NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
COMMENTS ON THE TEMPERATURE COEFFICIENT OF RESISTANCE AS USED IN WIRE BRIDGE ELECTRO-EXPLOSIVE DEVICE ANALYSIS (U)

1 NOVEMBER 1961

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

RELEASED TO ASTIA
BY THE NAVAL ORDNANCE LABORATORY
Without restrictions
☐ For Release to Military and Government Agencies Only.
☐ Approval by BuWeps required for release to contractors.
☐ Approval by BuWeps required for all subsequent release.
COMMENTS ON THE TEMPERATURE COEFFICIENT OF RESISTANCE AS USED IN WIRE BRIDGE ELECTRO-EXPLOSIVE DEVICE ANALYSES

Prepared by:

J. N. Ayres

Approved by: [Signature]
Chief, ED Division

ABSTRACT: The resistance of an electro-explosive device (EED) at some temperature elevation, \(\Theta \), above ambient can be expressed by \(R = R_0 (1 + \alpha \Theta) \), where \(R_0 \) is the resistance at ambient temperature, and \(\alpha \) is the temperature coefficient of resistance. This equation is not consistent with the handbook definitions of temperature resistance coefficient wherein the parameters \(R_0 \) and \(\alpha \) are referenced to 0°C conditions rather than ambient temperature conditions. Misuse of the numerical values can lead in some cases to significant computational errors. The source, magnitude, and correction of these errors is presented. Also the mathematical basis for an efficient test plan for the determination of \(\alpha \), \(R_0 \), and \(\gamma \) is given.

PUBLISHED NOVEMBER 1961

Explosions Research Department
U. S. Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland
As part of the Naval Ordnance Laboratory's effort on the HERO (Hazards of Electromagnetic Radiation to Ordnance) program an electro-thermal model has been postulated to explain the response of electro-explosive devices to various electrical environments. Mathematical implementation of this model requires the use of an equation relating the resistance of the EED bridgewire to its temperature. Misunderstanding of the detail of this resistance-temperature relationship has been all too often encountered. It is the purpose of the present report to explain the sources of confusion and thereby eliminate the errors resulting therefrom.

This work was carried out under Task NOL-443, Guided Missile Propulsion Systems, Hazards of Electromagnetic Radiation to Ordnance (HERO). It should be of interest not only to the overall HERO program of the Navy but also to the field of electrical measurements in general.

W. D. COLEMAN
Captain, USN
Commander

C. J. ARONSON
By direction
INTRODUCTION

MATHEMATICAL EXPOSITION

ASSESSMENT OF ERRORS

Error in Resistance at Elevated Temperature, Type 1
Error in Resistance at Elevated Temperature, Type 2
Error in Coefficient Due to Misinterpretation of Base Temperature

DETERMINATION OF α, r, AND R_0 FOR AN EED BY THE THREE POINT METHOD

Measurements Required
Derivation

CONCLUSIONS

ILLUSTRATIONS

Table 1 - Type 1. Errors in Estimate of Resistance at Elevated Temperatures (Due to Improper Use of Coefficient of Resistance)

Table 2 - Type 2. Errors in Estimate of Resistance at Elevated Temperatures (Due to Improper Use of Coefficient of Resistance and Initial Resistance)
INTRODUCTION

1. Much work has been devoted to the application of a lumped-parameter electro-thermal model to the study of the nature of wire bridge electro-explosive devices (EEDs). The work has led to a more fundamental understanding of their transducing action (electrical signal in—explosive action out) and has aided in the solution of a number of rather diverse problems.

2. The experimental approach toward verification and use of this model has required measurement of the bridge-wire temperature elevation, θ, under various conditions of time, temperature, energy and power environment, and history. The verification was accomplished by utilizing the resistance-temperature property of the bridge-wire—i.e., the bridge-wire was used as its own resistance thermometer. This property is expressed by the simple linear relationship,

\[R = R_0 (1 + \alpha \theta), \]

where \(R_0 \) is the initial resistance (at ambient temperature), \(\alpha \) is the temperature coefficient of resistance, and \(\theta \) is the temperature elevation above ambient.

Equation (1) is used in the derivation of a large number of equations describing specific EED properties.

\[
\frac{d\theta}{dt} + \xi \theta = P(t)
\]

where \(C_p \) is the thermal heat capacity of the bridge

\(\xi \) is the bridgewire temperature elevation above ambient

\(\xi \) is the heat loss factor

\(P(t) \) is the power-time function.
3. Equation (1) is of the same form as is used in the handbook definition of temperature-coefficient-of-resistance.

\[R = R_0 \left[1 + \alpha (T - T_0) \right] \]

(2)

where

\[\alpha \] is "the ratio of the change in resistance in a wire due to a change of temperature of 1°C to its resistance at 0°C".

Because \(T_0 \), the base temperature, is usually taken at 0°C, the above equation is often written

\[R = R_0 \left(1 + \alpha T \right) \]

which, though not the same, is easily confused with Equation (1).

4. Apparently, it is too easily forgotten that a specific value of \(\alpha \) for a given material is meaningful only when consistent with the base (reference) temperature. Within the ordinary temperature limits Equation (1) describes the resistance-temperature relationship as a linear function. Occasionally the notion is encountered that \(\alpha \) is the slope of the resistance-temperature curve so that a specific numerical value of this slope will be independent of the temperature. The slope of the linear equation is, of course, the product \(\alpha R_0 \). Since the product is independent of temperature while the resistance, \(R_0 \), will vary as a function of the temperature at which it is determined, it can be seen that \(\alpha \) will have a reciprocal relationship to \(R_0 \).

5. Thus, it can be seen that the values of \(\alpha \) and \(R_0 \) in a specific system depend upon \(T_0 \), the temperature upon which they are based. As a consequence, numerical solutions of the various electro-thermal equations will be in error unless the values of \(R_0 \) and \(\alpha \) are handled properly. The purpose of this report is to explain the differences and similarities between Equations (1) and (2), to show how the parameters should be corrected for differences in base temperatures, and to estimate the magnitude of errors that might arise from failure to correct for the difference.

MATHEMATICAL EXPOSITION

6. Ordinarily, handbook values of \(\alpha \) are given for a base temperature of 0°C. The general Equation (2) can be rewritten for this specific base temperature.
\[R = R_0 \left[1 + \alpha T \right] \]
where \(R_0 \) is the resistance at 0°C, and
\(\alpha \) is the temperature coefficient of resistance at 0°C.

7. In order to reserve \(\alpha \) for the general equation (which visibly incorporates the base temperature) and also to denote that Equation (1) uses the ambient temperature as the base temperature, Equation (1) is rewritten

\[R = R_a \left[1 + A^2 \left(T - T_a \right) \right]. \]
where \(R_a \) is the resistance at ambient temperature (rather than \(R \))

\(T_a \) is the ambient temperature (in °C),

\(A \) is the corresponding coefficient of resistance,

and \(T = T_a + T_b \).

8. Since the individual values of \(\alpha \) and \(R_0 \) for a group of EEDs will ordinarily be given for a base temperature other than ambient, it will be necessary to compute \(R_a \) and \(A \) for use in the electro-thermal equations. From Equation (2) it can be seen that

\[R_a = R_0 \left(1 + \alpha T_a - \alpha T_0 \right). \]

Equation (4) can then be rewritten and set equal to Equation (2):

\[R_0 \left[1 + \alpha T - \alpha T_a \right] = R_a \left[1 + A (T - T_a) \right]\left[1 + A (T - T_a) \right]. \]

From this

\[A = \frac{\alpha}{1 + \alpha T_a - \alpha T_0}. \]

9. When the base temperature for particular \(\alpha \) and \(R_0 \) data is the usual value, i.e., when \(T_0 = 0°C \), then Equations (5) and (6) reduce to:

\[R_a = R_0 \left(1 + \alpha T_a \right), \]
and

\[A = \frac{\alpha}{1 + \alpha T_a}. \]
ASSESSMENT OF ERRORS

10. **Error in Resistance at Elevated Temperature, Type 1.**

The usual situation is as follows:

- \(R_0 \) is interpreted to be the initial resistance as it is measured at ambient temperature \((R_a) \) [consistent]

- \(\alpha \) is used as tabulated at some base temperature and not corrected. [inconsistent]

- \(\theta \) is interpreted as \(T-T_a \). [consistent]

<table>
<thead>
<tr>
<th>(\alpha) ohm/(\text{ohm} \ ^{0\circ C})</th>
<th>70</th>
<th>120</th>
<th>200</th>
<th>320</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00075</td>
<td>0.06%</td>
<td>0.10%</td>
<td>0.20%</td>
<td>0.41%</td>
</tr>
<tr>
<td>0.001</td>
<td>0.10%</td>
<td>0.13%</td>
<td>0.33%</td>
<td>0.67%</td>
</tr>
<tr>
<td>0.002</td>
<td>0.36%</td>
<td>0.67%</td>
<td>1.14%</td>
<td>2.03%</td>
</tr>
<tr>
<td>0.003</td>
<td>0.79%</td>
<td>1.38%</td>
<td>2.25%</td>
<td>3.60%</td>
</tr>
<tr>
<td>0.004</td>
<td>1.33%</td>
<td>2.29%</td>
<td>3.56%</td>
<td>5.33%</td>
</tr>
</tbody>
</table>

\(T_a = 20^\circ C \)

\(T_\theta = 0^\circ C \)

The actual equation used is

\[
R = R_a \left[1 + \alpha (T - T_a) \right]
\]
The equation that should be used is either

\[R = R_0 \left[1 + \alpha(T - T_0) \right] \]

or

\[R = R_a \left[1 + A(T - T_a) \right]. \]

The error equation is

\[E = 100 \left(\frac{\text{Actual} - \text{True}}{\text{True}} \right) = 100 \frac{\text{Actual}}{\text{True}} - 100 \]

\[= 100 \frac{R_a \left[1 + \alpha(T - T_a) \right]}{R_a \left[1 + A(T - T_a) \right]} - 100 \]

which, upon substitution of Equation (6) for A, becomes

\[E = \frac{100 \alpha^2 (T_a - T_0)(T - T_a)}{1 + \alpha(T - T_a)}. \]

This function has been evaluated (Table 1) for various typical values of \(\alpha \) and \(T \) assuming \(T_a = 20^\circ\text{C} \) and \(T_0 = 0^\circ\text{C} \).

11. Error in Resistance at Elevated Temperature, Type 2.

For the situation where \(R_0 \) and \(\alpha \) values, measured at base temperature \(T_0 \), are both used as if the base temperature had been \(T_a \), the actual equation used is:

\[R = R_0 \left[1 + \alpha(T - T_a) \right] \]

when

\[R = R_0 \left[1 + \alpha(T - T_0) \right] \]

should have been used.
Table 2

Type 2. Errors in Estimate of Resistance at Elevated Temperatures
(Due to Improper Use of Coefficient of Resistance and Initial Resistance)

<table>
<thead>
<tr>
<th>R₀ ohm</th>
<th>T, Elevated Temperature (°C)</th>
<th>0</th>
<th>20</th>
<th>80</th>
<th>140</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0005</td>
<td>-1.01%</td>
<td>-1%</td>
<td>-1%</td>
<td>-0.98%</td>
<td>-0.94%</td>
<td>-0.88%</td>
</tr>
<tr>
<td>0.001</td>
<td>-2.04%</td>
<td>-2%</td>
<td>-2%</td>
<td>-1.92%</td>
<td>-1.79%</td>
<td>-1.56%</td>
</tr>
<tr>
<td>0.002</td>
<td>-4.17%</td>
<td>-4%</td>
<td>-4%</td>
<td>-3.70%</td>
<td>-3.23%</td>
<td>-2.56%</td>
</tr>
<tr>
<td>0.004</td>
<td>-8.70%</td>
<td>-8%</td>
<td>-8%</td>
<td>-6.90%</td>
<td>-5.40%</td>
<td>-3.77%</td>
</tr>
</tbody>
</table>

Tₐ = 20°C
T₀ = 0°C

The error equation in this case is

\[E = \frac{100}{R₀} \left[\frac{1 + \alpha(T₀ - Tₐ)}{1 + \alpha(T₀ - Tₐ)} \right] - 100 \]

\[= \frac{100 \alpha(T₀ - Tₐ)}{1 + \alpha(T₀ - Tₐ)} \]

The magnitudes of the errors have been evaluated (Table 2) assuming
Tₐ = 20°C and T₀ = 0°C.

12. Error in Coefficient Due to Misinterpretation of Base Temperature.
(\(\alpha \) used when \(A \) should have been used):

The error equation is

\[E = 100 \left[\frac{\text{Actual} - \text{True}}{\text{True}} \right] = 100 \left[\frac{\alpha - A}{A} \right] \]
which upon substitution of Equation (6) for A becomes

$$E = 100 \alpha [T_a - T_0].$$

Thus it can be seen that, for the case where $T_a = 20^\circ C$, and $T_0 = 0^\circ C$, the error in the value of the coefficient will be $+1.0\%$, $+2.0\%$, $+4.0\%$, and $+8.0\%$ for values of α correspondingly of 0.0005, 0.001, 0.002, and 0.004 ohms/ohm$^\circ C$.

DETERMINATION OF α , γ , AND R_0 FOR AN

AXIS BY THE THREE POINT METHOD

13. **Measurements Required.** Specific instrumentation for making the following determinations is not spelled out. Numerous equivalent methods are available. There are, of course, a number of instruments, peculiarly suited for this work which have been reported in references (1), (2), and (3).

 a. Determine the resistance at ambient temperature with negligible current through the bridge*. This is the resistance R_a.

 b. For a current I through the bridgewire, measure the stabilized resistance R_e that the bridgewire attains at equilibrium.

 c. Find a temperature T_e for which the bridgewire resistance reaches the same value R_e obtained in step b.

14. **Derivation.** From the above measurements, the values for R_a, T_a, R_e, and T_e, are available. Substituting these values into

$$R_e = R_a [1 + A (T_e - T_a)]$$

gives sufficient information to compute A, R_0 , α , R_a , and γ .

$$A = \frac{R_e - R_a}{R_a (T_e - T_a)}$$

$$R_0 = \frac{R_a (T_e - T_0) - R_e (T_a - T_0)}{T_e - T_a}$$

*By negligible is meant a current low enough so that the elevation of the bridgewire from heating by this current flow is small compared to the elevation to T_e (see step c).
\[
\alpha = \frac{R_e - R_a}{R_a (T_e - T_0) - R_e (T_a - T_0)}
\]

\[
\alpha^* = \frac{R_a T_e - R_e T_a}{T_e - T_a}
\]

\[
\alpha^* = \frac{R_e - R_a}{R_a T_e - R_e T_a}
\]

Furthermore, since the heating current, \(I \), was determined in step b, the power to raise the bridgewire to \(T_e \) can be computed as \(I^2 R_e \). Under steady state (constant power) conditions the equation for the thermal model (see footnote to paragraph (1)) can be solved:

\[P(t) = I^2 R_e. \]

Therefore \(\gamma \) can be computed from experimental data by:

\[\gamma = \frac{I^2 R_e}{\theta} = \frac{I^2 R_e}{T_e - T_a}. \]

CONCLUSIONS

14. It can be seen that in many practical situations the improper choice of base temperature for either or both parameters will introduce negligible errors. Other situations (for instance with Tungsten whose \(\kappa \) is about 0.003 ohms/ohm/°C) the error may be significant. In any case it is simple to make the proper choice of parameter and to correct available data consistent with the choice.

15. The three-point method for determining \(\alpha \), \(\gamma \), and \(R_0 \) has been used to make many hundreds of sets of determinations. It is an efficient method and capable of accuracy in the order of 1% or better, depending, of course, upon the quality of the instrumentation.
REFERENCES

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director of Defense Research and Development</td>
<td>1</td>
</tr>
<tr>
<td>Department of Defense</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Chief of Naval Operations (OP 411H)</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Naval Weapons</td>
<td>2</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>DIS-32</td>
<td></td>
</tr>
<tr>
<td>RRRE-8</td>
<td></td>
</tr>
<tr>
<td>RUME-3</td>
<td></td>
</tr>
<tr>
<td>RUME-32</td>
<td></td>
</tr>
<tr>
<td>RMWP-3</td>
<td></td>
</tr>
<tr>
<td>RMNO-4</td>
<td></td>
</tr>
<tr>
<td>RREN-312</td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td>4</td>
</tr>
<tr>
<td>Special Projects Office</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>SP-20</td>
<td></td>
</tr>
<tr>
<td>SP-27</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Ships (Code 423)</td>
<td>2</td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Yards and Docks (Code D-200)</td>
<td>1</td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Chief of Naval Research, Chemistry Branch</td>
<td>2</td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Commandant, U. S. Marine Corps</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Commander, Operational Development Force</td>
<td>2</td>
</tr>
<tr>
<td>U. S. Atlantic Fleet, U. S. Naval Base</td>
<td></td>
</tr>
<tr>
<td>Norfolk 11, Virginia</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, U. S. Naval Ordnance Test Station</td>
<td>Copies</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>China Lake, California</td>
<td>1</td>
</tr>
<tr>
<td>Code 556</td>
<td>1</td>
</tr>
<tr>
<td>Code 4572</td>
<td>1</td>
</tr>
<tr>
<td>Technical Library</td>
<td>2</td>
</tr>
<tr>
<td>B. A. Breslow</td>
<td>1</td>
</tr>
<tr>
<td>J. Sherman</td>
<td>1</td>
</tr>
<tr>
<td>Director, Naval Research Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Washington 25, D. C., Technical Information Section</td>
<td></td>
</tr>
<tr>
<td>Director, David Taylor Model Basin</td>
<td>2</td>
</tr>
<tr>
<td>Washington 7, D. C., Dr. A. H. Keil</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Air Development Center</td>
<td>1</td>
</tr>
<tr>
<td>Johnsville, Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>Aviation Armament Laboratory</td>
<td></td>
</tr>
<tr>
<td>Commander, U. S. Naval Weapons Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Dahlgren, Virginia</td>
<td></td>
</tr>
<tr>
<td>Technical Library</td>
<td></td>
</tr>
<tr>
<td>J. Payne (WH Div.)</td>
<td>1</td>
</tr>
<tr>
<td>L. Pruett</td>
<td></td>
</tr>
<tr>
<td>J. Gray</td>
<td></td>
</tr>
<tr>
<td>P. Altman</td>
<td></td>
</tr>
<tr>
<td>Commander, U. S. Naval Air Test Center</td>
<td>1</td>
</tr>
<tr>
<td>Patuxent River, Maryland</td>
<td></td>
</tr>
<tr>
<td>Commander, Pacific Missile Range</td>
<td>1</td>
</tr>
<tr>
<td>Point Mugu, California</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, U. S. Naval Weapons Station</td>
<td>2</td>
</tr>
<tr>
<td>Yorktown, Virginia, R. & D. Division</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, U. S. Naval Ordnance Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Corona, California</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, U. S. Naval Propellant Plant</td>
<td>1</td>
</tr>
<tr>
<td>Indian Head, Maryland</td>
<td></td>
</tr>
<tr>
<td>Technical Library</td>
<td>1</td>
</tr>
<tr>
<td>EODTC</td>
<td>1</td>
</tr>
</tbody>
</table>
Commanding Officer, U. S. Naval Ordnance Plant
Macon, Georgia

Commander, U. S. Naval Radiological Defense Laboratory
San Francisco, California

Commanding Officer, U. S. Naval Ammunition Depot
McAlester, Oklahoma
 R. E. Halpern

Commanding Officer, U. S. Naval Ammunition Depot
Weippele Branch, Oahu, Hawaii
 Special Projects Officer
 Quality Evaluation Laboratory

Commanding Officer, U. S. Naval Ammunition Depot
Navy Number Six Six (66), c/o Fleet Post Office
San Francisco, California

Commanding Officer, U. S. Naval Ammunition Depot
Concord, California
 Quality Evaluation Laboratory

Commanding Officer, U. S. Navy Electronics Laboratory
San Diego 52, California

Commanding Officer, U. S. Naval Underwater Ordnance Station
Newport, Rhode Island

Commanding Officer, U. S. Naval Weapons Evaluation Facility
Kirtland Air Force Base, Albuquerque, New Mexico

Superintendent, Naval Post Graduate School
Monterey, California

Commanding Officer, Naval Torpedo Station
Keyport, Washington

Office of Chief of Ordnance, Department of the Army
Washington 25, D. C.
 ORDGU
 ORDYN
 ORDTB
Office of Chief Signal Officer
Research & Development Division
Washington 25, D. C.

Officer of Chief of Engineers, Department of Army
Washington 25, D. C.

Commanding General, Picatinny Arsenal
Dover, New Jersey

Commanding Officer
Army Signal Research & Development Laboratory
Fort Monmouth, New Jersey

Commanding Officer, Office of Ordnance Research
Duke Station, Durham, North Carolina

Commander, U. S. Army Ordnance, Frankford Arsenal
Philadelphia 37, Pennsylvania

Commander, U. S. Army Rocket & Guided Missile Agency
Redstone Arsenal, Alabama

Commanding Officer, Diamond Ordnance Fuze Laboratory
Connecticut Avenue & Van Ness St., N. W.
Washington 25, D. C.

M. Lipnick (Code 005)
R. Comyn (Code 710)
George Keehn (Code 320)
Chief of Staff, U. S. Air Force, Washington 25, D. C.
AFORD-AR

Commander, Headquarters Air Proving Ground Center
U. S. Air Force, ARDC, Eglin Air Force Base, Florida
PGREI, Technical Library

Commander, Air Research and Development Command
Andrews Air Force Base, Washington 25, D. C.

Commander, Rome Air Development Center,
Griffiss Air Force Base, Rome, New York

Commander, Holloman Air Development Center
Alamagordo, New Mexico

Commanding Officer, Air Force Missile Test Center
Patrick Air Force Base, Florida

Commander, Air Force Cambridge Research Center
L. G. Hanscom Field, Bedford, Massachusetts

Commander, OOAMA, Hill Air Force Base, Utah

Armed Services Technical Information Agency
Arlington Hall Station, Arlington, Virginia
TTPDR

Office of Technical Services, Department of Commerce
Washington 25, D. C.

Director, U. S. Bureau of Mines
Division of Explosive Technology
4800 Forbes Street
Pittsburgh 13, Pennsylvania

Atomic Energy Commission
Washington 25, D. C.

Lawrence Radiation Laboratory, University of California
P. O. Box 808, Livermore, California
Technical Information Division

Copies
1
1
1
1
1
1
1
1
1
1
1
10
100
1
NOLTR 61-154

Director, Los Alamos Scientific Laboratory
P. O. Box 1663, Los Alamos, New Mexico
Library

1

Stavid Engineering Inc., U. S. Route 22
Plainfield, New Jersey

1

Vitro Corporation, 14600 Georgia Avenue
Silver Spring, Maryland

1

Western Cartridge Company, Division of Olin Industries
East Alton, Illinois

1

Denver Research Institute, University of Denver
Denver 10, Colorado

1

Universal Match Corporation, Ordill, Illinois
Mr. Wm. Rose

1

Universal Match Corporation, Marion, Illinois

1

Bermite Powder Company, Saugus, California

1

Field Command, Defense Atomic Support Agency
Albuquerque, New Mexico (Attn: PCDR)

1

1

Commanding General, U. S. Army Proving Ground
Aberdeen, Maryland (Attn: BRL)

1

Commanding Officer, Engineer Research & Development Laboratory
U. S. Army, Fort Belvoir, Virginia

1

Commanding General, White Sands Proving Ground
White Sands, New Mexico

1

Sandia Corporation, P. O. Box 5400, Albuquerque, New Mexico

1

Sandia Corporation, P. O. Box 969, Livermore, California

1

Lockheed Aircraft Corporation, P. O. Box 504
Sunnyvale, California

1
Director, Applied Physics Laboratory, Johns Hopkins University
621 Georgia Avenue, Silver Spring, Maryland
Solid Propellants Agency

1

Commanding Officer, Fort Dietrick, Maryland

1

Commanding Officer, Rock Island Arsenal, Rock Island, Illinois

1

Commanding Officer, Watertown Arsenal
Watertown 72, Massachusetts

1

Commanding General, Redstone Arsenal
Huntsville, Alabama (Technical Library)

1

Commander, Ordnance Corps, Lake City Arsenal
Independence, Missouri
Industrial Engineering Division

1

Director, USAF Project RAND, Via: USAF Liaison Office
The RAND Corporation, 1700 Main St., Santa Monica, Calif.

1

Aerojet General Corporation, Ordnance Division
Downey, California (Dr. L. Zemow)

1

Stanford Research Institute, Poulter Laboratories
Menlo Park, California

1

Explosives Research Group, University of Utah
Salt Lake City, Utah

1

Beckman Instruments, Inc., 525 Mission Street
South Pasadena, California

1

Bulova Research & Development, Inc.
52-10 Woodside Ave., Woodside 77, New York
Mel Enneman

1

E. I. duPont de Nemours, Eastern Laboratories
Explosives Department, Gibbstown, New Jersey

1

Alleghany Ballistics Laboratory, Cumberland, Maryland

1
The Franklin Institute
20th St. & Benjamin Franklin Parkway
Philadelphia, Pennsylvania

American Machine & Foundry Co. - Alexandria Division
1025 North Royal Street, Alexandria, Virginia
Attn: Dr. L. F. Dytrt

Atlas Powder Company, Reynolds Ordnance Section
P. O. Box 271, Tamaqua, Pennsylvania
Attn: Mr. R. McGirr

Grumman Aircraft Engineering Corporation
Weapons Systems Department, Bethpage
Long Island, New York
Attn: Mr. R. M. Carbee

Jansky and Bailey, Inc., 1339 Wisconsin Avenue, N. W.,
Washington, D. C.
Attn: Mr. F. T. Mitchell, Jr.

McCormick Selph Associates, Attn: Technical Librarian
Hollister, California

Midwest Research Institute, 425 Volker Boulevard
Kansas City, Missouri, Attn: Security Officer

RCA Service Company
Systems Engineering Facility (Mr. E. B. Johnston)
Government Service Department, 838 N. Henry Street
Alexandria, Virginia

Redel, Incorporated, Attn: Library
2300 E. Katella Ave., Anaheim, California

Armed Services Explosives Safety Board, Department of Defense
Room 2075, Bldg. T-7, Gravelly Point, Washington 25, D. C.

U. S. Flare Division Atlantic Research Corporation
19701 W. Goodvall Road, Saugus, California
Attn: Mr. Eugene E. Elzufon, Head, R & D Group

Welex Electronics Corporation, Solar Bldg., Suite 201
16th and K Streets, N. W., Washington 5, D. C.
Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 61-154)
UNCLASSIFIED
The resistance of an electro-explosive device (EED) at some temperature elevation, θ, above ambient can be expressed by \(R = R_0 (1 + \alpha \theta) \), where \(R_0 \) is the resistance at ambient temperature, and \(\alpha \) is the temperature coefficient of resistance. This equation is not consistent with the handbook definitions of temperature resistance coefficient wherein the parameters \(R_0 \) and \(\alpha \) are referenced to 0°C conditions rather than ambient temperature conditions. Misuse of the numerical values can lead in some cases to significant computational errors. The source, magnitude, and correction of these errors is presented.

Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 61-154)
UNCLASSIFIED
The resistance of an electro-explosive device (EED) at some temperature elevation, θ, above ambient can be expressed by \(R = R_0 (1 + \alpha \theta) \), where \(R_0 \) is the resistance at ambient temperature, and \(\alpha \) is the temperature coefficient of resistance. This equation is not consistent with the handbook definitions of temperature resistance coefficient wherein the parameters \(R_0 \) and \(\alpha \) are referenced to 0°C conditions rather than ambient temperature conditions. Misuse of the numerical values can lead in some cases to significant computational errors. The source, magnitude, and correction of these errors is presented.
Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 61-154)
COMMENTS ON THE TEMPERATURE COEFFICIENTS
OF RESISTANCE AS USED IN WIRE BRIDGE ELECTRO-
EXPLOSIVE DEVICE ANALYSES (U), by James N.
Ayres, 1 Nov. 1961. 9p. table. Project
NOL-443.
UNCLASSIFIED
The resistance of an electro-explosive de-
vice (EED) at some temperature elevation, \(\theta \),
above ambient can be expressed by \(R = R_0 \frac{1 + \alpha \theta}{1} \),
where \(R_0 \) is the resistance at ambient
temperature, and \(\alpha \) is the temperature
coefficient of resistance. This equation is
not consistent with the handbook definitions
of temperature resistance coefficient wherein
the parameters \(R_0 \) and \(\alpha \) are referenced to
0°C conditions rather than ambient tempera-
ture conditions. Misuse of the numerical
values can lead to some cases to significant
computational errors. The source, magnitude,
and correction of these errors is presented.

Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 61-154)
COMMENTS ON THE TEMPERATURE COEFFICIENTS
OF RESISTANCE AS USED IN WIRE BRIDGE ELECTRO-
EXPLOSIVE DEVICE ANALYSES (U), by James N.
Ayres, 1 Nov. 1961. 9p. table. Project
NOL-443.
UNCLASSIFIED
The resistance of an electro-explosive de-
vice (EED) at some temperature elevation, \(\theta \),
above ambient can be expressed by \(R = R_0 \frac{1 + \alpha \theta}{1} \),
where \(R_0 \) is the resistance at ambient
temperature, and \(\alpha \) is the temperature
coefficient of resistance. This equation is
not consistent with the handbook definitions
of temperature resistance coefficient wherein
the parameters \(R_0 \) and \(\alpha \) are referenced to
0°C conditions rather than ambient tempera-
ture conditions. Misuse of the numerical
values can lead to some cases to significant
computational errors. The source, magnitude,
and correction of these errors is presented.

Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 61-154)
COMMENTS ON THE TEMPERATURE COEFFICIENTS
OF RESISTANCE AS USED IN WIRE BRIDGE ELECTRO-
EXPLOSIVE DEVICE ANALYSES (U), by James N.
Ayres, 1 Nov. 1961. 9p. table. Project
NOL-443.
UNCLASSIFIED
The resistance of an electro-explosive de-
vice (EED) at some temperature elevation, \(\theta \),
above ambient can be expressed by \(R = R_0 \frac{1 + \alpha \theta}{1} \),
where \(R_0 \) is the resistance at ambient
temperature, and \(\alpha \) is the temperature
coefficient of resistance. This equation is
not consistent with the handbook definitions
of temperature resistance coefficient wherein
the parameters \(R_0 \) and \(\alpha \) are referenced to
0°C conditions rather than ambient tempera-
ture conditions. Misuse of the numerical
values can lead to some cases to significant
computational errors. The source, magnitude,
and correction of these errors is presented.