UNCLASSIFIED

AD NUMBER

AD282767

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; AUG 1962.
Other requests shall be referred to U.S.
Army Biological Laboratories, Frederick,
MD.

AUTHORITY

BORL D/A 1ltr, 27 Sep 1971

THIS PAGE IS UNCLASSIFIED

< UNCLASSIFIED -
e

0. 282 767

mnn szavrcns TRCENICAL mmanm: ch

UNCLASSIFIED

e A T

MOTICE: When govermment or bther drawings, speci-
fications or other data are used for any purpose
other than in-connecticn with a definitely related
government procuremenc operaticn, the U, 8,
Goverument theredy incurs no responsibility, nor any
obligation whatsoever; and the fact that the Gévermn-
ment may have formulated, furnished, or in any vay
supplied the said dravings, spocitimitms, or ~ther

data is not to be regarded by implication or cther-

vise as in any manner licensing the holder or any
other perscn . or corporaticn, or conveying any rights

or permissicn to manufacture, use or sell any
- patented 1mntion that zay in any way de related

thereto. -

.
| ey | TECHNICAL MANUSQRIPT 10
| N
A METHOD FOR
i SYSTEMATIC ERROR ANALYSIS
= OF DIGITAL COMPUTER PROGRAMS
> v At
| AuoOSf wbé s .
UNITED STATES ARMY
BIOLOGICAL LABORATORIES
FORT DETRICK
Vo
OI\;‘C*»

W

U.8. ARMY CHEMICAL-BIOLOGICAL-RADIOLOGICAL AGENCY
BIOLOGICAL LABORATORIES
Fort Detrick, Maryland

The work reported here was performed
under Project 4X99-26-001, Task -02,
Basic 3Biomathematics Rasearch. The
expenditure order was 2038,

Joan C, Miller

Biomathematics Division
DIRECTOR OF TECHNICAL SERVICES

Project 4X99-26-001 August 1962

This document or any portion thereof may
not be reproduced without specific authori-
sation from the Commanding Officer, Biologi-
cal Laboratories, TFort Detrick, Frederick,
Maryland; however, ASTIA {8 authorimed to
reproduce the document for U.§, Goverpment

puTposes,

The information iu this report has not been
clesared for release to the gesnersl public,

ASTIA AVALIABLILITY MOTICE

Qualified requestors may obtain coples of
this document from ASTIA, - -

Poreign anncuncement and dissemination of
this document by ASTIA is limited,

ACKEOWIZDGENT

The author wishes to express sincere appreciation to Dr, Clifford J,
Maloney, Chief, Biomathematics Divisdion, for his guldance and encouragement
throughout the course of this projact and for his valuable contrilutions to
the revision of the manuscript. OGratitude (s also extended to Mr, Truman
May, whose computer program was used as 2 basis for the experimentation
involved in developing the method presented in this paper.

A mathod {s presented that will afford the programmsr & systematic wvay

~ in which to gsnerate & test deck containing all possible combinations of

{nput to a given problem, After considsration of various alternative repre-
sentative forms for the logical development of the probleam, the logical tree
{s chosen as most suitadle for manual genaration of a test deck that will
explore every branch of the program. In addftion, ths tree {s shown to give
conaiderable assistance to tha programmsr in locating the cause of any errors
that occur in the test run. The typs of dnalysis recommnded here can be
applied to both scientific and business applications of computer programming,

1.
I1.
III.

Iv.

Vi,
VII.

VIII.

1.
2,
3'

3.
6.
7'
8.

Acknowledgment . . .
Abetract . .« . .

INTRODUCTION .« + . .
BACKGROUND

NOTATIONAL ALTERNATIVES

'

EFFECT 'OF LOOPS ON THE DEBUGGING SCHEME .

CHOICE OF MATHEMATICAL MCDEL

TKST-DECK GBN!‘ATION
DEBUGGING '

CHARACTERISTICS TYPICAL OF SCIENTIFIC

CONCLUSION
Literature Cited , ,
Reterences

+

F

[N}

Hypothetical PLow ChATE & v v v v 4 v v b h e e e e

Modified Flow Chart, Omitting Numerical Calculations . -

Logical Tree Corresponding to Flow Chart im Figure 1 .
Calculation Sequence of Figure 1 Shown in Qutline Form

Tabular Porm of Sample Computation

* e e

Symbolic Path List of Sample Computation

Boolean Matrix of Sample Calculation
Path Matrix of Basic Computation

[}
+ . . L] + L] .

)

w W

14
15

s

17
18

19

20

10
11
11
12
13

I. INTRODUCTION

Effactive program check-out is imperative to any complex computer pro-
gram. One or more teat cases are always run for a program before it is con-
sidered ready for application to the actual problem, Fach test case checks
that portion of the program actually used in its computation, Too often,
however, errors show up as late as several months after a program has baen
put into operation., This is an indication that portions of the program
called upon only by rarely ccecurring input conditions have not been tested

during check-out. .=

In order for a person to raly with confidence upon any particular pro-
gram, it is not sufficient for him to know that the program works most of
the time or even that, so far, it has nevar maf- a mistake, The real
quastion is whethar it can be counted upon to fulfill ite functional spaci-
fications successfully every single time, This means that affer a program
has pasged the check-out stage, there should be no possibility that an
unusual combination of input data or conditions may bring to light an
unexpacted bug in the program, Every portion of the program must be
utilized during check-out in order that its accuracy may be confirmed,

The purpose of the work reported here has been to develop & systamatic
way in which & programmer may test all realistic combinations of {nput
data, and hence all portions of a given program. Although at first this
seems to be an arduous task, its handling is simplified by an ozderly
approach, and its raward i{s a greater assurance of the accuracy and re-
1iability of the program. The potential numbar of test cases is given
by 23, where B is the number of branch points {n the flow chart. The
computer could be programmed to generate all of these cases automatically,
However, if the number of branch points is at all large, the total numbar
of potential cases would become {mpractically large, though most of these
would be unrealistic or identical to others of the cases, and hence un-
necessary to test. The analysis set forth in this paper has as its object
the determination by straightforward maans of the full list of possible—
as opposed to potentisl—tast cases, their method of convenient genera-
tion, and their use in the location of specific errors in the program,

The approach taken here of uasing varied input conditicns as the means
to insure thorough testing of the program is particularly applicable to
business problems, because the wide varlety of input 1s one of the major
aspects of such & problem. The method can be extended, however, to deal
effactively with sclentific problems, even though some of their branch
points will not be dependent upon the input data, The procedure should,
therefore, be useful as a method for systematic error anmalysis of computer
programs irrespective of the type of program to be analyzed.

II. BACKGROUND

Probably the most common methed of error detection is the running of a
test case whose answers have already been calculated manually for com-
parison, Carefully chosen teat data can be quite successful in pointing
up the major errors. Other methods of error preverition that can be
pffective are (&) to code into the program certain checking devices, such
as intermediate check sums, and (b) to write the code in such a way that
it will be easy to check, even at the expense of certain sophisticaticns
and time-saving devices.i/* It is always hclpful to make a detailed manual
check of the code as written prior to the first machine run. In addition
to reviewing the coding, & second flow chart can be drawn, this time pre-
pared directly from the coding, tc determine whether the program executes
its inatructions according to the original plan.

An increasing number of check-out methods making use of the facllitiles
of the machine {tself are being employed, Soms of the more common methods
are manual step-by-step operation, dumping of memory, a tracing program
with automatic skips, and the use of the break-jump switch, which will atop
the program and jump to any specified location. Jacoby and Laytond/ have
reported on an automatad debugging program that runs the program to be
tasted, creating & §7ace racord for later analysis by the debugging program
itself. Lois Haibta/ has described a very interesting program that enables
the computer to draw multileval flow charts directly from the coding of the
problem, é? particularly promising approach to checking 18 that reported
by Senko. The control system for logical block diagnosis that ha describes
will test a sub-routine or logical block of {mstructions as a separate
entity, executing in one run all the tests necessary to explore each branch
of the sub-routine., The significance of this method i{s that it allows the
programmer to supply selected test data at different points throughout the
program without requiring him to complicate his owm program with the coding
that would have been required for incorporating loaders into the original

program,

III. NOTATIONAL ALTERNATIVES

As an ald to investigating the possibility of building a logically
complete test deck for a given problem, various ways were considered by
which the logical development of the problem might be displayed. In addi-
tion to the flow chart that is generally employed, & number of alternate
methods of representation were discovered, including matrix, table, out-
line, lngical tree, and symbolic path list, Karpé/ has discussed the
application of graph theory to digital computer programming, and Voorhees®/
has taken a somewhat similar approach in considering an algebralc formu-
latien of flow diagrams, Since the notation required by the latter methods
differs slightly from the notation chosen here, no attempt will be made to
{llustrate their similarity to the other representative forms. Including

* See Literature Cited.

Figure 1.

Hypothetical Flow Chart,

Zantha

the flow chart, nine methods of representation will be described, It is
possible to bulld those forms either directly from the original specifi-
cation of the problem or from its flow chart, For the purpose of {ilus-
tration, each of these models will be derived from an illustrative flow

chart,

In the flow chart of Figura 1, the course of the program proceeds in
saquential order from each step to the following step except at each branch
point, where one of two available paths is seleactad according to the ra-
sults of the decision at that point, The decision elements are shown as
oval boxes and are designated by capital letters; the alternative results
of the decisions are given by small letters. For example, L{f "A" sym-
bolizes the decision elemant (18 x > y?], thenm "a" {ndicates the path
taken if x > y, and "a'" shows the path folloved if x g y. Numerical
calculations are represented by rectangular boxes,

Since the logical development of the problem is affected only when the
. program {s required to select betweean two possible paths, it is only the
decision salements that need concern us in our present analysis. For this

reason, it {s advantageous tc consider representations of the problam flow
that omit the desecriptions of the nuaarical steps.

A modified flow chart from which the nuuaricnl caleculations have baen
deleted is ahowm {n Figure 2, The formulation is somewhat similar to the

graph theory form used by Rarp.2/

Figure 2. Meodified Flow Chart, Omitting Numerical
Calculations.,

A logical tree i3 similar to the modified flow chart, with the dis-
tinction that & tree is defined as ''a directed graph that has at most one
branch entering each node and contains no circuits.Z/" Since decision
elements E and G can each be entered by two different paths in Figure 2,
the results of those decisions each appear twice in the tree of Figure 3.
Although the tree is slightly more cumbersome to draw, it has the advan-
tage that each path {s clearly visible, and the number of paths can be
determined simply by counting the terminal nodea of the tree,

© 00 0 O 0000 ®

Figure 3, Logical Tree Corresponding to Flow Chart of Figure 1.

10

Qutline form can also ba used to depict the decisions (Figure 4). Each
level of the outline is considered to be a particular decision element, and
the two entries are mutually exclusive, in that exactly one of the two must
be chosen, TFor example, decision slement A is represented by the Rorm-n
numerals I and II, If the program does not select I, which is path ', then
its only other choice {s to select I1I, which is path "a'" At each step of
the outline, the appropriate branch choice is indicated by its aymbol cor-
responding to a path of the flow chart of Figure 1.

I, a
A, b

. d

20 d'

B, b'

1, e

2, e' .

III) I'
Ao" [

1.]

2, e'

B. c'

1. £

a. 8

b, g'

2, £

a, 8

b, g'

Figure 4, Calculation Sequence of
Figure 1 Shown in Qutline
Form,

In the table of Figure 5, the decision elements and their corresponding
branch choices are listed sequentially by rows, A dash in any position
indicates that there is nc test at that point because of the impossibility
of reaching the decision element for the row by the path selected in the
preceding rows. Each column of the table then represents one particular
path of program flow, This tabular representation can be used in con-
nection with the Logic-Strueture tables of the TABSOL Syste of program
analysis, Since the logical development of the program is completely
designated by the top half of the TABSOL table in conjunction with the
"go to' statements at the end of the columns, the third and fourth quadrants
of TABSOL may be omitted when the tabular form is used for error analysis,

11

A a a a a a' a' a' a' a8 a
B b b b! b! ‘e NN ‘e con Cos Ve
c ver es o has ¢ ¢ ' c' c! e’
D d 4! cea N oo NN e co ce Vo
E er e e e’ e 8' i vee e e
3 v cos N . o NN f f £! £!
G ee wee a . . ‘e g g' g g'

Figure 5. Tabular Porm of Sample Computation.'

A symbolic path list (Figure 6) is simply a statement of é;éh indi-
vidual path that is a part of the program, It can be written directly
from the flow chart or, even more quickly, from the tree, cutline, or
table,

1) abd
. 2) abd'
3) ab'e
4) ab'e!
5) a'ca
) a'ca'
7) a'c'fg
8) a'c'fg'
8) a'c'f'g
10) a'c'f'g’

Pigure 6, Symbolic Path List of
Sample Computetion,

The format of symbolic logic may be used to describe these paths in one
statement, but the result seems to be too compact to be of much help in
error analysis. Writing "v'' for the logical "or' and the absence of a sign
for the logical "and,'" this flow chart would reduce to

a[b(dvd')vb'{eve'y]va' lc(eve ' ve' (fgvig'vE'gvE'g")],

12

A Boolean matrix (Figure 7), A = (8;,), can be very helpful in de-
scribing the flow chart. This ciye of mAtrix consists entirely of O's and
1's, 1In the gonnectivity matrixZ/ for the flow diagram, ayy will equal 1
if decision element j is the next consecutive decision elemént, and 0
otherwise. In this matrix, we will consider the decision elemefivs to be
represented, in alphabetical order; by the successive rows followed finally
by Stop 2 and then Stop 3. (For the reader's convenienca, the appropriate
headings for rows and columms have beean displayed with the matrix,)

‘ atop
A B C D E P G 2 3
s {0 1 1 0 0 0 o0 o o
3 /o0 0 0 1 1 0 0 0 o0
c {0 0 0 0 1L 1 0 O 0
> [0 0o 0o 0 0 0 0 1 1
E [0 0 0 0 0 0 0 1 1
P {0 0O 0 0 0 0 1 0 O
c (o 0 0 0 0 0 0 1 1
2 /o 0 0o 0 0 0 0 0 0
51 30 0 00 0 0o 0o o O

N -
Figure 7. Boolean Matrix of Sample Calculationm,

A limitation of use of the Boolean matrix, when considering decision
elements only, ia that two different paths from one decision element to
the next one cannot be illustrated. Such is the case in ocur matrix for
the two paths between F and G. 1In the matrix, all that i{s shown for these
two paths is & single 1 in row F column G, A refinemant of the Boolean:
matrix can be accomplished by replacing the 1's by the notation for the
actual path followed, in a manner aimilar to that used by Rarp. In the
path matrix, (Figure 8) the entry in row F column G is fvf', indicating
that the program can arrive at G by one of two alterrnative paths,

A
A (o
B IO
¢ |0
p |0
B |0
P |0
¢ o
2 |0

Figure 8.

0
0

Path Matrix of Basic”Ccmputctich

5

0

bl

o O O © o©

8:02
2 3
N
0 0
0 0
0 o
a 4
e o
0 0
g 8
0 0
0 0

J .

13

14

IV, FEFFECT OF LOOPS ON THE DEBUGGING SCHEME

Noticeably missing from our example flow chart {Figure 1) 1s any loop
that causes & series of steps to be repeated. Such circuits occur fre-
quently in flow charts, but their discussion has purposely been delayed
until now. Before proceeding to thelr conasideration, it is necessary to
clarify the aims and corrasponding requirements of our error analysis.
The approach to be taken in forming a complete test deck is to consider
conditionse such that every path will be traversed at least orce and,
furthermore, that it will be entered from every possible entry point., If
these conditions are satisfied, we shall know that the work performed
along a path is corract and that the conditions at each of i{ts entry points
are the proper ones for successful completion of the path,

Under this premise, it would be unnecessary to go through each loop
more than once, because a single traverse establishes its c¢orrectness.
This means that {f we have specified conditions to cause the program to
exit once from each side of a branch point, it will be incomsequential to
us whether the program subsequently loops back to & previous point in the
program or goes to a stop. Consider, for example, that atbranch point D
of the flow chart in Figure !, path d loops back to branch point A, rather
than going to 8top 2, If we simply form a set of conditions that will
cause the program to axir from D on path d, the program will automatically
execute this loop, Furthermore, all of the paths it can take subsequent
to this loop will be identical to ones we have already accounted’ for with
the other sets of input conditions that we have planned. Ideally, then,
we would wish to have a set of conditions that would cause the program to
exit from D by path d' the first time it arrives at D, thus omitting the
leop from its sequence of steps, and a sacond set of conditions that would
send the program on path d through the loop exactly once before it exity
from D by path d', Then correct answers for the first ret and incorrect
answers for the second set of conditfions will indicate that the loop
itself {8 at fault, whereas incorrect answers for both sets will indicate
that the error probably occurs on the path common to both sets before the
point of entry to the loop or later in the program.

It is interesting to observe the effect that the introduction cf the
leop at D has on each of our forms representative of the flow chart. It
is most readily shown in the two forms of the matrix {Figures 7 and 8),
where in row D the entries at the intersection with colums H and A are
simply interchanged. 1In the other forms of representation (because of
the understanding that a loop may be considered covered, for purposes of
debugging, 1f its path has been entered) it is not necessary tc make any
change whatever, for all steps preceding the loop branch were traversed
in getting to {t, The mere fact that path d appears as one of the paths
in the representative form indicates that the loop will be entered. Hence,
in the tree, path list, and outline, a path that leads into a loop will
appear the same as one that leads directly to a stop, so far as the de-
bugging requirements are concerned.

15

V. CHOICE OF MATHEMATICAL MODEL

Careful study of each of the forms of representation of problem flow
suggests that the matrix and tree can be most helpful in error analysis.
Further, the tree seems to ba the simplest form for the programmer to use
in the manual generation of a complete teat deck, since it is similar to
the original flow chart with which he is accustomed to dealing. By
writing the program in terms of a tree with each loop, as well as each
exit to a program stop, designated as a terminal node, the number of test
cases required for exhaustive check-out can then be determined by simply
counting the terminal nodes of the tree. The programming notation for
trees presented by Ivarlon,lQ/ and tha ideas used by Sauder in his
genaral test-deck generator for COBOL, enccurage the possibility of
mechanisation of this methed of error analysia., Matrix representation may
be found preferable for machine use bacauss of the ease with which a matrix
can be stored in tha machine and the availability of the laws of matrix
algsbra that would be advantagewus in the analysis, Since it is a mechanical
matter to translate from tree fornm to matrix form, the programmer could
still do his part using the tree, and then ask the machine to translate
the tree into & matrix and proceed with its operdtion,

[T \ ON

The potential number of test cases would be generated by sonsidering
the effect of the interaction of each branch point with every other
branch point in the program. This number will neve. bacome a reality,
hovever, because it will always be posgible to eliminate the ccnsideration
of the interaction of branch points between which there is no possible path,
such as points E and F in the flow chart of Figure 1, The logical tree,
drawn either directly from the original specification of the problem cr
from the flow chart, will portray the complete set of possible interactions
among the branch points, each different combination of input conditions
being represented by a distinct path from the initial node to a terminal
node of the tree,

The mere drawing of the tree automatically simplifies the problem in
three ways, It omits, for the purposes of test-deck generation, all
numerical calculations, all paths that the program would ordinarily fcl-
low subsequent to entering a loop, and all unrealistic interactions
between branch-point conditions., In addition, the tree itself may often
be further simplified for this specific purpose by giving attention co
branches for which the input would not differ from the input to scme of
the other branches, i.e,, where the same test criterion {s used two or
more times {in the progrum. For a set of branches having fdentical entry

16

conditions, all but the earliest of these branches may be omitted from the
tree, because test-deck data that will cause entry into that one branch
will automatically cause entry into each of the others, For example, if
Figure ! depicts the flow chart for a business problem, the decisicn ele-
ments at A and E might both be testing whether the person is & salaried

cr an hourly employea, the paths a and e being the ones that will be
chosen for an hourly employee. In such a case, input conditions that will
cause exit from A by path a will also, without exception, cause exit from
E by path e, so that the decision at E will always be dependent upon the
decision at point A. This means that in determining test-deck specifica-
tiona, paths e and e' may be deleted from the true (n Figure 3, thus
leaving b' and c as terminal nodes and reducing the number of test cases
by two. Such repetition of test conditiens throughout a program is not
uncommon, since it is often desired to inform the computer at different
points in the program of the type of data being handled in order that
appropriate computations may be performed. Before reducing the tree in
this manner, however, one must make certain that the input conditions are
not altered in some way during the course of the program, so that the input
to the branches under consideration {8 not, in fact, identical, After
simplification of thea tree has been achleved, if the tree-1is still too

. large to be workable, it {s helpful to postpone the consideration of the
problem as & whole, in preference to working separately at first with
significant portions of the tree. »

When tte working portion of the tree has finally been selected, test~
deck genaration {s begun. REach taerminal node of the tree stands for a
different test case that should be run with the program for check-out.
Test data are sélected that will cause the program to arrive at each of
these end points exactly once. In our tree, for {nstance, there are ten
tarminal nodes, indicating that there will be ten test cases for our
problem. The conditfons naeded for any particular case are axactly those
on the path from the beginning of the trse to the particular end point,
Test Case 1 will contain data that complies with conditions a, b, and d;
Test Case 2 will meet conditions a, b, and d', ete., (Figure 3).

17

YII. DEBUGGING

When a list of all possible input conditions is secured, a test deck
containing an input card for each condition is prepared and run on the
machine with the actual program, After running this test dack on the
machine, comparison of the machine answers with ones that have previocusly
been hand-calculated will indicate whether there were any e.rors and for
which input data thaey occurred, Next, a quick glance at the tree will
cften give a very good idea of the location in the coding to begin search-
ing for the error, For example, if the answers for taest cases 3 and &4 were
the only incorract ones, the error is very likely to be scmawhere in path
b', whereas i{f 1, 2, 3, and 4 were wrong, the error is probably in path a,
Likewise, if 3 And 5 are both wrong, but all others right, path e may be
at fault because that is the only path common to these two test cases,

The aid that this type of analysis gives to- pinpoincing an arror 1is par-
ticularly advantagecus to the programmar who seeks to find the eérror by
examining a monitor sheet showing each step the program followed for a
particular case. With the aid of the tree he knows where {n the monitor
to begin searching for the error, and if there are two errors that seem
to have the same cause, such as 3 and 5, he can compare the monitor sheets
for those two cases to determine vhether the errors truly are of the same

type.

If it is necessary to work with only a portion of the main tree, it
will be found that after this portion has besn thoroughly checked out,
its test deck can bes used in conjunction with other portions of the tree
until the testing of the entire tree has been completed, The use of this
systematic approach simplifies tha work condiderably., Since each test
case will differ from the next only slightly, many of the hand calculations
will not have to be repeated for each new case, It would be most valuable
to choose the test data close to, or right at, the limits of the decision
points in order to test whether the branching is effected exactly as it
.was meant to be,

PR

18

VIII. CHARACTERISTICS TYPICAL OF SCIENTIFIC PROBLEMS

The method of test data formulation described was developed originally
in connection with the checking of a business application of computer
programming, The method and this type of problem are definitely best
‘sulted for each other. 1In a business problem, there is usually a wide
variety of input, so that the combination of varied input conditiocns s
one of the major problems {n the debugging of the program. In addition,
since most of the branch points are diractly or indirectly influenced by
the input data, a test deck with input date varied according to the method
described in this paper will effectively test all paths of the program.

In a scientific problem, on the other hand, ‘tha input data generally do
not vary in this way, and the majority of the branch points are influenced
not by the {nput conditions, but by the fnherent properties of a problem.
A loop may be executed & certain number of times before the program exits
from it, and the number of times may not be influenced in any way by the
‘ input, For example, in computing

10 »
‘£ x4, the loop that accomplishes this summation wili be repeated

exactly ten times before the program exits from the loop, regardless of
how the input to the problem is varied:. 1If, on the other hand

N , .
£ x{ is desired, and N ii“vériahle, then the value of N will be
1=]

{ncluded in the input data, and the fraquancy of the loop vill he controlled
directly by the input conditions,

‘For. soma scientific cases, the running of one test case will completely
check out the problem, In such a case, there would be no point in using
the tree mathod of analysis, For a problem that is to a certain extent
influenced by the input, there are two possible methods of dealing with the
loops that are independent of input in order that this method of analysis
may be applied. One solution is to omit from the tree the decision elements
for such loops. The test cases would then be limited strictly to the
diverse combinations of lnput data, The assumption here would be that
since the loops that have been omitted from consideration will automatically
be executed in the process of the program, the answers to the test data will
indicate whether these loops are correct and are traversed the proper num-
ber of times. A second possibility {s to leoad with the test deck a set of
pseudo-cperations that will, for the sake of the test run, afford control
over the branch points that are not normally dependent upon the input. 1In
10 -

the loop for ¥ =, for instance, a pseudo-operation that alters the branch-
i=1

ing instructien to teet whether Xy has been summed will cause tha program to

19

proceed immedfately upon arrival at the branch point, and a second test
case containing a pseudc-operation that tests whether x, has been summed
will allow the program to repeat the loop exactly once gefore proceeding,
The answers for the two test cases will determine, respectively, whether
the summation procedure ftself is correct and whether the looping is
achieved successfully., The advantage of running two such cases, rather
than checking the summation and the loopiig mechanism simultaneously by
running only the second, {s that, with two {ndividual cases, the exact
trouble spot {n the program is immediately indicated by an incorrect answer
to one of the test cases and a correct answer to the other,

 With the addition of pseudo-operations, as described above, the method
of error analysis using a logical tree is no longer limited to input-
dependent decision points, If the complete test deck, including all test
data and pseudo-operations indicated by the tree, is used for the checkout
of the problem, there will be exactly as many te8t cases as there are
terminal nodes of the trea., The incorrect answers that appear when the
complete test deck is run will enable the programmer to pinpoint rapidly, ..
using the tree as a guide, tha ‘apecific points of the program that are in
error, If the programmer prefers to spend less time amassing the original
test deck, an alternative mathod would be to use only the various combina-
tions cf,inpu: data, omitting any employment of pseudo-operations for the
firast run, - Then {f aerrors appear for which he cannot determine the cause,
he can, in a second run, use some pseudo-operations for the area of the
program that he lulpec:s to be at fault, in order to search more thoroughly
for the error, .

IX. CONCLUS JON

The logical tree can be invaluable as an aid to sorting out the
various combinations of i{input data that the program must be equipped to
handle, testing these cases, and subsequently assisting the programmer in
locating the cause of errors that cccur, Systematic formulation of the
test deck will eliminate the inadvertent duplication of test situations
that often occurs in program check-out, and will significantly increase
the number of different types of cases tested, It is, therefore, an
effective aid in the formulation of a test deck that will contain, for
a glven problem, all combinations of input that can be expected to oteur,

20

ll

-2,

5.

6.

8.

10.

11.

LITERATURE CITED

‘MeCracken, D.D.,: Digital Computer Programming, Johin Wiley and Sons,

New York, 159-169, 1957,

Jacoby, K., and Layton, H,: '"Automation of Program Debugging,“ paper
presented at the 16th National Conferernce of the Association for
Computing Machinery, Los Angeles, September 8, 1961, Abstract in
Comm ACM, 4:7, 1981,

Haibt, Lois M.: "A Program to Draw Multilevel Flow Charts,' Proc.

Western Joint Ccmggter Canference, San Francisco, March, 18536.

- Senko, M.EBu: "A Conmtrol System for Logical Block Diagnosis with Data
Loading," Gomm égﬁ, 3:4:236- 240, 1960, - - '

Karp, R.M.: "A Note on the Application of Graph Theory to Digital

Computer Programming,' Information and Comtrol, 3:2, 1960,

Voorhees, E.A,: '"Algebraic Formulation of Flow Dﬁgram," Comm ACM,
L:6:4-8, 1958, ' _ ,

Salton, . G.. "Manipulation of Trees in‘Information Retrieval,"
Comm ACH, 5:2:103-114, 1962,

Ravanaugh, T,F.: "TABSOL, The Language of Decision Making," Comp
and Aut., 10:9, 1961.-

. ‘Prosser, R.T.: "Applications of Boolean Hn:ricaa to the Annlysil of

Flow Diagrams," Technical Report 217, MIT Linccln Laboratory,
Lexington, Mass., 1960,

Iverson, K.E.: '"A Programming Notation for Trees,” IEM Research
Report RC=-3%90, 1961, , .

Sauder, R,L.: '"A General Test Data Generator for COBOL," Report
presented at the AFIPS Spring Joint Computer Confaran:c, San Francisco,
May, 1962,

7

21

REFERENCES

Berkeley, E.C.: '"Boolean Algebra and Applications to Insurance,"
reprint by Berkeley and Associates, New York, 1952,

Cantrell, H.N.; King, J.; and King, F,E.H,,; "Loglc-Structure Tables,"
Comm ACM, 4:6:272-275, 1961,

Copi, I.M.,: Symbolic lLogic, Macmillan, New York, 1954,
Curtis, H.A.: "A Generalized Tree Circuit," J ACM, 8:4:4B4-496, 1961,

Hickerson, R.C.: "An Bngineering Application of Loglc-Structure
Tables,' Comm ACM, 4:11:516-520, 1961,

Roth, J.P,, and Wagner, £.G.: '"Algebraic T0pological'na;hodénfof
the Synthesis of Switching Systems, Part III: Minimization of Non-

‘Singular Boolean Trees," IEM J Res and Dev, 3:4:326-344, 1939.

D~

