NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
MEMORANDUM REPORT NO. 1405
MAY 1962

A METHOD FOR DETERMINING ESTIMATES OF THE DYNAMIC UNBALANCE AND THE THRUST MISALIGNMENT OF SPIN-STABILIZED ROCKETS

W. J. Sacco

Department of the Army Project No. 503-06-002
Ordnance Management Structure Code No. 5010.11.812
BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from ASTIA.

The findings in this report are not to be construed as an official Department of the Army position.
A METHOD FOR DETERMINING ESTIMATES OF THE DYNAMIC UNBALANCE AND THE THRUST MISALIGNMENT OF SPIN-STABILIZED ROCKETS

W. J. Sacco

Computing Laboratory

Department of the Army Project No. 503-06-002
Ordnance Management Structure Code No. 5010.11.812

ABERDEEN PROVING GROUND, MARYLAND
A METHOD FOR DETERMINING ESTIMATES OF THE DYNAMIC UNBALANCE AND THE THRUST MISALIGNMENT OF SPIN-STABILIZED ROCKETS

ABSTRACT

Solutions to the equation of motion of a spinner artillery rocket about its center of gravity under the influence of thrust misalignment and dynamic unbalance are obtained. A method for determining effective values of dynamic unbalance and thrust misalignment is given.
In the mathematical theory of the motion of spin-stabilized rockets during the burning phase, the mathematical model is a system of ordinary linear differential equations with variable coefficients and various forcing terms. Solution of the differential equations involves contributions due to unit values of both the initial parameters and coefficients of the forcing functions. We shall be concerned here only with the angular motion about the center of gravity and with forcing terms involving only the thrust misalignment and the dynamic unbalance.

The motion of a spinner rocket is similar to that of a spinning top or gyroscope. In addition to the spinning motion there exists a precession and nutation about the center of gravity. The thrust misalignment, L_c and the dynamic unbalance, β_c, are the principal contributors to the transverse angular motion of the rocket. In fact, in the second part of this report we shall postulate, for an idealized situation, that L_c and β_c are the sole contributors to the transverse angular motion; thereby, enabling us to give a method for determining the approximate average values of L_c and β_c.

The coordinate system which we shall use to describe the motion of the spinning rocket is shown in Figure 1. OXYZ is a right-handed system of axes with the origin 0 at the center of gravity of the projectile. The reference axis OX is taken in the initial direction of the rocket axis, OY upward in the vertical plane, through OX and OZ to the right as viewed from the rear of the projectile.

We can imagine a sphere with the center at the center of gravity and whose radius is equal to the distance from the center of gravity to the nose of the projectile, and then picture a plane perpendicular to OX and tangent to the sphere. The nose of the projectile can be thought of as tracing out a curve in this plane, and we let the quantities ϕ_R and ϕ_I be the rectangular coordinates of a point on the curve.

We can treat the plane as a complex plane, with the real axis parallel to OY, and the imaginary axis parallel to OZ, and the angles measured clockwise from the vertical as viewed from the rear of the rocket. In this
representation the complex number \(\phi \) defined by \(\phi = \phi_R + i\phi_I \) specifies the orientation of the instantaneous axis with respect to the initial axis of the rocket. It is clear that \(|\phi| \) is the sine of the angle between the two directions. We shall assume that \(|\phi| \) is less than 0.1 radians for all time values during burning, which enables us to use the approximations of replacing the sine of the angle by the angle expressed in radians and the cosine by 1. Experimentation has shown that these approximations are valid.

During the burning period of a spinning rocket the gas flow through the canted nozzles produces the forward thrust on the rocket and the torque about the longitudinal axis which produces the axial spin.

Generally the line of thrust of the rocket will not pass through the center of gravity of the rocket but will miss it by a distance \(L_c \). This produces a torque about the center of gravity resulting in a cross spin. The distance \(L_c \) is the so-called the thrust misalignment.

The axis corresponding to the least polar moment of inertia is called the principal longitudinal axis of inertia. Ideally it should coincide with the geometrical axis of symmetry of the rocket. When the principal longitudinal axis of inertia of the spinning rocket makes a complex angle, \(\beta_c \), with the geometrical axis, the resulting effect is characterized by a moment about an axis perpendicular to the rocket axis. The angle \(\beta_c \) is called the dynamic unbalance angle.

For spin-stabilized rockets the major lateral dispersion-producing factors are the (1) dynamic unbalance, (2) linear thrust misalignment, (3) initial yaw, (4) the initial transverse angular velocity, and (5) variable winds. For the idealized case considered here, the last three factors are eliminated.

The equation of motion considered here describes the angular rotation of the rocket about an instantaneous transverse axis through the center of gravity, when the center of gravity is fixed in space. The equation which is derived in references [H] and [CH], has the form

\[
\ddot{\phi} - 2i\omega t\dot{\phi} = f(t)
\]

(1)
where

\[i = \sqrt{-1} \]

\(\phi = \) complex orientation angle

\(2q = \) ratio of axial and transverse moments of inertia,

\(\alpha = \) angular acceleration of the rocket about its longitudinal axis,

\(t = \) time measured from ignition,

\[f(t) = \text{resultant of cross-torques due to linear thrust misalignment and dynamic unbalance, i.e.} \]

\[f(t) = \begin{cases}
\frac{-T \ell e^{i\alpha t^2}}{C} & \text{(due to thrust misalignment)} \\
-(1-2q)C \left[i \alpha - (\alpha t)^2 \right] e^{i\alpha t^2} & \text{(dynamic unbalance)},
\end{cases} \]

\(B = \) transverse moment of inertia,

and

\(T = \) thrust of rocket.

In these representations, \(L_c \) and \(\beta_c \) are complex parameters which characterize the linear thrust misalignment and the dynamic unbalance respectively.

Equation (1) is a linear differential equation with variable coefficients. For our purposes here, \(q, \alpha, B, T, |\beta_c|, \) and \(|L_c| \) are assumed to be constants.
SOLUTIONS TO THE EQUATION OF MOTION

We perform two integrations on equation (1), assuming initially that \(\ddot{\Phi}(t_0) = \dot{\Phi}(t_0) = 0 \), and obtain the expression

\[
\ddot{\Phi}(t) = \int_t^{t_1} e^{i\omega x^2} \int_{t_0}^t f(u) e^{-i\omega u^2} \, du \, dx
\]
(2)

Case a) The thrust misalignment.

We let \(\ddot{\Phi}_1(t) \) equal the \(\ddot{\Phi}(t) \) of Equation (2) when

\[
f(u) = -\frac{TL_c}{B} e^{i\omega u^2}
\]

where \(f(u) \) is the forcing function for the thrust misalignment.

We get

\[
\ddot{\Phi}_1(t) = \int_t^{t_1} e^{i\omega x^2} \int_{t_0}^t \left(\frac{TL_c}{B} \right) e^{i\omega u^2} e^{-i\omega u^2} \, du \, dx
\]

\[
= -\frac{TL_c}{B} \int_t^{t_1} e^{i\omega x^2} \int_{t_0}^x e^{i\omega (1-\alpha)u^2} \, du \, dx
\]

Letting \(A = \alpha q \) and \(D = \alpha(1-q) \), then Equation (3) reduces to

\[
\ddot{\Phi}_1(t) = -\frac{TL_c}{B} \int_t^{t_1} e^{iAx^2} \int_{t_0}^x e^{iDU^2} \, du \, dx
\]

Case b) Dynamic Unbalance

We let \(\ddot{\Phi}_2(t) \) equal the \(\ddot{\Phi}(t) \) of Equation (2) when

\[
f(u) = -(1-2q)\beta \theta e^{i\omega t^2} (i\alpha - (\alpha t)^2)
\]

where \(f(u) \) is the forcing function for dynamic unbalance.

We obtain

\[
\ddot{\Phi}_2(t) = \int_t^{t_1} e^{i\omega x^2} \int_{t_0}^x -(1-2q)\beta \theta e^{i\omega u^2} (i\alpha - (\alpha u)^2) e^{-i\omega u^2} \, du \, dx.
\]
Again letting $A = \alpha q$, $D = \alpha(1-q)$, and rearranging terms we get

$$I_2(t) = -(1-2q)\beta_c \left(i\alpha \int_{t_0}^{t} e^{iAx^2} \int_{t_0}^{x} e^{iDu^2} \, du \, dx
ight)$$

$$-\alpha^2 \int_{t_0}^{t} e^{iAx^2} \int_{t_0}^{x} u^2 e^{iDu^2} \, du \, dx \right) .$$

A look at Equation (4) and Equation (5) indicates that we are faced with the evaluation of the following integrals:

$$F_1(t) = \int_{t_0}^{t} e^{iAx^2} \int_{t_0}^{x} e^{iDu^2} \, du \, dx ,$$

and

$$F_2(t) = \int_{t_0}^{t} e^{iAx^2} \int_{t_0}^{x} u^2 e^{iDu^2} \, du \, dx$$

Then we have

$$\phi_1(t) = -\frac{TL}{B} F_1(t) ,$$

and

$$\phi_2(t) = -(1-2q)\beta_c \left(i\alpha F_1(t) - \alpha^2 F_2(t) \right) .$$

We proceed to evaluate $F_1(t)$ and $F_2(t)$. Define

$$F_3(x) = \int_{t_0}^{x} e^{iDu^2} \, du .$$

Letting $x = ms$ where $m = \sqrt{\frac{\pi}{2D}}$ we obtain

$$F_3 \left(\frac{x}{m} \right) = m \int_{t_0/m}^{x/m} e^{i\pi s^2/2} \, ds ,$$

10
\[= m \left(\int_{t_0/m}^{x/m} \cos \frac{\pi}{2} s^2 ds + i \int_{t_0/m}^{x/m} \sin \frac{\pi}{2} s^2 ds \right) \quad (11) \]

\[= m \left[C(x/m) - C(t_0/m) + i (S(x/m) - S(x_0/m)) \right] \]

where
\[
C(r) = \int_0^r \cos \frac{\pi}{2} s^2 ds
\]
and
\[
S(r) = \int_0^r \sin \frac{\pi}{2} s^2 ds
\]

C(r) and S(r) are the well-tabulated Fresnel Integrals. [WS]

Using Equation (11) and Equation (6) we obtain

\[
F_1(t) = m \int_{t_0}^t e^{iAx^2} \left[C(x/m) - C(t_0/m) + i (S(x/m) - S(x_0/m)) \right] dx \quad (12)
\]

Using the identity,
\[
e^{iAx^2} = \cos Ax^2 + i \sin Ax^2
\]
and separating the right side of Equation (12) into a sum of integrals, we obtain

\[
F_1(t) = m \left[\int_{t_0}^t C(x/m) \cos Ax^2 dx - C(t_0/m) \int_{t_0}^t \cos Ax^2 dx \\
+ i \int_{t_0}^t S(x/m) \cos Ax^2 dx - iS(t_0/m) \int_{t_0}^t \cos Ax^2 dx \\
+ i \int_{t_0}^t C(x/m) \sin Ax^2 dx - iC(t_0/m) \int_{t_0}^t \sin Ax^2 dx \\
- \int_{t_0}^t S(x/m) \sin Ax^2 dx + S(t_0/m) \int_{t_0}^t \sin Ax^2 dx \right] \quad (13)
\]
We can rewrite $F_1(t)$ as

$$F_1(t) = m(I_1 - I_2 + i(I_3 + I_4))$$ \hspace{1cm} (14)

where

$$I_1 = \int_{t_0}^{t} \cos A x^2 (c(x/m) - c(t_0/m)) \, dx ,$$ \hspace{1cm} (15)

$$I_2 = \int_{t_0}^{t} \sin A x^2 (s(x/m) - s(t_0/m)) \, dx ,$$ \hspace{1cm} (16)

$$I_3 = \int_{t_0}^{t} \cos A x^2 (s(x/m) - s(t_0/m)) \, dx ,$$ \hspace{1cm} (17)

and

$$I_4 = \int_{t_0}^{t} \sin A x^2 (c(x/m) - c(t_0/m)) \, dx .$$ \hspace{1cm} (18)

To evaluate $F_2(t)$ as defined in (7) introduce the notation

$$F_4(x) = \int_{t_0}^{x} u^2 e^{i u^2 du} .$$ \hspace{1cm} (19)

Letting $r = u$, $dv = u e^{i u^2 du}$, and integrating by parts, we obtain

$$F_4(x) = - \frac{i}{2D} (x e^{i D x^2} - t_0 e^{i D t_0^2}) + \frac{i}{2D} \int_{t_0}^{x} e^{i u^2 du} ,$$

$$= \frac{i}{2D} \left[(t_0 e^{i D t_0^2} - x e^{i D x^2}) + m(c(x/m) - c(t_0/m)(20)$$

$$+ i s(x/m) - i s(t_0/m)) \right] .$$

We can use $F_4(x)$ in evaluating $F_2(t)$.

$$F_2(t) = \int_{t_0}^{t} e^{i A x^2} F_4(x) \, dx$$ \hspace{1cm} (21)
\[\frac{1}{2D} \left[t_o e^{\frac{1}{2} iD t_o} \int_{t_o}^{t} e^{iAx} dx - \int_{t_o}^{t} e^{i(A+D)x^2} dx \right. \\
+ \left. m \int_{t_o}^{t} e^{iAx^2} (C(x/m) - C(t_o/m) + iS(x/m) - iS(t_o/m)) dx \right] \]

We now evaluate the three terms present on the right side of Equation (21).

Using the identities

\[e^{iAx^2} = \cos Ax^2 + i \sin Ax^2, \]

and

\[e^{iDt^2} = \cos Dt^2 + i \sin Dt^2, \]

we get

\[t_o e^{\frac{1}{2} iDt_o} \int_{t_o}^{t} e^{iAx} dx = t_o (\cos Dt^2 + i \sin Dt^2) \]

\[\left(\int_{t_o}^{t} \cos Ax^2 dx + i \int_{t_o}^{t} \sin Ax^2 dx \right) \quad (22) \]

\[= t_o \cos Dt^2 \int_{t_o}^{t} \cos Ax^2 dx - t_o \sin Dt^2 \int_{t_o}^{t} \sin Ax^2 dx \]

\[+ i(t_o \cos Dt^2 \int_{t_o}^{t} \sin Ax^2 dx + t_o \sin Dt^2 \int_{t_o}^{t} \cos Ax^2 dx). \]

The second integral on the right side of Equation (21) is

\[\int_{t_o}^{t} e^{i(A+D)x^2} dx \]

Multiplying and dividing by \(2i(A+D)\) we obtain

\[\frac{1}{2i(A+D)} \int_{t_o}^{t} e^{i(A+D)x^2} (2i(A+D)x) dx \]

\[13 \]
\[\begin{align*}
&= \frac{1}{2i(A+D)} \left[e^{i(A+D)x^2} \right]_0^t \\
&= \frac{1}{2i(A+D)} \left(\cos(A+D)t^2 - \cos(A+D)t_o^2 \right) \\
&+ \frac{1}{2(A+D)} \left(\sin(A+D)t^2 - \sin(A+D)t_o^2 \right). \\
\end{align*} \]

The third integral on the right side of Equation (21) is equal to

\[m \int_{t_o}^t \left(\cos Ax^2 + i \sin Ax^2 \right) \left[C(x/m) - C(t_o/m) + i(S(x/m) - S(t_o/m)) \right] dx = m(I_1 - I_2 + i(I_3 + I_4)). \]

Let

\[I_5 = \int_{t_o}^t \cos Ax^2 dx, \quad (25) \]

and

\[I_6 = \int_{t_o}^t \sin Ax^2 dx. \quad (26) \]

Combining information from Equations (21), (22), (23), (24), (25) and (26), we find

\[F_2(t) = \frac{1}{2D} \left[t_o \cos Dt_o^2 I_5 + it_o \cos Dt_o^2 I_6 + it_o \sin Dt_o^2 I_5 \\
- t_o \sin Dt_o^2 I_6 - \frac{1}{2i(A+D)} \left(\cos(A+D)t^2 - \cos(A+D)t_o^2 \right) \\
- \frac{1}{2(A+D)} \left(\sin(A+D)t^2 - \sin(A+D)t_o^2 \right) + m(I_1 - I_2 + i(I_3 + I_4)) \right], \]

\[= - \frac{t_o}{2D} \cos Dt_o^2 I_5 - \frac{t_o}{2D} \sin Dt_o^2 I_5 - \frac{1}{4D(A+D)} \\
\left(\cos(A+D)t^2 - \cos(A+D)t_o^2 \right). \quad (27) \]
\[- \frac{m}{2D} (I_3 + I_4) + i \left[\frac{t_0}{2D} \cos Dt_0 I_5 - \frac{t_0}{2D} \sin Dt_0 I_6 \right. \]

\[\left. - \frac{1}{4D(A+D)} (\sin(A+D)t^2 - \sin(A+D)t_o^2) + \frac{m}{2D}(I_1 - I_2) \right] . \]

Using Equation (14) in Equation (8) we obtain

\[\frac{\Phi_1(t)}{L_c} = - \frac{T_m}{B}(I_1 - I_2 + i(I_3 + I_4)). \]

(28)

We may write with the aid of Equations (9), (14), and (27)

\[\frac{\Phi_2(t)}{\beta_c} = (1-2q) \alpha \sqrt{\frac{\pi}{2D}} (I_3 + I_4) - \frac{\alpha^2(1-2q)}{2D} t_0 (\cos Dt_0^2 I_6 \]

\[+ \sin Dt_0^2 I_5) - \frac{(1-2q)\alpha^2}{4D(A+D)} (\cos(A+D)t^2 - \cos(A+D)t_o^2) \]

\[- \frac{(1-2q)\alpha^2}{2D} \sqrt{\frac{\pi}{2D}} (I_3 + I_4) \]

(29)

\[+ i \left[-(1-2q)\alpha \sqrt{\frac{\pi}{2D}} (I_1 - I_2) + \frac{(1-2q)\alpha^2 t_o^2}{2D} (\cos Dt_0^2 I_6 \]

\[- \sin Dt_0^2 I_5) - \frac{(1-2q)\alpha^2}{4D(A+D)} (\sin(A+D)t^2 - \sin(A+D)t_o^2) \]

\[+ \frac{(1-2q)\alpha^2}{2D} \sqrt{\frac{\pi}{2D}} (I_1 - I_2) \right] . \]
A METHOD FOR DETERMINING EFFECTIVE VALUES OF
DYNAMIC UNBALANCE AND THRUST MISALIGNMENT

We could idealize the physical setup by imagining the projectile with
its center of gravity somehow held fixed in space, but with the projectile
free to move about its center of gravity. If we assume that the transverse
angular motion is caused entirely by thrust misalignment and dynamic un-
balance, solutions to Equation (2) can be used to provide an indirect
method of estimating \(L_c \) and \(\beta_c \). Indeed, for positive unit values of \(L_c \)
and \(\beta_c \) we could obtain the solutions

\[
\frac{c_1(t)}{L_c} \quad \text{and} \quad \frac{c_2(t)}{\beta_c}
\]

for discrete values of \(t \) between the ignition and
the end of burning times. The solutions of Equation (2) would be deter-
mined either by solving it directly by numerical methods or from Equations
(28) and (29).

We would then obtain an over-determined system of equations.

\[
\phi_R(t) = x(t) \text{Re}(L_c) + y(t) \text{Re}(\beta_c)
\]

\[
\phi_R(t_1) = x(t_1) \text{Re}(L_c) + y(t_1) \text{Re}(\beta_c)
\]

\[
\phi_R(t_2) = x(t_2) \text{Re}(L_c) + y(t_2) \text{Re}(\beta_c)
\]

\[
\vdots
\]

\[
\phi_R(t_n) = x(t_n) \text{Re}(L_c) + y(t_n) \text{Re}(\beta_c)
\]

where

\[
x(t) = \text{real component of} \frac{\phi_1(t)}{L_c}
\]

\[
y(t) = \text{real component of} \frac{\phi_2(t)}{\beta_c}
\]
\begin{align*}
\text{Re}(L_c) &= \text{real component of } L_c \\
\text{Re}(\beta_c) &= \text{real component of } \beta_c
\end{align*}

As mentioned above, \(x(t_1)\) and \(y(t_1)\) are obtained from the solutions of Equation (2). The angles \(\phi(t_1)\) would be measured experimentally (perhaps by a transducer). The values of \(\text{Re}(L_c)\) and \(\text{Re}(\beta_c)\) would be unknown. Since we could expect errors in the \(\phi\), \(x\), and \(y\) values, estimates of \(\text{Re}(L_c)\) and \(\text{Re}(\beta_c)\) would be obtained by applying least squares techniques. Similar expressions would provide estimates for the imaginary components of \(L_c\) and \(\beta_c\).

W. J. SACCO

W. J. SACCO

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Armed Services Technical Information Agency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arlington Hall Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arlington 12, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Director of Defense Research and Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Defense</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Commanding Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Feltman Research and Engineering Laboratories</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dover, New Jersey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diamond Ordnance Fuze Laboratories</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Technical Information Office, Branch 012</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U.S. Army Ordnance Missile Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Technical Library, ORDXR-CTL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, Alabama</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding General</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ordnance Weapons Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock Island, Illinois</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Army Research Office (Durham)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Box CM, Duke Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durham, North Carolina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Chief of Research & Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Director/Army Research Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of the Army</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Chief of Ordnance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: ORDTB - Bal Sec ORDTW</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of the Army</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington 25, D.C.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jet Propulsion Laboratory
ATTN: Mr. Irl E. Newlan - Reports Group
4800 Oak Grove Drive
Pasadena, California

Chief, Bureau of Naval Weapons
ATTN: DIS-33
Department of the Navy
Washington 25, D.C.

Commander
U.S. Naval Ordnance Test Station
ATTN: Technical Library
China Lake, California

Commander
Naval Ordnance Laboratory
ATTN: Library
White Oak, Silver Spring, Maryland

Commander
U.S. Naval Weapons Laboratory
Dahlgren, Virginia

Commander
Air Proving Ground Center
ATTN: PGAPI
Eglin Air Force Base, Florida

Arthur D. Little, Inc.
ATTN: Mr. W.A. Sawyer
15 Acorn Park
Cambridge 40, Massachusetts

American Machine & Foundry Co.
1104 South Wabash Avenue
Chicago 5, Illinois

Armour Research Foundation
Illinois Institute of Technology Center
Chicago 16, Illinois
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | North Carolina State College
ATTN: Professor J.W. Cell
Department of Mathematics
Raleigh, North Carolina |
| 1 | Professor R.J. Walker
Department of Mathematics
Cornell University
Ithaca, New York |
| 10 | The Scientific Information Officer
Defence Research Staff
British Embassy
3100 Massachusetts Avenue, N.W.
Washington 8, D.C. |
| 4 | Defence Research Member
Canadian Joint Staff
2450 Massachusetts Avenue, N.W.
Washington 8, D.C. |
A METHOD FOR DETERMINING ESTIMATES OF THE DYNAMIC UNBALANCE AND THE THRUST MISALIGNMENT OF SPIN-STABILIZED ROCKETS

W. J. Sacco

BRL Memorandum Report No. 1405 May 1962
DA Proj No. 503-06-002, OMSC No. 5010.11.812
UNCLASSIFIED

Solutions to the equation of motion of a spinner artillery rocket about its center of gravity under the influence of thrust misalignment and dynamic unbalance are obtained. A method for determining effective values of dynamic unbalance and thrust misalignment is given.
<table>
<thead>
<tr>
<th>Access No.</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRL Memorandum Report No. 1403 May 1962</td>
<td></td>
</tr>
<tr>
<td>DA Proj No. 503-06-002, OMSC No. 5010.11.812</td>
<td></td>
</tr>
</tbody>
</table>

Solutions to the equation of motion of a spinner artillery rocket about its center of gravity under the influence of thrust misalignment and dynamic unbalance are obtained. A method for determining effective values of dynamic unbalance and thrust misalignment is given.