pseudo-operations for the area of the
program that he suspects to be at fault, in order to search more thoroughly
for the error.

IX. CONCLUSION

The logical tree can be invaluable as an aid to sorting out the
various combinations of input data that the program must be equipped to
handle, testing these cases, and subsequently assisting the programmer in
locating the cause of errors that occur. Systematic formulation of the
test deck will eliminate the inadvertent duplication of test situations
that often occurs in program check-out, and will significantly increase
the number of different types of cases tested. 't is, therefore, an
effective aid in the formulation of a test deck that will contain, for
a given problem, all combinations of input that can be expected to occur.

20

LITERATURE CITED

1. McCracken, D.D.: Digital Comouter Programming, John Wiley and Sons,
New York, 159-169, 1957.

2. Jacoby, K., and Layton, H..: "Automation of Program Debugging,'" paper
presented at the 16th National Conference of the Association for
Computing Machinery, Los Angeles, September 8, 1961. Abstract in
Comm. A 4:7, 1961,

3. Hatbt, Lois M.: "A Program to Draw Multilevel Flow Charts," Proc.
Wes-tern Joint Computer Conference, San Francisco, March, 1959.

4. Senko, M.E.: "A Control System for Logical Block Diagnosis with Data
Loading," Q..A.H 3:4:236-240, 1960.

5. Karp, R.M.: "A Note on the Application of Graph Theory to Digital
Computer Programing," Information and -Control, 3:2, 1960.

6. Voorhees, E.A.: "Algebraic Formulation of Flov Diagrams, t" Co A2j,
1:6:4-8, 1958.

7. Salton, G.: 'XManipulation of Trees in Information Retrieval,"
CQM AS, 5:2-,03-114, 1962.

8. Kavanaugh, T.F.: "TABSOL, The Language of Decision Making," C.m
and Aut., 10:9, 1961.

9. Prosser, R.T.: "Applications of Aoolean Matrices to the Analysis of
Flow Diagrams," Technical Report 217p MIT Lincoln Laboratory,
Lexington, Mass., 1960.

10. Iverson, K.E.: "A Programming Notation for Tress," IBM Research
Report RC-390, 1961.

11. Sauder, R.L.: "A General Test Data Generator for COBOL," Report
presented at the APIPS Spring Joint Computer Comferance, San Prancisco,
May, 1962.

21

UFERENCES

1. Berkeley, E.C.: "Boolean Algebra and Applications to Insurance,"
reprint by Berkeley and Associates, New York, 1952.

2. Cantrell, H.N.; King, J.; and King, F.E.H.; "Logic-Structure Tables,"

Comm AM 4:6:272-275, 1961.

3. Copi, I.M.: Symbolic Loiic, Macmillan, New York, 1954.

4. Curtis, 1{.A.: "A Generalized Tree Circuit," J AC. 8:.4:484-496, 1961.

5. Hickerson, R.C.: "An Engineering Application of Logic-Structure
Tables," C.2 AO, 4:11:516-520, 1961.

6. Roth, J.P., and Wagner, ZG.: "Algebraic Topological Methods. for
the Synthesis of Svitchitg Systems, Part III: Minimization of Non-
Singular Boolean Trees," le a. and Dev. 3:4:326-344, 1959.

