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1.0 ABSTRACYT

This report describes s method for calculating, with the ald of an
electronic computer, the incompressible potential flow about arbitrary, non-
lifting, three-dimensional bodies. The method utilizes a source density dis-
tribution on the surface of the body ard solves for the distribution neces-
sary 1o make the normal veloclity zero on the boundary. Plane gquadrilateral
surface elements are used to approximate the body surface, and the integral
equation for the surface source density is replaced by a set of linear alge-
braic equations for the values of the sourre density on each c¢f the quadri-
lateral elements. After this set of cquations has tzen solved, which is
acconplished by a Seidel iterative procedure, the flow velocities at points
both on and off the body surface are calculated. This approach is completely
general. Bodies are not required to be slender, analytlcally defined , or
5imply connected. In fact the flow about an ensemble of bodies may be cal-
culated, so that interference problems may be investigated. It is only
necessary that the body cen be satisfactorily approximated by the maximum
nurber of surface elements permitted by the storage capacity of the computing
machine., For the IBM 7090 this number varies from 675 for completely general
bodies to 4L4QO for bodies with three planes of symmetry.

In the text of the report, the basic formulas of the method are derived,
and the computational procedure is described in detail. The accuracy of the
calculated surface velocities is exhibited by comparing them with analytic
solutions for a sphere, ellipsoids of revolution, and tri-axial ellipsolds.
FPinally, the scope of the method is illustrated by presenting calculated
velocity or pressure disiributions for a variety of bodies including wing-
fuselage combinations, ducts, a body in a wind tunnel, two bodies side by
slde, and ship hulls.
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4,0 DEFINITION OF SYMBOLS

area of a plane quadrilateral surface element

component of velocity normel to the body surface induced
at the null point of the i-th element (i-th basic element
in cases of symmetry) by a unit source-density on the j-th
element (j-th basic and reflected elements in cases of

symmetry)

elements of the transformetion matrix used to transform the
coordinates of points and the components of vectors between
the reference coordinaste system and the element coordinate
system

base of an isosceles triangle (figure 23)
quantity definsd by eq.(33)

pressure coegficient at the null point of the i-th element,
Cp =1-V

i
quentities defined by eq.(93)

magnitude of the common projection distance of the four input
points used to form an element into the plane of the elesment

, 2, 3, 4., Signed projection distance of the four input
s used to form an element into the plane of the element

length of the four sides of a quaedrilateral element (eq. (hj),
d,, also given by eq.(27)

k =1, 2, 3, 4. Quantities defined by eq.(48), e, and e,
also given by equation (40)

function defining the body surface

perpendicular distance of a field point from the extension
of a side of a quadrilateral (figure 8)

altitude of an isosceles triagnle (figure 23)

k =1, 2, 3, k., Quantities defined by eg.(49), hyjand h

-2

also given by equation (U41) 2

second moments or moments of inertia of the area of a quadri-
lateral element about the origin of its element coordinate
system

number of input points on the n-th input ''column'® or n-line




AM M -M

n n+l n
M M first moments of the area of a quadrilateral element about
x v the origin of its element coordinate system
m integer denoting the position of an input point on an input
fcolumn'' or r-line or an element formed from this point
m, m25 slopes of the sides of a quadrilateral in its own plane
(eq.(46), m also given by (32))
m i} 12
34 Th)
N the number of quadrilateral elements formed from input points

(basic elements in cases of symmetry). Also used in egs.(66)
and (67) to denote the length of the normal vector to an

element

Ni normal velocity induced at the null point of the i-th element
by all quadrilateral elements together (eq.(124))

NT number of *‘columns'' or n-lines of input points in a section

N N N components of the vector normal to an element in the reference

X'y 'z
coordinate system

ﬁ vector normal to an element

n integer denoting the ''column®® or n-line to which an input
point belongs or an element formed from this point. Also used
in Section 6.0 to denote distance normal to the body surface

n n n components of the unit normal vector to an element in the

X'y z
reference coordinate system

Ny, Ny ML components of the unit normal vector to the i-th element

y (i-th basic element 1in cases of symmetry) in the reference

coordinate systen

n unit normal vector to an element

ﬁ& unit normal vector to the i-th element (i-th basic element
in cases of symmetiry)

P general field point where the potential and veloclty com-
ponents are evaluated

P field point on the body surface where the potentisl and
veloclty components are evaluated. Also a gquantity defined
by eq.(62)

q source point or integration point on the body surface. Also
a quantity defined by eq.(62)

415 a quentity defined by =q.(34)
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the region exterior to the body surface

distance from a field point where the potential and velocity
components are evaluated to a source point or integration
point

k =1, 2, 3, 4, Distances from & field point where the
potential and veloclity components are evaluated to the four
corner points of a quadrilateral element (eq.(h?), ry and
r, ealso given by eq.(27) and figure 8)

distance from a field point, where the potential and velocity
components are evaluated, to the origin of the coordinate
systom of an elcment

surface of the body about which the flow is computed

arc length along a side of a quadrilateral. Also used in
figure 44 to denote arc length along the centerline of a duct

projection of r, and r, along the extension of a side of
a quadrilateral ~(figurc “8)

length of vector Ti (equation (74))

componerits of vector E& in the reference coordinate system
comnonents of vector E; in the reference coordinate system
diagonal vectors of a quadrilateral el=ment (equation (64))
maximun diagonal of an clcment. The larger of tl and t2.
lengths of the diagonals of a quadrilateral element (eq.(8h))

components otf the vector tl

—
components of the vector +t, in the reference coordinate system
o

in the reference coordinate system

unit vectors in the plane of an element. These vectors are,
respectively, along the x or § and y or 10 axes of the
element coordinate system

the quantity x — ¢

magnitude of total flow velocity

magnitude of total flow velocity at the null point of the
i-th element

10
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velocity componenits in an element coordinate system; in
particular, the velocity components induced by that element

at a field point
velocity components in the reference coordinate system

velocity magnitude in a constant diameter region of a duct
where the veloeity varies only slightly with position

magnitude of the velocity of a uniform onset flow. Usually
taken as unity

components in the reference coordinate system of the total
flow velocity at the null point of the i-th element

total normal velocity at the null point of the i-th element

components in the element coordinate system of the velocity
at a fleld point due to the fundamental potential function
of the side of a quadrilateral between corner point 1 and
corner point 2

compounentys of & uniform onset flow in the rcference coordinate
system

normal component of a uniform onset flow at the null point
of the i-th element

total flow velocity vector at the null point of the i-th
element

onset flow vector

vector velocity induced at the null point of the i~-th element
(i-th basic element in cases of symmetry) by a unit source
density on the j-th element (j-th basic and reflected elements
in cases of symmetry

1/v ; when subscripted with x, y, and z, this denotes the
partial derivatives of w 1in the directions of the axes of
the element coordinate system

components of Vij in the reference coordinate system

Cartesian coordinates of a point in space. 1In sections of tue
report where the coordinates of points are required in both the
reference and element coordinate system, these variables are
used for the coordinates in the element coordinate system,
while primed coordinates are used for coordinates in the re-

ference coordinate gystem. In sections where only one coordinate

system is considered, either the reference or element cocrdinate
system, these varlables are used.

11




x! yl 2!t

Cartesian coordinates of a point in space. These variables
are used for the coordinates of pointes in the reference
coordinate system in sections of the report where the co-
ordinates of points are required in both the reference ard
element coordimate system

p-th approximation to the coordinates of the null point in
the element coordinate system

coordinates of the origin of the element coordinate system
in the reference coordinate system. Alsc used for the co-
ordinates of the centroid of a quadrilateral in the reference
coordinate system, since this polnt is used as the origin of
the element coordinate system as soon as 1t 1s computed.

coordinates of the average point in the reference coordinate
system (eq.68))

k =1, 2, 3, b, Coordinmates of the four cormer points of &
quadrillateral element in the reference coordinate system

coordinates of the null point of an element in the coordinate
system of that element

coordinates of the null point of an element in the reference
coordinate system

k =1, 2, 3, 4, Coordinates in the reference coordinate system
of the four input points used to furm a quadrilateral surface
element

meximum distance of points on & ship hull from the midplane
or ''keel plane'' of the ship. Equals half the beam of the
ship.

maximum depth below the free surface of points on 8 ship hull.
Equals the draft of the ship.

angles defined inm figure 8.

direction cosines with respect to the axes of the reference
coordinate system of the totsl flow velocity vector at the
null point of the 1-th element

Laplacian operator (except Aan defined above)

n coordinate of a gemeral point on the side of & quadrilateral
between corner point 1 and cormer point 2

angular varisble uged in several figures and defined pictorially

on each one

12
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Cartesian coordinates of a point in an elemeat coordinate
system, especially a source point or integration point on
a quadrilateral element

k =1, 2, 3, 4, Coordinates of the four corner points of a
quadrilateral im its elememnt coordimate system, im particu=~
lar when that coordimate system has the cemtroid of the
quadrilateral as the origin

coordinates of the centroid of a quadrilateral in its element
coordisate system based on the average point as origin

k =1, 2, 3, b, Coordinates of the four corner points of a
guadrileteral in ite element coordinate system based on the
average point as origin

ratio of the values of b o obtained in two successive
iterations during the solution of the limear equatioms for
the values of the surface source demsity (egs. (131) and (132)

surface source deasity

values of the surface source demsity on the 1-th and j-th
elements, respectively, (i~th and j-th basic elements in
cases of symmetry)

charge 1n the value of o, produced by ome iteration in the
solution of the linear equatlons for the surface source density
(equation (128))

total potential of the flow

disturbance potemtial due to the body. Also used as an
angular varlaeblie in certain figures and defined pictorially
on each ome,

potential of a uniform omset flow

angular variable used in several figures amd defimed pictori-
ally on each one

Subscripts
denotes quamtities assoclated with the i-th element (i-th basic
element in cases of symmetry), in particular velocity com-
ponents evaluated at the mull point of that element

denotes quantities associated with the j-th element (j-th
basic and reflected elements in ceses of symmetry)

13
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1r 2r 3r

integer subscript teking on the values 1, 2, 3, 4. It denotes
quantities associated with the four cormer poiats of a quadri-
lateral element, im particular thelr coordimates

identifying subscript used to desigmate am off-body point
and gquantities assoclated with it, im particular velocity
components evalusted there

when used with a vector quantity, these subscripts demote
the comporments of that vector alomg the coordinate axes.

When used with a scalar guantity, these subscripts denote
the partial derivatlives of that gquantity with respect *o
that coordimate, except that when used with the moments of
the area of a quadrilatersal, , etc., these subscripts
denote the coordinate axes abou% wh%xh the moments are taken,

Superscripts

deraotes the value of a quantity after p applications of am
iterative procedure, in particular the values of the surface
source density o, after p 1terations of the Seidel pro-
cedure for the soiution of the linear equatioms

denctes velocity components -induced by a reflected element
in cases of one plane of symmetry

denote velocity components induced by first, second, and third
reflected elements, respectively, in cases of two planes of
symmetry. The superscripts Ur, 5r, 6r, and Tr are used in
cases of three planes of symmetry to denote velocity com-
ponente induced by the fourth, fifth; sixth, and seventh
reflected elements, respectively.

integer superscript having the values 1, 2, and 3, and de-
noting the onset flow. Normally, calculations are performed
for three onset flows simultaneously, and this superscript
is used to denote the componenis of & particular onset flow
and all quantities, velocities, source demsities, etc.,
assoclated with that onset flow. In the text, n s super-
script is used both as a general value, e.g., iJ , and as
a specific value, e.g., Alg) .

denotes values of the source density after infinitely many
iterations of the Seidel procedure for the solution of the
linsar equations

14




5.0 INIRODUCTION

This report describes a method of calculating, by means of an electronic
computer, the non-lifting potential flow about arbitrary three-dimensional
bodies. This work is an extension of that described in references 1 and 2,
whose formulas permit the calculation of potential flow ebout arbitrary
two-dimensional and axi-symmetric bodies. This method utilizes a distribu-
tion of source density on the surface of the body and solves for the distri-
bution necessary to meet the specific boundary'conditions. Once the source
density distribution is known, the flow velocltles both on and off the body
surface may be calculated., The basic equation defining the source density
distribution is a two-dimensional Fredholm integral eguation of the second
kind over the body surface.

The method of this report has two advantages over network methods.
First, the equation that must be solved is a two-dimensional one over the
body surface ratiher than a three-dimensional one over the entire exterior
flow field. (In two-dimensional and axi-symmetric cases the reduct.on in
dimensionality is from two to one.) Secondly, any body may be convenlently
calculated without the difficulty network methuds may encounter when the body
surface intersects the coordinate net in an arbltrary manner. The advantage
of this method over methods that utilize a distribution of singularities
ingide the body surface, e.g., in a plane, is that this method can calculate
flows about arbitrary bodies. There is no restriction that the body be
slender, analytic, or simply connected or that the disturbance velocities due
to the body be small compared with the veloclty of the onset flow. There is
one further advantage. Although at present the method will handle only the
case vhen the body is immersed in s uniform gtream;, a relatively minor modi-
fication will allow the case when the body is in an arbitrary, non-uniform,
potentiel onset flow io be calculated. Cases for which the onset flow cannot
be described by a potential function can also be calculated, but the signi-

flcance of the results 1is not clear.
Section 6.0 formulates the mathematical problem and states the basic

idea behind this method of sclution. Seection 7.0 is a general outline of the

particular way in whiech the solution is carried out. Some alternative

15




possibllities are also discussed in this section. The formulae for the
velocities induced by a plane qpadrilateral source element that form the basis
of this method are derived in Section 8.0. Section 9.0 gives a detailed
description of the method of computation together with all the relevant
equations. The accuracy of the method is exhibited in Section 10.0, where
the calculations are compared with analytic solutions, while Seetion 11.0
shows examples of the flows calculated for a varilety of bodies that were
selected to show the versatility of the method. The derivations and results
of Section 8.0 and the complete listing of equations given in Section 9.0
will probably not be of interest to most readers. Accordingly, these sections
my be omitted without loss of continuity. Section 8.0 and the lengthier parts
of Section 9.0, specifically 9.2, 9.3, 9.5, and 9.6, need not be read even by
someone who intends to use the method. The remainder of Section 9.0, namely
9.1, 9.4, 9.7, 9.8, and 9.9, explains the input and output of the program

and lists computation tlmes and size limits for the cascs.

The set of machine programs that perform the computations of this method

has been designated the ViS50 series of programs for three-dimensional poten-
tial flow.

16




6.0 MATHEMATICAL STATEMENT OF THE PROBLEM

The problem considered here 1s that of the gteady flow of a perfect
f£1uid about a three-dimensional body. Let the surface of the body be denoted

S, and let S have an equation of the form
Fx ,y,z)=0 (1)

wvhere x , y , z are Cartesian coordinates as shown in figure 1. The onset

/
R

\ *
A/,/’—_S\\7,\

Figure 1. - The body surface.

flow is taken as a uniform stream of unit magnitude. Thus this flow may be

represented by the constant vector ‘700 with components V v

A
cox’ ‘wy’ oz’

respectively, along the coordinate axes x , y , z , where

-
\ =w2 P VS Ve =1 (2)
00 00X ooy (o o}

The restrictiocn to & uniform onset flow 1s nol essential, but is made for

definiteness and simplicity. Non~-uniform onset flows may be considered with

8 nminor increase in complexity.

17




The fluild velocity at a point may be expressed as the negative gradient
of a potential function @ . The function § satisfies Laplace's equation in
the region R' exterior to S, has a zero normal derivative on 5, and
approaches the proper uniform stream potentisal at infinity. Symbolically,

ad=o0 in R! (3)
g%- =% » grad @I = 0 (&%)
S F=20
G —e- (vooxx +Vooyy +V00Zz) for x2+y2+z2—-ooo (3)

B

Here A denotes the Laplaclan operator and 17 is the unit outward normal

vector at a point of the surface S, 1l.e.,

radF-
ﬁzt{i_‘;}?ﬁr—]on (6)

where the sign in (6) is chosen to make # an outward normal vector. It is

convenient to write @ as

=90, 0 (7)
where
=~ (Vooxx + Vooyy + VOOZZ ) (8)

is the uniform stream potential,and ¢ is the disturbance potential due to

the body. Then ¢ satisfies

AP =0 in R! (9)
%’2 =1 . grad ¢ =+1n -7 (10)
Bls F=0 ®lr =0
¢ —+0 for x2+y2+z2—-poo (11)

It is shown in reference 3 that the body surface may be imagined to be covered
with a surface source density distribution ¢ and that the potential P may
then he written
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q:(x,y,z)=£z§r;,qas (12)
S

vhere r(P, q) is the distance from the integration point q on the surface
to the field point P with coordinates x , ¥y , z where the potential is
being evaluated (see figure 2).

P (x.y,
\(*9;)

Figure 2. - Notation used in describing the potential due to a surface source density distribution.

The form of @ shown in equation (12) automatically satisfies equations (9)
and (11) for any function o¢. The function o must be determined so that
¢ satisfies the normal derivative condition, equation (10). Applying equa-
tion (10) requires the evaluation of the normal derivative of the integral
in equation (12) at a point p on the surface S. Tt is shown in reference
3 that as the surface 5 is approached, the derivative of this integral
becomes singular and its principel part must be extracted. Physically, this
corresponds to the contribution of the local source density to the local
normal veloclty. The contribution of the remainder of the surface to the
local normal velocity is given by the derivative of an integral of the form
given in equation (12) evaluated on the boundary, i.e., P = p, and this
integra: is now taken to mean the finite part. From reference 3 the principal
value is — 270(p), 80 on the body surface the normal derivative of @ is
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S

%g = - 21 a(p) +ﬁ 5% (HB}J;_&T)O(q)dS (23)

Inserting this into equation (10) gives the integral equation for ¢ as

er o(p) —ﬁgaa (Hi:f_q'f) o(q)as - - n(p) * Vm (1k4)
S

where the unit normal vector has been written 1n(p) to explicitly show its
dependence on location. This is seen to he a two-dimensional Fredholm
integrel equation of the second kind over the surface S. Once this equation
is solved for o, the disturbance potential @ may be evaluated from equation
{12) and the disturbance flow velocitlies from the derivatives of equation (12)
in the coordinate directions.

This method of solution is valld for completely arbitrary bodies. The
surface S 1s not required to be slender, analytic, or simply connected. It
is required, however, that the body surface have s continuous normal vector

B. Otherwise the integrand in equation (14) is singular and thc right hand
side is discontinuous. Thus this method cannot be guaranteed to give correct
results for bodles having discontinuities in slope, i.e., curnevs. This re-
gtriction 1s not of great practical significaince; since the corner can be re=
placed by a small region of large but finite curvature without significantly
affecting the flow at other pcints. Even this, however, is often unnecessary.
Experience in applying this method to two-dimensional flows, where analytic
golutions for certain bodies with corners are avallable, has shown that the
method gives correct results for cases of lrue corners if these corners are
convex. For concave corners the method fails, and the corner must be rounded
in a small region to obtain correct results at other points. These facts
often indicate the proper procedure in three-dimensional cases. It appears
that the flow around convex corners 1s calculated correctly, while unrounded

concave corners may or may not cause an apprecliable error.

The: case when the onset flow is not a uniform stream, i.e., when V&o is
not independeni of position; i1s handled 1n exactly the same way as the uniform
stream case. It is simply a matter of defining o S° that the varlable VQD
is its gradient and of using thc variable Vﬁo on the right hand side of equa-

tion (14). 20




T.0 GENERAL DESCRIPTION OF THE METHOD OF SOLUTION
7.1 The Approximation of the Body Surface

There are several possible schemes for the numerical solution of equation
(14). In all of them a basic question is how to approximate the body surface.
If it were deslred to represent this surface exactly by means of analytic
expressions, the type of bodies that could be handled would have to be re-
stricted. Since the basic method has no such restriction, it seems unde-
sirable to impose one merely to represent the surface. Moreover, to include
all bodies of interest in applications, e.g., wing-fuselages, inlets, ducts,
ete., the defining analytic expressions would have to be extremely elaborate.
Also, the equation for the source density will have to be solved approximately
even if the body is represented exactly.

To allow arbitrary bodies to be considered, it is natural to require the
body surface tc be specified by a set of points in spece. These points are
presumably exactly on the body surface and are utilized by the method to oh-
tain an approximation to this surface, which is then used in subsequent cal-
culations. There are two bacically different typus of approximetion. The
first uses a single anmlytic expression or a few such expressions to approxi-
mate the surface as a whole. The other uses a large number of analytic ex-
presslons, each of which approximates the surface in a small region. While
the first of these is more satisfying in many ways, it possesses the unde=
sirable feature described above for exact representations, namely that very

elaborate expressions are required.

After the method of approximating the body surface has been decided
upon, there are several possible approaches to the numerical solution of
equation (14). The equation may be attacked directly as an integral equation
using an iterative procedure for the solution of Fredholm integral equations.
In this process thc integral in (14) is evaluated by numerical means. Alter-
natively, equation (1k4) nay be replaced by a set of linear algebralc equations.
There are various ways of accomplishing this, all of which are equivalent to
evaluating the integral in (14) by some quadrature formula in terms of certain

unknown values of the source density. These last may be the actual values of
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the source density at selected points of the body surface or they may represent
mean values of the source density in some sense over certain regions of the
surface. In any case requiring {(14) to hold at a certain number of points

of the surface gives a set of linear equations for the unknown values of the

source density.

The scheme adopted here is as follows. The body surface is approximated
by a large number of small plane elements, which are formed from the original
points defining the body surface. (Figure 3 shows an example of a body surface
that is approximated by plane quadrilateral elements. Although the discussion
of this section 1s applicable to any kind of plane elements, quadrilaterals
were eventually chosen for this method. This cholce is discussed in a sub-

sequent section.) The source density is assumed constant over each of these

Figure 3. - The approximate representation of the body surface.

elements. This assumption reduces the problem of determining the continuous
function ¢ to the problem of determining a finite number of valuecs of o -
one for each of the planar elements. The contribution of each element to the
integral in (14%) is obtained by teking the constant but unknown value of o

on that element out of the integral and then performing the indicated integre-
tion of known geometrical quantities over that element. Thus, requiring
equation (lb) to hold at one point p gilves a linear relation between the

unknown values of ¢ on the plane elements. On each element one point is
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gselected where equation (lh) is required to hold. This gives a nmumber of
linear equations equal to the number of unknown values of o¢. Once these are
solved, flow velocities may be evaluated at any point by summing the contri-
butions of the plane elements and adding proper components of the onset flow.
Flow velocities may be ccmputed at puints eilther on or off the body. If
velocities are evaluated on the body, they must be evaluated at the same
points where (14) 1s required to hold, i.e., at the points where the normal
velocity 1s made to vanish. Velocities at other points of the body surface
must be obtained through interpolation of these values rather than by direct
caleulation. This restriction is imposed by the form of the approximation of
the body surface. ¥or example, direct calculation by summing the contribu-
tions of the plane elements gives an infinite velocity at a point on an edge

of one of the elements.

There were three reasons why this relatively crude approach to the solu-
tion of equation (14) was adopted. First, it is simpler than any other method
that is versatile enough to handle all the body shapes of interest in applica-
tions. It seemed logical to first attempt a solution by the simplest means to
determine whethcr or not a more elaborate method is necessary. The chiet
disadvantage of a simple procedure is that large computation times mey be re-
guired for high accuracy. The computation times requircd for this method are
indeed large, as is described in a later section, but probably acceptable for
most applications. A second reason 1s that the physical significance of this
approximation is evident. This 1s true both with regard to the degree of
approximation to the true body surface efforded by the plane elements and with
regard to certain intermediate mathematical results, e.g., the velocities in-
duced by the source elements at points in space. Not only was this fact ex-
tremely useful in checking out the method and eliminating errors, but it is of
continuing value to users of the method, because it mekes clear to a certain
extent how the original points defining the body surface should be distributed
for best results. The third and most important reason for the selecticn of
this method is that it is the three-dimensional analogue of the method that
gave very satisfactory results for two-dimensional and axisymmetfic bodies

(References 1 and 2).
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7.2 The Computational Method

T.2l Description of the Method.
This section describes briefly the manner in which this method of solu-

tion is carried out on the computing machine.

The body surface is defined by a set of points in three-dimensional
space. These will be called the input points, The coordinate system in which
these points are given is designated the reference coordinate system. These
points should be distributed in such a way that the best representation of
the body is obtained with the fewest possible points. In particular, points
should be concentrated in regions where the curvature of the body surface is
large and in regions where the flow veloclty is expected to change rapidly,
vhile points may be distributed sparsely in regions where neither the body
geometry nor the flow propertiles are varying significantly. If the body
possesses symmetry planes, only the non-redundant portion of its surface need
be specified by input points. The other portions are automaticelly taken into
account by suitably reflecting this portion in the symmetry planes. The
symmetry planes are assumed to be coordinate planes of the reference coordinate
system.

The body surface is approximated by a set of plane quadrilateral source
eiements, each of which is formed from four input points. To avoid having
to actually input four points for each element, the input points are or-
ganized in a certain way, so that they may be associated in groups of four to
form elements with each immyt point being used in the formation of up to four
elements. In order to accomplish this, each point i1s considered to be identi-
fied by a pair of integers, one gpecifying the ''row!' of points to which it
belongs and the other specifying the ''column''. The choice of what constitutes
a ''row'! or ''column'' is very free. The only restriction is that 1if all
points of each '"'column'' are connectcd by a curve lylng in the body surface,
no two such curves croas each other, and similarly for '‘rows''. It can be
seen that these curves connecting all points on the game ''row!'' or '‘column'?!
are essentially coordinate curves of a two-dimensional coordinate system lying
in the body surface, {see figure 4). The points are input !'column'' by

''column''. The order of a point in a ''column'' determines its ''row'', and




the number of points on & “column''! may vary. Provision has also been made

COLUMNS

Figure 4. - Orqganization of input points into “‘rows’’ and “‘cofumns’’.

for dividing the body into a certain number of distinet sections, each of which
congists of a certain number of ''columns''. This is & natural procedure for
many types of bodies, e.g., a wing-fuselage, end permits a great deal of
flexibility. For example, it ailows points to be concentrated in certain
regions very easily. The four polnts used to form a particular surface ele-
ment are the two points in one '"'column'' in consecutive ''rows!' and the two
points in the adjacent ''column'' that are in the game two "'rows'!'. 1In

general these four points do not 1lie in a plane.

The plane quadrilateral surface elements (figure 3) are formed from the
four appropriate input polnts as follows. First two vectors sre calculated.
These are the two '*!disgonal'' vectors, each of which is the difference of
the position vectors of two points that are neither in the same ''row'! nor in
the same ''column''. The cross product of these vectors divided by its own
length is taken as the unit normal vector o the plane of the element, The
crogs product is performed in such a way that it produces an outward normal
to the body surface. To completely specify the plane of the element a point
in the plane is also required. This point 1s taken as the point whose coordi-
nates are the averages of the coordinates of the four input polnts, and it 1s
designated the average point. Four points in the plane are obtained by pro-
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Jecting the input points into the plane along the normal vector. Because of
the way in which the plane is defined, all four input points are equidistant
from it — the two used to form one *''diagonal'' vector on one side and the
other two on the other side., The four points in the plane are the corners

of the plane quadrilateral source'element, and they are designated corner
points. It is these points that are used in 8sll calculations once the comp-
lete set of surface elements has been formed, rather than the input points.

- It 1s convenient to derive and to use the formulas for the velocities
induced by a quadrilateral source element of uniform strength at peints in
space assuning the element to lie in a coordinate plane. This necessitates
constructing a coordinate system having two of its axes in the plane of the
element. Thus three mutually perpendicular unit vectors are required, two
of which are in the plane of the element and one of which is normal to it.

The unit normal vector has already heen found. One of the '!'diagonal'!' vectors
divided by its own length serves as one unit vector in the plane of the ele-
ment, and the cross product of the unit normal with this vector is the other.
This establishes the desired coordinate system, which is designated the ele-
ment coordinate system. The origin of this system is temporarily taken as the
average point. The nine components of the above three unit vectors comprise
the elements of the transformation matrix which is used to transform points or
vectors Letween the reference cocrdinate system and the element coordinate
system. In particular, the corner points are transformed immediately into the
element coordinate system so that certain geometric properties of the quadri-

lateral may be computed more easily.

In computing the velocities induced by a plane quadrilateral source
element at points in space, it turned out to be very time consuming to use the
exact velocity formulas at all polnts. For this reason, approximate formulas
derived from a multipole expansion are employed for points that are gufficient-
ly far from the element for the approximation to be acceptably precise. These
approximate formulas require the area of the guadrilateral, the coordinates of
the centroid of the ares, the second moments of the area, and the length of the
maximun diagonal of the quadrilateral. Once computed the centroid replaces

the average point as the origin of the element coordinate system.
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Next it is necessary to select a particular point on each guadrilateral
element where the normal velocity will be required to vanish and where the
flow velocities will te computed., This point is taken as the point where the
Quadrilateral induces no velocity in its own plane. It is designated the

null point.

At this stage certain of the quantities described abcve are output from
the machine and the calculation terminated. The purpose is to provide a
means of finding and eliminating errors in the input data before the lengthy
flow calculations are performed, Such errors arise fairly often because of
the large amount of input that 1s required. An examination of the variation
of the above geometrical quantities from element to element will often reveal

these errors.

Now the velocities induced by th~ quadrilateral source elements at each
other's null polnts must be computed. This is done under the assumption that
the source density on each element is of unit strength. In computing the
veloeity components induced at a particular null point by a particular element
one of three sets of formulas are used depending on the distance between the
null point and the centroid of the element. If the ratlo of this distance to
the maximum diagonal of the element 1s less than a certain prescribed value,
the exact velocity formules are used. If the ratlo is larger than this value,
the velocity is calculated by formulas sppropriate for either a point source
plus a point quadrupole or a point source alone. (The dipole moment is zero
since the multipole expansion is based on the centroid.) The choice between
these lagt two possibilities 1s made by comparing the above ratio tc a second
prescribed value. The final result of this calculation is the complete set of
the velocities induced at each null point by every guadrilateral element, all
of which are assumed to have a unit source density. This array mey be thought
of as & ''‘matrix of influence coefficlents’', the elements of which are
vectors in three-dimensional space. A row of this matrix consists of the
velocities induced st a single null point by every quadrilateral element, while
a column consists of the velocitles induced by a single element at every null
point. To minimize computing time the various quantities associated with each
element that are required to compute the induced velocities are stored simul-

taneously in the high speed memory of the computing machine and the ''matrix
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of influence coefficients'' is calculated row by row. Twenty-eight quantities
for each element are required. The result is that the maximum number of ele-

ments that may be used to define the body surface is limited by the high speed
storage capacity of the machine, which is taxed at this stage of the procedure.

The above paragraph applies to non-symmetric bodies. For boidies having
one or more symmetry planes, the procedure is identical to the above except
that after the velocity components induced by an element at a particular null
point have been calculated, the velocity components induced at the same null
point by the image or images of the element are also computed by the same
method. Thus, while in the non-symmetric case there is a single set of induced
velocity components representing the effect of an element at & null point,
there are, respectively, two, four, or eight sets of induced velocity compo-
nents in cases of one, two, or three planes of symmetry. These are combined
in the ways appropriate for use with onset flows in the three coordinate
directions. The result is two '*matrices of influence coefficients'! in cases
with one symmetry plane and three such matrlces in casez with two or three

symmetry planes,

To obtsin a set of linear algebralc equations for the unknown values of
the source density on the elements, the first step is to calculate the normal
velocities 1nduced at each null point by the various elements, each of which
1s still assumed to have a unit source density. This is done by taking the
dot product of the induced velocities described above with the normesl vectors
of the elements at whose null points these velocities were evaluated. The
result is a scalar matrix whose elements are the normal velocities induced at
the various mull points by the various quadrilateral elements with unit source
density. This matrix is the coefficlent matrix of the required set of linear
equations, since multiplying this by the column matrix of the unknown values
of the source density on each elemeni evidently glves a column matrix whose
elements are the true normal velocities induced at the null points by the
entire approximate body surface, A coefficlent matrix is formed from each of
the ''matrices of influence coefficients'' descrived above, so there are two
such matrices for cases of one plane of symmetry and three such matrices in
cases of two or three planes of symmetry. The right hand sides of the linear

equations are the negatives of the normal components of the onset flow at the
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various null points. The method has been constructed so that it will handle
three onset flows at one time. Normally, these are unit uniform streams,
each one of which is along one of the axes of the reference coordinate system,
although they may be any three onset flows for non-symmetric bodies. ZXach
onset flow is used to form a right hand side for use with the appropriate
coefficient matrix. In non-symmetric cases the same matrix is used for all
onset flows, while in cases of one plane of symmetry one matrix is used for
two onset flows (the two in the symmetry plane) and the other matrix is used
for the third onset flow. In cases of two or three planes of symmetry a
distinct coefficlent matrix is used for each onset flow. In any case, three
sets of simultaneous linear equations are solved for three complete sets of
values of the surface source density. The solutions are effected by a Seidel

iterative procedure.

Once the values of the surface scurce density have been found, the velocity
components at each null point are calculated by multiplying the above described
induced velocity components (which were calculated assuming a unit source
density) by the proper calculated values of the source density and summing all
such products that are appropriate for the null point in question. {(This
summation 1s thus over all elements of a row of the ''matrix of influence co-
efficients'?.) To the results of this summation must be added the proper com-
ponents of the onset flow. The resultant veloclties and pressures are easily
computed from the velocity components. The above guantities and certain others
of interest are the final result of the method and comprise the second output
of the machine program. There 1s s complete set of results for each of the
three onset flows. If the flow at points off the body surface is desired,
these polnts must be specified, end then velocities and pressures are computed
there also. Again there are three sets of results. If results for flow in-
clinations other than the basic three along the coordinate axes are desired,
they can be obtained by a simple combination of these results.

T.22 Discussion of Some Peossible Alternatives.
The basic decision underlying this method of solution is described above
in Section 7.l together with some alternstive approaches. In implementing this

method and constructing e practical calculational procedure, several decisions

were made that are not basic to the method. In this section the reasons for
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some of these choices are given and alternatives discussed.

It was decided to take the plane source elements that approximate the
body surface as qusdrilaterals rather than some other plane figures and to
organize these elements by the use of a coordinate system in the body surface,
i.e., the *1rows'! and !'columns'' described above, despite certain unde-
sirable features of this approach. An objection to the use of guadrilaterals
is that adjacent elements do not in general have colncident edges. This is,
however, an extremely small effect for normal body shapes. For example,
quadrilateral elements can be distributed so that their edges are coincident
on any axisymmetric body. The errors from this source are apparently small
compared to the errors that result from the basic approximation of the body
by plane elements. The organization of the quadrilateral elements by means
of a coordinate system in the body surface has the undesirable feature that
normally such a coordinate system has a concentration point where one set of
coordinate lines comes together. (See fipure 4) When thls occurs it causes
several difficulties related to the element distributicn in the neighborhood
and in the determination of null points. HMoreover, the results of the calcu-
lations are generally less accurate near such a point. In practice, con-~
centration points can be avoided for many common types of bodies, e.g., ship
hulls, wings, ducts, and inlets. However, the uge ot ''rows'' and ''columns''
so greatly simplifies the input that thelr use is judged to be Justified in
any case. In fact, one of the reasons for choosing quadrilateral elements
was that they are most compatible with this organization scheme. This scheme
simplifies the input in two ways. First, it permits a given input point to
be used in the construction of several elements. Thus in normal cases the
required number of input points is only slightly larger than the nuwocr of
elements. This contrasts with a method where all corner points for each ele-
ment are input for which the required number of input points is four times
the number of elements in the case of guadrilaterals. Reductlon of the re-
guired input as far as possible is Important not only because the possibilities
of error are reduced but also because a large amount of required input leads
to a reluctance to use the method. Secondly, the organization scheme is easy
to visualize and simplifies the input conceptually. It attains 1lts greatest
advantage over competing schemes in the frequently'occurring case when it is

natural to have every point on a ''column'' at the same value of one of the
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coordinates, e.g., providing input at constant !'‘chordwise'! or '‘spanwise'!
s§§tions. This property is not a trivial consideration. It has been found

in practice that conceptual difficulties can greatly increase the difficulty
of intelligently distributing the input points. Similarly, interpretation

of the output 1is simplified by making the order of points on the output sheet
(which is the same order as the order of the input) correspond to physical
points in a natural sequence. Triangular elements, whose use is suggested in
reference 4, were the only others seriously considered. They have the ad-
vantages that the edges of adjacent elements are coincident and that concen-
tration points might be avoided, but there is no apparent way of organizing
them to simultaneously obtain a minimum of required input points plus con-
ceptual simplicity. It would be possible to obtain triangular elements from
the present organization scheme by dividing the four points associated to form
an element intc two groups of three, i.e., a sort of ''cutting each quadri-
lateral in half'' before the input points are projected into a common plane.
However, this scheme eliminates many of the advantages of the triangular re-
presentation, and introduces certain calculation errors due to the fact that
all clements are not constructed in a completely equivalent manner. Triangular
elements also have the disadvantage compared to gquadrilaterals that the choice
of the point on the element where velocities are to be calculated is more

critical (see below).

The location of the point on the quadrilateral element where velocities
are to be evaluated is a matter of some importance in that it may have an
appreciable effect on the accuracy of the calculation. Unfortunately, there
is no obvious choice for this point, and indeed there is no way to decide that
a particular choice is better than even one other, much less all others. It
seemns evident that on a rectangular element the proper point is the center,
Therefore, the point selected must be defined in such a way that it reduces
to the center when the element becomes rectangular. This restriction, however,
stil]l allows many possibilities. On most bodles of interest the quadrilateral
elements are nearly rectangular over most of the body surface, and thus the
finsl answers do not depend greatly on the point used. However, there are
often certain regions of the surface where the elements are not approximately
rectangular,and the calculated flow velocities may change appreciably with the
choice of this point. OSuch & region occurs, for example, near the concentration

31




points discussed above, where the elements usually became triangular (see
figure 3). It is felt that this fact is part of the reason why the calcula-
tions are normally found to be least accurate near concentration points. The
three polnts considered as possibilitles were the null point, the centroid,
and the average point. The null point was selected for no better reason than
a personal opinion that the choice should tend to minimize errorzs. A small
number of ceses that were run with either the centroid or the average point
replacing the null point dld not indicate that any one of the three is signifi-
cantly better than the others. It seems evident thet this gquestion is in need
of further study, but 1t was decided to postpone this for a while and to use
the null point in the meantime. The null point is much more difficult to
calculate than either the centroid or the average point and thus a change to
either of these would represent a simplification of the method.

There are two further difficulties connected with the use of the null
point that were dlscovered after the machine progrem hasd been written, RNamely,
there are two situations were the iterative procedure used to determine the
null point does not converge to the correct point. The first occurs when an
element 18 trianguler or nearly triangular (as, for example, may occur near
a concentratiorn point). If an element has two long sildes and two short ones
and is nearly triangular in shape in the sense that either the two long sides
are adjacent or one short side is less than about one-fifih the other short
side, and if the base to altitude ratic of the triangular shape is less than
about one-thirtieth, then the calculated null point lies outside the rlement.
In this case the centrold iz used in place of the null polnt for that element,
and the fact is noted on the first output. The second situation occurs when
an eslement has one diagonal much shorter than the other and much shorter then
all four sides, e.g., a long, thin, parallelogram. If the ratio of diagonals
is less than about cne-thirtieth, the ilterative procedure does not converge
because the induced velocity is very sensitive to position in the vicinity of
the null point, 1In this case the approximate null point obtailned in the
thirtieth iteration is used and this fact is noted on the first output.
(These considerations are discussed further in Section 9.3, which also in-
cludes sketches of the unfavorable elements.,) Neither of these cases is of
much practical significance. A point distribution that leads to elements of

such extreme shape is probebly not a very good one, and the appearance of
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either of these situations usually implies that the input points should be re-
distributed. In any case the errors arising from the use of these alternatives
in place of the null point are probably less than those due to the basic distri-

bution of elements.

In many cases the most time consuming portion of the calculation is the
compution of the velocities induced by the quadrilateral elements at each
othert's null points — the !''matrix of influence coefficients'!. Hence the
dominant consideration in arranging the calculation of this matrix was the
minimization of computation time. As a result, the maximum permissible
number of elements that may bte used to approximate a body surface is somewhat
lower than it would otherwise have been. The most important time reduction
came from the replacement of the exact induced velocity formulas by formulas
derived from a multipole expansion at distances where the latter are suffi-
cienlly accurate. The accuracy of this approximation is described in another
gsection. With the accuracy criterion adopted, the use of the multipole ex-
pansion reduces the time of computation of the ''matrix of influence coeffi-
cients'' by a factor of about five. The accuracy criterion is arbitrary and
can be adjusted so that the exnct formulas are used exclusively if desired
with a corresponding large increase in computation time. A further.reduction
in computation time is obtained by computing the induced velocities, except
thoge due to the simple source, in the element coordinate system, with the
result that the transformation matrix for the elements must be used to trans-
form velocities and points between the element and reference coordinate systems.
Altogether, twenty-eight geometric quantities for each element are used to
compute induced velocities, while about half this number would suffice if
computation time were not a factor. These mubers are computed only once and
saved to avold unnecessary calculation. If the !'Mmatrix of influence coeffi-
cients'' were computed column by column, the velocities induced by & particu-
lar element at all null points would be computed consecutively. Thus at any
glven time only the twenty-elght quantities for a single element would have to
be avallable in the high speed storage of the machine. Since the methods used
to solve the linear equations for the source density use the coefficient matri
row by row, this procedure would require transposing the matrix. A large co-
efficient matrix exceeds the high speed storage capacity of the machine by a
factor of about twenty-five, and thus transposing the matrix is rather time
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consuming. Therefore, the ''matrix of influence coefficients'' is computed

row by row, and so the twenty-elght quantities for all elements must be
simultaneously available in the high specd memory. The high speed storage
capacity of the machine may thus limit the maximum number of elements that may
be used to define a body surface, This problem was not significant on the

IBM 704 for which this method was originally programmed, because the capacity
of the low speed tape storage was the limiting factor in all cases with
symmetry and permitted only a 25 percent increase in elements over the high
speed storage 1limit in nonsymmetric cases. Moreover total computing times for
large cases were typically fifteen hours, so an increase in the number of
elements d1d not seem Gesirable, However, the IBM 7090, to which the program
has been converted, has available high density tape units that greatly increase
the available low speed storage. The result is that high speed storage capaci-
ty is the limiting factor on this machine for both symmetric and nonsymmetric
bodies and that the limits imposed by low speed storage capacity would permit

a conslderable increase in the maximum number of elements. Typical total
computing times for large cases on the IBM 7090 are about four hours, so that

an increase in the number of elements might be decirable.

In taking into account any planes of symmetry that a body might possess,
it is assumed that the elements adjacent to symmetry planes have edges lyling
in these planes, Thus flow velocities, which are evaluated at null points,
are not computed at points of the body surface that lie in the symmetry planes.
This seemingly trivial point is often irksome, because velocitics at points
in a symmetry plane are frequently desired, and they must be obtained by extra-

polation.

The simultaneous linear equations for the values of the surface source
density on the various elements sre solved by one of two alternative forms of
e Seldel iterative proceduvre., The first of these obtains in each iteration
a complete set of values of the source density from the values in the previous
iteration, while the second always uses the most recently calculated values of
the source density to obtaln improved values. The second has proven at least
as fast as the first in all cases and is often much faster. It is, therefore,
employed unless the other is specifically called for. The coefficient matrix
of induced normal velocities is well suited for this relatively simple
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iterative scheme, because the diagonal elements are much larger than the off-
diagonal elements., If a more sophisticated iteration scheme were to be con-
sidered, it would require a very careful initial investigation to insure that
the solution time would not be increased. In many cases the time required to
solve the linear equations is smaller than that required to compunte the set

of induced velocitles, and a reduction of the former would not significantly
reduce the total computation time, There are certain kinds of body shapes for
which the time required for solution of the linear equations is a large frac-
tion of the total computation time, and a reduction would be quite beneficial.
This matter has been investigated, and one very promising means of accelerating
the convergence of the iterative procedure has been found. However, it was

decided not to incorporate the technique into the method at this time.

The method has been constructed so that it computes flow velocities for
three distinct onset flows. Normally, it 1s desirable to utilize this feature
since the elimination of one or two onset flows affects only the time re=-
quired to solve the linear equations, and thus often does not significantly
decrease the total computation time. Any onset flow may be effectively elimi-
nated by specifying a zero vector for that flow, in which case the true zero
values of the source density for that flow are simply abtained in the first
iteration. This should be done with reluctance, however, since if additional -

onset flows are required later, the entire computation must be repeated.
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8.0 THE VELOCITIES INDUCED BY A PLANE SOURCE QUADRILATERAL

8.1 Exact Expressions for the Induced Velocities

In this section the exact formulas for the velocity components induced
at points in space by a plane quadrilateral source element with a unit value
of source density are derived. These formulas are the basis of the present
method of flow calculation. 'The derivation is such that the extensior to the

case of any plane polygonal source element is obvious.

B8.11 Formulation of the Problem and Construction of the Fundamental Potential
Function for a Side of the Quadrilateral.
Consider a plane quadrilateral source element lying in the xy-plane as

shown in figure 5, (Taking the clement Lo lie in the xy-plane is equivalent

to working in the element coordinate system.) The value of the surface gource

4
p

Eam ) JE3M ) g%
222

Enn

(54 M)

Figure 5. - A plane quadrilateral source element.

density o on this element is set equal to unity. The xy or ¢&n coordinates
of the four corner points defining the quadrllateral are (gl, nl), (52, ng),
(55, nﬁ) and (gh’ nh). It is desired to determine the velocity components
induced by thils source element ut a general point P in space with coordinates

X, ¥, 2. The potential at the point P is
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where r 18 the distance from P to a point on the quadrilateral with
coordinates (&, M, 0), and the range of integration is the area A of the
quadrilateral. The velocity components at P are given by

V == (x ~ &) dt dn (lé)
X %2 f? .

o _g§ - #(y - Tlr)}di dn (17)
A

<3
|

v

e e @)
2 r

It is convenient to divide the effect of the entire quadrilateral into a sum
of functions, each of which depends only on one side of the quadrilateral.
This division also allows the results to be generalized to the case of any
polygonal source element. To accomplish this one of the corner points is
taken as the initial corner point and the others are numbered in the order they
are encountered in traversing the perimeter of the element with the exterior
of the area on the left; see figure 5. For each side of the element a right
and a left can then be defined with respect to the direction of traversal of
the glde from a lower numbered end point to & higher numbered endpoint. The
area of the element is on the right. Now a fundamental potential function for
each side is constructed as the sum of the potentials of two semi-infinite
source strips whose boundaries consist of the side of the quadrilateral and
semi-infinite lines parallel to one of the coordinate axes. The strip on the
right of the side has a value of source density o = + 1/2, while the strip
on the left has ¢ = — 1/2, The semi-infinite boundaries of the strips may be
rarallel to either coordinute axis, but they must =ll be parallel to the same
one. These strips, which are now taken parallel to the y-axis, are shown in
figure 6 for the four sides of the quadrilateral sketched in figure 5, It
can be seen that 1f the sides shown in figure 6 are put together to form the
quadrilateral of figure 5, the source densities on the strips cancel outside
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Figure 6. - Fundamental potentials for sides of a quadrilateral.

the quadrilateral and add inside to give a unit value. ‘hus the potential

and velocity due to the quadrilateral arc sums of the potentials and veloci-
ties due to the four palrs of semi-infinite source strips shown in figure 6.
It can readily be verified that this statement is true regardless of the re-
lative positions of the corner points and moreover that it is true for poly-

gons of any number of sides.

Hn 1

X%

(@) (4)

Figure 7. - Two possibilities for the fundamental potential of a side.
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The problem of finding the velocities induced by the quadrilateral is
thus reduced to the problem of finding the velocities induced by the pair of
For definiteness the side
between (gl, "1) and (52, n,) is selected. A fundamental potential f-.ic-

semi-infinite strips associated with one side.

tion may be constructed using semi-infinite strips that are parallel to
either coordinate axis, and the two possibllities are shown in figure T.

8.12 Derivation of the Induced Velocity Components Parallel to the Plane
of the Quadrilatersl.
The induced veloecity component Vx is most conveniently obtained using

for a fundamental potential function the potential of a pair of strips parallel
to the x-axis as shown in figure Tb, while the component Vy is obtained more
conveniently using a fundamental potential function due to strips parallel to
will be calculated

the y-axis as shown in figure Ta., The latter compeonent

first.
The velocity Vy due to the pair of strips shown in figure 7a is obtained

as an integral of thé form (17) carried out over the total area of the strips

and using the proper values of o. Specifically,
b2 Mp @
{+ —
V=3 fdﬁ{[ - f} s =12 2 5/2 (19)
12 Y J Bx—"é)+(y—n)+2_]
BT Mg

where is being used to denote the 1 coordinate of a point on the line

If

1

12
between (gl, nl) and (52, ng). This is the correct form if g, > &,.
gl > &, the signs of the integrals with respect tc 1 are reversed, and the

cign of the integral with respect to & 1s also effectively reversed. The

final result is velid for either sign of §2 - §l, as may be verified. The
n in (19) is a standard form.

integral with respect to When the integration

is performed, the contributions of the infinite limits cancel, while the contri-

butions of the finite limits add. The result is

) ag Cra
v = f — Y = f (20)
Y12 £ Vix - )%+ (v - n12)2+ %" A v
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vhere r is the distance from the point P to a point on the line between
(gl, ql) and (ga, 1\2). The integration variable in (20) may be changed to
the arc length s along the line between (gl, nl) and (§2, n,) by means
of the substitution

g _ 274 ! (21)
ds ) a
V(8 = 8% (ny = n)° 12
27 % -]
where d,, 1s the length of the side. Then {20) becomes
E oo 12

v, _foTb g (22)
Y12 = 74 T

12 5

The integral in (22) is seen to be the potential at P due to a finite line
source of unit linear source density coincident with the side of the quedri-
lateral. The integration is most conveniently performed by working in the

plane containing the point P and the line between (g, n) and (€55 ’q2)

as shown in figure 8. In this figure, ry and r, denote the distance from

e poin o € polnts y N, ) an s Mo/, respectlvely, while s
th int P to th int (gl l) a (52 2) tivel hil 1

and s are the components of there distances along the side of the quadri-

2
lateral. With this notation (22) becomes

G A0 s /N

d —— -

12

S

Figure 8. - The potential due to a finite line source.
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_ 12
v -2 h ds
Y d J
12 25 85— 28,8 + 8- + £
1 1
-8 Tot =8y by — gy Yo, — 8
= =3 log ———= = == log t=——3 (23)
12 1”5 12 1751
£~ &, r,[1 — cos 52
= 4 1og r - \T = cos B
12 1 1

This result is indeterminate when Bl = 82 =0, 1i.e., on the extension of
the side of the quadrilateral. The difficulty can be removed in the following

way., From the law of cosines

2 2 .2
cos B. = Ty " Ty vdg,
1 2rl dl2
(24)
L2 e .2
. Ty mrmymdy,
o By, T 2, a
2 712
S0,
2 2 .2
r2 1 — cos BE ~ 212d12 - rl + r, + dip
r., 1l—cos B, _ .2 e _ .2
i 1 2rld12 11 + r2 dl2
2 2
i (r2+ dl2) -r (25)

(r2+ d - rl)(r2+ rl_'dlz)

The argument of the logarithm in {23) can accordingly be written in terms of

the distances ryy T and dl?'
of the original coordinate system. Thus finally the y-component of velocity

These distances can be expressed in terms
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at the point P with coordinates x, y, z due to the fundamental potential
function of the side between (gl, nl) and (ge, N,) cen be written

£, — ¢ r. +r, ~d
v 1 = 2 log 1 2 12 ) (26)
12 12 rl + r2 + dle

<4
i}

where

H
n

1 -\/(x - §1)2 sy —n) s 2

s = V=) 4 (y =02 4 22 (27)

H
"

d o= -\/(gg - 51)2 + (ny - nl)Q‘

The x component of velocity is obtained Ly integrating over strips
whose semi-infinite sides are parallel to the x-axis, with order of integration
reversed. The procedure is the same as that used above for the y-component.

The result is

[} 2
v, o= 2L gy A2 12 (28)

where the quantities Ty Tos and d are again given by (27).

12
8.13 Derivation of the Induced Velocity Component Normal to the Plane

of the Quadrilateral.
To obtain the component Vz of the velocity at the point P, the funda-

mental potential function for the side of the quadrilateral between (gl, nl)
and (52, ne) is constructed using semi-infinite strips parallel to the y-axis
as was done for Vy. The reglon of integration is thus the one shown in

figure 7a and the velocity component is given by an integral of the form (18)
with the same integration 1limits as tor equation (19). Specifically,
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f - gl ) oy b

The integral with respect to n 1is a standard form. Again the contributions
of the infinite limits cancel, while the contributions of the finite limits

add. The result is

v =
212

m|-z

(29)

(y - nqp) @8

f [x—§)+22:|‘\/7x—-§)+(x—’qlz)g-&-zg

There 1s no cbvious physical interpretation of equation (30) as there was for

the analogous equation (20), and so it will be integrated directly. Recall

that 1,, denotes a variable point on the line between (t,, nl) and (ge, T‘g)‘
e

Thus M, can be expressed as a function of & 1in the form

Mo =Mt * Py (31)
where N =1
2 1
- = 2
M2 E, — &) (32)
is the slope of the side of the guadrilateral and
s, — E.7
b - T (53)
2 1
Also define the quantities
dp =¥ T Pyp TmpX (34)
u=x —-§ (35)

In terms of these varisbles equation (30) becomes
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x-to {m,u + q..)du
Vo=, 128 * Yo . (36)

A
12 2 2 2 2 2
x-t, (v°+ 2°) '\/Vu + (mlgu + qle) +z

By the methods of Hardy (reference 5)

—

2 2

4+

)
12u + qu’ A

1 -1( 2 q12‘”" z [12 2‘119_\

= — = tan
i \z \/qieE”lez ?qleu:] [:qu+ m1°q12“] [+ m2 \22+ ‘112]“‘12

f (mlgu + q12) du

(u2+ 22) VP + (m

(37)

After some algebraic menipulation, the cancellation of common terme in the
mmerator and denominator, and the use of equations (31) end (34), the above

result can be written

2
f (mypu + 4yp) du 1 ta“—l( e
eﬂe_\/e 2 2 z \ [2 2 = 2

(W 27) {Ju+ (mleu + qlE) +z z \Ju+ z +[:q12+ m) Hu

(38)
/ 2
1Q(u +27)= (y =
= — = 1tg

2 1
\/u + (y - “12 2

Using the integration limits of equation (36) with equation (38) gives as the
z-component of veloclty at the point P with coordinates x, y, z due to
the fundsmental potential function of the side between (gl, ql) and (52, ng)

m,. e, —h m, &, — h
p, e BELI ) | B (39)
12 S 71 2
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vhere

2
L =2 ¢+ (x - &

(1]
1]

) 22 4 (x =g,y (£0)

m®
1]

=3
|

by =y = 1) = 8y) o= (v = nx = 8y) (41)

and where m,, 1s given by (32) and r, smd r, by (27).

8.14 Summary of the Exact Induced Veloecity Formules for a Quadrilateral

Source Element.
The velocity components induced by any polygonal source element of unit
source density are obtained by adding terms of the form derived in the pre-

vious section. For each velocity component there is one term of the gbove
form for ecach side of the polygon. The terms for the other sides are cbtained
from those for the side between (gl, ql) and (gg, ng) by a cyclic per-
mutation of the corner points. Since quadrilsteral source elements are the
ones of interest for this method, the induced velocity formulas for this case

are written down explicitly here.

A quadrilateral source element of unit density lying in the xy=-plane with
corner points (gl, nl), (gz, M), (§5, n.), and (gh’ qu) as shown in figure
< /
5 induces the following velocity components at a point P with coordinates

X, ¥, 2!
My =1 rit d 12— N, r,+ rz— 4 3
V% < 3 e ( l+ + d12 YR e - d2
% 12 1t Tt 4 0% Ipt Tt dos
(42)
A ( T3t 1~ 9, ‘)+ o 105;(%* T dul)
dih r3+ r), + d}h dhl )+ rl+ dhl
v - E,7 & log <r1+ r,=d,, . €y = &5 log (r2+ ré—-d23\
Yy d12 T+ rot d12 (1:,3 T+ r5+ d23}
(43)
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where

where

and

m,.e. — h m, ., —h
- tan-l ( 1271 ) - tan-l ( 12 2 2)
2 1‘1 A I'2
m..e. —h m,..e, —h
s tap-l | D23%2 ! ( 25° ~ %
z T, Z r5
-1 (1113)."83 -~ h ) -1 (m he)-& -~ hll-)
+ tan - tan -2~———————
A r3 A rh
m,_e, - h \ m.e —-h
+ tap~l ( 41y u) — tan~L ( 41"k 1)
z 1) 2 rl
2 2
dln = \/7(52 - gl) + ("12 - Tll)
2 2
dyy = V05, =807+ (ng = n)
f ) 2‘
‘3--5)4 = V(ﬁh - 55) + (Th,r 715)
/ 2 2!
Ny — ﬂl n3 ~ s
e Ry Moz TE, -
- 2 1 o °
m}b,"gu-gz) mhl-gl—'gh
P 2 i
= _\/(x__gk)2+ (Y’ﬂk)+ze » k=1, 2, 5Ju
=22.+(x"‘§k/2 sy k=1, 2, 5:’*
=(y—nk)(x—§k) y k=1, 2,3, b

These are the basic formulas of the method.

46

(k)

(45)

(46)

(u7)

(18)

(49)



In actually evaluating these expressions Vx and Vy cause no trouble,
They become infinite on the edges of the quadrilateral, but in practice they
are never evaluated there. The component Vz requires special handling in
certain cases. As z —» O, Vz—-’ 0 if the point P 1is approaching a point
in the plane outside the boundaries of the quadrilateral. If P dpproaches
a point within the quadrilateral V, — 2m (sgn z) as =z —» 0. These
facts may be verified from equation (44). 1In the course of this method of
flow calculation it is required to evaluate VZ at points in the plane of
the quadrileteral elements. In particular, the null point of each element
is in the plane of that element and within the quadrilateral. At such a point
VZ should equal + 27, since the case of interest is that for which z —+C
through positive values, rather than through negative values, i.,e., the field
point approaches the bocdy surface from the exterior flow field rather than
from the interior of the body. It may alsoc be required to evaluate induced
velocity components at points in the plane of a quadrilateral outside the
boundaries of the quadrilateral, for example, at the null points of other
elements if the body surface has a flat region. Points in the plane of a
quadrilateral element should have =z = 0, but, because of round-off error, they
may have small values of 2z with either sign. Thus, for points inside the
quadrilateral, equation (44) may give 27 with either sign. To avoid this
error, the absolute value of z 1is tested before velocities are computed,
and if it is less than some small prescribed number, which is nevertheless
large compared to the expected round-off error, it is set equal to plus zerc
and each inverse tangent of equation (4k4) is set equal to m/2 with the sign
of the numerator of its argument. This gives VZ = 0 for points outside
the gquadrilateral and VZ = +21 for points inside the quadrilateral. Another
sltuation that may cause trouble in the computing machine is when the slope
of a side of the quadrilateral is infinite, i.e,, when a side is parallel to
the y-axis. It is evident from equation (L44) that in this case the two in-
verse tangents corresponding to that side cancel each other, To avoid diffi-
culties =ach of the quantities (gg - gl), (g5 — £5), (gu - 53), and (gl - gh)
are tested to determine whether they are zero, and if any one of them is zero,
the two inverse tangents corresponding to that side are set equal to zero,
Finally, it should be mentioned that the inverse tangents in equation (k4) are
evaluated in the normal ramge - m/2 +to + m/2. It is tempting to combine
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some of the inverse tangents in this eguation using the tangent addition law,
but if this is done, great care must be exercised with regard to the range
in which the resulting inverse tangents should be evaluated.

8.15 An Example of the Velocity Induced by a Quadrilateral Element.

In addition to their basic use, formulas (42), (43), end (44) are of
some interest by themselves, These formulas were used to compute induced
veloclty components for a variety of quadrilateral shapes. The results for
two of the shapes, the esquare and the isosceles right triangle are used in &

subsequent section to evaluate the accuracy of the multipocle expansion. 1In

this section a single example is given. Figure 9 shows curves of constant
velocity magnitude due to a unit source density on the quadrilateral shown

in the figure, Figure 9a shows the velocity in the plane of the element, z = O,
while [igure 9b shows the velocity in a plane ebove the element, z = 1. In
figure 9a the velocity magnitude is computed from x and y components only. The
velocity normal to the plane of the elements, which is non-zero inside the
element, is neglectsd. In this figure it can be seen that there is a single
point inside the quadrilateral where the velocity is zero. It is the null

point discussed elsewhere, In the 2z = 1 plane (figure 9b), there is no point
where the velocity is zero. Instead, there is a point of maximum velocilty.

As car be seen in the figure, the maximum veloclty magnlitude in the plane 2z =1
is 2.1k,

8.2 Approximation of the Induced Velocities by a Multipole
Expansion

The evaluation of the induced veloclty components by the exact formulas,
equations (42) through (49), is quite time-consuming. To reduce computing time
approximate expressions are used instead of these formulas wherever possible.
In this section approximste expressions are derived by means of a multipole

expansion.
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8.21 Derivation of Approximate Formulss for the Induced Velocity Components.

Consider again the potentiel at a point P with coordinates x, y, =z
due to a quﬁdrilateral element of unit source density in the xy-plane. The
origin of the coordinate system is taken as a point inside the quadrilateral
as shown in figure 10, (This is actuelly not necessary for the validity of
the expansion, but it is the only case of interest in the present application.)

r
p
(Y. 3
&Mz
gzt
(&)
X.§

Figure 10. - The multipole expansion.

The potential at P 1s, as hefore

A IRV s 2°

(x = )% (y = )% 2

Now in the multipole expansion the integranrd in equation (50), i.e., l/r, is
expanded in & power series in ¢ and n about the origin. When that is done,
each term of the series contains a certain derivative of 1/r evaluated at

£ =1 =0 multiplied by certain powers of ¢ and 1. The first of these
depends only on x, ¥y, z and may thus be taken out of the integral. The
result is that the potential may be expressed as a series of terms each of
which is a product of a function of x, ¥y, z, which is independent of the

shepe of the quadrilateral, and an integral of certain powers of ¢ and 71,
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which depends only on the shape of the quadrilateral and 1s independent of
the point where the potential is being evaluated. First define

Vx2 + ¥+ 22 (51)

w o= -%— (52)
o

a1
n

Then through terms of second order the expansion of equation (50) is

1
P =Aw— (wax + M&wy) + 5 (Ixxwxx + QIwaxy + Iyywyy) + oua (53)
where X
A=£}5dgdq (5%)
A
Mx=j§l§§dedn M, =§z§9ndgdn (55)
A A
I = 2ae a I = (Denata I —fgedd
- frma e Fraen oe Flae
A A A (56)

and where subscripts x and y used on w denote partial derivatives with
respect to those variables. The designation of multipole expansion arises from
the fact that the various terms in the expansion (53) can be interpreted as the
potentlals of point singularities of various orders, each of which is construc-
ted by the confTuence of two singulaerities of the next lowest order. For
example, the first term of equation (53) is the potential of a point source of
strength A located at the origin. The second term 1s the sum of the poten-
tials of a dlpole of strength MX oriented along the x-axis and a dipole of
strength My oriented along the y-axis, both of which are located at the
origin. 'The third term is the sum of the potentials of the three independent
quadrupoles at the origin with strengths proportiomnal to Ixx’ Ixy’ and Iyy'
Such & multipole expansion can be shown tc converge for all poinis sutfficiently
far from the origin. In the present application convergence is not a problem.
The multipole expansion is used here only at points sufficiently far from the

element so that the expansion not only converges but converges rapidly enough
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80 that terms of higher order than second may be neglected. A more general
discussion of the multipole expansion can be found in &ny electrodynamics

text, for example reference 6,

Equations (54), (55), and (56) show the gecmetrical significance of the
strengths of the various singularities. The source strength A 1s the area
of the quadrilateral, the dipole strengths, M_ and M& are the first

X
moments of the area about the origin, and the quadrupole strengths, Ixx’ Ixy’
and Iyy are the second moments or ''moments of inertiz?!?! of the area about

the origin., In the present application the origin of the coordinate system

in which the quadrilateral lies in the xy-plane, i.,e., the element coordinate
system discussed elsewhere, 1s taken as the centroid of the area of the quadri-
lateral. With this choice of origin the first moments, Mk and M&, vanish,

and there are no dipole terms.

The approximate equations for the induced velocity components are obtained
by truncating equation (53) after the second order terms shown and differentia-
ting with Mx = M& = 0. The results are

. 9% 1 + & )
V= - Lwa 5 Totoot Ly 5 Loy } (57)
B 1 1 7

3 A+ =1 + I w._  +ZI w (%8)
V. - - = - 2 "Xx Xx X 2
¥ 5% -y Y xyxyy vy |
- PO L '
VZ = 5% = fwz + 3 Ixxwxxz+ Ixywxyz+ 5 Iyywyy;w (59)

In these equations A, Ixx’ Ixy’ and Iyy are the geometrical quantities dis-

cussed above, while the derivatlves of w are

V. m—x T

X (o]
W ==y Ty (60)

-z

W ==z 1T

2z [¢]
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Voo = X0p +106%) T
ey = 3y p r;7
Veyy = 3x g r;7
oo = 3y(3a 4 109°) 1] > (61)
g * 357
wxyz = =~ 15Xyz r;7
Vevn © 3z q r;T J
where r_ is given by (51) and where
p = y2 + 22 - lx?
q = x2 + 22 - kya (6e)

8.02 Comparison of the Exact and Approximate Induced Veloclity Formulsas.
The approximate induced velocity formulas, {57), (58) and (59) are used

in two forms. Iu one they are used exactly as they stand, which is equivalent

to replacing the quadrilateral element by a point source and a point quadrupole.
In the second, only the first term in each equation is retained, which is equi-
valent to replacing the quadrilateral by = point source alone. The velocity
components computed by these formulas are seriously in error if they are used
at points near the quadrilateral element, but they are quite accurate if the
polnt where the velocities are being evaluated is sufficliently far from the
quadrilateral. The criterion used to decide when the use of either fuim ui

the approximate éequations 1s valid for a particular point is the ratio of the
distance between that point and the centroid of the quadrilateral to some
charscteristic dimension of the quadrilateral. If this ratio is larger then

a certain prescribed number, thé quadrilateral is replaced by a source and
quadrupole, unless the ratio is also larger than a second preseribed number,

in which case the quadrilateral is replaced by &4 source alone. The character-
istic dimension of the quadrileteral used to form this ratlo is a gquantity
called the maximum diagonal of the quadrilateral. This quantity, which is
denoted by the symbol t, is defined following equation (84%) in Section 9.2.
For most quadrilateral elements it 1s Just what its name implies, i.e., the
maximum dimension of the quadrilateral. For certain kinds of elements this is
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not true. In particular for triangular elements, the maximum diagonal may
turn out to be the length of the second longest side. In any case of interest
it is, however, within u factor of two of the largest dimension.

Comparisons were made between velocities computed by the exact and
approximate formulas for a variety of quadrilateral zhapes having unit source
density to determine values of the ratlo of distance between field point and
centroid to maximum diagonal that insure sufficient accuracy in the induced
velocity computatlon. The results of some of these comparisons for two quadri-
lateral shapes are presented here., The first quadrilateral is a square whose
maximum diagonal is just the cormon length of 1ts dlagonals. TFigure 11 shows
velocity magnitudes computed by the exact formulas, together with the absolute
values of the errors in the velccity magnitudes computed by the source-guadru-
pole formulas and the source tormulas. For clarity of presentation, the two
error curves have been multiplied by ten. Each set of curves represents
velocities computed at points along a particular line. As shown in the
sketches on the figure, two such lines are in the plane of the square — one
intersecting the square at a corner (figufe 1la) and one at the midnoint of a
side (figure 11lb) —, while the other two lines are normal to the plane of the
square — one intersecting this plane at the centroid (figure 1lc) and one at
a corner (figure 11d). In all cases except that shown in figure lic the
veloclty magnitude computed by the exact formulas becomes infinite at a finite
distance from the centroid, i.e., on the edge of the quadrilateral, so that
the error curves in these cases have vertical asymptotes. The locations of
the asymptotes can be inferred from lhe sketches, The axis 1s a vertical
asymptote for the error curves of figure llc, since both sets of approximate
formulas give infinite values of the velocity magnitude at the centroid while
the exact formulas give a finite vzlue. The square is a particularly favorable
case for the multipole expansion and it can be seen that the approximate
formulas are guite accurate even very near the square, As a measure of the
absolute size of these velocities, it might be recall=d that the normal velocity
at points on the square is 21w, The second quadrilateral shape chosen is the
isosceles right triangle, The maximum diagonal 1s taken as the length of one
of the legs of the triangle. PFigure 12 shows velocity magnitudes computed by
the exact formulas, together with the absolute values of the errors in the

velocity magnitudes computed by the two sets of approximate formulas. Again,
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VELOCITY MAGNITUDE FROM EXACT FORMULA
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Figure 11. - Errors in the velocity magnitudes computed by the source and source-quadrupole formulas

for a square element. In parts (a) and (b) the velocities are evaluated at points along
lines in the plane of the element as shown in the sketches. [n parts {c) and (d) the
velocities are evaluated at points along lines perpendicular to the plane of the element.
The intersections cf these lines with the plane of the element are shown ir: the sketches,
In all cases the abscissa represents the distance between the centroid of the element and
the point where the velocity is evaluated.
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Figure 12. - Errors in the velocity magnitudes computed by the source and source quadrupole formulas
for an isosceles right triangle element. In parts (a) and (b) the velocities are evaluated at
points along lines in the plane of the element as shown in the sketches. In parts (¢) and
{d) the velocities are evaluated at points along lines perpendicular to the plane of the ele-
ment. The intersections of these lines with the plane of the element are shown in the
skeiches. In all cases the abscissa represents the distance between the centroid of the
element and the point where the velocity is evaluated,
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the error curves have been multiplied by ten. As was done for the square,
the points where the velocity is evaluated are distributed on four lines:
two in the plane of the triangle, one of which intersects the triangle at a
corner (figure 12a) and one at the midpoint of a side (figure 12b), and two
normal to the plane of the triangle, one of which intersects the triangle at
its centroid (figure 12c) and one at a corner (figure 12d4). As before, the
abscissa of these plots is the ratio of the distance of a point from the
centroid of the triangle to the maximum diagonal. The error curves for the
triangle have vertical asymptotes at various locations as was explained above
for the square. The iscosceles right triangle ig a relatively unfavorable
case for the multipole expansion, but still the approximate formulas give

accurate values of the velocity at somé distance from the centroid.

Comparisons similar to the above were made for a variety of guadrilateral
shapes and for the individual velocity components as well as the veloclty
magnitude. It was declded that the simple source formulas are sufficlently
accurate if the point where the velocity is being evaluated has a distance
from the centroid of the quadrilateral element of at least 4 times the length
of the maximun diagonal of the element. The source-quadrupole formulas are
sufficiently accurate 1f this distance 1s at least W/g1 = 2.45 times ‘the
length of the maximum diagonal. If these values are used, the maximum error
in any velocity component due %o using the approximate formulas 1s less than

0.001 in the worst case.
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9.0 THE EXPLICIT COMPUTATION METHOD

The manner in which this flow computation method has been implemented
for the computing machine is explained in detail in the various parts of
this section.

9.1 Input Scheme

9.11 General Input Procedure.

The way in which a body surface is input to the machine program is ex~
plained below together with certeln restrictions. The information will
probably be of interest only to those who intend to use the methed.

The input to this program consists of the coordinates of a number of
points. These polnts define the surface of the three-dimensional body around
which the flow is to be computed. Thelr coordinates are gilven in the reference
coordinate system. For the purpose of organizing these points for computation,
each point is assigned a palr of integers, m and n. These integers need not
be input, but their use must be understood to insure the correctness of the

input and to facilitate the interpretation of the output,.

For each point, n 1dentifies the ''columnt!' of points to which it be-
longs, while m identifies its position in the 'fcolumn'?, i.e., the ''row!'’.
The first point of a ''column'' always has m = 1. To insure that the program
will compute outward normal vectors, the following conditlion must be satisfied
by the input points. If an observer 1s located In the flow and is orlented so
that locally he sees points on the surface with m values increasing upward,
he must also see n values increasing toward the right., Examples of correct
and incorrect input are shown in figure 13. In this figure the flow field lies
sbove the paper, while the interlor of the body lies below the paper. Cccasion-
ally, it happens that despite all care e body is input incorrectly. If the
entire body is input incorrectly — not some sections correctly and some in-
correctly —, the difficulty can be remedied by changing the sign of one co-
ordinate of all the input pointe. This trick wlll give a correctly input body
of the proper shape at perhaps a pecullar location. Otherwise, the input will

have to be done cver.
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Quadrilateral elements are computed from
groups of four neighboring points. Two of
these points are on one ''‘column'' or

n=line and have consecutive values of m.

m: 3 m=3 The other two are on the next highest
m =2 ms2 n-line at the same values of m, respective=-
el e ly, as the first itwo. An element is identi-
netone2omes neaonez e fied by & pair of integers that are the sanme
= n=23
" as those used to identify the point with the
ne? 8 ne2 lowest values of m and n of the four
mes mes mzi | mz m=z m=3 used to form the element. The element
e m= identified by the integers m, n is formed
s Mo from the polnts corresponding to: m, n;
m+1l, n; myn+1l; and m+ 1, n + 1.
m:::ﬁi n=2 n=i m:l’?:l n-=2 n=3
TORRELT INCORRELT
INPUT INPUT The body surface is imagined divided

into sections, which may be actual physical
divisions or may be selected for convenilence.
A section is defined as consisting of a
certailn number of n-lines, say NT, and this
Figure 13, - Examples of correct and number, which mugt be at least two, must be
incorrect input. specified on the input at the beginning of
the section. Within each section the n-
lines are input in order of Increasing n.
On each n-line the points are input in order of increasing m. The pumber of
points on each n-line, say Mn, must be specified on the input at the beginning
of each n-=line. The first n-=line of the first section is n = 1. From then on
the n-lines are numbered consecutively through all sections, i.e., the number-
ing is not begun over at the beginning of each section. Elements will be
formed that are associated with points on every n-line except those that are
last in their respectlve sections. Points on these latter n-lines are used

only to form elements assoclated with points on the nexi lowest n=lines.

The loglic of the computation proceeds as follows. Suppose the program is
ready to compute the elements assoclated with the points on a particular n-

line, say the line n. To do this 1t uses the points on the line n and the
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line n + 1. Let the number of points on the line n bYe Mn and the number
on the line n + 1 be Mn+1' The difference A Mn = Mh+l -Mn is computed,

If this 1s non-negative, the program computes the Mn — 1 elements associated
with the points m =1, 2, ..., Mn— 1 on the line n. The last point on the
line is skipped, and the program proceeds to the next point which is the first
point on the line n + 1, and prepares to compute the elements associated with
the points on the latter line. If the difference A Mh is negative, the pro-
gram computes the M 1 - 1 elements asspociated with the points m =1, 2, ...,

n+
M ' 1 on the line n, The next IAMA + 1 polnts are skipped, and the

p::gram proceeds to the (1a Mnl + 2)th point after that, which is the first
point on the line n + 1, and prepares to compute the elements assoclated with
the points on the latter line. When the first point on the last n-line of

& section 1s reached, say the line NT’ the program skips all MN points on
that line and proceeds to the first point on the first n-line of ?he new sec-
tion. This process continues until elements have beeu computed for all sec-

tions.

To 1llustrate this procedure, consider the plan view of a body shown in

'Y\:Sf—— n=I3 N=|4 n=15
N i ]

:SECNONA:

m= 4 4 m=7 ! '? m=4
I |
|
|

figure 1k,

=y
nz=3 n-4 6 7 B
nzb

I
I
SECTION 3 1
[

3
——— -t w
o

T
i

SECTION ! { SECTION 2
i

Figure 14, - Plan view of the input points on a body divided into sections.
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This body has been divided into four sections. The first section contains
four n-lines, n =1, 2, 3, 4; the second, five n-lines, n =5, 6, 7, 8, 9;
the third three n-lines, n = 10, 11, 12; and the fourth, three n-lines,

n =13, 14, 15. 1In the first section the number of points on each n-line is:

n =1 2 3 L

M L 6 6 b
n

The program finds A Ml =6 -4 =2> 0, so it computes Ml— 1 = 5 elements

for this line corresponding to the points m =1, 2, 3. It skips the point
m=U4 n=1 and proceeds to the next point, which is m =1, n = 2, Since

A M? =6 =6 =0, MQ— 1 = 5 elements are computed Tor this line corresponding
to the points m =1, 2, 3, b, 5, The point m = 6, n = 2 1s skipped, and

the program proceeds to the next point, which is w =1, n = 3. Here it

finds A M3 =4 -6 =—-2<0, so it computes M,— 1 =3 elements for this

line¢ corresponding to the points m =1, 2, 3. Now |A M%i + 1 = 3 points,
i.e., m =h, 5, €, are skipped, and the program proceeds to the point m = 1,

n = k4, Notice that the line n =4 has only four points, the points

m=1, 2, 3, I in the m-grid of section 1, which 1s listed in the figure

along the n =1 and n =2 1lines. It is these points that are used 1o form
the elements assoclated with the points of line n = 3, When the program
reaches the point m = 1, n = b4, it realizes it has attained the fourth and
lasl n-line of section 1, so it skips Mh = i points and proceeds to point

m =1, n=5, the first point of section 2. Notice that this point is identi-
cal with the point m =1, n = 4 that the program just left, and indeed the
lines n =4 and n =5 are physically identical. Some of the points on the
two lines are physically identical but correspond to diffcrent values of m.
This is of no comsequence. In this scheme sections are completely independent.
The program determines that it has entered a new section with five n-lines and
proceeds to compute. Since Mn =T, A Mn = 0 for all n~lines in this section,
Mne-l = 6 elements, corresponding to the points m =1, 2, 3, 4, 5, 6, are
computed for each of the lines n =5, 6, 7, 8. The fifth n-line of section 2,
n =9, is skipped and the program proceeds to the first point of section 3,
m=1, n=10. Again notice that 1lines n =9 and n = 10 are physically identi-
cal. Now three elements are computed for each of the lines n = 10 and n = 11 of

section 3, and the program skips to the physically isolated section 4. Notice
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that the n = 15 1line of this section is aligned with the n =7 1line of
section 2 and that the points for which m = 2 are allgned with the m = 6
points of section 1. These facts are irrelevant because of the independence

of the sections., After one element is computed for each of the lines n = 13
and n = 14, the program realizes it has completed the last section and goes on
to other computations. Notice that no elements were computed corresponding

to points on lines n = 4, 9, 12, 15.

m=-4 M=3 M=2 M=

|
nzl0—-~-—r——
¢t n=g9 ‘I

n-=8
n=7 ‘L

m=3 —7
m =2
m =|

| Nn=2 =3 n=4 N5 n=¢6

| |

| I

]

"= SECTION | - -«"

|

|

Figure 15. - Ancther possible division into sections.

There is no restriction that the m and n 1lines of different sections
have to be roughly parallel. The arrangement shown in figure 15 is per-

missible,

Bending the n-lines at their ends to form triangular or nearly triangular
elements is sometimes useful in cases of thin bodies of rounded planform.
Figure 16 shows an example of a triangular element. Notice that the point
m+ 1, n may be located anywhere on the line between points m, n and m + 1,
n + 1 without changing the element. In particular, it may be taken coincident
with either m, n or m + 1, n + 1. An example of the use of this device to
fit a rounded planform is shown in figure 17. Notice that the number of points
on each n-line 1s increaging by one per line on the léft portion of the body

and decreasing by one per line on the right portion.
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m+in+|

Figure 16. - The location of input points to form a trianguiar element.

2 2y
m=id 11 J Jt Il Il )
n= 2 3 4 5 6 7 8

Figure 17. - The use of nearly triangular elements on a thin body of rounded planform.




Figure 18. - A restriction on the division of the hody into sections.

As a final example, consider the planform in figure 18. The first point
on every n-line must be m = 1, Neilther line AF nor line ED can corres-
pond to m = 1 unless the body 1s divided into sections, e.g., along FG., A
single section may be used by letting line CD correspond to m =1 with n
increasing from D to C or by letting line BC correspond to m = 1 with

n increasing from C to B.

If it is desired to compute flow velocities at points off the bedy surface,
the coordinates of these points, which are designated off-body points, must
also be input. The order in which off-body points are input is immaterial.

For good accuracy, the distance from an off-body point to the body surface
should be at least twice the characteristic dimension of the elements on that
portion of the surface. The flow properties at points nearer the surface
should be obtained by interpolation between the off-body points and the null
points. The interpolation is simpler, and the basic calculational accuracy is
higher, 1f the off-body points near the surface are located along normals to
the surface that intersect the surface at null points. Off-body points located
near the edges of elements are particularly susceptible to error because of

the infinite velocities occurring at these edges.

9.12 Bodies with Symmetry Planes.
If the body surface possesses planes of symmetry, the fact may be noted
in the input to the program and only the non-redundant portion need be specified

by input points. The other portions are sutomatically taken into account. The
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symmetry planes are assumed to be coordinate planes of the reference coordinate
system. To facllitate the calculations the cholce of which coordinate planes
are symmetry planes tor a given body is not left open. Particular coordinate
planes are selected once and for all as symmetry planes, and the body surface
must be input to conform with this selection, or the calculated flow veloci-
ties will be meaningless. The assumptions for the symmetry planes are listed

below.

If a body has one plane of symmetry this plane must be the xz-plane of
the reference coordinate system. The y-coordinates of all input points must
have the same sign — either positive or negative. If the body is closed, i.e.,
17 1t intersects its symmetry plene, the points in the symmetry plane, 1.e.,
the points having y = 0, must be included among the input points. Usually,

the points in the symmetry plane are tszken as on a common m-line or n-line.

If a body has two planes of symmetry, these planes must be the xz-plane
and the xy-plane of the reference coordinate system. The z coordinates of
all input points must have the same sign, and similarly for the y coordinates.
They may be of either sign; and the sign need not be the same for the y-co-
ordinates as 1t is for the z-coordinates. If the body intersects its symmetry
planes (or plane), the points in these planes, i.e., the points having y =0

or 2z = 0, must be included among the input points.

If a body has three planes of symmetry, these must be the three coordinate
planes of the reference ccordinate system. The x-coordinates of all input
points must have the same slgn, and similarly for the y and 2z coordinates.
Any coordinate may have elther sign. If the body intersects its symmetry
planes, the points in these planes, i.e., points having zero value of a co-

ordinate, must be included among the input points.

Thus with the usual orientation of coordinate axes. a body may have a
'iright and left'' symmetry, a '"'right and left'' and ''up and down'' symmetry,
or a ''right and left'!, ''up and down'!, and ''fore and aft'' symmetry. In
some cases this may not be the most natural way to specify the body, but the

resulting inconvenience should be minor. Any direction of the onset flow may
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be specified for all cases.

Off-body points in cases with symmetry planes are handled the same way

as was described previously.
9.2 Formation of the Plane Quadrilateral Surface Element.

Suppose now that the stage of the calculation has been reached at which
it 1s required to form a plane surface element from the four polnts whose
identifying integers are m, n;m +1, n; m +1, n + 1; and m, n + 1. Since
only one element is considered here, 1t is convenient to identify the points
by the subscripts 1, 2, 3, and 4 respectively. See figure 19. Notice that
the points are numbered consecutively around the elements as was illustrated
in figure 5. Let these points have input coordinates in the reference coordi-

nate system as follows:

Figure 19. - The formation of an element from four input points.
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1l X ¥y %4

i 4 4

2 X, Yo Zp
i 01 1 (63)

>t X3 ¥z oz

P

RN, o7y

The superscript 1 d1dentifies the coordinates as input coordinates. Now the

two ''diagonal'! vectors are formed — the vector ﬁ&

and the vector T% from point 2 to point L: In general these vectors are

from point 1 to point 3

not crthogonal. Thelr components are:

i i i i i i
Tix = %3 7%, Ty = ¥3 ™0 h, =237 7%
(64)
i i 1 i i i
T&( =Xy T Xy Tgy =Yy T Yo TEZ =7y w7
The vector N 1is taken as the cross product of these, i.e., N = i% X ﬁ&. Tts
components are:
Ne =Ty Ty m Ty Toy
Npoo= Ty Ty =T Ty, (65)
NZ = Téx le - Tlx T2y

The unit normal vector, E, to the plane of the element is taken as N divided
by its own length N, i.e.;

z

N
n = —=
X N
N
n, = 'j?i (66)
N
1l Sp—k
Z N
where
2 2 2
N = -\/Nx + Ny + N, (67)
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The plane of the element is now completely determined if a point in this plane

is specified. This point is taken as the point whose coordinates X, ;; z
are the averages of the coordinates of the four input points, i.e.,

- 1 [+ 1 1 1]
X = h‘ xl 4+ x + xj + xh
- 1 [+ 1 1 4]
Y = [y t¥p t Y3ty (68)
- 1 |+ 1 1 ]
Z = I: ZL + 32 + 23 + Zh\

Now the input points will be projected into the plane of the element along the
normal vector. The resulting points are the cormner points of the quadrilateral
element. The signed distance of the k-th input point (k =1, 2, 3, 4) from the
plane is
=n (i'—-xi) +n (§'—-yi) +n (z — zi) k=1, 2, 3, 4
dk X k v k z k R

(69)
It turns out that, due to the way in which the plane was generated from the
input points, all the dk's have the same mapgnitude, those for points 1 and 3
having one sign and those for points 2 und 4 having the opposite sign. Sym-
bolically,

k-1

a, = (-1 k=1, 2, 3, 4 (10)

The magnitude of the common projeetion distance is called 4, il.e.,
a = |4 (72)

The coordinates of the corner polnts in the reference coordinate system are

given by
i
| = I
*x X +ny, dy
i
Viom vty k=1,2, 3, b4 (12)
i .
t =
z) z, t o, &

Now the element coordinate system must be constructed. This requires the com-
ponents of three mutually perpendicular unit vectors; one of which points along

each of the coordinate axes of the system, and also the coordinstes of the
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origin of the coordinate sys
of the reference coordinate
of the unit vectors, so two

element are needed., Dencte

tem, All these quantities must be given in terms
system. The unit normal vector is taken as one

perpendicular unit vectors in the plane of the

these unit vectors ﬁ' and Eé. The vector t

- h 1 L
1s taken as T, divided by its own leng Tl, i.e.,
N
Ix Tl
Ly
by = % (73)
1
t _ le
lz T,
where
2 2 2
N T, + T, (%)
The vector f; is defined by €é =Xt , so that its components are
t2x = nyT’lz -n, hly
t2y = nt —-nxtlz (73)
tQZ = nxtly —-nytlx

The vector %1 is the unit
element coordinate system,

T is parallel to the z or

To transform the coordi

tween the reference coordins

vector parallel to the x or ¢ axis of the

.
M

=
«

while t_ 1is varelle]l to the y or n axis, and

axls of this coordinate system.,

nates ¢f points and the components of vectors be-

te system and the element coordinate system, the

transformation matrix is required. The elements of this matrix are the com-

S S

ponents of the three baslc unit vectors, tl, te, and n. To make the nota-

tion uniform define
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a. =t a = g a =t

11~ Yix 12 = Yy 13 = Y,
8y = Yoy &y = toy ayz = t,, (76)
8.51 = nx &32 = ny &55 = nz

The transformation matrix is thus the array

%11 %12 P13
801  %pp  Fo3 (77)
831 B30 f33

To transform the coordinates of points from one system to the other, the
coordinates of the origin of the element coordinate system in the reference
coordinate system are required, Let these be denoted Xgs Vo1 Zgo° Then if a
point has coordinates x', y', z' 1in the reference coordinate system and
coordinates x, y, z 1in the element coordinate system, the transformation from

the reference to the element system is
X = all(x' -xo) + a12(y' -yo) + a15(z' - zo)
y = agl(x‘ - xo) + agg(y' - yo) + api(z' - Zo) (78)
7z = ail(x' - xo) + a5z(y' - yo) + a55(z' - zo)

while the transformaetion from the element to the reference system is

| -
x! =x, + allx + aely + a5lz

' —
y' = yo + algx + 322y + &522 (79)
2! = Z, +a X +a,.y +8

13 23 332

Vectors are transformed in a similar way. If a vector has components Vx’ V&,

VZ in the element coordinate system and components V;, V&, Vé, in the
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reference coordinate system, these are related by equations (78) end (79),
where Vx’ V&

' ' ' - ' ' . - om o
Vas Vg V! replace (x xo), (v yo), (z zo). The origin is tem

porarily taken as the point whose coordinates are the averages of those of

» V, replace x, y, 2z, respectively, in these equations and

the four input points, i.e., the point with coordinates x, ;, z 1in the

reference system,

The corner points are now transformed into the element coordinate system
based on the average point as origin. These points have coordinates xé, yﬁ,
zﬁ in the reference coordinate system. Their coordinatis in the element
coordinate system with this origin are denoted by gk, T s 0. Because they
lie in the plare of the element, they have a zero z or { coordinate in the
element coordinate system. Also, because the vector €1, which defines the
x or ¢ axis of the element coordinate system, 1s a multiple of the
“diagonal‘; vector from point L to point 3, the coordinate n; and the co-
ordinate 17, are equal. This is illustrated in figure 20. Using the above
transformation these coordinates are explicitly

[ [¢
! &2 2)

L

/

AVERAGE POINT

&im) &Eymy)

///
I )

Figure 20. - A plane quadrilateral element. Transfer of origin from average point to null point,
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=a. (x =%x)+a . (y —-y) +a,,(zt =2)
11k 12V Bk TR 1,8, 5, 8 (80)

oy (5 = %) +ay,(yt —y) +ay,(zf —z)

These corner points are taken as the corners of a plane quadrilateral which is

the fundamental

The origin
centroid of the

the coordinates

source element employed in this method.

of the element coordinate system is now transferred to the
area of the guadrilateral. With the average point as origin

of the centroid in the element coordinate system are:

1 ¥ * ¥* . 3 * x
= % 5 [Eh(ﬂl - ﬂz) + Eg(ﬂu - ﬂl{}

N = M
(81)

These are subiracted from the coordinates of the corner points in the element

coordinate system based on the average point as origin to obtain the coordinates

of the corner points in the element coordinate system based on the centroid as

origin (see figure 20). Accordingly, these latter coordinates are

Ex
kK =1, 2, 3, k (82)

e

I
==

Since the centroid is to be used as the origin of the element coordinste system,

its coordinates

in the reference coordinate system are required for use with

the transformation matrix. These coordinates are

X =X + allgo + aElno

y. = S’— + alego + 5122710 (83)

z =2z + a15§o + a23no
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Since in all subsequent transformations between the reference coordinate
system and the element coordinate system the centroid is used as origin of
the latter, its coordinates are denoted Xos Ygs 2 to conform with the
notation of equations (78) and (79). The coordinates of the average point
are no longer needed. The change in origin of the element coordinate system
of course has no effect on the coordinates of the corner points in the

reference coordinate system.

The lengths of the two dlagonals of the quadrilateral, tl and t2,

are computed from
2
(8u)

)2 )

o+
1}

The larger of these is selected and designuted the maximum diagonal, <.

The coefficients of the zeroth and second order terms in the multipole
expansion of the velocity induced by a quadrilateral element consist of the
area of the quadrilateral and the three second moments of the area (see Sec-
tion 8.21). In terms of the coordinates of the corner points, the area of
the quadrilateral 1s

A =3 (g5 -8, —my) (85)

while the second moments are

1
L =35 (B 8) [my (5= 80 (8w £v £ v gy )4
2 2
# (ngmm )87+ gy + £55) + (86)
ey (Ey+ Eor 6) = By (6% £r 6) ]
2 2
L, = (s &) [26,(n, %= 1,%) — 28, (n)°= 0,%) «

(87)
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Ty = '1]3453" ) (ng= ) [+ g )%= my (nge my) = 2| (©8)

In obtaining these formulas use has been made of the fact that n o= nB.

9.3 Determination of the Null Point

The point of the quadrilateral element at which induced velocities are to
be computed 1s the so~called null point, i.e., the point where the element
itself induces no velocity in its own plane. The x and y coordinates of
thls point 1n the element coordinate system are obtained as the solutlon of

two simultaneous non-linear equations. These equations are

1]
o

VX(X, y) (89)

Vy(x, Y) 0

where the expressions for Vx and Vy are those given in equations (42) and
(43) with 2z = 0 and the > M k=1,2,3, 4, set equal to the co-

ordinates of the corner points which were obtained in the previous section.

These equations are solved by means of an iterative procedure, which
and Vy. With the
notation ( )x = 3/x, ( )y = 3/dy, these derivatives can be written

utilizes analytic expressions for the derivatives of V_

Ny = M, 0" s N My

(V) D, (r)+ rp), )DEB (rpt v3), 5 (rgt 7))+ Doy (ry+ 7))y
(Vx)y= nngzl (rl+ rg)y+ ni;zzz (r2+ rB)y+ EE;;EQ (r5+ ) )yt nl;;zh (r)+ rl)y
(v, ), = E%Z-Z?- (ry+ 1)+ §2D223 (rp+ 1) + g%;“ (r 1), + '-—“D—-é—l- (ry+ )
(Vy)y= gl;;ze (rl+ r2)y+ Eg%:éé (r + r3)y+ §5D3iu (r3+ my gt EE%?EL (r)+ rl)y

(90)
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where X — §1 X — §2
(rl + r2)x = ) + e
xX—£&, X-=¢
- 2 3
(r2 + r5)x, = 7 + o
(91)
(r, +2,), = o o
r, +T = - 4
3 b/ Xy r),
X - gu X w gl
(rh + rl)x = r), + ry
y =7 y =
(rl +r ) = = Ly p- 2
=Y 1 2
Yy = 1, Yy —n
(r, +r,) = =+ 2
2 5y T r3 (52)
92
(r +ru):Y"ﬂ5+Y"ﬂh
3 ¥ r3 rL
(rh * rl)y - r), + ry
and
2 2
2D, = (rl+ r2) -4,
2
2 D25 = (r2 + r5) - d23 o)
93
2
) DBh = (f3+ rh) dsh
2
2 Dh—l = (I‘h+ 1‘1) d)-lj

These derivatives can be evaluated very quickly. The time required for their
computation 1s much less than that required for the computation of Vx and Vy.
Since the veloclty is the negative gradient of a potential function @, it is

£

true that (vx)y = (Vy) . However, it was found convenient to calculate each

separately and to use this fact asg a check on the correctness of the program-

ming.
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The iterative procedure is as follows. Let xp and yp denote the p-th
approximation to the x and y coordinates of the null point, and let the
notation [: J(P) denote the gquantity in brackets evaluated at x = xp, y = yp.
Once the p-th approximation has been found, the (p + 1)-th approximation is

obtained by solving the following pair of linear algebraic equations for

(p) - ~(p) p)
[(Vx )x] (o= %) + [y | Opyg— ) = —[Vx
- (94)

L.

(p) ~  p) p)
[(VY)X—J o™ xp) + | (Vdy | =) = ‘{Vy '

xp+l’ yp+l'

t

1

The first epproximation 1s x =y =0, i.e., the centroid of the quadrilateral.
The iterative procedure is terminated when the induced velocity components at
the approximate null point are both iess in absolute value than a prescribed

value. This value is set‘at 0.0001.

This iterative procedure is thus a gradient method in that the non-~linear
equations (89) are replaced by the linear equations (94), whose coefficients
are the derivatives of the non-linear functions. The correciions to the values
of Xy and Y5 computed from (94) are correct to first order and are in error
by terms proportional to the second derivatives of Vx and Vy' The method
is seen to be the two-dimensional analogue of the Newton-Raphson procsdure for
a single non-linear equation. Usually the convergence is fairly rapid - three
or four iterations. This 1s partly due to the fact that for most quadrilaterals

the centroid is quite close to the null point.

There is one case where the procedure converges to the wrong point. This
occurs for quadrilateral elements that are approximately long thin triangles.
More precisely, the unfavorauble case occurs when an element has two sides that
are much longer than the other two and either the long sides are adjacent, as
shown in figure 21a or one of the short sides is large compared to the other,
as shown in figure 21b. As can Ye scen in figure 21, "in botn these cases the
quadrilaterals are approximately triangles with a large ttaltitude'! to ''base'!

ratio. The iterative procedure fails if this ratio is larger than about thirty.
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Figure 21. - Elements for which the calculated null point is outside.

For such elements the induced velocity is a slowly varying function of
position along the long dimension of the element and the first correction
obtained from (94) using the centroid is such that the next approximation i1s
& point outside the element. TFrom then on successive approximations are
points further and further away from the element as the procedure seeks ocut
the ''null point*f at Infinity, where the induced velocity is obviously zero.
While an iteration scheme could probably be devised that converged in such
cases, it has not been done, Tistead, after the iterative procedure has con-
verged, the distance between the computed null point and the centroid is com-
puted. (It is just the distance of the null point from the origin since the
calculatlon is performed in the element coordinate system.) If the distance
is smaller than the maximum diagonal of the element as defined following
equation (84), the calculation procceds nommally, for the truc null point is
the only point thls near the centroid where the induced velocity components
are sufficiently small for the iterative procedure to converge. If thie
distance is larger than the maximum diagonal, the computed null point is out-
side the element, and it is discarded. 1In this case the centrold replaces

the null point in all subsequent calculations.

There is another type of element for which the procedure does not con-
verge, namely an element having one diagonal much shorter than any side as
shown in figure 22. TFor such elements the induced velocity varies repidly
with distance along the short dimension. Snecceggive approximations to the

null point form a non-convergent sequence, all of which are quite close to the
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. Figure 22. - An element for which the null point iterative procedure does not converge.

true null point. The procedure is simply terminated after thirty iterations

and the last approximation used in subsequent computations.

It should be mentioned that no systematic study of the convergence of
this iterative procedure was conducted, but difficulties were remedied as they
occurred in the actual calculation of potentisl flows., There may be other
types of 2lauciits fui which e oull poinu cannot be calculated in this manner,
but if so they have not becn cncountered in almost a year of uslng this method
for a variety of body shapes. 1In fact, it is intuitively clear that if any
of the above types of elements occur in practice, it implies that the points

used to define the body surface were not intelligently distributed.

If elther of the above substitutes for the null point are used rather
than the null point itself, this fact is noted on the first output from the
machine as described in the next section. In any event a point ©h the element
is selected at which induced velocities are to be evaluated, and this point
wlll subsequently be referred to as the null pecint regardless of what it
actually is. The coordinates of this point in the element coordinate system
are denoted an’ ynp' These are transformed into the reference coordinate
system by megns of the transformation matrix as shown in equation (79) to
obtain the coordinstes, x!' , y' , z' , of the null point in the reference

np’ “np’ “np
coordinate system.

Finally, to illustrate the location of the null point, calculations were
performed for a series of isosceles triangles of various altitude to base
ratios. The results are given in figure 23. It can be seen that for very
small altitude to base ratios the null point occurs at half the altitude,
while for large values of this ratio it approaches the base of the triangle.
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The null. point coincides with the centrold when the triangle is equilateral,
ie., y = %-h for an eltitude to base ratio of 0.866.

9.4 The First Output

After the quantities described in the previocus sections have been com-
puted for all the quadrilateral elements formed from the input points, certain
geometrical properties of the elements are output from the machine. The order
in which the elements are listed is the order in which they were formed as
described above. Recall that each element 1s associated with one of the input
points used to construct it and is designated by the same pair of integers,

m and n, used to ldentify the input point. The elements are listed n-line
by n-linq, starting with the first and continuing through all sections. On
each n—line the elements are listed in order of increasing m. The tabulated
information for each elemcnt occupies three lines of printing. The quantities
listed are: the identifylng integers m and n, the coordinates of the four
iaput points used to form the element;, the components of the unit normal
vector, the coordinates of the null point in the reference coordinate system,
the common projection distance d of the four input points into the plane of
the element, the maximum diagonal +t, and the area of the quadrilateral. The
format of this listing is as follows:

i i 1 i . (
n 'm x] X X5 x), n X1 da (2 or2)
i yi yi n y!
i Yo 3 I Y np
i i i i . '
Zl z2 z5 Z), “z znp A

The designation 1 or 2 on the extreme right identifies elements for which
the null point iterative procedure failed &as discussed above and is absent
for normal elements. A symbol 1 denotes that the computed null point was
outside the element and thus that the listed null point is actually the
centroid, A symbol 2 denoles that the iterative procedure did not converge
and thus that the listed null point 15 only approximate. In both exceptional

cases the listed value of 4 i incorrect.
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The main purpose of this output is to enable errors in the input points
to be discovered before the lengthy flow calculations are performed. Errors
in the input points occur fairly often because of the large amount of input
required. Usually, these are simply errors of transcription such as misplaced
decimel points or transposed diglts, but they are often difficult to find.

If the flow computations are performed with an incorrect input point, they
must be completely redone. There is no provision for saving those parts of
the computation that might be correct. The computation time up to the first
output is usually a fraction of one percent of the total computation time for
the case, and if an error can be discovered at this stage, a great saving
results. FExperience to date indicates that about half the input errors are
discovered by examining the first output. Thus 1ts use has proved very worth-

while.

Unfortunately, there arc no precise rules for discovering input errors by
means of the first output. It is & technigue thst must be learned from ex-
perience. bMoreover, there is a considerable individual variation. Different
people will find a given error in different ways. The one general principle
is that all quantities should vary systematically from element to adjoining
element. Thus, in particular, there should be a systematic variation along
an n~-line, which 1s readily verifiled on the first output. There should also
be a systematic variation along m-lines, which cannot be conveniently checked

on the first output.

The first output 1s also the only listing of the input points produced
by the program and provides the only convenient method of associating input
polints with elements, if this should be desired.

9.5 Formation of the Vector Matrix of Influence Coefficients.
The Induced Velocities

9.51 Crganization of the Elements.
It is now required to compute the velocitles induced by the quadrilateral

elements at each other's null points. All elements are assumed to have unit

source density. TIn this and succeeding calculations, some of the quantities
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used to form the elements are superfluous and are discarded. Subsequently, an
element 1s thought of as being defined by the following quantities: the co-
ordinates of the null point and the centroid, which 1is the origin of the
element coordinate system, in the reference coordinate system, the elements
of the transformation matrix, the coordinates of the four corner points in
the element coordinate system, the maximum diagonal and the area and second
moments of the quadrilateral. Thus the following twenty-eight quantities

are required for each element:

] L g 1
xnp ynp znp
xO yO ZO
11 812 813
8oy Sop Bz
a1 F30 27
&y M & Mo
t A
I I I
XX Xy vy

The components of the unit normal vector are also needed but by equation (76)
these are given by the last row of the transformation matrix. To minimize

computing time these are computed only once and saved.

The elements are now conslidered to be ordered in the sequence in which

they were listed on the first output. That is, the elements on the first

n - line are listed in order of increasing m, followed by the elements of the
second n-llne in order of increasing m, and similarly for all n-lines.
(This, indeed, is the way they are stored in the machine.) Thus each element
may be designated by a single identifying integer, i or j, which represents
its position in this sequence. This identlifying integer never appears on the
input or the output of the method, but is basic to the loglc of all the
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computations to follow. The total number of elements is denoted N.

The basic calculation described in this section is the computation of
the velocity components induced a2t the null point of the i-th element by a
unit source density distribution on the j=-th element. This calculation re-
quires the coordinates of the null poinﬁ of the i-th element and may require
any of the above-listed twenty-elght quantities associated with the j-th
element except the coordinates of the null point. To avoid complication
these quantities will not at first be subscripted 1 and -j- in the ex-
planation to follow. It nced only to be kept in mind that the null point is
always that of the i-th element where velocity components are being evaluated,
while all other quantities correspond to the j-th element, which is inducing
the velocity.

The method calculates the velocity components induced at one particular
null point by all N elements in turn and repeats this procedure for each
null point. Thus the induced velocity matrix or ''matrix of influence co-
efficlents'' is computed row by row, each row being put into the low speed
storage of the machine as it is completed. The computation of each row re-
quires the above 1list of twenty-eipht quantities for all elements, and to
minimize computation time these must all be in the high-speed storage of the

machine simultaneously. If these were computed as nesrded or obtained from

"
low speed storage, the process would have to be repeated N2 times, which is
very time consuming. The result 1s that high speed storage capacity is often
the limiting factor in the number of elements that may be employed. If the
matrix were computed column by column, i.e., if the velocity components in-
duced by one particular element were calculated at each null point in turn,
and the process repeated for each element, this storage limit would not exist.
Only one set of twenty-eight numbers are needed for each column, These could
be computed as needed, since this would require only ¥ such calculations -
a trivial matter. Since the matrix is eventually used row by row, this latter
method would require transposing the matrix, which is a time consuming pro-

cedure, and the method employed was chosen to avoid it.
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2.52 Non-symmetric Bodies.

The first step in computing the velocity components induced at the null
point of the i-th element by the j-th element is to compute the distance rg
between this null point and the origin of the j-th element coordinate system.
This is

2 2 2
= | - t - t -
ro = A %)+ r1m v+ (el 2) (95)
where, as mentioned above, subscripts 1 and j are omitted. This distance
is now compared with the product of the maximum diagonal of the j-th element
and a prescribed number Pos vhich 1s customarily set equal to 4, but may have

any desired value, If

t ‘ (96)

the j-th element is approximated by a point source at the origin of its co-
ordinate system. (This approximation is equivalent in accuracy to a point
source plus a point dipole, since the dipole moments of the quadrilateral
with respect to its origin are zero.) The velocity components are computed
by formulas equivalent to those obtained from equations (57), (58), and (59)
by retaining only the first terms. These equations, however, are expressed in
the element coordinate system. To avold transforming the null point into the
element coordinate systam, which in this case would be a significant fraction
of the computation time, the velocity compenents are evaluated directly in
the reference coordinate system by well-known formulas that are easily ob-
tained from these. Specifically, if equation (96) is satisfied, the velocity

components in the reference coordinate system are given by

-
]
-

it

A x> (xt —x_)
o np 0

'x
AR r;3 (yﬁp -¥,) (o1)
vt A (2}, - 2,)
If, on the other hand,
ro <py t (98)
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s 2! are transformed into

P p® Dp
the j=th element coordinate system obtaining xnp’ Ynp? znp' This allows

the formulas of Section 8.0 to be employed. The transformation is accomp-
lished by means of equation (78). Now ry is compared with the product of
the maximum diagonal t and a second prescribed number Py which 1s set
equal to W/51= 2.45 unless otherwise specified. If

roEp,t (99)

the coordinates of the i-th null poinut xﬁ s yﬁ

the j-th element is approximated by a point source plus a polnt guadrupole at
the origin of 1ts coordinate system. The velocity components at the i-th

null point are computed by eguations (57), (58), and (59) using equations (60),
(61), and (62). The coordinates of the i-th null point in the j-th coordinate
an’ ynp’ Znp? replace x, y, z, respectively, in the equationmns,

while the value of ry used is that already computed by equation (95) using

coordinates in the reference coordinate system, If s were computed using

system,

xnp’ ynp’ an in (51), the same value would of course be obtained. The
velocity components V%, V&, V; thus obtalned are in terms of the element

coordinate system.

If, instead
Ty Ceqt (100)

the velocity components are evaluated from the exact formulas for a gquadri-
lateral, i.e., from equations (42), (43), and (bh4) using equations (45)

through (49). Again %o’ Yyp? Znp
k =1, 2, 3, b, are the coordinates of thne corner points of the j-th

replace x, ¥, z 1in these formulas, while
§k) Thes
element. In the evalustion of these formulas attentlion must be pald to the
discussion following eguation (49) with regard to certain limiting cases, in
particular the case 1 = j where the null point is on the element in question.

v

As above, the velocity components V. v’

< Vé thus obtalned are in terms of

the element coordlnate system.

In the last two cases, the induced velocity components Vx’ Vy’ Vz in
the element coordinate system must be transformed to obtain the components

Vi, V&, V; in the reference coordinate system. This is done using the form
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of equation (79) appropriate for vectors as is discussed immediately below
the equation, Thus finally in one of three ways the components V;, V;, V;
of the velocity camponents induced at the i-th null point by the j-th element
are obtained.

The notation is now changed to bring in 1 and J explicitly. Define
the vector V;J as the vector veloclity induced at the null point of the i-th
element by a unit source density on the j-th element. Let the components of
this vector in the reference cocrdinate system be XiJ’ Yij’ Zij’ so that the

change of notation may be expressed symbolically as

= t
xij vx
Y = V! 101
13 ; (101)
Z = !
ij vz
The complete set of v for all 1 and j comprise the vector elements of

i
the '""matrix of influence coefficients!!' for non-symmetric hodies.

The normal velocity induced at the null polnt of the i-th element by a
unit source density on the j-th element is obtained by taking the dot product
of ViJ with the unit normal vector of the i-th element E&. This Induced

normal velocity is denoted Ai It 1s given by

3

X,, +n, Y.. +n, 2, (102)

A =ny -V iy “1ij iz 7iJ

1d i 19 T Mix M43

The complete set of A11 form the coefficient matrix for the set of linear
equations for the values of the surface souwrce density on the quadrilateral
elements. For non-symmetric bodies the matrices 'Vij and Aij are used

for all onset flows.

9.53% Bodies with One Symmetry Flane.

If a body has one plane of symmetry, only the non-redundant portion of
the body need be input. The other half of the body is generated by reflecting
the half that 1s input in the symmetry plane. As stated above, the symmetry

plane is the xz-coordinate plane of the reference coordinate system. TFigure oh
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Figure 24, - A body with one symmetry piane,

is a sketch of a typlcal body with one symmetry plane. Input points define
the half of the body surface on one side of the xz-plane. Flements are formed
from these points in the manner described above, and such elements are denoted
basic elements. The other half of the tody is taken into account by being
covered with elements that are the reflections of the basic elements in the
symmetry plane. These latter are denoted reflected elements, and thus refer-

ence will be mode to the J-th basic element and the j-th reflected element.

Because of the symmetry of the body surface, the value of the surface
source denglty on any reflected element is related to the value of the source
density on the corresponding basic element in a very simple way, and thus only
the latter need be calculated. The relation between the values of source
density on a basic and reflected element depeadas on the direction of the
uniform onset flow. By inspection of figure 2k, it is clear that if the onset
flow is parallel to the x or 2z axis of the reference coordinate system,
the source denglty on a reflected element is equal In value to the source
density on the corresponding basic element. (This is true in fact for any
onset flow in the xz-plane.) I1f the onset flow is parallel to the y-axis of

‘the reference coordinate system, the source densitles on corresponding basic
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and reflected elements are equal in magnitude but of opposite sign. The re-
lation is more complicated for other flow inclinations, but these are not
considered, since the results for such inclinations may be ocbtained by a

simple comblnation of the cases mentioned above.

The calculational procedure is identical to the nonsymuetric case until
the stage 1s reached at which the matrix of induced velocities is to be com-
puted. That is, the basic elements are formed from the input points in the
same way to obtain the twenty-eight defining quantities for each element
that are listed in Section 9.51. Also, the velocity induced at the null point
of the 1-th basic element by a unit source density on the j-th baslc element
is calculated in the way described in Section §.52. Immediately after this,
the veloclty induced at the null point of the i-th basic element by the j-th
reflected element must be calculated. Thus the twenty-eight quantities de-
fining the j-th basic element are required.

Since & reflected element is the mirror image of the corresponding basic
element in the xz-plane of the reference coordinate system, its twenty-eight
defining quentities are identical to those for the basic element except that
the signs of the y reference coordinates of all points and the y-components
of all vectors are changed. Referring to the list in Section 9.51, this
means that the signs of the following quantitics must be changed:

1
Ynp Yo Pip fFpp ®3p

However, since velocities are not evalueted at the null points of reflected
elements, the sign of y;n need not be changed. Morecover, the reflection
has made the element coordinate system left-handed. To make the coordinate
system of the reflected element right-handed, the sign uf Ulhie wiil ucimal
vector, i.e., the third row of the transformation matrix, is reversed. This
means that the signs of &71 and 335 are changed, while the sign of 332
goes back to what it was originally. Thus finally, a reflected element is
obtained from & basic element by changing the signs of five of the twenty-
eight defining quantities. The five whose signs are changed are:

Yo #p  Bap %5 83
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For the purposes of thls method the reflection of an element in the xz-piane
may be defined as the change of these five signs. The velocity components
induced by the j-th reflected element at the null point of the i-th basle
element are then computed by the method of 9.52. When this is completed,
the signs of the above quantities are returned to their original values.

Suppose that the above caleulations have been completed. Let V;J be
the vector velocity induced at the null point of the i-th basic element by
the j-th basic element, and let 'Vgg) be the velocity induced there by the

Jj=th reflected element. These vectors have components Xij’ Yij’ Zij and
X(r) §32 (32 respectively, in the reference coordinate system. These
vectors are now combined in two ways. Define the vector
(1) _ % &(r)
vij = Uy viJ (10%)
with components
(1) (r)
;7= X, . + X
iJ 13 1)
v+ -y (r)
= Y,. + Y, 104 )
J 1J iJ (104
(1) (r)
Z = Z + Z
ij i3 i
and the vecior
+(2) % =(r)
VR A (105)
with components
(2) _ (r)
XiJ = XiJ Xij
(2) _ (r,
Yy T Yy Ty (106)
#(2) _ . 7(r)
ij 13~ “1j
The vector iﬁ) is thus the velocity induced at the null point of the i-th

basic element by the j-th baslic and reflected elements when these latter two
have equal values of source density. Similarly the vector V§j) is the
velocity induced at the null point of the i-th basic element by the j-th basic

and reflected elements when these latter two have source densities equal in

89




value but of opposite sign. The complete sets of Vgi) and V§§) are

accordingly the vector !''matrices of influence coefficients'' for bodies with
one plane of symmetry. The second of these is appropriate for use with an
onset flow parallel to the y-axis of the reference coordinate system, l.e.,
flow normal to the symmetry plane, while the first is appropriate for use
with onset flows parallel tc the x or 2z axes of the reference coordinate
system, i.e., flows in the symmetry plane. These matrices are N x N, where

N is the number of basic elements only.

Taking the dot products of the vectors Vﬁé) and Vﬁi) with the unit
normal vector of the i-th basic element gives the induced normal velocities
A§§) and Agg) in a manner similar to that s?ign in eq?ggian (102) for the
non-symmetric case. The complete sets of Aij and Aij form the ccefficient
matrices for the sets of linear equations for the values of the surface source

density on the basic elements.

9.54 Bodies with Two Symmetry Planes.
Bodies with two planes of symmetry are handled by an obvious extension

of the procedure of the previous section. Only one-fourth of the body surface
is specified by input points, while the other three-fourths is taken into
account by reflections. As Dbefore elements formed from input points are
designated basic elements. To each basic element there now correspond three
reflected elements, which arc obtaincd by successive reflections in the
symmetry planes. The two symmetry planes are the xz and xy coordinate planes
of the reference coonlirate system. Filgure 29 shows a skeich of a typical
body with two planes of symmetry and the relaiion of the basic and reflected
elements. 'The first reflected element is obtained by refleciing the basic
element in ‘the xz-plane; the second reflected clement is obtained by reflecting
the first refle~ted element in the xy-plane; and the third reflected element
is obtained by reflecting the second reflected element in the xz-piaic, The
basic element may be obtained from the third reflected element by & reflection

in the xy-plane.
If the onset flow is parallel to one of the coordinale axes, the values
of the source density on a basic element and the three corresponding reflected

elements are all equal in magnitude, The signs of these source densities
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Figure 25. - A body with two symmetry planes.

depend on the direction of the onset flow. Inspection of figure 25 shows that:
if the onset flow is parallel to the x-axis, the signs of the source densities
on all three reflected elements are the same as that on the basic element;

if the onset flow is parallel to the y-axis, the sign of the source density on
the third reflected element is the same as that on the basic element, while
the source densities on the first and second reflected elements have the
opposite sign; if the onset {iow is parallel Lo ilhe z-axls, the sign of the
source density on the first reflected element is the same as that on the basic
element, while the source densities on the second and third reflected ele-

ments have opposite sign.

The calculation method for bodles with two symmetry planes is identical
to that for non-symmetric bodies through the first output, and the basic
elements are formed from the input points in the usuval way. The first differ-
ence occurs during the computation of the ''matrices of influence coefficients'!.
After the veloclity induced at the null point of the i-th basic element by a
unlt source density on the j-th basic element has been caleulated, the com-
putetion is repeated three more times to obtain the velocities induced at this
null point by the j-th reflected elements. All induced velocities are com-
puted by the method of section 9.52 and thus all that this calculation re-
quires 1s the set of twenty-eight defining quantities for each of the reflected
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elements. In the previous sectlion, the reflection of an element in the xz-
plane was discussed and it turned out that twenty-three of the defining

quantities are unchanged, while the following five are changed in sign:

8 a

Bop 31

Yo 85 %3

A reflection in the xy-plane is acomplished in a similar way except that it
is the z-components of vectors and coordinates of points whose signs are
changed rather than the y-components and coordinates. After each reflection
the signs of the components of the normal vector are changed to make the
element coordinate system right-handed. The result is tihwmt the reflection
of an element in the xy-plane is accomplished by changing the signs of the

following filve quantities:

z a,, a a a

31 32

It is convenient to show the relations between the basic and reflected elements

by means of the following table.

Element Origin Transformation Signs Changed
Matrix from Previous
Element
%o 8j1 %z 1%
Basic Yo Ao 85, Brs
%o 831 %30 B33
X -y, a, y
First o] all al? 13 o}
Reflected Yo 21 20 03 %10 Bop
%o "8z Yz sz &31 B3
X -8 -k .. Z
Second. o) 11 1z ) o]
Reflected Yo 81 TBop 8oz 813 o3
o 831 T83p 833 831 82
i %5 f11 "2 %13 Yo
Reflected Yo 801 Bpp  "8nsz &2 29
%o T8xy THap Bay B 833
o 811 P12 813 %0
Basic Y a5 dsn a25 1% a25
%o 31 32 233 831 7




The signs of any of the twenty-eight defining quantities not listed in this
table are the same for all corregponding elements. After all four induced
velocities have been computed, the basic element is obtained again in the

manner shown in the table.

Suppose now the velocities induced at the null point of the i-th basie
element by the j-th basic, first reflected, second reflected, and third re-
r?ecged e%ements have been computed. Let these be designated V;j, ‘iir),
i 27 -‘-,-31‘

l' e

13 7 iy ? rezpectivaly. The componcnts Of these voctors in the reference

coordinate system are:

<k

te]

15 Y13 By

yr) , J(r)  L(r)  (1r)
iy xij Lo 2y

gler) , (2r) (er) ,(2r)
Yig o M 1 "1

5(3r) (51" y(or) ,(5r)
ij ij iJ LJ

ve

These are now combined in the proper ways for use with onset flows parallel

to the coordinate axes. Define the vector

v(l) _ v . V(11 (Qr) (3r)

10 " Vag t Ve Vag T VG (207)
with components ) p (
w1 (ir)  (er) (3r)
1J = Xij + Xij + XiJ + XiJ
~_(ﬂ B . {ir) {(ov; {3r) .
"iJ = !1J Yij 4 YiJ + Yij (128)
() g v gl g2, 5y 0Or)

iJ 1] i i3 iJ
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the vector

=(2) _= (1r) =(2r)  =(3r)
Vig = viJ vij + viJ (109)
with components
@) o g x(ar) _pler) | x(5r)
137 = %13 7 %4y Xid 1J
(2) _ y(1r) _y(er)  4(3r)
Yij = Yij 13 13 + YiJ (110)
(2) _ g(1r) _ (2r) (3r)
Biy’ = Byy T lyy " Ty T v By
and the vector ( ) ( ) ( ) ( )
i) Ly =(1r) _ sler 3r
13 = viJ + Vij viJ iJ (111)

with components
(5) =X, ., +X

) 13 7 My T My T My
¢(3) _ (i) {2r) ,(3r) "
iy = Yij + Ylj Yij o (112)
(3) _ (rr) _ (er) _,(3r)

2377 = Byy v By 2,30 = 2y

The complete sets of Vgi’, Vii), and Vi?) are thus the vector ''matrices of

influence coefficients'' for bodies with two planes of symmetry. They are
suitable for use with onset flows parallel to the x, y, and z coordinate
axes, respectively. Each matrix is N x N, where N is the number of basic

elements.

As before, the dot products of the vectors

(1) +(2) #(3) ..
Vij s vij , and Jij vith the

unit normal vector of the i~th basic element are performed to obiain the in-

A(1)
ij ’
shown in equation (102). The complete sets of these induced normal velocities

)
duced normal velocities .(,), and A§§’, in a manner similar to that

form the coefficient matrices for the sets of linear algebraic equations for

the values of the surface source density on the basic elements.
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9.55 Bodies with Three Symmetry Planes.

Bodies with three planes of symmetry are handled by carrying the procedure

of the previous section one step further.

One-eighth of the body surface is

specified by input points while the other seven-eighths is taken into account

by reflections.

To each basic element, which is formed from input points,

there correspond seven reflected elements, which are designated first re-

flected element, seccond reflected element, ete.

coordinate planes of the reference coordinate system.

The symmetry planes are the
Figure 26 shows a sketch of

a typical body with three planes of symmetry and the position of the various

reflected elements.

280 R
8~_3RD.
-

EFL.

rREFL.
A

6TH.REFL.
Ps

Figure 26. - A body with three symmetry planes.

The relationships of the reflected elements, which are obtained by successive

reflectlons of the basic element in the symmetry planes, are shown in the

teble below:

This Elemnent
is Reflected

at Basic
1 a Reflected
egd Reflected
Reflected
Reflected
Reflected
., Reflected

70 Reflected

In This
Plane

X-%
X~y
X~-z
V=z
X~z
X=y
X~z

¥-z

95

To Obtain
This Element
1?5 Reflected.
erd Reflected
3tr Reflected
htﬁ Reflected
5th Reflected
6th Reflected
7 Reflected

Basic




If the onset flow is parallel tc one of the coordinate axes, the values
of the source density on a basic element and the seven corresponding reflected
elements are all equal in magnitude. The sign of the source densities depends
on the direction of the onset flow. The relation of these signs are given in
the table below, which may be verified by inspection of figure 26:

Direction of Reflected Elements Reflected Elements
Onset Flow With Same Sign as with Opposite Sign
Basic to Basic
x-axis lst 2nd 5rd hth 5th 6th 7th
y-axis 5rd uth 7th lst 2nd 5th 6tn
2 ~axis lst Gth 7th Qnd 3rd hth 5th

The calculation method proceeds in the usual way through formation of the
basic elements and the first output. To compute the !'matrices of influence
coefficients'! it is necessary to compute the velocity induced at the null
point of the i-th basic element by the j-th basic element and by all seven
of the j-th reflected elements. The induced velocities are computec by the
method of Section 9.52, and the twenty-eight defining quantities for each re-
flected element are required, in this case, in addition to reflections 1in the
xz and xy coordinate planes as was done in the previous section, reflections in
the yz-plane are also performed. After a line of reasoning similar to that
used for the other symmetry planes, it turns out that an element is reflected

in the yz-plane by changing the sign of the following five guantities:

%5 all

As before, this reflection includes e reversal of sign of the unit normal

vectour to make the element ccrordinate system right-handed.

The relatiorsbetween the basic and reflected elements are shown in the
followlng table.
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Flement Origin Transformation Signs Changed

Matrix From Previous
Element
X5 %11 81 Hi3
Basic Yo 801 By aa5
Zs 831 830 833
X a -a a y
First o a11 -312 813 ] o .
Reflected Yo 21 o) 2% 12 20
25 “8z1  B3p 833 831 833
Second Xy 11 %12 813 %o
Reflected s 821 "8pp  Tan3 813 8o3
—Z.O 3.31 -852 -&33 8.31 &32
i} a, ~8, y
Third O al.L a.l.r__ -al_ . o] N
Reflected Yo 21 o 0% 12 22
-z a1 TR3p 3 #31 433
- -8, -g, X
Fourth o -all a12 _al5 ) o .
Reflected Yo o1 op 03 11 o1
7 "8z f3p  "¥33 F50 #33
-x -8, -8 -8, v
Fiftn 11 12 13 ) o
Reflected 7o “Bny  “Bpp "Bog ) &oo
"z #3032 %33 #31 833
-X -3 -a a 2
Sixth j 11 alE a13 . o
Reflected Yo 801 oo 23 1% 8oz
%o 831 830 Ba3 #31 822
-X -3, a a y
Seventh ° all alQ 15 °©
Reflected 75 "8oq 20 83 &0 850
%o 831 %30 833 821 5%
% 11 %12 33 %o
i
Baslc Yo 821 ®op  8p3 411 821
%o 831 %32 Bz F3p &3

The signs of any of the twenty-eight quantities not listed in this table are
the gsame for all corresponding elements. After all eight induced velocities

have been computed, the basic element is obtained again as shown in the table,
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Suppose now the vector velocities induced at the null point in the i-th

badic element by the j-th basic element and its seven reflected elements have

been computed.

Let these vectors and thelr components in the reference co-

ordinate system be denoted:

V(7r)

i

.
.

.
s

.
.

Xy, Y,
(1r) (1r)

X435 Y4
(r) (Tr)

X3 Y

%y,

(1r)

2]

(7r)
ziJ

These are now combined in the proper ways [or use with onset flows parallel

to the coordinate axes.

_.(1) =
Vij = Vij

with components

(1) _
Xiyh = %y
1)y
1J i
Z(l) =7,
1 id
the vector
7(2) _ 5
ij ij

with components

3{1r)
13

+

=(2r)  +=03r) _
ST
(er) (3r)
Xij + XiJ
flex) ()
i ij
(2r) (3r) _
Zij + Zij
Dy .:.’—
g%‘) + \\?r) +
i i3
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Define the vector

3(
Vi

%T) “-v(5f) - v(Gr)

+(7r)
iy - vgj (113)

i

_ (i) _(or) _ l6n) _ (1)

i3 ij i3 iJ
_ylhr) o (er) _ (6r) _ (7r)
Yij - Iij Yij Yij (11k)
Lir) _ g (5r) _ pler) _ o (7r)
ij ij i ij
glir) _50r) _len) F{77) (115)
13 Ly 1J 1)



2 r Lr or 6 )
Ky = x, -y - K e xr) ey —,Xg D -xf ey

@) _y  _y(r) _yler)  gOr) gy g(5r) _y(6r) |y (Tr) (54

13 13 ~ 13 1] 1j 1J 13 14 13
(2) _ _ (1) _ (er) (3r) (br) _ _(57) _ _(61) (7r)
Zij = Zij Zij Zij + Zij + Zij ZiJ zij + ZiJ

and the vector
+3) _ s L slir) _sler) _3{3r) _s(hr) _(5r) | 5(6r) (7r)
Vi3 =V, + V5 S~ v 13 v, + v +i7iJ (117)

J 13 13 J ij

with components

(3) _ o 1r) _ J(er) _ L (3r) _ (kr) _ (57) (ér) (7r)
Xij = Xij i Xij Xij Xij Xij Xij + xij + Xij

(3) _ ir) _ J(er) (3r) {4r) _ (5r) (6r) (1r)
Yij _Yiijij Yij —Yij —YiJ Yij +Yij +Yij (118)

(») _ (ir) _ (er) _ ,(3r) _ (4x) _ (5¢) (ér) (7r)
Zij = Zij + ZiJ Zij Zij Zij Zij + Zij + Zij

(1) o(2)
Vlj b ViJ 2
influence coefficients''! for bodies with three planes of symmetry. They are

suitable for use with onset flows parallel to the x, y, and z coordinate axes

The complete sets of and v§§)’ are the vector ''matrices of

respectively. Each matrix is N x N, where N is the number of basic elements.

As before, the dot products of the vectors Vgﬁ), véi), and V§g) with the

unit normal vector of the i-th basic element are performed as shown in(e%ua-
(1) ,(2) 5

Aij P Aij , end Aij .

The complete sets of these induced normal velocities form the coefiicient

tion (102) to obtain the induced normal velocities

matrices for the sels of linear algebraic equations for the values of the

surface source density on the basic elements,
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9,56 Summary, Unification of Notation, and Designation of Onset Flows.
The results of the calculations of the previous parts of Section 9.5

may be described in a unified form applicable to all body surfaces, whatever
the symmetry condition. It may be said that in all cases three vector
""matrices of influence coefficients'! are obtained, each of which is ap-
propriate for use with an onset flow parallel to one of the coordinate axes.
These three matrices are identical for non-symmetric cases, while the first
and third are identical for cases of one plane of symmetry. The vector
elements of these matrices, Vﬁ?? Vii),
induced at the null point of the i-th element (or the i-th basic element in

and 'V§3 s are the vector velocities

cases of symmetry) by a unit source density on the j-th element (or J-th basic
element and its corresponding reflected elements in cases of symmetry). In
particular, the actual velocities induced at the null point of the i.th element
(or 1-th basic element) by the j-th element (or j-th basic and reflected ele-
ments ) is obtained by multiplying these velocities by the true value of the

source density on the j-th element (or j-th basic element).

(1) «(2)
Yigr iyt
use with onset flows parallel to the x, the y, and the z coordinate axes,

The sets of induced velocities and'vgé), are appropriate for
+dJ

respectively. The method has been constructed to handlie these three onset

flows simultaneously. That is, in normal cases three onset flow vectors are

input. These are: the vector V(l), with components
@
v(1) v oo vid) L (119)
ooX oy ®2z
the vector Véf) with components
(2) (?) (2)
v = Q v =1 ' =0 (120)
O0X @ ooz
and the vector 7ﬁ2) with components
(3) _ (3) (3)
Ve = O Vooy = © Veou = 1 (121)

The notation may be made more compact by introducing the integer superseript
+(s)
vij

(s), where s = l, 2, 3. Then the set of induced vertor velocities
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and induced normal velocities Aig) is used for the onset flow Vﬁz) to0 com-

pute a complete set of source densities and flow velocities. The onset flows
F(s)
00

normally three complete flow calculations are performed.

,s =1, 2, 3, are given by equations (119), (120), and (121). Thus

There are two cases where the onset flows need not be the three unit
vectors given in equaticne (119), (120), (121). For non-symmetric body

surfaces there is only one distinct ''matrix of influence coefficients'?!, i.e.,

v%) ) v§§> vg) - (122)

Thus this matrix is suitable for use with any onset flow and the three onset

flow vectors ﬁéf), s =1, 2, 3, may be unit uniform streams of arbitrary
inclination. Also, for body surfaces with one plane of symmetry, two of the

""matrices of influence coefficients'! are identical, i.e.,

1) _ 303)
vij = vij (123)
Thus the onset flous 'Vég) and Vgg) may be any unlt uniform streams in the

xz-plane, i.e., in the plane of symmetry.

For the other cases, i.e., all flows for body surfaces with two or three
symmetry planes and ﬁéﬁs for body surfaces with one plane of symmetry, the
onset flows must be as shown in equaticns (119), (120), and (121), and in all
cases the cnset flows must be uniform streams of unit magnitude, If less than
three onset flows are desired, the others may be input with all components
zero. This however will not affect the computation of the ''matrices of

I1nIiugnce coeilrliclents'’,

9.6 The Linear Algebraic Egquations for the Values

of the Surface Source Density

9,61 Formulation of the Eguations.

Now the values of the surface source density on the elements will be ob-

tained as the solution of a set of linear algebraic equations. Regall that

the source density is assumed constant on each quedrilateral element. Thus
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there are N unknown values of the source density, where N is the number

of elements formed from the input points (basic elements in cases of symmetry).
The total normal velocity is required to vanish at the null point of each
element formed from the imput points anmd thus there are N equations for the

N unknown values of the source density.

For any onset flow V§§) (see Section 9.56 for notation) the normal
velocity induced at the null point of the i~th zlement by a unlt source
density on the j-th element 1is Agj) . (For bodies with symmetry the de-
signations ''i-th basic element'! and ''J-th basic and reflected elements'!'
should be used in the previous statement, but the extension to cases of sym-
metry is obvious with the notation of 9.56, and subsequently explicit mention
of cases of symmetry will be omitted.) Thus the actual normal velocit& in-
duced at the i-th null polnt by the j-th element may be written Ags) . cgs) 3

where o(s) denotes the congtant value of the source density on the j-th

J P
element for the onset flow Véf) « The total normal velocity irduced at
the i-th null point by all quadrilateral elements is accordingly,
N
(8) _ (s) (s) '
N o= ) Aij . (124)
J=1

The normal component of the onset flow at the i-th null point is the dot
product of the onset flow vector and the unit normal vector of the i-th ele-

ment, i.e.,

- -, v, vis) Ly yls) (125)

/
V(s) =, - V\“) = n .
cony i o0 1x "oox iy “ooy iz ooz

The total normal velocity at the i-th null point is the sum of (124) and (125).
Thus the requirement that the normal velocity vanish at all null polnts gives
the following set of linear equations for the values of the source density
N
T1 (S) (S) (S) ™ . I
ZJ Aij Uj = Voon 1=1,2, «osy N {126)
-t_.l i
3=

By sucessively taking s =1, 2, 3 in (lSS), a complete set of source densi-

ties ia obtained for each onse’ flow.
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9.62 Solution of the Equations.

The numerical solution of equations (126) is a major portion of the total
(ij has an crder
N of 500 - 800, and so solution by direct elimination is not feasible., Of
many possibilities, the only ones actually programmed are two forms of the

calculation. In typical cases the coefficient matrix A

Seidel iterative procedure. This procedure has the advantage of being ex-
tremely simple so that the time per iteration is minimized, although the
number of iterations required to obtain a sufficiently accurate solution may
be larger than for a more sophisticated procedure. The coefficient matrix
als
13
diagonal elements are much larger than any off-diagonal elements.

is rather well suited to this procedure since for most bodies its

In the first form of the iterative procedure the {p + 1)st approximation
(s)(p+1) (s)(p)
i

to the solution ¢ is obtained from the p-~th approximation ci

by the relation

N
(s)(p+1) 1 | N\ L(s)  (s)p) (s)
o 5P o Zggy féJ Aiz aj P) s v“’ni 1=1,2,...,N
3 (127)
With the definition
5 U§S)(p) - O(iS)(p+l) _ 0is)(p) (128)

this may be put in the following form, which is more convenient for calculation,

N

, o(8)(p) 1 (s) _(s)(p)

E)Gis P =—X(—s'7 z Aij GJS p+VC(DS)I’li i=1, 2,...,N
11 L j=1 - (129)

In this form the entire set of Uis)(p+l) is caleculated from the values of

the previous spproximation o§s)(P).
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In the other form of the iteration the most recently calculated approxi-
mations to the cgs) are used in the right-hand side of (129). Specifically,

the 0£s)(p+l) are obtained Trom the 0§s)(p) by the relation

i1 N
(s)p) _ _ 1 N L(s) _(s)(p+1) (s) (s)(p) | (s)
5o, = ZEET fgi AiJ o, 4-2; Aij o5 + vooni (130)

In either case the iteration (129) or (1%0) is repeated until the maximum
value of 18 0§s)(p)| for a particular p is less than a certain prescribed
nunber. This number has been set at 0.0001.

(s)

The initial values of the Gi are taken as zero in both forms of the
iterations. In practice three sets of equations are solved simultaneously —

one for each value of s. An iteration is performed for each set of equations

: . . v s )

in turn, and this proccdwre is repeated until one set of 0§ ) has converzed

to within the prescribed accuracy. Then iterations are performed in turn for
A . . . 5

the remaining two sets of eguations until one of these sets of 0§ ) con-

verges. Finally the last set of eguations is iterated by itself urtil con-
vergence is attained. If' less than three onset 1'lows are desired, the other
onset flows may be set equal to zero. It is evident from the form of (129)

and (130) that for such onset {lows convergence to zero is obtained immediately,

and some saving in computation time results.

The second form of the iteration (130) always converges at least as
rapidly as the first form (129) and almost alweys converges considerably
fagster. Generally, the form (129) requires from 7 to 60 iterations for con-
vergence, with typical cases requiring 30 to 40. The form {130) requires
7 to 40 iterations for convergence, with typical cases requiring 15 to 25.
Thus the form (1%0) is always used in practice. The other is presented here
for completeness. The order in which the elements sre considered may affect
the rate of convergence for the second form of the iteration, while for the
first form it cannot. This, however, has never been a factor in the speed

of the solution.
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One method of accelerating the convergence of either (129) or (130) that
has been investigated but not programmed is based on the fact that after a

certain number of iterations the ratio

50&)@)

I =) (1z1)

94

Dis)(p)

is practically independent of' p (and also practically independent of 1,
although this fact is not particularly useful). If this were exactly true,
i.e., 1if

B0 L 0

1

(s)(p) (s)(c0)

then the final value of oy » S8y 0y could be written

NOICHINOIC

5 c§s)(p) + D U§S)(p+l) + B o§s)(p+2) + ...

- gis)(p) + B gis)(p){_l + (pgs)) + (p(S) ) 2 ... }

or, by summing thec geometric series

( - o)), i (134)

(s)(p)
Py

sufficiently independent of p for the use of (134) to give a considersble

In many cases, after a relatively small number of iterations becones
improvement in the accuracy of the approximation. In such cases the use of
(134) at a particular stage or stages of the iterative procedure (129) or (130)
can signifilcantly reduce the number of iterations required for convergence.

The inclusion of this feature in the method of solution of the linear equations
1m (S)(P)
/ z, N7 ooN i
p;° P! = 018 P | 50 that (134) will be applied at the proper stage of

the iterative procedure.

rily a matter or designing tests on the size of & ¢ and

2
)
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9.7 Calculation of Total Flow Velocities. The Second Output.

9.71 Velocities and Pressures on the Body Surface.

Once the values of the surface scurce density on all elements have been
determined, the actual flow veloclties at the null points are calculated by
multiplying the elements of the ''matrices of influence coefficients",(which

were calculated assuming a unit value for all source densities ) by the
corresponding true values of the source densities, summing, and adding the
onset flow. Recall that the veloclty induced at the null point of the i-th
element by a unit source density on the j-th element is the vector V( )

with components X£i), £§), and Zii), where s identifies the corresponding

onset flow Vﬁg). Let the total flow veloclity at the null point of the i-th
(s v(s) (S) v(s)

element be denoted by the vector V, with components ix ? 1y iz

a4

»

These components are given by

LY K o )
j=
N
V§;) ==}: Ygi) cgs) + V£§3 (135)
j=1
N
v§z>=}: (j) ogs)+ v(():z)
J=1

Equations (135) are evaluated for all values of i, i.e., for every null point,
ard for s =1, 2, 3 to give flow velocities for all three onset flows. The
velocity components given by (135) are the basic results of this computation
method., ¥For convenience certain other guantities of interest are computed

from the velocity components. These are the velocity magnitude

o TR B~ TR

the pressure coefficient

\
5’)2 (157)
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and the direction cosines of the total flow velocity vector

-/

7§;) - (s)/v(s) (138)

(s) _ (s)//v(s)

7iz

[

It might be mcntioned in pacsing that if the onget flow 1is input as a uniform
stream of other than unit megnitude, all calculated quantities are correct
except the pressure coefficient. TFinally, as a measure of the accuracy of the
solution, the total normal velocity at each null polnt is computed from

N

Vr(nsL) ) z W) (s) , y(s) (139)

1j J oon
5 *

The second output of the method has a format similar to that of the first
output, and the elements are listed in the same order. The quantities tsabu-
lated are: the identifying integers m and n, the coordinates of the null
point in the reference coordinate system, the components of the total flow
velocity at the null point, the magnitude of this veloclty and the square of
this magnitude, the pressure coefficient, the direction cosines of the total
flow velocity vector, the components of the unit normal vector, the total
normal velocity, and the value of the surface source density on the element.

The format of this listing 1s as follows:

bl m xﬁp Vis) V(s) 5;) n, Vii)
' 2 s
Yap (V§S )) ?E;) 7£:>sr) By Og )
Z3p Clgi) 1( Vi, ) 7$ ) n,

In the gbove ligsting the notation of the earlier sections has been followed
and the subscript 1 omitted from the coordinates of the null point and the

components of the normal vector. 7The above information is lictod for every
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null point, and there is one completz output for each onset flow, i.e., for

every value of s.

9.72 Velocitles and Pressures at Points off the Body Surface.
The velocity may also be computed at points off the body surface. Such

points are designated off-body points. The coordinates of the off-body points
in the reference coordinate system, are input to the machine at the beginning
of the program along with the input points, but they are not used until this
stage of the calculation,

The off-body polnts are identified by the integer subscript v, which
denotes the order in which they were input. The coordlnates of the v-th off-

body point in the reference coordinate system are denoted xébv’ yébv’ zébv'

Each off-body point is inserted into the portion of the program that computes
the vector ''matrices of influence coefficients'! and treated exactly like s

null point. That is, for the v-th off-body point a set of ng), YSi), 253),

J=1, «.., N, 8 =1, 2, 5, 1s computed by the methods of Section 9.5 using
the coordinates nf the off-body point in place of the coordinates of a null
w8} y(s) ,(s)
Vi vl TS
components induced at the off-body point by a unit source density on the j-th

point in the formulas of that section. The are the velocity

element (or Ly the j-th basic and retlected elements in cases of symmetry).

The velocity components at each of't'-body point are then calculated from

N
yle) _ Ny (e) (s) | (s)
VX vJ 4 00X
J=1
N (s) _(s)
() _ s) (s8) , (s}
vvy = E: ij 5y vooy (140)
J=1
(s) X (s) (s8) , y(s)
s) _ 5] 8 B
sz = ; Zvj UJ + Vooz
j:

Equations (140) are evaluated for s =1, 2, 3 to give velocity components

for all three onset flows., These veloeity components are combined in a
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manner similar to equations (136), (137), and (138) to give velocity magnitude
Vss), pressure coefficient Cpi' and the direction cosines of the velocity

s s 5
©), 05,6,
The Tormat of this listing is as follows:

vector 7y These quantities are listed on separate ocutput.

vooxgy, vl e e
2 8

vie | (VEE W) e

sy, ) vl L)

There is of course a complete listing for each onset flow.

9.8 Storage Limits. The Maximum Number of

Elements

The maximum number of elements that may be used to approximete a body
surface is dictated by the storage capacity of the computing machine. The
method utilizes both the high speed core siorage of the machine and the low
speed tape storage. The capacity of either type of storage may be the
limiting factor on the number of elements. These two types of storage limits
are discussed below for the two computing machines for which this method has
been programmed — the IBM 704 and the IBM 7090. The high speed storage
capacity of the machine is taxed during the calculation of the sets of lpduced
velocities or ''matrices of influence coefficients'', described in Section 9.5.
During this computation the twenty-eight quantities defining each element
must be in the core. Also, since the induced velocity matrices are transferred
to tape storage one row at a time, there must be a provislon for storing a

complete row of the induced veloclty matrices. Thus for each element a set

(s) (s) ,(s)
xi,j ) Yij J ZiJ )
components induced by that element ai one particular null point, wust be

of the quantities s =1, 2, 5, vhich are the velocity

stored along with the twenty-eight deflning quantities. For non-symmetric

A : i or w8 (s) {s)
bodies there 1s one set of X 13 Yij , ZiJ

bodies with one symmetry plane and three sets for bodies with two or three

, while there are two sets for

symmetry planes. In all cases the rows of the induced normal veloclty

f‘\
matrices are computed just before storing, so for each element only one Ai}’
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is stored in the core at any time. Thus, if N is the number of elements
formed from the input points (basic elements in cases of symmetry), the total

storage required for the elements in the various cases is

Non-Symmetric t 32N
One Symmetry Plane :t 35 N
Two or Three Symmetry Planes: 38 N

These requiremente are somewhat increased except for the one plane of
symmetry case by other considerations. Up until all the elements have been
formed storage must be provided for the coordinates of the input points,
which then become superfluous once the calculation of induced velocities has
begun. Accordingly, this storage is then utilized for the induced velocity
components. In all cases of symmetry the induced velocities require at least
as much storage as the input points, and there is no trouble. For non—sym-
metric bodies, however, there is only one set of induced veloclties, which
thereby require less storage than the coordinates of the input points, since
the number of input points exceeds the number of elements. The additional
t'wasted'' storage that must be provided for the input points amounts to
about 1.7 mummbers per element in non-symmetric cases only. (See below for
limits on the number of input points.) Also in cases of two or three sym-
metry planes where (unlike the cagse of one symmetry plane) the number of
intermedlate induced velocities duc to the individual basic and reflected
elements exceeds the final number of combined induced velocities, provision
has becn made for storing one edditionsl set of induced velocity components —
three numbers. This additlional storage is not essential, but is required
by the particular programming logic employed. With these adjustments the

total high speed storage required for the various cases is as follows:

Non-Symmetric : 33T N
One Symmetry Flane : 3% N
Two or Three Symmetry Planes: 41 N

The IBM TO% and the IBM 7090 for which this method was programmed both
have a high speed core of 32,000 storage registers. On the IBM 704k the
program of this method requires about 4,000 words, while the supervisory

program used requires sbout 1,000. The compatibility program that allows the
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program of the method to be run on the IBM 7090 requires about 4,000 words.
Thus on the IBM TO4 there are 27,000 storage registers available for the
elements, while on the IBM 7090 there are 23,000 available. Thus the core

storage limits on the maximum number of elements are as follows;

Core Storage Limits on Element Number

Type of Case : IBM TO4 IBM 7090
Non~Symmetric : 800 675
One Symmetry Plane : 770 650
Two or Three Symmetry Planes: 650 550

The low speed tape storage capacity of the machiuc is taxzed by

. (s) (s8) ,(s) ,(s) -
the induced vilocities Xij , Yij R Zij R Aij , s =1,2, 5. Since the

matrices Ai? are used many times during the iterative solution of the
linear equations, in the program for the IBM 70k they are stored in duplicate
on different fape units; which are then used alternately to eliminate the time
required for rewinding a tape, The requirement is imposed that one complete
set of Aii be stored on a single tape unit. Thus in the largest cases on
the IBM 704 five tape units are completely filled — one for each set of A§§)
and three for the Xgi), Ygi), Zgg). In this scheme, if larger cases were
allowed, three additional tape units would be required — one for each set of

{a) {(c)
Agﬁ) and ope for x(fz, Yig’, 253'. This would mean & total of eight tape

units, which is more than was available. Increasing the storage capacity by
changing the tape reels is not feasible, since it would have to be done every
iteration during the soluiion of the linear equations. Thus the low speed
tape storage limit on the number of elements arises from the fact that a
complete set of Aii) s 8 =1, 2, 3, must be stored on a single tape-unit.
The program for the IBM 7090 does not store Agg) in duplicate. Nevertheless,
the same tape storage limit was adopted for this program, because of the
possibility that this procedure may be adopted in the future. In any case
the core storage limits are the critical ones for the IBM 7090 program.

For non-symmetric bodies there is only one matrix Aﬁz), vhile there are
two matrices for bodies with one symmetry plane, and three matrices for bodies

with two or threze symmeiry planes, Thus if N is the number of elements
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formed from input points, the total number of the A§§) for the various

cases is:
Non-Symmetric H N2
One Symmetry Plane : 2N2
2

Two or Three Symmetry Planes: 3K

The tape units used with the IBM 704 and sometimes with the IBM 7090 uvti-
lized low density tape. A new 2400 foot reel of this tape provides 900,000
words of storage. Recently the tape units used with the IBM 7090 have
utilized high density tape, which increases the storage capacity by a factor
of about 2,78, Thus the tape storage limits on the maximum number of elements

are as follows !

Tepe Storage Limits on Element Number

Type of Case : Low Density High Density
Tape Tape

Non-Symmetric : 9Ls 1580

One Symmetry Plane : 670 1120

Two or Three Symmetry Planes 545 910

In each case the limits for the high density tepe are just those for
the low density tape multiplied by \/2,781:: 1.67.

The actual limit on the number of elements in any case is the smaller of
the core limit and the twpe limil. From the above it is clear that this
limit depends both on the machine and on the type of tape used. By comparing
the two tables above it can be seen that, if high density tape is used, the
core limits are the critical ones for all types of cases on both machines.

If low density tape is used, the core limlts are still critical for the

IBM 7090 (except that in cases with two or three symmetry planes the core
and tape limits are essentially equal) while for the IBM TO4 the tape limits
are critical except for non-symmetric bodies. Assuming that low density teape
is used with the IBM 704 and high density tape with the IBM 7090, the limits

on the maximum number of elements are as shown in the table below:
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Meximum Number of Basic Elements

Type of Case :+ IBM TO4 TIBM 7090
Non-Symmetric : 800 675
One Symmetry Plane : 670 650

Y]

Two or Three Symmetry Planes 545 550
If low density tape is used with the IBM 7090, these limits are unchanged
except that the limit in cases with two or three symmetry planes is lowered

by flve elements.

These limits are on the number of elements formed from the input points —
basic elements in cases of symmetry. The total effective number of elements
that approximate the entlre body surface is found by multiplying these number
by two raised to a power equal to the number of symmetry planes. For con-
venience the maximum effective number of elements for the various cases in

the previous table are listed below:

Maximum Effective Number of Elements

Type of Case : IBM TOU IBM 7090
Non-Symmetric : 800 675
One Symmetry Plane : 1340 1200
Two Symmetry Planes 2180 2200
Three Symmctry Planes: 4360 4400

There are also core storage limits on the maximum number of input points.

Basically, the input points ¢ccupy the same storage as the induced velocity
x(8) y(s) ,(e)

i3 2 "13 2 "1y ¢
this means that the ratio of maximum number of input points to maximum number

components Since each input point has three coordinates,
of basic elements {core storage limit) equals the number of induced velocity
matrices computcd. This would fix the maximum number of input points at N,
2N, and 4N in cases of zero, one, and two or three symmetry planes, respec-
tively. (The 1imit is LN rather than 3N in cases of two or three symmetry
planes, because storage is provided for a fourth set of induced velocity
components, as explained above.) These limits, however, have been adjusted.
It is clear from the description of how elements are formed from input points

in Section 9.1 that the number of input points must exceed the number of
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elements formed. Thus in non-symmetric cases provision must be made for
storing more than N input points even though the maximum permissible number
of elements is thereby reduced, as mentioned above. It is difficult to
imagine a situation for which more than 2N input points would be required,
so the 1limits in cases of two or three symmetry planes have been reduced

to this value. The maximum numbers of input points permitted by the actual

program are as shown below:

Maximum Number of Input Points

Type of Case :  IBM 704  IBM 7090
Non~-Symmetric H 1250 1125
One Symmetry Plane : 1540 1300
Two or Three Symmetry Planes : 1300 1100

Prom the manner in which elements are formed from the input points it is clear
that the number of input points does not greatly exceed the number of elements,
For example, consider a section with L1 n-lines, each of which contains 21
points. Thus this section has a total of L4l x 21 = 861 input points, from
vhich 40 x 20 = 800 elements are formed. [t is felt that the above limits

are hign enough so that they will never restrict the input.

Due to assumptions made during the programming of this method, the input
nust satisfy two additional conditions, neither of which is thought to be
restrictive, The maximum number of ''columns'' or n-lines of input points
cannot exceed 250, while the maximum number of sections into which the body

surface is divided cannot exceed %0.

The limits on the number of off-body points are determined in & way

similar to that used for the basic elements. It(will be recalled that vector
(s) (s8) ,(s)
Bogte Tugto By
the off-body points in the same way as they were computed for the null points.

This is accomplished by replacing the coordinates of the null points by the
coordinates of the off-body points in the portion of the program that computes
induced velocities and then repeating the calculations. The core storage

limits on the nuwber of off-body points are thus the same as those given

"*‘matrices of influence coefficients'?, are computed for
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above for the basic elements. Moreover, since stcrage assignments are per-
manent, these limits hold regardless of the number of basic elements used to
approximate the body surface. The tape storage limits on the number of off-
body points are artificial in the sense that they were dictated by programming

logic rather than by the tape storage capacity of the ?ajhin?.) It %s)re-

5 5 5

vy ? YVJ ’ ZVJ » be
stored on three tape units,as the induced veloclty components for the null

points were. (The tape units on which the Aij) were stored are thus not

quired that the sets of induced velocity components, X

utilized during this portion of the program.) Accordingly, the tape storage
limits on the number of off-body points depend on the number of basic elements.
The restriction is that the product of the number of off-body points and the
number of basic elements be less than the square of the tape storage limit on
the number of basic eiements for the type of case in question. Thus the tape
storage limits on the number of off-body points are at least as large as the
corresponding tape storage limits on the number of basic elements. The two
limits are equal if the maximum number of basic elements are used to approxi-
mate the body surface. In summary, if the core limits are critical for the
busic elements (This includes all cases for the IBM 7090.), the limits on the
meximum number of off-body points are the same mg those for the basic elements,
independently of the number of basic elements actuslly used. If the tape
limits are critical for the basic elements, the limits on the number of off-
body puints may be tape storage limitc, which depend on the number of basic
elements used, or core storage limits. The limits on the maximum number of

off ~-body points are shown in the table below.

Maximum Number of Off-Body Points

Type of Case :  IBM TGk IBM TO90
Non-Symmetric : 800 675
One Symmetry Plane s (670)°/N 650
or TYO
o, ¥
Two or Three Symmetry Planes : (54%5)°/N 550
or 650

*Me smaller is the 1imit
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9.9 Computation Times

This section presents some analysis that, it 1s hoped, may prove us<ful
to the user of this method in the estimation of computation times. Basically,
experience in the use of this program is necegsary before accurate estimates
of computation times can be made, It 1s necessary because the time for a
particular case depends not only on the number of elements used to approximste
the body surface but also on the geometry of the body in a manner that is some-
times difficult to predict. The following analysis shows the basic dependence
of the computation time on the number of elements for various portions of the
program and points out where the body geometry is most important. For a known
body geometry this analysis defines computation time as a function of clement
number in terms of certaln timing constants. Generally, these timing constants
do not represent simple computation times for a basic operation, but are due
to several sources, For this reason they have been determined empirically
by timing the various cases that have been run on the IBM 7Ok and the IBM 70%0.
These constants are thus not known to high accuracy, for the timing of these
cases 1s subject to many sources of error that cannot be taken into account.
These errors include clock inaccuracles, machine room procedure, and minor
difficulties of mechine operation. Ultimately, satisfactory estimates of
the timing coanstants could be obtained {rom a large number of cases. It is
believed that the values given below are accurate enough to be useful,
particularly those for the IBM 7O on which considerably more cases have been
run than on the IBM 7090 and for which the computation times are severel

times ag large.

For the purpose of estimating computation times it is convenient to
divide the total calculation into four parts. These are: (1) the formation
of the elements from the input points (Sections 9.2, 9.3, and 9.4); (2) the
calculation of the induced veloeities (Section 9.5); (3) the solution of
the linear equetions (Section 9.6); and, (4) the calculation of the total
flow velocities (Section 9.7). The computation time of (1) is negligible,
while that of (4) is definitely minor. Parts (2) and (3) are the time-
consuming ones and either may be the larger. Estimates of these computation
times and their dependence on the number of elements, symmetry planes,and

onset flowa in the case being calculated are discussed below,
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The time required to form elements from the input points depends only on
the number N of elements that are formed, It is independent of the body
geometry, the number of symmetry planes,and the pumber of onset flows. This
time is simply proportional to W and is thus negligible compared to the other
computation times that vary as N2. Its only importance 1is that it is the
time that elapses up to the first output, and this portion of the computation
is often performed separately. A sufficiently accurate estimate is cttained
by simply ignoring the dependence on N and using the time required for the
larger cases. On the IBM 704 this portion of the calculation requires 2 to
%2 minutes, while on the IBM 7090 it reguires half a minute to a minute.

The time required to compute the induced velocities or ''matrices of
influence coefficlents'' depends on the element number, number of s&mmetry
planes and the body geometry, but it is independent of the number of onset
fiows, If the induced velocity components were calculated by a single set of
formulas, body geometry would not be a factor, and the computation time would
gimply be proportional to NE, the square of the number of basic elements,
multiplied by two ralsed to a power equal to the number of symmetry planes.
However, the induced velocity components are computed by one of three
alternative sets of formulas: source, equation (97); source-quadrupole,
equations (57) through (62); or exact, equations (42) through (49). The body
geometry i1s important, because different hody shapes use the various sets of
formulas for different proportions of the elements. The times required to
compute a single set of induced velocity components by each of the three

methods are as follows:

Velocity Formila IBM TO4 IBM T0S0

Source 0.17 * 107 min 0.026 + 10”0 min
Source-Quadrupole 0.43 + 107 min 0.04 - 10-3 min
Exact 1.75 ° 107> min 0.31 - 1072 min

It can be seen that the ratios of these basic computat:ion times are not the
same for the two machines. The differencve ig due to the fact that these times
are not simple instruction times, but include such things as tape reading.
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From the above table time estimates can be made if the number of induced
velocities computed by each type of formulas can be predicted. The last

comes rapidly with experience since a few general bodies are typical of all.
For example, any simply-connected, convex body is quite similar to an ellip-
soid of the same fineness ratio as far as the imduced velocity computation is
concerned, Alsé, these timing constants permit a good estimate of the vari-
ation of computing time with element number to be made for a given body shape.
For many bodies the number of times the veloclties induced by each element are
computed by the exact or source-quadrupcle formulas is approximately inde-
pendent of element number, and thus the total number of times these formulas
are used varies linearly with N, the number of basic elements. The number of
applications of the simple source formulas varies accordingly, so that the
total number of induced velocitles calculated equals N2 multiplied by two
raised to a power equal to the number of symmetry planes. Some examples of
the proportion of the indﬁced velocities computed by each of the three sets of
formulas in actual cases are given below. To quote the results for a typical
case, if a body with three symmetry planes is approximasted by 500 basic ele-
ments, there are 8 - (500)2 = 2,000,000 sets of induced velocity componenis
computed. Of thesge 50,000 to 100,000 are generally computed by the exact
formulas, 100,000 to 200,000 by the source-quadrupole formulaes, and the re-
maining 1,700,000 to 1,850,000 by the simple source formulas. Typical computa-
tion times for such a set of induced velocities might be eight hours on the
IBM 704 and an hour and a half on the IBM T090.

The time required for the iterative solution of the sets of linear equations
for the valuesof the surface source density depends on the body geometry, ele-
ment number, number of onset flows, amd number of symmetry planes. The time
required for a single iteration is independent of the body geometry. However,
the total number of iterations required for convergence for any onset flow is a
function only of body geometry and;, moreover, a rather strong function. Tae
prediction of the mumber of iteratlions required for a gilven body shape is a
skill that comes rapidly with experience. As was the case for the induced
velocltles, the results for bodies of the same general shape are quite similar.
A single iteration consists of two oreratimna. Firat +he matrices of induced
normal velocities are transfered one row at a time from tape storage to core
storage. Second, matrix multiplications are performed one row at a time to
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obtaln new sets of values of the surface source densities from the values of
the previous iteration. The time required for the first of these operations
is simply proportional to the number of elements in the induced velocity
matrices, which equals NQ, the square of the number of basic elements, multi-
plied by the number of matrices. It will be recalled that there is one matrix
for non-symmetric cases, two matrices for cases with one symmetry plane, and
three matrices for cases with two or three symmetry planes. All matrices for
a given case are formed and transfered to core storage during each iteration
regardless of which onset flows are actually being computed. The second
operation consists of one matrix multiplication for each onset flow that is
being computed. The time required is thus proportional to N2 multiplied

by the number of onset flows for which computations are performed during the
iteration in question. The two constants of proportionality were determined
empirically for the IBM 7Ok and the IBM 7090. The time required for a single

iteration was found to be:

_ 2
TBM 704 [b,07 (No. of Matrices) + 0.07 (No. of Flows)_](iga) min

o

IBM 7090 : [§.03 (No. of Matriceg) + 0.015(No. of Flows):](iga) ) min
Notice that the time for the computations performed in the core is of the same
order of magnitude as the tape-reading time. The use of these constants is
best illustrated by an example. Conslder a body with one plane of symmetry
defined by 500 basic elements for which calculations are being performed for
onset flows parallel to the x, y, and z coordinate axes. Suppose 1t is known
or estimsted that the iterative solutions of the three sets of linear equations
will converge in 58, 15, and L7 iterations, respectively. Then there are three
onset flows for 15 iterations, two onset flows for 23 iterations, and one onset
flow for 9 iterations. There are of course two matrices of induced velocities
for all 47 iterations. If the solution is being carried out on the IBM TO90,

the above formulas estimate the computation time as
. 2
[0.05(2:47) + 0.015(3-15 + 2-23 + 1-9)] (5)° = 108 min

The calculation and output of the total flow velocities is a similar opera=~

tion to a single iteration of the solution of the linear equations, and its
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computation time varies in the above-described way with element number, number
of omset flows, and number of matrices. In this case, however, the varlation
with number of onset flows is more important than the variation with number of
matrices, because both the flow computation and the amount of output are pro-
portional to the former number. Since the time required for this portion of
the program is a small fraction of the total computation time, it is sufficient-
ly accurate to ignore the dependence on the number of matrices and write the
time as

IBM 704 IBM 7090
8( . ) N \e , I N \ 2
0.8(No. of Flows I65) min 0.3(No. of Flows) \555) min

If velocities are computed at off-body pcints, a ''row'! of the induced
veloeity matrix must be computed for each such point, and similarly a calcu-
lation of total flow velocities is required. Thus the number of sets of ine-
duced velocity components calculated at each off-bcody point is N, the number
of hasic elementa; multiplied by two raised to a power equal to the number of
symmetry planes. The proportions of these induced velocities calculsted by
each oT the three sets of formulas must be estimated. Often it turns out
that all the londuced velocities at off-body points ares calculated by the
simple source formulas. The calculation of total flow velocities at off~body
points simply increases the compuisiion time of that portion of the program by
a percentage equal to tne ratio of the number of off-body points to the number

of basic elements.

The basic information, including actual and estimated computation times,
for some typlcal cases is presented in the tables on the following page. The
accuracy of the time estimates on thege tables is about average. No off-body

points are included in any of the cases shown in the table,
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10.0 COMPARISON OF THE CALCULATED VELOCITIES WITH ANALYTIC
SOLUTICNS

To evaluste the accuracy of this method, the calculated flow velocities
were compared with the analytic solutions for the flow on the surface of
a sphere, ellipsoids of revoluticn, and tri-axial ellipsoids. Before the
comparisons are discussed, three facts should be mentioned. Since the null
points, where the calculated flow velocities are evaluated, are seldom
actually on the body surface being approximated, there is some uncertainty
as to how the calculated and analytic solutions should be compared. It was
decided to relate the two solutions by means of the unit normal vector. For
purposes of comparison, a given null point is taken to cdrrespond to the
rolnt on the true body surface where the unit normal vecior to the suriace is
identical with the unit normal vector of the element on which the null point
in question is located. ‘lhe accuracy of the calculation obviously increases
with the number of elements used to approximate the body surface. In fact,
the variation of accuracy with element number is one of the important con-
siderations illustrated by the comparisons. The calculated velocities are
elvays identified by the total effective number of elements used to approxi-
mate the body surface regardless of the number of symmetry planes utilized
by the computation. This number, which ig the number of basic elements multi-
plied by two raised to a power egual To the number of symmctry planes, is
evidently the significant one for accuracy considerations. Finally, for
simplicity of presentation the calculated and analytic solutions are generally
comparcd along curves in the boldy surfaces that lie in thoe symmetry planes.
Many of the calculated cases utilized the symmetry of the bodies, and thus,
as explained previously, velocities were not calculated in the symmetry planes.
In these cases the velocities in the symmetry planes were obtained by parabolic
extrapolation of the velocity components at nearby points ignoring any com-
ponents known to be zero in the symmetry planc under consideration. The

errors resulting 1rom this extrapolation appear to be very small.

The errors discussed in this section are those arising irom the approxi-
mate mathematical solution of the problem of potential flow about a body .
When calculated velocities or pressures are compared to those of a real flow,

there is another source of error arising from the fact that a potential flow
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is being used to approximate & viscous, compressible, flow, This problem is

>.not discussed here. However, experience with axisymmetric and two-dimensional

flows, references 1 and 2, indicates that the calculated results agree with

experiment very well in many cases of interest.
10.1 The Sphere

The body shape that received the greatest attention was, naturally
enough, the sphere. A considerable number of spheres were calculated using
various numbers of elements to approximate the body surface. In all cases
the distribution of elements is similer, namely the one shown in figure 27.

As can be seen in the figure, the elements are distributed symmetrically about
the x-axis in the following manner. Two numbers are selected. The first is
the number NT of elements in the x-direction and the second is the number

Mn of elements around the circumference at a given x-location. The semi-
circle that is the intersection of the sphere with that portion of the xy-plane
for which y > 0 is divided in NT equal arcs each of which subtends an
angle of 180°/NT at the center of the semi-circle, The ''latitudet?! circles
formed by rotating thec endpoints of these arcs about the x-axis are taken as
the n-lines of the element system. The input poinls are spaced at equal
angles with respect to the x-axis along these ''latitude!? circles, i.e.,
there is a point every 560°/Mn around the circles, Thus the m-lines are
*tlongitude'! lines. In the ~xample of figure 27 NT =9 and Mn = 12 -

a total of 108 elemerts , spaced every 20° in the x-direction and every 30°
arcund the ''latitude?’' circles at constant values of x. This rather crude
representation of the sphere is for purposes of illustration only. In the
cases actually computed a much larger number of elements were used, but the
ratio of the element spacing in the two directions was approximately the same.
With this distribution of input points, the two points where the sphere inter-
sects the x-axis (the !'north and south poles!'!) are each common to Mn
elements, and thege elements are triangular. It is not a particularly de-
sirable gituation, and apparently introduces a certain amount of inaccuracy,
particularly when the flow is parallel to the x-axis, i.e., when these con-

centration points are stagnation points of the flow,
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Because the element distribution does not have spherical symmetry, the
calculated velocity distributions are not exactly the same for various
directions of the onset flow. Accordingly, the velocities were calculated
for two onset flows, one parallel to the x-axis and one parallel to the y-axis.
As can be seen from figure 27, in the case of an onset flow parallel to the
x-axls the element distribution has the same symmetry as the true flow (a sort
of ''axial'' symmetry), and the computed velocity magnitude is the same on
all elements lying between the same two ''latitudet' circles. If the onset
flow is parallel to the y-sxis, the element distribution does not have the
same symmetry as the true flow, and the calculated velocity magnitude will
not be exactly the same, for example, at the concentration points on the x-axis

as it is at the points on the z-axis.

In the following figures, the calculated velocity at every null point
is represented by a symbol. Thus the density of elements may be inferred
directly from the figures.

Figure 28 shows the comparison of the analytic solution with two calcu-
lated velocity distributions for the case of an onset flow parallel to the
x~axis. One calculation was performed with 1334 effective clements(NT = 29,
Moo= L€), and the other with 4320 (NT = 5k, Moo= 80). Both calculated cases
are gquite accurate in the region of maximum velocity. The more accurate
case of 4320 elements gives an error of 0.03 percent of free stream velocity
in this region, while the other case gives an error of 0.1l percent. The
accuracy of btoth calculations is guite satisfactory except near the stagnation
point, which is also the concentration point of the elements. In the 4320
elcment casc, ULl calcudlaued voiovciuy au boe auili point nearest the stag-
nation point (the null point of one of the triangular elements shown in
figure 27) is in error by about 1 percent of free stream velocity. The error
falls below 0.1 percent at the third null point, © = 8.3° in figure 28, and
remains below 0.3 percent for all larger values of G. In the 1334 aieuent
case, the error at the null point nearest the stagnation peint is about 2 per-

cent of free gtream velocity. This error falls below 0.5 percent for © > 10°.
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Figure 29 shows comparisons of the same two calculated velocity distribu-
tions with the analytic solution for the case of an onset flow parallel to
the y-axis. Comparisons are made along two curves in the body surface. The
first, shown in figure 29s, lies in the yz-plane and 1s thus the !‘'equator!!
of the element distribution of figure 27, while the second, shown in figure
29b, lies in the xy-plane and is thus a ''longitude'! line. It can be seen
that the sccuracy of the calculated velocities is quite good, particularly that
of the 4320 element case. The concentration point of the elements is at
® = 90° in figure 29b, and some increase in error can be noticed in this
region — up to about 0.0 percent ot tree stream velocity for the 4320 element
case and about twice this for the 1334 element case. It is, however, smaller
than the error that occurred near the concentration point in the case of flow

parallel to the x-axis.
10.7 Tllipsoids of Revolutilon

The calculated veloclty distributions were compared with analytic solu-
tions for two ellipsoids of revolution, a prolate spheroid of fineness ratio
10 and an oblate spherold of fineness ratio l/lO. In all cases of ellipsoids
of revolution, the input polnts are distributed on a sphere in the manner
described in the previous section, and the y and z coordinates of these points
are then divided by the fineness ratio to generate the input points for the
ellipscid, This procedure tends to concentrate points in the regions of
high curvature of the body surface. The number of elements used to obtain

the calculated velocity distributions are the same ac were used for the sphere,

Figure 30 shows the comparison of the anslytic soluticn with two calcu-
lated velocity distributions — one obtained using 1334 effective elements and
one obtained using 4320 —, for the case of an onset flow parallel to the
x=8xis. The accuracy is seen to be quite good. The 4%20 element case agrees
with the analytic solution to plotting accuracy even in the region near the
stagnation point where the velocity varies rapidly with position. Figure 31
shows comparisons of these two calculated velocity distributions with the
analytic solution for the case of an ouset flow parallel to the y-axis.
Figure 3le ghows the comparison around the circumference of the body in the

yz-plane, wherc the velocity distribution is approximately the same as the

125



solution for an infinite circular cylinder, while figure 31b shows the com-
parison of the calculated and analytic veloecity distributions along the

meridian curve in the xy-plane. Again agreement is seen to be good.

Similar comparisons for an oblate spheroid of fineness ratio 0,1 are
shown in figures 32 and 33. In the case of an onset flow parallel to the
x~axis (figure 52) the maximum velocity ratio on the body surface is 7.18 .
The 1334 element case calculates the maximum velocity ratio as 7.09 — an
error of 9 percent of free stream velocity in this rather extreme case, In
the 4320 element case there is no null point at the location of maximum
velocity for the reason explained perviously. The null points closest to the
location of maximum velocity have a calculated velocity ratio of 6.90, which
agrees with the analytic solution to 0.8 percent of free stream velocity.

The use of a parabolic extrapolation gives the calculated maximum velocity

for the L%20 element case as 7.16 — an error of 2 perceat of free stream
velocity. It is felt that these results are quite satisfactory considering

the large velocity ratios involved, The comparisons for an onset flow parallel
to the y-axis are shown in figure 33, The flow in the yz-plane shown in

figure 33%a exhibits the only noticeable errors in this case — 0.5 percent

of free stream velocity for the L7320 element case and 1 percent for the 133k
element case. Near this plane the curvature of the body surface is quite

high and perhaps more elements should be concentrated in this region for

better accuracy.

It should be noticed that the concentration point of the elements

apparently causes no trouble for either ellipsoid of revolution.
10.3 Tri-Axial Ellipsoilds
The one truly three-dimensional Tamily of body shapes for which the
analytic solution can be easlily obtained consists of ellipsoids all three of
whogse axes have different lengths, The flows about a considerable number of

ellipsoids were calculated and compared with the analytic solutions. The

comparisons presented here are typical examples.
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The ellipsoid whose axes in the x, y, and z directions have the ratios
1:2:0.5, respectively, is representative of rather thick three-dimensional
bodies. The calculated velocities selected for comparison with the analytice
solution were obtained from a case utilizing 4320 effective elements to
approximate the body surface. The element distribution consisted of 5i in
the y~direction and 80 around the elliptical cross-sections at constant values
of y. The comparisons for onset flows parallel to the x, y, and z coordinate
axes are presented in figure 34, For each onset flow these figures show the
velocity distributions along three curves in the body surface — one in each
of the symmetry planes.' It can be seen that in all cases the velocity in the
plane perpendicular to the conset flow vector is a constant independent of
position and equal to the maximum velocity of the flow. The analytic and
calculated velocity distributions are ceen to agree to plotting accuracy,
except for tne region near the y-axis in the xy-plane for the case of an
onset flow parallel to the z-axic (figure 3bc). Tt is believed that this
error is due to the relatively high curvature of the body surface in this

region and might be removed by concentrating elements there,
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11.0 THE CALCULATED FLOW VELOCITIES AND FRESSURES ON
A VARIETY OF BODIES

In this section are presented the calculated flow velocities on some
"body shapes that are thought to be of interest. For the most part these
calculated solutions stand alone, although in certain cases comparisons are
made with analytic solutions, with solutions obtained by the method of

reference 1, or with experimental data.
11.1 Wing Fuselage Combinations

This section presents the results of the calculations for two wing-
fuselage combinatlons, for one of which experimental datas were available.
It should be mentioned that the restriction of the method to cases of zero
1lift essentially limits the airfoils that may be considered to symmetrical
ones. Also, wing-fuselage combinations have concave corners at the juncture
of the wing and fuselage. Thus, as explained previously, some difficulty might
be expected. However, examination of the results of the calculations has
shown that no significant inaccuracy spparently arises from this source, at

least in the zero-lift, zero-yaw case.

11.11 Warren Wing with Ellipsoidal Fuselage.

The first wing considered is that deseribed in reference T. Tne root

and tip airfoil sections of this wing are identical, being a symmetric airfoil
of 6 percent thickness. The leading edge is swept 53.5°, and the taper ratio
is 1/3. The wing is cut off at the tip parallel to the midplane of the wing.
The zero 1lift, zero yaw pressure distrihution on this wing was calculated for

a variety of cornditions.

Figure 35 shows the curves of constant pressure coefficlent on the
isclated wing in incompressible flow. Two cases were calculated. In the
first the flat tip of Lue wing was represented by elements in the usual way,
while in the second the %ip was not represented by elements, and the end of
the wing was thus left open. This wag done to evaluate tip effects. The two
cases have identical pressure distributions except within 5 percent semi-span
of the tip, so only a portion of the pressure digtribution for the wing with=-

out tip is chown.
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Both the left and right halves of the wing were taken into account, and
the body therefore has two planes of symmetry. A total of 425 basic elements
were employed to approximate the upper surface of the wing on one side of the
midplane. The distribution consisted of 17 elements along the semi-span and
25 along the chord of the airfoil section. In addition 50 elements wer> used
to represent the upper half of the wing tip. (1900 total effective eloments. )

To o first approximation the flow at non-zero subsonic Mach numbers nay
be calculated by applying the Goethert transformation to the body. 7This is
accomplished by stretching the body in the direction of the onset flow (x-
direction), calculating the incompressible flow about the resulting body, and
multiplying the calculated veloclty components by suitable factors, (see for
example reference 8). This was done for the wing without tip described above,
and. the resulting curves of constant pressure coefficients are shown in
figure 56, A comparison of the last two figures thus shows the effect of Mach

nunber on the pressure distribution.

To exhibit interference effects, the pressure disiribution was calculated
on the wing-Tfuselage consisting of the wing with tip described above mounted
as a midwing on an ellipsoidal fuselage. The fuselage selected was a prolate
spheroid of fineness ratio 8 whose length is 3 times the root chord of the
wing. The leading edge of the root airfoll section is located 20 percent of
the fuselage length from the front. The calculated curves of constant pressure
coefficlent are shown in figure 37. The effect of the fuselage on the pressure
distribution on the wing can We judged by comparing these isobars with those
shown in figure 35. It 1s also interesting to note the manner in which the
isobars on the wing continue over the fuselage. This case is one of two planes
of symmetry. The upper surface of the right half of the wing is approximated
by 187 elements — 11 along the semi-span and 17 along the chord of the airfoil
sectlon. The upper half of the tip is represented by 3! elements. A total of
320 elements define the upper right quarter of the fuselage. The distribution
consists of L0 elements slong the length of the fuselage and 8 around the
quarter circumference. (2164 total effective elements.)
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The effect of the wing on the pressure distribution on the fuselage is
shown in figure 38. This figure presents the pressure distributions in the
midplane of the fuselage both with and without the presence of the wing. The
analytic solution for the isolated fuselage is also shown to establish the
basic calculation error. It should be noticed that the significant lowering
of the pressure on the fuselage caused by the wing is located downstream of
the intersection of the wing with the fuselage. This is in accordance with

the experimentally observed behavior of swept wings.

1l.12 NACA Wing-Fuselage.

To obtain an experimental verification of the accuracy of pressures

calculated by this method for the importsnt class of wing-fuselage bodies,

calculations were performed for an NACA wing-fuselage combination. The con-

results. The wing has identlcal root and tip airtoil sections, both of which
consist of an NACA 65A006 airfoil. The 2% percent chord line of the wing is
swept 15°, and the taper ratio is 0.(. The fuselage is a pointed body of
revolution of basic fineness ratio 1?. However, the actual fineness ratio

is 10, since one-sixth of the fuselage was cut off to accomodate the sting on
which the body was mounted in the wind tunpel. The forward part of the sting
was taken into account in the calculations. Tests were conducted at a Mach
nunber nf O.f, and this was accounted for in the calculations in the manner
desceribed above, Tite clement dastribution used for the calculations differed
only slightly from that degcribed in the previous section for the Warren wing

with ellipsoidal fuselage,

The calculated curves of constant pressure coefficient for this wing-
fuselage are presented in figure 59. The wing tip was left open 1n the cal-
culation in the manner previously described for the Warren wing, whil. the
wing tested had a rounded tip. Accordingly, the isobars of figure 39 are
terminated a short distance from the tip where it is felt they no longer
have validity. The experimental curves of constant pressure coefficient are
presented in figure 40, By comparing figure 39 and 40 it can be seen that
the calculated and experimental iscbars have the same genersl shape over most

of the surface of the wing, but that the locations may differ significantly.
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This difference is due to the fact that the pressure gradient is small over
most of the wing surface, and thus small differences in pressure lead to

significant differences in the location of the isobars.

To compare the calculated and experimental pressures directly, pressure
distributions along the chord of the wing are shown in figure 41 for three
locations along the span. It can be seen that the calculated and experi-
mental pressure distributions agree guite well except near the leading edge of
the wing where the calculated pressure distribution has & small, sharp, negative
peak., To investigate this phenomenon further, the airfoil section wss cal-
culated as a two-dimensional body by the method of reference 1. This method
has been shown to be highly accurate in a variety of applications. Its cal-
culations agree very closely with those of high order Theodorsen solutions
and also with experimental data. The resulting pressure distributions are
shown in tigure 42 for Mech nunbers of zero and 0.6. Also shown is the
theoretical incompressible pressure distribution from reference 10. The
pressure distributions calculated by the method of reference 1 show a small,
sharp, negative pressure peak necar the leading edge of the airfoil, and it is
accordingly concluded that this peak is real and was correctly predicted by the
present method for the three-dimensional case. Why the method of reference 10

a. 2717, 4
1 ceddid (%

o predicti such a peak is not known., Also unexplained is the feilure
to obtain such a peak in the wind tunne) test., It is known, however, that the
pressure distribution near the leading edge of a thin airfoll is extremely
sensitive to the body shape in this region. A very small change in the co-

ordinates of the body could cause the presence or absence of such g peak.
11.2 Ducts

Ducts form an interesting class cf body shapes to which the present flow
calculation method is applicable, since the restriction to zero 1ift is not a
factor, A duct is actually a case of an interior flow problem and should be
calculatea as such. That is, the duct should be closed by surfaces at both
ends, and the onset flow should be eliminated. The interior flovw is then cal-
culated by specifylng zero normal velocity on the interior of the duct walls
and by specifying non-zero normal veloclty distributions on the surfaces across

the cross-sections at the ends of the duct. The normal velocitles specified
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on these surfaces may have any distributions that satisfy continuity, but
normally they would be taken to give uniform flow at the ends of the duct.
While the methnd nf this report can ecalenlate this type of flow in a per-
fectly routine manner, the results are subject to inaccuracies related to the
inability of this method to handle bodies having concave corners. It is
usually necessary to simulate the required interior flow by the flow through
the open-ended duct, due to some onset flow. There are several ways that

this can be done, and often the particular application will dictate the proper
approach. The scheme used for the examples of this scction consisted of ex-
tending both ends of the duct by means of straight sections of constant cross-
sectional shape to a distance relutively large compared to the region of
interest, e.g., bend, contraction, etc.. This extended duct with open ends

is then taken to be in a uniform onset flow, and the calculations are per-
formed 1n the same way as for cases of exterior flow, The source density
distribution is determined in such & way that the normal velocity now vanishes
on the inner surface of the duct. The resulting flow is somewhat irregular
near the f'enirance'’ of the auct at the end of the extensions, but, if thne
extensions are long enough, the flow smoothes out and is nearly uniform a
considerable distance before the beginning of the region of interest is
reached, The magnitude of the vcloecity in this uniform velocity region is the

one of real significancc for applicaticns rather than that of the onset flow.

Severgl ducts of various kinds were calculated. The two main types were:
(1) ducts of constant cross-sectional shape wilhi vLends and (2) straight ducts
with varying cross-sectlonel areca and/or varying cross sectional shape. In
most cases the cross-sectional shape of the ducts was either circular or rec-
tangular, The rectangular ducts of course have concave corners, and thus the
results for these cases are open to guestion. An examination of the velocity
distributions around the cross-sections of thec rectangular ducts showed that
the computed velocitiesg were seriously in error near the corners. While the
velocities away from the corners are more reasonable, the overall results
vere not judged accurate enough to be included here. Apparently some rounding
of the corners is required. Thus, two circular ducts have been selected for

presentation.
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11.21 A Straight Circular Contracting Duct having an Area Ratio of Four.
The first duct considered is a straight one of circular cross-section.

The flow is thus axisymmetric. The duct consists of a constant dlameter
section followed by a coniraction to a cross-section of half the original
diameter, The duct then expands in such a way that it is symmetric about the
section of minumum area. The contracting portion of the duct has a profile
that is a portion of a sline wave having a zero slope at the location of
minimum area and also at the location where the constant diameter section
begins, The Jength of the contracting section is equal to one and a half

diameters of the constant diameter region.

For exterior flows about smooth convex bodies like ellipsoids the accuracy
of the calculated results is determined largely by the total effective number of
elements. The relative number of elements used to approximate the body in the
direction of the free stream and in the direction novmal to the free gtream is
not too important as long aes the resulting distribution is at all reasonable,
The element distributicn is scmewhal wore critical in the case or ducts, and
thus cerlaln cases were repested with the same total number of effective ele-

ments but various element distributions.

Figure 43 shows five calculated velocity distributions for the duct in
question. Two of these were obitained by means of the axisymmetric method of
reference 1, while the other three were obtained by the present method. The
cases calculated by the prescnt method are identified by the number of effective
elements used axially along the duct and by the number of effective elements
used around the circumference. These numbers apply to the entire duet from
X = -7 to x =+7 and to the full 360° of circumference even though only
part of the duct is shown in the figure. In the smellest case (case 1) the
duet 1s specified by 42 elements longitudinally, 21 orn each side of the throat,
and by 18 elements circumferentially, one every 20°. Case 2 uses the same
number of elements axislly as case 1, but has 100 elements around the circum-
ference., 1In case 3 the number of elements along the length of the duct is
doubled relative to case 2, while the number around the circumference is ap-
Proximately halved. Thus the total number of effective elements Is roughly
the same for case 2 and case 3. The L2 element axisymmetric solution employed

the same axial distribution of elements as cases 1 and 2, and what amounts to
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an infinite pumber of elements around the circumference. The high accuracy
axisymmetric solution was obtained by calculating several cases with a very
large number of elements and extrapolating the results to the cese of in-
finitely many elements., It may be regarded as the exact solution for the
present purpose. The calculated velocity megnitudes Vo in the constant
velocity region around x = 6 differed slightly in the various cases, and

in the flgure each velocity distribution has been normalized with respect to
its value at x = 6 1in accordance with the fact that this is the velocity of
real signlficance. Case 2 is seen to be somewhat more accurate than case 3,
and the 42 element axisymmetric solution is considerably more accurate than
elther., From these results it is clear that a very large number of elements
is required for good accuracy 1n cases of ducts having this area ratio, and,
moreover, that it is advantageous to employ a relatively large number of
elements around the circumference even if it is necessary to reduce the number

of elements used longitudinally.

11.22 A Constant Area Circular Duct with a 90° Bend.

The case of a constent area circular duct or pipe that makes a right angle
turn was selected as an example of a truly three-dimensional duct. In the
curved region, the centerline of the duct is a quarter circle of radius five
times the radius of the clrcular cross-section of the duct. A sketch of half
of the duct is shown in figure hha, which also shows the calculatced velocity
distributions along the length of the duct at three circumferential locations
ou the duct wall, The curves A and C, whose velocity distributions are
shown in figure Whg, are in the plane of the paper as shown in the sketch —

A on the ''inside"of the turn and C on the ''outside'', The curve B 1is

90° around the circumference from each of these, i.e., at the maximum height
above the plane of the paper. The plots were made versus centerline arc

length so that all three curves could utilize a common abscissa. The velocities
at a given value of centerline arc length are at those points of the curves

A, B; and C that lie in the plane normal to the cenlerline at that lccation.
The straight section of the duct begins at a value of centerline arc length

s = 4.3%3% and the end of the duct is at s = 9.0. The uniform velocity region
around s = 6 ig the limit of validity of the calculation for applications.

The end effects near s = 9 can be seen in the flgure. The calculated velocity

distributions around the circumference of the duct at various locations are
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shown in figure 44b. The calculations were performed using 2100 effective
elements — 42 along the length of the duct and 50 around the circumference.

1l.3 Interference Problems
11.31 An Ellipsoid at Angle of Attack in a Round Wind Tunnel.

The use of this method of flow calculation makes it possible to predict
the effect of wind tunnel walls on the velocity and pressure distributions on

the surface of a brdy. The results of one such calculation are presented here.
The body considered is a prolate spheroid of fineness ratio 10 at 10° angle

of attack in a circular wind tunnel whose dlameter is equal to the length of
the body. Figure U5 shows the calculated velocity distributions along three
curves on the surface of the body both with and without the presence of the
wind tunnel. Curves A and C are in the midplane of the ellipsoid on the
upper and lower side, respectively. Curve B 1s 30° around the circumference
from the other two and is thus at the 't!side'! of the ellipsoid. It can be
seen that the effect of the tunnel walls is small but definitely noticeable

in some regions. The maximum change in velocity caused by the presence of the
tunnel 1s 0.4 percent of free stream velocity. The velocity distributions on
the top, bottom, and ''side!'! of the tunnel wall are shown in figure 46, The
naximum variation from s uniform flow is 0.7 percent of free stream velocity.
The calculations were performed using 1290 total effective elements. These
were dlstributed as tollows: 720 on the ellipsold, 20 along its length and

36 around its circumference, and 576 on the wall of the tunnel, 16 axially

and 36 cireumferentially.

11.%2 An Ellipsoild below a Free Surface. Two Ellipsoids Side by Side.

P T S

The method discussed here can also be used to calculate, to a first
epproximetion, the flow about a body moving beneath a free surface at the
extremes of the speed range. ‘lhe linearized free surface boundary condition
is such that if the body is moving very slowly (low Froude number) the proper
condition at the surface is satisfied by placing & mirror image of the body
above the surface with a source density distribution identical to that of the
actual body. If the body is moving very rapidly (high Froude number), the
surface condltion Is satisfled by placing & mirror image of the body above thc
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surface with a source density distribution equal to the negative of that on
the actual body. The first of these situation 1s such that there is no flow
across the free surface and no normal velocity on the image body. This case
is thus equivalent to the flow about two identicsl solid bodiees side by side.
Both cases cen be handled by the symmetry feature of this method, with the
second requiring a sign change in the calculatlon of the effect of certain
reflected elements.

The body chosen to illustrate these calculations 1s a prolate spheroid
of fineness ratic 10 whose axils of symmetry is parallel to the free surface and
located one diameter below it. Figure 47a shows the calculated velocity
distrivutions along the length of the ellipsoid on the meridian curve nearest
the free surface for the case when the ellipsoid is moving parallel to the
free surface and along its axis of symmetry. To make the resulls consistent
with the other figures of this report, the veloecity distributions are shown
for the case of a stationary ellipsoid in the presence of a uniform onset flow.
In addition to the low and high Froude number flows, the analytic solution for
the ellipsoid alone in an unbounded fluid is also shown. TFigure L47b shows
the calculated velocity distributions around the circumfereunce at the loca-
tion of maximum dismeter for the cese of an onset flow (or movement of the
body) parallel to the free surface and perpendicular to the axis of symmetry
of the body. The sume three cases are shown as in figure 47a. The caleulated
cases utilized U320 effective elements — 2160 for the ellipsoid and the same
number for its imsge. The distribution consisted of 54 elements along the

length of the ellipsoid and 40 around its circumference.

11.4 sShip Hulls

11.41 General Remarks.

The flow about a ship hull is anolher cxample of flow in the presence

of a free surface that can be calculated to a first approximation by the
present method. The speeds of ships are such that this is a case of flow at
low Froude number, and thus, as was mentioned earlier, the linearized free
surface conditien is approximately satisfied by placing a mirror image of the

hull above the surface with the same source density distribution as the actual
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hull . Since the ship hull pierces the surface, the true situation is thus
approximgted by the flow of an unbounded fluid about a single, closed,
'tdouble hull'' body, which conslsts of the portion of the ship hull below
the free surface plus the mirror image of this portion in the free surface.
Thus in using the present method it is necessary to approximate by quadri-
lateral elements, not conly the ship hull itself, but also its image in the
free surface, and sccordingly in & given case only half of the total effective
elements are on the actual hull. From the point of view of the method, ships
then will always have two symmetry planes — the midplane or '‘'keel plane'?,
which is & real symmetry plane, and en artificial symmetry plane coincident
with the free surface. Ships with t1fore and aft!! symmetry have a third
symmetry plane. In some applications 1t is advantageous to assume this last
symmetry even if it 1s only approximately true, since it doubles the number
of effective elements. To make the results for ships consistent with the
other calculated results, the fldws in the examples below have Leen computed

assuming the body to be stationary in the presence of a uniform onset flow.

In normal practice hull shapes are specified by polynomisls. The co-
ordinates used %o describe a ship are as given 1n reference 1l1. The co-
ordinate x denotes distance along the lergth of the shilp, and the shape is
normallized gso that the bow iz at x = +1 and the stern at x = -1. The co-~
ordinate 2z denotes depth below the free surface., The keel or the location
of maximun depth of the hull ir at 2z = oYY i.e., M is the draft of the
ehip. Distances perpendicular to the midplane of the ship are represented
by the coordinate y. The maximum distence of points on the hull from the
midplane is Yy and thus the beam of the ship 1s QyM. The polynomial re-
presentation of the ship hull expresses y/yM as & function of x and Z/ZH‘
The region of definition of the polynomials is the rectangle -1 s x = +1,
0s z/zM £ 1l. If the side view of the hull is not rectangular, e.g., if the
bow curves to meet the keel smoothly, the hull will not completely fill this
rectangle of definition, except in the sense that y = O over part of the
region. A polynomial cannot of course be zero over a region, and vhere the
actual shiy is absent, the polynomial representation gives swall, varilable,
possibly even negative, values of the thickness y. While this may be ac-~

ceptable for some purposes 8 uot permiss e in the present application.
table f , 1t is uot permissible in the 1 t applicati
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Usually, the inclusicn of this region will prevent the convergence of the
iterative solution of the linear equations for the values of the source
density. It is possible, however, that absurd results could be calculated.
The body shape uged with this method should terminate where the actual shape
terminates, TIf the input points are generated from the polynomial repre-
sentation, the curve on which y = 0 must be calculated.

In many cases the cross-sections of the hull in & plene normal to the
x-axis intersect the plane y = 0 normally or nearly so, i.e., with slopes
nearly parallel to the free surface. To approximate this condition, the
polynomials defining hull shapes must have terms of very high order in z/zM.

All the results presented below were calculated for the cage of an onset
flow parallel to the x-axis, i.e., along the length of the ship. Normally,
the case of an onset flow parallel to the y-axis, i.e., the flow about a ship
in yaw, was also calculated, but these results were felt to be of less

interest.

11.42 Veloeity Distributions on Two Ship Hulls.
Calculations were performed for two hull shapes. The polynomial repre-

sentallons of these shapes were furnished by personnel of the David Taylor
Model Basin.

The first ship hull is a relatively simple, idealized shape, which 1s
designated the simple ghip hull. Its polynomlal representation i1s as follows:

(v/3,) = [Ll — P (P (2 /ZM>1OW [1 ~0.3(z /ZM)B— O.'((z/zM)lso] (1k1)
Since only even powers of x appear in equation (lhl), the hull has a '!fore
and aft'' symmetry sbout the plane x = O. The thickness ¥y is zero only on
the boundary of the rectangle of definition of the polynomial. Accordingly,
the keel is the line y =0, z/zM =1, «1 £ x £ 41 and the bow 1s the line
x=4l, y =0, O = z/zM s 1. The shape is well suited to approximation by
quadrilateral elements in the manner employed by this method. In particular,

there is no concentration point of the elements as there is for smooth bodies

like spheres. The limits of the surface, bow, stern, keel, and waterline,
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are simply taken a8 ''n-lines'! and "'m-lines'' of the elements distribution.
In fact the selection of input points was quite routine, except for one diffi-
cult region, which seems to occur in many ships. The slope of the surface at
the keel varieg rapidly with distance along the hull near the bow. In this
case, for example, at the bow the unit normal vector to the surface at the
keel has a zero z-component and a y~component of almost unity, while at 5
percent of the length of the ship the unit normal vector at the keel hss a
z-component of &lmost unity and a y-component equal to about 0.01, (The unit
normal has & small x-component at both locations.) Thus the unit normal
vector at the keel rotates almost 30° in 5 percent of the length of the ship.
This fact necessitated a concentration of elements near the keel in the
vicinity of the bow (and, by symmetry, a similar concentration at the stern).
The total number of effective elements used in the calculations was 3816 —
1908 on the actual hull and an equal number on its reflection in the free
surface. The basic element distribution consisted of L2 along the length of
the chip in o w-dducibicon @ia S0 acoulia the LUl &b & consLani value of X

from waterline to waterline. An additional 156 elements were concentrated

near the keel at the bow and a like number at the stern.

The simple ship hull on which the flow was calculated had a beam-length
ratio of 0.118 and a draft-length ratio of 0.047, i.e., Yy = 0.118 and

Zy = 0.094%, Plan and side views of the hull are shown in [igure 48a, which
also shows the calculated velocity dislributions along the waterline and the
keel, Figure 48b shows the calculated veloclty distributions around cross-
sections of the hull at several values of x together with the cross-sec-
tional shapes at those locations. From the latter curves it can be seen that
the maximum velocity on a cross section ig attained at the waterline if the
cross-section 1s near the middle of the ship, but at the keel if the cross-
section is nesar the bow. The maximum velocity on & cross-section about mid-
way between the bow and the middle of the ship occurs neither at the keel

nor the waterline but somewhere in between. All velocity curves in figure 48
are terminated at the last null points appropriate to the psrticulsr velocity
distributions. This accounts for the fact that the curves end at different

values of the sbscissae,
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The second ship hull is a realistic approximation to a ''Series 60'!
merchant gship heving & beam-length ratio of 0.1333 and a draft-length ratio
of 0.53%3, This ship and its polynomial representation are described in re-
ference 11. The polyuomial contains 140 terms, consisting of powers of x
from O through 13 and powers of (z/zM) from O through 6 and also the powers
20, 40, and 200. The side view of the ship is not rectangular, but the bow
1s curved, beginning at about 80 percent of the draft, and smoothly joins the
keel at about 5 percent of the length of the ship. At the stern of the ship,
x = -1, the thickness y is not quite zero but has a small positive value.

In the calculations, elements were distributed only on the surface defined by
the polynomial, and the stern of the ship was thus left open in a manner
similar to the wing tips described in Section 11.1. This leads to an error

in the calculated velocities cver the last three or four percent of the length
of the ship. The slope of the keel changes rapidly near the bow, and elements
were concenitrated in this region as was done for the simple ship hull. Such

a concentration was unnecessary at the stern. A total of 2024 effective
elements were used in the calculations, — 1012 on the sctual hull and the

same number on its image In the free surface. The basic element distribution
consisted of 34 along the length of the ship and 28 around the cross sections
of the hull from waterline to waterline. An additional 60 elements were con-
centrated near the bow in the vicinity of the keel. For illustrative purposes,
2 half model of the series 60 merchant ship hull was constructed showlng the
distribution of elements. A photograph of this model is shown in the frontis-
plece. The bow 1s on the upper left in the photograph, and the concentration
of rlements near the keel cun be seen. The dois on the elements show the

locations of +ithe null points.,

Ine calculated veloclty distributions along the keel and (ne waterline
are shown in figure 4Qa, while the veloecity distributions around cross-sections
of the hull at several values of x are shown in figure 4Ob, together with the
crogss=-sectional shapes for those locations. All curves are terminated at the

leet null points appropriate to the particular velocity distributions.
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11.43 The Effects of Variation of Ship Thickness. Evaluation of the Validity
of Thin Ship Theory.

Tre veloclty d&lstribtutions on ship hulls may also be calculated by an
approximate method known as thin ship theory. According to this theory,
for the case of an onset flow parallel to the x-axis, the disturbance velocity
components, Vx— 1, Vy, and Vz’ at all points of the hull vary linearly with
the thickness of the ship, i.e., with beam-length ratic M2 for a given
normalized ship geometry. Thus the present method of flow calculation may be
used to evaluate the validity of thin ship theory by calculating the flow
about a particular hull shape for several beam-length ratios and determining

whether or not the variatlons of the disturbance velocity components with
thickness are linear. If the variations are linear, it still must be verified

whether or not the slopes are those predicted by thin ship theory.

‘he investigation was conducted using the simple ship hull of Seetion
11.42. In addition to the cese of a beam-length ratio of 0.118 described in
that section, calculations were performed for this hull with beam-length ratios
of helf end twlce thic value leaving the dralft unchanged. Each of the three
cases can be obtained from any cther by multiplying the y-coordinaies of the
input points by the proper factor. Thus corresponding input points in the
three cases have the same x and % coordinates, and this is approximately
true of corresponding null polnts, so that the variation with ship thickness
by examining the velocities at corresponding null points in the three cases,
Three locations along the ship were selected for exasmination — one near the
bow (x = 0.985); one near the middle ot the ship (x = 0.025), and. one sapproxi-
mately midway between (s = U.520), At each location three null points were
selected — the one nearest the keel (z/zM:= 1), the one nearest the waterline
(z/zM =~ 0+), and one at a depth equal to about half the dratt (z/zM:: 0.5).

The calculated disturbance velocity components for these nine locations are
shown as functions of beam-length ratio in t'igure 50, Also shown are the
straight lines having the same slope as these curves at zero beam-length ratio.
It can be seen that some components at some locations are almost linear with
beam-length ratio, while others are not., The greatest deviations from linear

behavior occur at the location near both the keel and the bow, figure 50i.
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The behavior of the x disturbance component at the intermediate x-location
(x = 0.525) is quite interesting. In figures 504 and 50e it is seen that this
component at first increases with beam-length ratio, but reaches a maximum
and thereafter decregses and eventually changes sign. The magnitude of this
component is not large in these cases, but the behavior is evidently of a sort

that could not be predicted by a linearized theory.
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Figure 28. - Comparison of analytic and calculated velocity distributions on a sphere for an onset flow
parallel to the x-axis.
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Figure 29. - Comparison of analytic and calculated velocity distributions on a sphere for an onset flow
parallel to the y-axis. (a) Velocities in the yz-plane
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Figure 29. - Continued (h) Velocities in the xy-plane.
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Figure 30, - Compatison of analytic and calculated velocity distributions on a prolate spheroid ot
fineness ratio 10 for an onset flow parallel to the x-axis.
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Figure 31, - Comparison_of analytic and calculated velocity distributions on a prolate spheroid of
fineness ratio 10 for an onset flow parallel to the y-axis. (a) Velocities in the yz-plane.
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Figure 31, - Continued {b) Velocities in the xy-plane.
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Figure 32. - Comparison of analytic and calculated velocity distributions on an oblate spheroid of
fineness ratio 0.1 for an onset flow parallel to the x-axis.
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Figure 33. - Comparison of analytic and calculated velocity distributions on an oblate spheroid of
fineness ratio 0.1 for an onset flow parallel to the y-axis. (a) Velocities in the yz-plane.
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Figure 34, - Comparison of analytic and calculated velocity distributions on an ellipsoid with
axes ratios 1:2:0.5. (a) Velocities in the xz-plane.
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Figure 34. - Continued b Velocities in the yz-plane.
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Figure 35. - Calculated isobars on the Warren wing with and without tip in incompressible flow,



Figure 36. - Calculated isobars on the Warren wing without tip for a Mach number of 0.6,
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Figure 37, - Calculated isobars in incompressible flow on a wing-fuselage consisting of the

Warren wing on an ellipsoidal fuselage.

160




Suim UBLEN Y 3O SdudsaLd
3y} Jnoyytm pue yyim abejasny [eptosdijja ue jo sue|dpli 2u3 Ul SUOIINJIISIP BINSSAI - "¢ aanbiy

N0
¥
|
|
H¥C
i
- |
//I —
Il/tb/ _
~J
- —————— e R —_— €0
\\“
e |
\ i
T _
ﬁ S a0
a i
[
M !
| * _
! 4 .
I A \ 1'0
|
* | \
. 39% 133N ONOTY IDNVLSIg~ X - y
ool \\ 06 08 0L co 0s or o oz SV4 o
d o~
~
{0 -
NIWM HLIM 39v138Ng —o=< -
A31vINDIYD “3INOTIY 39%138N4 o oo
DILAIYNY ' 3INCTIVY 39%13SN4 v

c0-

161




NN NGNS -

Figure 39, - Calculated isobars on an NACA wing-fuselage for a Mach number of 0.6.
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Figure 40, - Expetimental isobars on an NACA wing fuselage for a Mach number of 0.6.

163



——] At .,
- ﬂf":ﬂ'—“_ﬂ
- 0. -..q?“?r;
e
N
° i0 20 30 40 50 60 70 80 90 100
Ce % LOCAL CHORD
ol
0.2 4
03
~=0~0—0— PRESENT METHOD
- -0-0- EXPERIMENTAL DATA
FROM REF. 9
04
]
0.5 s
aj
-0z2 !
| . g = homn® 2. S X =
- 0.1 s el = - |
\9,\
Cp o N\
{ 10 20 30 40 50 60 70 80 -
7 LOCAL CHORD :
0.l 1 \
02— t+— I— e
03— —- - N A P
0,4:»~- R S — e L ,~——l
i |
st . ]
(4)
-0.2 — — T LA
Pl i TR
» [CH¥===eg
-o.|~;f—__»m N A . — 1
c i N |
P —_—
0 l I 41 “_u - |
0 10 20 30 40 50 60 70 TN 90
7 LOCAL CHORD N
ol pb—o B — - \{,
02 .

(c)
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ity distributions around the circumference of the duct.
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Figure 45. - Caiculated velocity distributioins on an ellipsoid at 10° angle of attack with and withou?

the presence of a round wind tunnel.

169



ue Buiurejuod [3.uuny pupm punol e 3o s|jem ayy buoje SuolINGLISIP A319013A paje|nofey - *gy 3inby 4

“joeRe jo abue T e prosdifje

———r?v?vrrr-?vv—r'r—ruxf\#—

104°)

8\.: .
o
~—
—
v LI T . . A) A} A1 Y Al Ay A Y Al A AY A v 8 V¥ A3 A ) Al Al A3 o 1 v VvV ¢ A Y AR ) ' Al A A Al A ) A Y ) A AJ AR
TINNNL ONOTV IDNVLSIA ~X
ot 09 0 ot oe oz o o
960
860
o
A
—3ais _ \«\
J‘H/ == 4 001
no.L1og doL—
L 2ol



v/

~—— e [SOLATED ELLIPSOID-ANALYTIC
——— e | OW FROUDE NUMBER
—— e = HIGH FROUDE NUMBER

IMAGE ELLIPSOID > i
O | . i 1
o 02 04 06 0.8

Figure 47, - Calculated velocity distributions on an ellipsoid with and without the presence of

a free surface in the xz-plane, (a) Onset flow paralle! to the x-a¥is.
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Figure 47, - Continued (b) Onset flow paratliel to the z-axis.
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Figure 48. - Continued
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(b) Velocity distrihutions around cross-sections of the hull.
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Figure 49. - Continued
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(h) Velocity distributions around cross-sections of the hull.
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