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ABSTRACT

This memorandum formulates and solves a barrier submarine-transitor
submarine conflict as a two-person game. When described as a game, the
conflict becomes a problem of obtaining distributions along the barrier
of the locations of (1) transit lanes and (2) locations of the barrier
submarine for which on the average a game theoretic optimum probability
of detection by the barrier submarine is to be obtained. The game
theoretic optimum or minimax solution gives (if it exists) at the least
one distribution for the transit lanes having the property that, if the
barrier submarine behaves optimally, no other distribution of lanes can
decrease the probability of detection. In addition, the solution will
give (if it exists) at least one distribution of barrier submarine posi-
tions, such that no other barrier submarine distribution will increase
the probability of detecting an optimal transitor. Optimal solutions
are derived in the appendix for games in which the barrier submarine
detection equipment has (1) a definite range law and (2) a trapezoidal
lateral range probability of detection law. The geometric method used
there can be extended to other detection laws with an attendant increase
in mathematical difficulties.
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1. An Anti-transitor Submarine Barrier Game: In a segment of an anti-transitor
submarine barrier assigned to a single barrier submarine, it is desired to find
an "optimum" distribution of: (1) locations on the barrier to be taken by
the barrier submarine, and (2) straight courses (or lanes) on which the transitor
submarine adversary may cross the barrier when the same tactical situation is
expected to occur a large number of times. For each transit the barrier subma-
rine may take any location on its barrier, and the transitor may cross
perpendicularly at any point on the barrier. When a large number of repli-
cations of a transit are made the transitor and the barrier submarine must choose
locations with a frequency given by their optimum distributions. The length
of the barrier segment is taken to be unity for convenience.

The game theoretic optimum distributions can be explained as follows: A
payoff function K - K(f ,n ) of two variables I and t is given. For the
anti-transitor barrier, K is the probability that the barrier submarine
detects the transitor.. The variable I is the location of the barrier subma-
rine; and 4 is the location of the intersection of the transitor track and
the barrier. Both locations, by assumption, are between zero and 1. For each
transit (or play of the game), J can be chosen by the barrier submarine
and *q can be chosen by the transitor. Of course the barrier submarine wishes
to maximize K, while the transitor wishes for a minimum K Because of the
interacting choices, the problem is not one of maximizing or minimizing; but
rather one of the barrier submarine adjusting the weaknesses in its tactics
so that any exploitation by the transitor will not decrease the probability
of detection below a minimum, known to the barrier submarine This minimum
probability is a function of the lateral range curve of the barrier submarine
and the distribution for 5 chosen by the barrier submarine. On the other
hand the transitor cannot (with an optimum or best barrier' submarine distri-
bution) reduce this minimum probability. The transitor, however, must choose
a distribution for YJ which does not permit the barrier submarine to increase
the probability of detection by exploiting any weaknesses in the transitor
choice. Moreover, the transitor has to choose a distribution which avoids the
potential strengths of theJ.,arrier submarine.

The interaction between the two adversaries makes visualization of the
effects of potential tactics difficult. One or two examples of opposing
tactics may give more insight into the conflict. Suppose, for example, that
for each play of the game (i.e., each transit) the barrier submarine chooses
to stay at the center of the barrier; and suppose that the transitor chooses
to cross the barrier at the center every time. If the detection law for
the barrier submarine diminishes at the edges of its barrier segnent, then
the transitor tactic is a foolish one for it. Exploiting the tapering of the
detection law by the transitor would decrease its probability of being detected.

On the other hand, if the transitor stayed on the edge always and the
barrier submarine persisted in choosing the center, the barrier submarine
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would not be acting in its own best interests: it could increase the
probability of detecting the transitor by moving over to (or near) the
proper edge. But then the transitor should move in its own best interest.
And so on-.

The problem of getting a game theoretic solution becomes one of getting
distributions for selecting locations, such that even though an adversary
knows the other' s distribution, the former can do nothing to improve its
payoff on the average.

The choices for the barrier submarine and the transitor will be formalized;
and distributions will be constructed for lateral range curves which are
rectangular or trapezoidal (including triangular) in appendix A. The methods
used in the examples of appendix A are adaptable to any symmetric lateral
range probability of detection curve. Although there are some more or less
general results available for continuous games (e.g., reference (a)), the
games of this memorandum generally do not fit these theories. Rather a
step-by-step procedure, starting from the fundamentals of game theory is
employed, which: constructs a solution for each game.

2. Limitations on Game Theoretic Solutions: There are two types of
limitations In game theoretic models: (1) the limitations on the game
theoretic or minimax solution and (2) the limitations inherent in the
assumptions. The latter will be discussed first.

a. The games solved assume that any transitor crossing the barrier line
is detectable, which is certainly the case for a passive barrier submarine
and a continuously noisy transitor. Hence the games only apply to an active,
silent barrier submarine and a continuously noisy transitor. By a modifi-
cation of the lateral range probability of detection curve to account for
the average probability of snorkelling, the same geometric construction
should give a solution when the transitor is not continuously noisy. Generally,
the value of the game is lower if the transitor snorkles intermittently.

b. It has been assumed that only a portion of a barrier is to be
investigated, that this portion has a single barrier submarine and a single
transitor. Thus the segment is assumed to be isolated from the rest of the
barrier and that there are no edge effects from adjacent segments of the
barrier. Again by modifying the lateral range detection curve the effect of
barrier submarines in adjacent segments can be subsumed. Such an adjustment
will permit an extension to a multiple submarine barrier.

The limitations (or better the meaning) of the minimax solutions should
be clearly understood.

a. First the minimax solution gives little information about the outcome
of a single play of the game (i.e., single barrier transit). Rather it gives
an average probability of detection for a situation in which a very large
number of transits are made when the adversaries choose the strategies for
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the individual plays from their minimax distributions. For each transit a
selection of transit location and barrier submarine position is to be made
in accordance with the minimax distribution of each. There is no shifting
of transverse location during a transit. Crudely, the expected a priori
probability of detection for any play of the game is the minimax value of
the payoff function K.

b. The game being played (i.e., the payoff function and the distributions
from which the plays are chosen) must be the same for both. Thus the payoff
function used to describe the game must be the same for the transitor and
for the barrier submarine. Since, as will be shown, the payoff function
depends on the lateral probability of detection curve, both transitor and
barrier submarine must know the shape of the barrier submarine detection
curve. Unless the distributions are independent of the detection curve (or
at least insensitive to the possible shapes), the game theoretic model is more
applicable to exercises than to an anti-enemy barrier.

c. The minimax distributions are conservative. Each adversary knows that
a "best" choice has been made: for no matter what the other does, on the
average, his probability of detection cannot be adversely affected.

d. It is to be emphasized that these distributions are derived in the
complete lack of knowledge of either player about the other on any specific
play. If intelligence indicates some preferential strategy for one adversary,
then obviously the minimax distribution should be abandoned by the other to
exploit any potential advantage.

3. Results from the Game Theoretic Model: Figure 1 shows the average
probability of detection (i.e., the value of the game) when the barrier sub-
marine has (1) a definite detection law, (2) an isosceles trapezoidal law
with a 600 base angle, and (3) an isosceles trapezoidal law with a 750 base
angle. The average probability of detection is to be expected when both
barrier submarine and transitor use their minimax distributions for locations.
However, figure 1, although indicating the number of positions required for
the barrier submarine's minimax distribution does not indicate where the
positions might be. Moreover, the transit lanes for the transitor are
required for a complete solution for the barrier as a game. Figures 2, 3,
and 4 show the points or intervals which must be occupied by the barrier
submarine and by the transitor for one minimax solution of the game. Before
making several explanatory comments about the latter figures, two examples
of the use of the figures will be given:

Example 1. Suppose that the lateral range probability of detection
curve is a definite range law whose width is 0.4 of the width of the barrier
segment. From figure 1 the average probability of detection is 0.33. The
locations of the barrier submarine and the transitor are shown on figure 2.
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The points 0.2, 0.5, and 0.8 of the width of the barrier must each be
* occupied by the barrier submarine one-third of the time. On the other hand,
the transitor has three intervals, from 0.0 to 0...,,. 0.4 to 0.6 and 0.8
to 1.0, each of which must be occupied on one-third of the plays. When an
interval is selected, any point of that interval may be occupied. Different
geometrical points in one interval are mathematically equivalent for the
game.

Example 2: Suppose that the detection curve has a 600 base and a
width of top ,of 0.2 the width of the barrier segment. Figure 1 ehows the
average probability of detection to be 0.49. The barrier submarine is to
spend one-half time at 0.11 and one-half the time at 0.89 of the barrier
width. The situation for the transitor is somewhat different. One-third
of the plays,i the transitor is to occupy each boundary. The transitor is
to spend the remaining third on the interval between 0.22 and 0.78. It is
important that the boundaries not be neglected; the boundaries are always
suitable locations for the transitor. Sometimes, as in example 1, the
boundaries are connected to intervals; whereas in example 2, the boundaries
are isolated points.

Example 3: To il~ustrate still another kind of location, suppose
that the base angle is 90 --a definite detection law-- and the width of
the top is 0.5 of the barrier width. The probability and the locations of
the barrier submarine are obtained as before. However, the entire width
of the barrier is shown for the transitor locations. The proper inter-
pretation must be made. This full width is a boundary between the triangles
for 2 locations and the triangles for 3 locations of the transitor. But
only one solution is possible; note that figure 1 shows that for a width
of 0.5, the upper solid line gives the value of the game. Hence the barrier
submarine must occupy 2 positions. Those 2 locations are shown on figure 2
as at 0.25 and 0.75. The transitor must spend half of its time in each
half of the barrier. The segnents shown in the lower part of figure 2 are
from 0.0 to 0.5 and 0.5 to 1.0.

It should be noted that the combinations of locations of figures 2, 3,
and 4 are not the only combinations which give the minimax value for the
game. The ones shown, in which only distinct points are permissible for
the barrier submarine are those which provide the biggest bonus for the
barrier submarine, on the average when the transitor persistently fails to
use its minimax strategy in an unknown way. This is explained diagram-
matically in appendix A. Other distributions would permit intervals for
the barrier submarine and corresponding changes for the transitor locations.
These others have not been considered here.
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Reference: (a) Theory of Infinite Games, Samuel K~arlin, New York:
Addison- Wesley, 1959
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APPENDIX A

1. -Introduction:

This appendix contains a geometric construction of a game theoretic
solution for an anti-transitor barrier. The barrier game model considered-
is one for which the segment assigned to one barrier submarine has unit
length. The barrier submarine must choose its location for each play from
a distribution to be determined. The opposition to the single barrier
submarine is a single transitor submarine which must transit the barrier
segment (of unit length). For each play the transitor must select a
transit lane (perpendicular to the barrier line) from a distribution to
be determined. This formulation is one of an infinite game (i.e., has a
continuum of choices for both adversaries) on the unit square (each dis-
tribution is to be determined over the unit interval). (See reference (a)).
The payoff function is the probability of the barrier submarine detecting
the transitor. Location. of transit lane, location of barrier submarine
and shape of the barrier submarine's lateral range probability of detection
curve are the essential variables in the payoff function.

The geometric method will be displayed for trapezoidal lateral range
probability of detection curves, including limiting cases of rectangular
and triangular detection laws. Other convex shapes (at least) are
amenable to the method.

2. Some Game Theoretic Fundamentals:

What follows is a brief statement of the fundamentals of game theory.
The notation is that of reference (a), where a complete, readable, and
understandable statement of game theory is given. The description here
is just sufficient to make the appendix self-contained, and is limited to
the requirements of the appendix.

Abstractly, a game may be defined as a triple

(K, X, Y)9

where K is a function, the payoff, of two variables

K = K (I ,f )

and X and Y are suitable classes of distribution functions. In practice
there are two players, usually designated I and II; I makes choices

A-1
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from a distribution X, and II makes choices q from a distribution Y.
K, the payoff to player I, may be a probability, a financial profit, a
score etc. for one of the players. The problem of game theory is to find

a "best" choice for each player; where, as indicated by the functional
form K (f ,nV ), each choice influences the value of the ppyoff. The "best"

choices are the selection C of one distribution function x for I from X
and one y for Y1 from Y. It might be noted, parenthetically, that in
general the "best" distributions are not unique.

For distributions xe X and y ( Y the payoff is

K (xy),

where without risk of confusion the distributions are used rather than the
individual choices as before. This latter payoff is an average probability,
an average profit, or average score. In the new notation the game theory
problem is to find, if possible, a distribution x in X and y in Y which
have the following properties: (i) if y is any distribution ?n Y

K(x_,y),)> K(xo,yo), ()

and (2) if x is any distribution in X

K(x_,Yo) > K(x,yO). (2)

These two conditions are symbolic transcriptions of the' literary statements
in the introduction concerning optimal game theoretic behaviors- bf the
barrier submarine and tbe'transitor. The value of the game (to player I
who chooses xo) is defined t6 be

K(x ,yo)'

Reference (a) contains an excellent survey of methods for various
infinite games on the unit square. Such games are choices of locations
on the unit interval for each player (i.e., a choice of dtstributions
over the unit interval). The methods are usually tied to a specific
form of the payoff function K( f , 1q) such as convex, polynomial,
analytic, etc. Generally the payoff functions used below do not fit
the specific theories; hence for each game an optimal choice for
player I will be obtained by a geometric construction, from which an
optimal choice for II can be obtained. It is to be emphasized that

the optimal choices obtained are those satisfying (1) and (2). They

are not the.iaximum payoff (say) for player .1, if..player1.I1 ..oea not use
his optimal tactic. But in the absence of information about the choice
made by player II, player I's choice guarantees him a certain minimum
payoff, which minimum cannot be increased by any other choice of his.

A-2
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3. Definite Range Game:

Suppose that the function K( E, ) has the definite range form:

I< W/2
K(E -.

otherwise.

Suppose that the game is to be played over the unit interval. Then
if W > 1, the optimum strategy for the defender is to take any location
for which the definite range curve fills the unit interval. One such
location is to occupy the center of the interval. For such relatively
large values of w, any transit position is optimum for the transitor;
for there is no transit path which will lower the probability of detec-
tion less than 1.

There are non-optimum positions for the barrier submarine--any
position whose distance from the center is greater than W/2. For such
positions a gap in coverage exists which can be exploited by transitor
to decrease the minimum probability of detection from one to zero.
Hence the value of this game is one, the minimax solution.

Now suppose that W satisfies

1/2 < W < 1.

There is no single location on which the barrier submarine can spend
all its searching time, because a gap in coverage will always exist.
Again this gap can be exploited by proper choice of the transitor
location to reduce the maximum probability of its being detected.
Thus the barrier submarine must select at least two points on which
to spend part of its search effort.

The next distribution to investigate is one in which the barrier
submarine spends one half of its time on each of two points selected
in such a way that each point of the unit interval is covered part
of the time. One pair of locations is shown in figure A-1. This
pair is also an optimtm for the barrier submarine,

To demonstrate this optimality, three variations are possible:

(1) Variation in position of the two locations

(2) Variation in number of locations

(3) Variation in time at each location.

A-3
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Prob. * Barrier submarine
of detect. location

- Transitor track

1/2

0-3 W d0w 1-w 1

FIG. A-i: AN OPTIMUM LOCATION OF SEARCH EFFORT AND TRANSITS FOR THE
DEFINITE RANGE GAME WHEN 1/2 < W < 1

If the left position is moved to the right, or if the right position
is moved to the left, a gap will be left at one boundary (or both). The
gap could be exploited by the transitor to reduce the probability of being
detected (to zero for these gaps).

Moving either or both of the locations outward towards the nearer
boundary has a different effect. Note that the composite probability
curve has a section in the center (where the overlap occurs) where the
probability is one. As the points move closer to the boundaries, the
length of the overlap decreases. Until the overlap decreases to zero,
there is no decrease in minimum probability. Hence there is no loss in
the minimax value of the game, and some shifting of the barrier submarine
is possible. However, the positions shown in figure A-1 give the largest
"bonus" as mentioned in the body. The area under the probability of detec-
tion curve is the largest, which implies that there is a greater probability
of detecting (on the average) a transitor who does not use its minimax
distribution, while exploitation of the barrier submarine weaknesses (other
than those of the minimax distribution) is prevented. Note, that there is
no implication here that the minimax distribution for the barrier subma-
rine is its "best" distribution to counter a persistent non minimax
selection by the barrier submarine. The positions shown in figure A-1
are chosen for the barrier submarine because (1) they form a set for which
a minimax distribution can be found and (2) they permit the largest area
under the probability curve--the biggest bonus.

A-4
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The optimal distribution of time at each position is 1/2. If any
other time-sharing is used, then the transitor can exploit the side with
the smaller barrier submarine effort (time) to decrease the average
probability of detection. For example, if the time-sharing is 1/3 and
2/3, then the transitor can transit the "weak" side everytime to reduce
the average probability from 1/2 to 1/3.

Finally three or more barrier submarine locations can be used.
Three locations are shown in figure A-2. Note that gaps occur if the
end positions are moved inward;' hence

Prob. ___ Barrier submarine
of detect. location

2/3

1/3

0.

FIG. A-2: POSSIBLE SEARCH EFFORT FOR THREE LOCATIONS WHEN 1/2 < W < 1

the outer locations are fixed. (Again no effort is assumed outside the
segment shown.) The "middle" location can be moved around. If there is
any transiting position which is defended less than half the time, this
position can be exploited by the transitor to its advantage. The only
way to prevent this exploitation is for the roving location to be placed
on the other two positions for 1/2 of its time. But this is just the
previous distribution. Similar arguments can be adduced for other
numbers of locations and distributions of effort. Hence a distribution
which maximizes the minimum probability of detection by the barrier,
submarine is that shown in figure 1.
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The distribution of 'tranfting effort can be varied as can the barrier
submarine's effort. An optimum distribution for the tranaitor is equal time
spent in two transitting lanes (normal to the barrier line , the only type
considered) whose distances are at least W apart. If unequal times are spent,
then by a corresponding shift of searching time, the barrier submarine can
increase the average probability of detection. If the distance between the
lanes is less than W, the barrier submarine can spend all its time on one
properly selected location and again get an increase. Moreover, when the
transits are greater than W apart, no gain accrues to the barrier submarine
by decreasing the spacing of its effort (ie., the transitor forces the
barrier submarine to search in two locations).

If the transitor uses three or more locations, all pairs of tracks
cannot be separated by W; and hence such a tactic is similar to the unequal
time sharing tactic of the transitor, allowing the average probability of
detection to be raised by a prope'r selection of barrier submarine effort.

When 1/3 < W < 1/2, three positions each are required for the barrier
submarine and the transitor. Any fewer locations leave gaps in the barrier
to be exploited. Three locations are shown in figure A-3. Again these
locations ban be moved without leaving gaps or without decreasing the mini-
mum probability of detection. However, no sliding will increase the area
under the composite probability curve. Hence the points w/2, 1/2, and
l-w/2 are the three points which will be used for the minimax barrier submarine
positims. No more than three points are possible. To prevent the decrease
of the value of the game below 1/3, 1/3 of the time must be spent protecting
each boundary. This requires 1/3 of the time on w/2 or an equivalent point
closer to the boundary and 1/3 of the time on l-w/2 (or an equivalent closer
to the boundary). Thus the remaining 1/3 of the time must be spent at the
center (or an equivalent) to protect the center interval not covered by
other locations.

Three transit lanes are required. With the barrier submarine locations
fixed at points above, the lanes can be drawn from the three intervals of
minimum probability of detection, shown in figure A-3. Argument, similar to
those before, show that each interval must be occupied 1/3 of the time.

4. Trapezoidal Game: The trapezoidal game is one having an isosceles
trapezoid for a separate lateral range probability of detection curve.
Basically, such a curve depends on two parameters: (e.g., the width of
the smaller base, w, and the angle at the larger base, D). To restrict the
range all results were obtained for D = n/3 radians; but the construction
can be executed for any D, 0 < D < g/2. If w > 1, then one optimum barrier
submarine position is 1/2, and all transitors positions are equally advan-
tageous for the transitor. As w becomes less than 1, then the edges of the
barrier are the minimum probabilities of detection. Because of the symmetry
two transit locations are required; the optimum position for the barrier
submarine is in the center. The two optimum transits are each boundary.
(NOTE: These positions neglect the edge effects from any adjoining subma-
rines.) The average probability of detection is just the probability of
detection at the edges of the barrier.
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d- d *Barrier submarine
location

Transitor track

Outer transitor can

Prob. l vary in this interval

of detect.
1

2/3 min(d 1 , d2)>W

1/3

0 1

Cente transitor can vary
f- back in this interval

FIG. A-3: AN OPTIMUM STRATEGY FOR 1/3 !W <1/2

As w continues to decrease, the value of the game- -determined by the
height of the intersection of the sides of the trapezoid and the edge of the
barrier--continues to decrease. When the value of the game for a single
barrier submarine location decreases to the value which can be obtained by
using two locations for the barrier submarine, a shift in optimum strategy
to the use of the two locations is required.

There are three locations for minimum values when the barrier
submarine must occupy two locations: each side and the center. In
general the location of the two barrier submarine positions is fixed to
make these three minima equal. Figure A-4 shows the average probability
of detection for two locations. The optimum positions for the barrier
submarine are selected to make the obvious potential minima equal. It
should be noted that each ordinate of the trapezoid must be reduced by a
factor of N, changing the shape of the trapezoid. This is shown in
figure A-5 for N = 2.
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OPTIMAL LOCATIONS OF BARRIER SUBMARINE WHEN TWO
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FIG. A-4: AVERAGE PROBABILITY OF DETECTION WHEN TWO POSITIONS
ARE TIME SHARED EQUALLY
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FIG. A-5: PROABILITY TRAPEZOID FOR 50% TIME AT EACH LOCATION

A figure different from figure A-4 is possible with a trapezoidal
probability curve. If the top of the trapezoid is broad enough, an increase
in probability is possible in the center as shown in figure A-6. Here a
triangular area in the center will permit some shifting the barrier submarine
locations, with an attendant decrease in size of the triangle, but inducing
no gaps. However to keep the largest "bonus" the positions of the barrier
submarine are assumed to be points and the intervals corresponding to them
can be obtained for the transitor.

That these locations yield a minimax follows from arguments similar
to those given previously. Again if equal. time is not spent at each location,
the transitor can exploit the position with the smallest effort. If more
than the minimum points are used, then additional overlap is obtained with
a lowering of probability at one or more points, which can then be exploited
by the transitor. The transitor must exploit each weakness (valley in the
average probability curve) equally. Otherwise the barrier submarine can
change its tactic to lessen the probability in one or more values, which
increases the minimum probability elsewhere.
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FIG. A-6: EXCESS AVERAGE PROBABILITY OF DETECTION FOR FIXED
BARRIER SUBMARINE LOCATIONS
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5. Other games: Games with payoff functions

exp (-(g -1)22a ) and

which have more usually shaped lateral range probability of detection curves,
can be approximately solved graphically by the above procedure. The first
function fits the theory of bell shaped kernels in chapter 7 of reference (a).
No solutions are shown, but several theorems are stated (and proved) which
give some properties of the minimax locations. (No intervals are possible,
and there are only a finite number of points for each adversary.) The second
function is known to have similar solutions to the exponential payoff, but
there is no known theory to provide the basis.
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